EP2495858A1 - Bidirektionaler Gleichspannungswandler - Google Patents
Bidirektionaler Gleichspannungswandler Download PDFInfo
- Publication number
- EP2495858A1 EP2495858A1 EP11156405A EP11156405A EP2495858A1 EP 2495858 A1 EP2495858 A1 EP 2495858A1 EP 11156405 A EP11156405 A EP 11156405A EP 11156405 A EP11156405 A EP 11156405A EP 2495858 A1 EP2495858 A1 EP 2495858A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- voltage
- converter
- bidirectional
- level
- inverter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
- H02M3/33576—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
- H02M3/33584—Bidirectional converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
- H02M3/33571—Half-bridge at primary side of an isolation transformer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/76—Power conversion electric or electronic aspects
Definitions
- the invention relates to bidirectional DC voltage converters for high voltages.
- a DC-DC converter also referred to as a DC-DC converter, denotes an electrical circuit which converts a DC voltage supplied to the input into a DC voltage with a higher, lower or inverted voltage level.
- the implementation takes place with the aid of a periodically operating electronic switch and one or more energy stores.
- these converters are also referred to as DC choppers.
- the inductance used to buffer the energy consists of a coil or a transformer transformer.
- capacitive-storage converters are referred to as charge pumps. Charge pumps are used when either - as in integrated circuits - no inductances are present, or when so little output power is required that the use of expensive coils compared to the cheap capacitors not worthwhile.
- DC-DC converters are found as part of switching power supplies used by consumers such as PC power supplies, notebooks, cell phones, small motors, hi-fi equipment.
- the advantages over linear power supplies are better efficiency and lower Heat.
- For a linear voltage regulator or a series resistor however, the superfluous voltage is simply "burned".
- DC-DC converters are also available as fully encapsulated converter modules, some of which are intended for direct placement on printed circuit boards. Depending on the design, the output voltage can be smaller, equal to or greater than the input voltage. Best known are the modules, which translate a low voltage to a galvanically isolated low voltage.
- the encapsulated DC-DC converters are offered, for example, for insulation voltages of 1.5 kV to over 3 kV and are used to power small consumers in DC networks such as 24 V in industrial plants or 48 V in telecommunications or in the field of electronic assemblies, for example 5 Volts for digital circuits or ⁇ 15 volts for the operation of operational amplifiers.
- DC-DC converters are classified according to various criteria and divided into different topologies (type of construction of a branched network of current paths).
- bidirectional DC-DC converters In contrast to unidirectional converters, with bidirectional DC-DC converters, it does not matter which port is defined as the input and which port is out of the output. A bidirectional energy flow direction allows both a power flow from the defined input to the output and vice versa.
- US 5027264 describes a bidirectional DC-DC converter for high voltages, in which the operating principle is based on a "dual active bridge (DAB)" topology.
- DAB dual active bridge
- the DC input voltage is converted in an input converter to an AC voltage and thus fed to a transformer.
- the output of the transformer is connected to an output transducer, which converts the AC voltage back to a DC output voltage for a load.
- Such a bidirectional DAB DC-DC converter uses the zero crossing of a half-bridge to reduce the switching losses. Furthermore, the switching frequency can be increased.
- These DC / DC converters can be implemented in single-phase or multi-phase configurations, providing an output voltage that can be maintained at least near the desired load voltage.
- the previous DAB topology requires a series connection of electronic power semiconductor switches, since at high DC link voltages, the blocking voltage of the semiconductor switches is not sufficient. These usually require parallel balancing resistors for static voltage balancing, which permanently cause losses at high DC link voltages.
- the dynamic voltage balancing must be ensured in switching operations, which makes either Snubbernetzwerke or intelligent and expensive driver circuits or additional circuits necessary. Leaving the soft-switched region in a DAB topology due to excessive input voltage variability or too large a load range increases the snubber loss. The losses in the snubbers can thereby exceed the losses of the semiconductors.
- a snubber network is an electrical circuit with snubber links which is intended to neutralize, for example, interfering high frequencies or voltage peaks, which usually occur when inductive loads are switched, in the event of an abrupt interruption of the current flow.
- Snubber links limit the voltage slew rate or current slew rate on semiconductors.
- a DC to DC converter having an input stage for converting a DC input voltage into a first AC voltage, a transformer for transforming the first AC voltage to a second AC voltage, and an output stage for converting the second AC voltage to a DC output voltage, wherein at least one of the input stages and / or output stages for providing the first and / or second AC voltage comprises a branch of a multilevel inverter having a first number of active first semiconductor switches.
- the input and output stages are isolated from each other.
- the input stage in a bidirectional DC-DC converter according to the invention may optionally represent the output stage in another bidirectional DC-DC converter according to the invention.
- Suitable active semiconductor switches are, for example, turn-off thyristors, transistors or MOSFETs.
- the skilled person may alternatively use other suitable active semiconductor switches.
- Inverters are devices that convert voltages of any polarity into other voltages. The conversion process happens here by power electronics, the electrical energy is stored in a so-called intermediate circuit. For example, additional filters can also be installed in this DC link.
- the output voltage of the multilevel inverter consists of a large number of voltage states (levels). In the case of a two-stage converter (2-level converter), these are two voltage states; in the case of a three-stage converter (3-level converter), these are three voltage states, etc.
- multilevel inverter here encompasses all suitable multilevel inverters, for example 2 level inverters, 3-level inverters, 4-level converter, 5-level converter, etc.
- the bidirectional DC / DC converter according to the invention avoids cost-intensive series connection of electronic power semiconductor switches such as IGBTs (Insulated Gate Bipolar Transistors) or IGCTs (Integrated Gate-Commutated Thyristor). with intelligent GATE drivers or lossy RC snubber links, enabling low-loss operation.
- Bidirectional DC-DC converters can be used, for example, in power electronics, for example for DC grids, in energy storage systems, in particular battery energy storage systems, wind turbines or for regenerative energy systems as voltage transformers, in particular as voltage transformers with a high voltage conversion ratio.
- the design of the other side ie the input side in the arrangement of the multilevel inverter in the output side or the output side in the arrangement of the multilevel inverter in the input side depends on the intended application for the bidirectional DC-DC converter, for example for loss minimization for certain operating points or requirements to a certain voltage variability.
- the multilevel inverter is a 3-level inverter or a 5-level inverter.
- the 3-level inverter is capable of setting three voltage levels at the output.
- the power semiconductors are loaded with a maximum of half the DC link voltage. In order to reduce voltage inequalities, in contrast to a half-bridge, in each case two semiconductor switches are used in series. Without further measures, however, the voltage distribution of the power semiconductors is asymmetrical. The symmetrical voltage distribution of the power semiconductors can be achieved, for example, by capacitors arranged parallel to the power semiconductors.
- the 5-level Inverter is also able to set five voltage levels at the output.
- the multilevel inverter is a 3-level NPC inverter with two clamping diodes.
- NPC stands for "neutral-point-clamped".
- the levels of the three voltage levels can be set symmetrically in the 3-level NPC inverter via the clamping diodes, so that the medium voltage corresponds to the voltage zero level, without the need Symmetri fürsnetztechnike and / or driver would be required.
- IGBTs Insulated Gate Bipolar Transistors
- ANPC inverters may be used or capacitances used in so-called FLCs for voltage sharing.
- the multilevel inverter is a 3-level NPC inverter (51 , 52) with two IGBTs or capacitors instead of the clamping diodes.
- the above embodiments may be used in addition to the 3-level inverters also in other multilevel inverters with a different number of levels.
- the introduction of the additional voltage level creates a further degree of freedom for the modulation of the converter.
- the additional degree of freedom can be used, for example, to minimize the total losses of the converter for a load range.
- the high voltage side is either the input side or the output side.
- the output stage comprises Rectifying the second AC voltage an H-bridge or half-bridge with a second number of active second semiconductor switches.
- An H-bridge consists of two half-bridges.
- the bidirectional DC-DC converter also requires controllable semiconductor switches on the output side.
- the principle of a DAB DC-DC converter is to cause a targeted voltage drop across the stray inductance of the transformer via the AC voltages at the transformer and thus to control the power flow.
- the half-bridge can serve here as a bridge rectifier for the conversion of alternating current into direct current, which is then provided at the output. Such a half bridge is a known, conventional and thus reliable component.
- An active half-bridge or H-bridge enables the independent control of the displacement angle of the alternating voltages applied to the transformer and thus the targeted control of the power flow.
- the H-bridge can be used in particular in output stages for low DC link voltages, in which no series connection of semiconductor switches is necessary.
- the H-bridge is a 2-level H-bridge.
- the number of first and second semiconductor switches is the same. This can double the permissible DC link voltage and the usable input voltage range.
- the bidirectional DC voltage switch with a 3-level NPC converter stage with two clamping diodes and a 2-level H-bridge with the same number of semiconductor switches can be set by adjusting the voltage amplitudes, the voltage ratio equal to 1, whereby the lossless switching on a in Compared to conventional DAB DC-DC converters increased load range is guaranteed.
- the number of second semiconductor switches in the half-bridge is four, the second semiconductor switches are independently switchable and the first and the second of the second semiconductor switches are connected to a positive intermediate circuit rail, see FIG. 7 ,
- the transformer current is minimized at low power.
- the positive DC busbar designates the upper potential of the capacitor.
- the transformer is short-circuited and a third voltage level, the zero level, is generated in the half-bridge.
- a 2-level half-bridge can also be operated as a 3-level half-bridge with appropriate control of the second semiconductor switch. With this, the reactive power of the inverter can be minimized.
- the negative intermediate circuit rail correspondingly designates the lower potential of the capacitor.
- the output stage for rectifying the second AC voltage also comprises a branch of a second multilevel converter.
- multilevel inverter here includes all suitable multilevel inverters, for example 2-level inverters, 3-level inverters, 4-level inverters, 5-level inverters, etc.
- the second multilevel inverter is on 3-level inverter or a 5-level Inverter.
- the second multilevel inverter is a 3-level NPC inverter with two clamping diodes.
- the DC input voltage is variable and the voltage amplitude of the input voltage is matched to the amplitude of the output voltage.
- the voltage ratio is thus equal to 1, whereby the lossless switching can be guaranteed for almost the entire load range.
- the presented converter has a further degree of freedom in the modulation per added voltage level. For example, by the additional degree of freedom of the 3rd level in the 3-level execution or the additional degrees of freedom of the 5 levels in the 5-level execution, etc., you can minimize the total losses of the inverter including transformer etc. ZVS switching on (zero voltage switching) and switching with minimum current can also be influenced.
- the load range for a lossless switch-on is increased compared to conventional DAB DC-DC converters for voltage ratio ratios not equal to 1.
- the topology of the bidirectional DC-DC converter is extended to three or more phases.
- the bidirectional DC-DC converter according to the invention opens up a larger field of application for higher powers.
- the bidirectional DC-DC converter according to the invention can have different multilevel multilevel ratios.
- the bidirectional DC-DC converter according to the invention may be a bidirectional 3-level / 2-level DC-DC converter.
- the bi-directional DC to DC converter or a 5-level / 3-level DC-DC converter or a 3-level / 3-level converter may also choose other multilevel multilevel combinations within the scope of the present invention, depending on the desired field of application.
- FIG. 1 shows several embodiments (a) - (d) of the bidirectional DC-DC converter 1, each having an input stage 2 for converting a DC input voltage into a first AC voltage, a transformer 3 for transforming the first AC voltage to a second AC voltage and a Output stage 4 for converting the second AC voltage into a DC output voltage.
- the various embodiments (a) - (d) comprise at least one multilevel inverter 5 in input stage 2 and / or output stage 4.
- the multilevel converter 5 is arranged in the input stage 2.
- the multilevel inverter 5 is arranged in the output stage 4.
- a multilevel inverter 5 is respectively arranged in the input stage 2 and in the output stage 4.
- the multilevel inverter 5 is arranged in the input stage 2, while the output stage 8 comprises a half-bridge or H-bridge.
- FIG. 2 shows a bidirectional DC-DC converter according to the present invention with a 3-level NPC inverter 51 in the Input stage and a 2-level H-bridge 81 in the output stage 4.
- the input stage is a DC input voltage 21, the output stage 4 feeds a load 11.
- the output voltage of the input stage 2 by means of a Transformers 3 transformed into an input voltage of the output stage 4.
- the 3-level NPC converter 51 comprises two upper and two lower first semiconductor switches 61 each having a diode 7a arranged in parallel therewith, two clamping diodes 71 and two capacitors 9.
- Suitable active first semiconductor switches 61 are, for example, MOFFETs, IGBTs or IGCTs.
- the components of the 3-level NPC inverter 51 form an intermediate circuit in which the electrical energy for the conversion process is stored.
- additional filters for example frequency filters, can be installed in other embodiments.
- the first AC voltage transmitted from the multilevel inverter 51 to the transformer 3 for transformation is composed of a plurality of voltage states (levels).
- levels the voltage states
- the stray inductance of the transformer and, if insufficient, additional inductance in series is used to control power between -P max , 0 and + P max , where P max is the maximum transmittable Performance called.
- the output stage 4 comprises, for rectifying the second AC voltage transformed from the first AC voltage, a 2-level half-bridge 81 with four active second semiconductor switches 62 each having a diode 7b arranged in parallel therewith, so that the number of semiconductor switches 61, 62 in the input and output stages 2, 4 is the same.
- the capacitor 10 is used for smoothing the rectified output voltage.
- FIG. 3 shows waveforms as a function of ⁇ t for a first AC voltage V 1 (input voltage to the transformer) and a second AC voltages V 2 (Output voltage) on the transformer and for the corresponding currents I 1 on the transformer 3 for a bidirectional DC-DC converter 1 and I 2 on the DC link according to FIG. 2 in the case of a first operating mode OP1, in which the input voltage V 1 is greater than the output voltage V 2 , wherein for the phase shift angle ⁇ between first and second AC voltage V 1 and V 2 : 0 ⁇ ⁇ ⁇ / 2.
- V 1 and V 2 above ⁇ t the three voltage levels + V 1 , 0, -V 1 provided by the 3-level NPC inverter are shown at V 1 , as well as the two voltage levels + V 2 , -V 2 , which are rectified after transformation via the 2-level half-bridge.
- FIG. 4 shows the the FIG. 3 (First operation mode OP1) corresponding current waveforms (dashed circles with current flow direction shown as arrow) in the topology of the intermediate circuits of the input and output stage of a bidirectional DC voltage converter according to the invention according to FIG. 2 with V1 ⁇ V 2 and 0 ⁇ ⁇ ⁇ / 2 for the total range 0 ⁇ t ⁇ 2 ⁇ .
- FIG. 3 First operation mode OP1
- FIG. 3 First operation mode OP1 corresponding current waveforms (dashed circles with current flow direction shown as arrow) in the topology of the intermediate circuits of the input and output stage of a bidirectional DC voltage converter according to the invention according to FIG. 2 with V1 ⁇ V 2 and 0 ⁇ ⁇ ⁇ / 2 for the total range 0 ⁇ t ⁇ 2 ⁇ .
- FIG. 2 For a bidirectional operation of the DC-DC converter 1 according to the invention, the 3-level / 2-level DAB arrangement can be made FIG. 2 in one second operation mode OP2 are operated with a negative phase shift angle ⁇ ⁇ 0.
- FIG. 5 shows for the operation mode 2 with - ⁇ + ⁇ ⁇ ⁇ ⁇ 0 simulated waveforms for the first AC voltage V 1 and second AC voltages V 2 and for the corresponding currents I 1 at the transformer 3 for a bidirectional DC-DC converter 1 and I 2 am link.
- the transformed current is fully characterized for a full period by a period of ⁇ .
- FIG. 6 shows the the FIG. 5 (second operation mode OP2) corresponding current waveforms (dashed circles with current flow direction shown as arrow) in the topology of the intermediate circuits of the input and output stage of a bidirectional DC voltage converter according to the invention according to FIG. 2 with V 1 ⁇ V 2 and - ⁇ + ⁇ ⁇ ⁇ ⁇ 0 for the total range 0 ⁇ t ⁇ 2 ⁇ .
- FIG. 5 second operation mode OP22
- FIG. 4 includes eight representations in which the different current waveforms for the eight intervals in the range 0 ⁇ t ⁇ 2 ⁇ are shown: (1) 0 ⁇ t ⁇ t 0 , (2) ⁇ t 0 ⁇ t ⁇ , (3) ⁇ ⁇ t ⁇ ( ⁇ - ⁇ ), (4) ( ⁇ - ⁇ ) ⁇ t ⁇ , (5) ⁇ ⁇ t ⁇ ( ⁇ + ⁇ t 0 ), (6) ( ⁇ + ⁇ t 0 ) ⁇ t ⁇ ( ⁇ + ⁇ ) , (7) ( ⁇ + ⁇ ) ⁇ t ⁇ , and (8) ⁇ ⁇ t ⁇ 2 ⁇ .
- the circles around the first and second semiconductor switches in the diagrams (1) and (4) designate the switches which can be turned on without voltage, since there is still a current flow in the antiparallel diode.
- FIG. 7 shows the H-bridge 81 as the output stage of the invention bidirectional DC-DC converter FIG. 2 as an enlarged section.
- the second semiconductor switches 62 are independently switchable and the first 621 and the second 622 of the second semiconductor switch 62 are connected to a positive DC bus + Z.
- the intermediate circuit here consists of the H-bridge and a capacitor 10 parallel to the bridge.
- the positive DC bus + Z denotes the upper potential of the capacitor 10.
- a 2-level half-bridge 81 can also be operated as a 3-level half-bridge if the second semiconductor switch 62 is controlled accordingly.
- the reactive power of the inverter can be minimized.
- this can also be achieved by connecting the third 623 and the fourth 624 of the second semiconductor switch 62 to a negative intermediate circuit -Z.
- an independent triggering of the diagonal second semiconductor switches is the negative DC bus. necessary.
- FIG. 8 shows an alternative bidirectional DC-DC converter 1 according to the present invention with two 3-level NPC inverters as the input and output stage 2.4.
- the input side 2 corresponds to the input side 2 off FIG. 2 , for the details of the input level 2 is therefore to the description too
- the output stage 4 comprises a second 3-level NPC converter 52, which also has two upper and two lower first semiconductor switches 61 each having a diode 7a arranged in parallel therewith, two clamping diodes 71 and two capacitors 9 comprises.
- Suitable active first semiconductor switches 61 power semiconductors in this case are, for example, MOSFETs, IGBTs or IGCTs.
- the components of the second 3-level NPC inverter 52 also form an intermediate circuit in which the electrical energy for the conversion process is stored. In this intermediate circuit, additional filters can be installed in other embodiments.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
- Inverter Devices (AREA)
Abstract
Description
- Die Erfindung bezieht sich auf bidirektionale Gleichspannungswandler für hohe Spannungen.
- Ein Gleichspannungswandler, auch DC-DC-Wandler genannt, bezeichnet eine elektrische Schaltung, welche eine am Eingang zugeführte Gleichspannung in eine Gleichspannung mit höherem, niedrigerem oder invertiertem Spannungsniveau umwandelt. Die Umsetzung erfolgt mit Hilfe eines periodisch arbeitenden elektronischen Schalters und einem oder mehrerer Energiespeicher. Im Bereich der elektrischen Energietechnik werden diese Wandler auch als Gleichstromsteller bezeichnet.
- Die zur Zwischenspeicherung der Energie benutzte Induktivität (induktiver Wandler) besteht aus einer Spule oder einem Wandler-Transformator. Im Gegensatz dazu werden Wandler mit kapazitiver Speicherung (kapazitive Wandler) als Ladungspumpen bezeichnet. Ladungspumpen werden eingesetzt, wenn entweder - wie in integrierten Schaltungen - keine Induktivitäten vorhanden sind, oder wenn so wenig Ausgangsleistung erforderlich ist, dass sich der Einsatz der teuren Spulen gegenüber den billigen Kondensatoren nicht lohnt.
- Gleichspannungswandler finden sich als ein Teil in Schaltnetzteilen, mit denen Verbraucher wie beispielsweise PC-Netzteile, Notebooks, Mobiltelefone, Kleinmotoren, HiFi-Geräte betrieben werden. Die Vorteile gegenüber Linearnetzteilen liegen im besseren Wirkungsgrad und geringerer Wärmeentwicklung. Bei einem linearen Spannungsregler oder einem Vorwiderstand hingegen wird die überflüssige Spannung einfach "verheizt". DC-DC-Wandler werden auch als vollständig gekapselte Wandlermodule angeboten, welche teilweise für die direkte Bestückung auf Leiterplatten vorgesehen sind. Die Ausgangsspannung kann je nach Bauart kleiner, gleich oder größer als die Eingangsspannung sein. Am bekanntesten sind die Baugruppen, welche eine Kleinspannung auf eine galvanisch getrennte Kleinspannung übersetzen. Die gekapselten DC-DC-Wandler werden beispielsweise für Isolationsspannungen von 1,5 kV bis über 3 kV angeboten und dienen der Stromversorgung kleiner Verbraucher in Gleichspannungsnetzen wie z.B. an 24 V in Industrieanlagen oder an 48 V in der Telekommunikation oder im Bereich elektronischer Baugruppen beispielsweise 5 Volt für Digitalschaltungen oder ±15 Volt für den Betrieb von Operationsverstärkern. Gleichspannungswandler werden nach verschiedenen Kriterien klassifiziert und in verschiedene Topologien (Art des Aufbaus eines verzweigten Netzes an Stromwegen) eingeteilt.
- Im Gegensatz zu unidirektionalen Wandlern ist es bei bidirektionalen Gleichspannungswandlern unerheblich, welcher Anschluss als Eingang und welcher Anschluss aus Ausgang definiert wird. Eine bidirektionale Energieflussrichtung erlaubt sowohl einen Leistungsfluss vom definierten Eingang zum Ausgang hin als auch umgekehrt.
-
US 5027264 beschreibt einen bidirektionalen Gleichspannungswandler für hohe Spannungen, bei dem das Funktionsprinzip auf einer "Dual Active Bridge (DAB)"-Topologie beruht. Hier wird die DC-Eingangspannung in einem Eingangswandler zu einer AC-Spannung umgewandelt und damit ein Transformator gespeist. Der Ausgang des Transformators ist mit einem Ausgangswandler verbunden, der die AC-Spannung wieder in eine DC-Ausgangsspannung für eine Last umwandelt. Ein solcher bidirektionaler DAB-Gleichspannungswandler benutzt den Nulldurchgang einer Halbbrücke, um die Schaltverluste zu vermindern. Ferner kann die Schaltfrequenz erhöht werden. Diese DC/DC-Wandler können in einphasigen oder mehrphasigen Konfigurationen implementiert werden, wobei eine Ausgangsspannung bereitgestellt wird, die zumindest nahe der gewünschten Lastspannung gehalten werden kann. Allerdings benötigt die bisherige DAB-Topologie eine Serienschaltung von leistungselektronischen Halbleiterschaltern, da bei hohen Zwischenkreisspannungen die Sperrspannung der Halbleiterschalter nicht ausreicht. Diese benötigen in der Regel parallele Symmetrierungswiderstände zur statischen Spannungssymmetrierung, die bei hohen Zwischenkreisspannungen permanent Verluste verursachen. Zum anderen muss die dynamische Spannungssymmetrierung bei Schaltvorgängen gewährleistet werden, welches entweder Snubbernetzwerke oder intelligente und teure Treiberschaltungen oder Zusatzbeschaltungen notwendig macht. Wird der weichgeschaltete Bereich in einer DAB-Topologie aufgrund einer zu hohen Eingangsspannungsvariabilität oder einem zu großen Lastbereich verlassen, steigen die Snubberverluste stark an. Die Verluste in den Snubbern können dabei die Verluste der Halbleiter übersteigen. Als Snubbernetzwerk bezeichnet man eine elektrische Schaltung mit Snubbergliedern, die z.B. störende Hochfrequenzen oder Spannungsspitzen, die meist beim Schalten von induktiven Lasten auftreten, bei einer abrupten Unterbrechung des Stromflusses neutralisieren soll. Snubberglieder begrenzen die Spannungsanstiegsgeschwindigkeit oder die Stromanstiegsgeschwindigkeit an Halbleitern. - Es ist eine Aufgabe der vorliegenden Erfindung einen möglichst einfachen und verlustarmen bidirektionalen Gleichspannungswandler für hohe Spannungen zu Verfügung zu stellen.
- Gleichspannungswandler mit einer Eingangsstufe zur Umwandlung einer DC-Eingangsspannung in eine erste AC-Spannung, einem Transformator zur Transformierung der ersten AC-Spannung in eine zweite AC-Spannung und einer Ausgangsstufe zur Umwandlung der zweiten AC-Spannung in eine DC-Ausgangsspannung, wobei mindestens eine der Eingangsstufen und/oder Ausgangsstufen zur Bereitstellung der ersten und/oder zweiten AC-Spannung einen Zweig eines Multilevel-Umrichters mit einer ersten Anzahl an aktiven ersten Halbleiterschaltern umfasst. Es ergibt sich eine Multilevel DAB. Hierbei sind die Eingangs- und Ausgangsstufen gegeneinander isoliert. Die Eingangsstufe in einem erfindungsgemäßen bidirektionalen Gleichspannungswandler kann gegebenenfalls in einem anderen erfindungsgemäßen bidirektionalen Gleichspannungswandler die Ausgangsstufe darstellen. Geeignete aktive Halbleiterschalter (Leistungshalbleiter) sind hierbei beispielsweise abschaltbare Thyristoren, Transistoren oder MOSFETs. Der Fachmann kann alternativ auch andere geeignete aktive Halbleiterschalter verwenden. Umrichter sind Vorrichtungen, die Spannungen beliebiger Polarität in andere Spannungen umwandeln. Der Wandlungsvorgang geschieht hier durch Leistungselektronik, wobei die elektrische Energie in einem sogenannten Zwischenkreis gespeichert wird. In diesen Zwischenkreis können beispielsweise auch noch zusätzliche Filter eingebaut werden. Die Ausgangsspannung des Multilevel-Umrichters setzt sich aus einer Vielzahl an Spannungszuständen (Level) zusammen. Bei einem Zweistufen-Umrichter (2-level-Umrichter) sind das zwei Spannungszustände, bei einem Dreistufen-Umrichter (3-level-Umrichter) sind dies drei Spannungszustände u.s.w. Der Begriff Multilevel-Umrichter umfasst hierbei alle geeigneten Multilevel-Umrichter, also beispielsweise 2-level-Umrichter, 3-level-Umrichter, 4-level-Umrichter, 5-level-Umrichter usw. Der erfindungsgemäße bidirektionale DC/DC-Wandler vermeidet dabei eine kostenintensive Serienschaltung von leistungselektronischen Halbleiterschaltern wie IGBTs ("insulated gate bipolar transistors") oder IGCTs ("Integrated Gate-Commutated Thyristor") mit intelligenten GATE-Treibern oder verlustreichen RC-Snubbergliedern und ermöglicht einen verlustarmen Betrieb. Bidirektionale Gleichspannungswandler gemäß der vorliegenden Erfindung können beispielsweise eingesetzt werden in der Leistungselektronik beispielsweise für DC-Netze, in Energiespeichersystemen, hier insbesondere Batterieenergiespeichersystemen, Windkraftanlagen oder für regenerative Energiesysteme als Spannungswandler, insbesondere als Spannungswandler mit hohem Spannungsübersetzungsverhältniss. Die Gestaltung der anderen Seite, also der Eingangsseite bei Anordnung des Multilevel-Umrichters in der Ausgangsseite oder die Ausgangsseite bei Anordnung des Multilevel-Umrichters in der Eingangsseite hängt von der vorgesehenen Anwendung für den bidirektionaler Gleichspannungswandler ab, beispielsweise zur Verlustminimierung für bestimmte Betriebspunkte oder bei Anforderungen an eine bestimmte Spannungsvariabilität.
- In einer Ausführungsform ist der Multilevel-Umrichter ein 3-level Umrichter oder ein 5-level-Umrichter. Der 3-level Umrichter ist in der Lage, drei Spannungsstufen am Ausgang einzustellen. Dabei werden die Leistungshalbleiter maximal mit der halben Zwischenkreisspannung belastet. Um Spannungsungleichheiten zu verkleinern, werden hier im Gegensatz zu einer Halbbrücke jeweils zwei Halbleiterschalter in Reihe verwendet. Ohne weitere Maßnahmen ist die Spannungsaufteilung der Leistungshalbleiter allerdings unsymmetrisch. Die symmetrische Spannungsaufteilung der Leistungshalbleiter kann beispielsweise durch parallel zu den Leistungshalbleitern angeordnete Kapazitäten erreicht werden. Der 5-level Umrichter ist analog in der Lage, fünf Spannungsstufen am Ausgang einzustellen. In einer bevorzugten Ausführungsform ist der Multilevel-Umrichter ein 3-level NPC Umrichter mit zwei Clamping-Dioden. NPC steht hier für "neutral-point-clamped". Die Niveaus der drei Spannungsstufen können beim 3-level NPC Umrichter über die Clamping-Dioden symmetrisch eingestellt werden, so dass die Mittelspannung dem Spannungs-Nullniveau entspricht, ohne dass dafür Symmetrierungsnetzwerke und/oder Treiber erforderlich wären. In alternativen Ausführungsformen können anstatt der Clamping-Dioden IGBTs (Bipolartransistoren mit isolierter Gate-Elektrode) (ANPC-Umrichter) verwendet oder Kapazitäten in sogenannten FLCs zur Spannungsaufteilung eingesetzt werden, In einer Ausführungsform ist der Multilevel-Umrichter ein 3-level NPC Umrichter (51, 52) mit zwei IGBTs oder Kapazitäten anstatt der Clamping-Dioden. Alle voranstehenden Ausführungsformen können neben den 3-level Umrichtern auch in anderen Multilevel-Umrichtern mit einer anderen Anzahl an Level entsprechend verwendet werden. Neben der vereinfachten Topologie entsteht durch das Einführen des zusätzlichen Spannungslevels (im Vergleich zum 2-level Umrichter) ein weiterer Freiheitsgrad für die Modulation des Umrichters. Der zusätzliche Freiheitsgrad kann beispielsweise zu einer Minimierung der Gesamtverluste des Umrichters für einen Lastbereich benutzt werden. Bei einem großen Transformationsverhältnis zwischen Eingangsspannung und Ausgangsspannung ist es vorteilhaft, den 3-level NPC Umrichter auf der Seite mit der hohen Spannung anzuordnen. Bei einer Hochtransformation wäre dies die Ausgangsseite, bei einer Transformation zu niedrigen Spannungen wäre dies die Eingangsseite. Als Transformationsverhältnis wird hier das Verhältnis der Amplituden zwischen erster und zweiter AC-Spannung bezeichnet. Entsprechend ist die Seite der hohen Spannung entweder die Eingangsseite oder die Ausgangsseite.
- In einer weiteren Ausführungsform umfasst die Ausgangsstufe zur Gleichrichtung der zweiten AC-Spannung eine H-Brücke oder Halbbrücke mit einer zweiten Anzahl an aktiven zweiten Halbleiterschaltern. Eine H-Brücke besteht dabei aus zwei Halbbrücken. Im Gegensatz zu unidirektionalen Gleichspannungswandlern benötigt der bidirektionale Gleichspannungswandler auch auf der Ausgangsseite steuerbare Halbleiterschalter. Das Prinzip eines DAB-Gleichspannungswandlers ist es, über die AC-Spannungen am Transformator einen gezielten Spannungsabfall über der Streuinduktivität des Transformators hervorzurufen und damit den Leistungsfluss zu steuern. Die Halbbrücke kann hier als Brückengleichrichter zur Umwandlung von Wechselstrom in Gleichstrom dienen, der dann am Ausgang bereitgestellt wird. Eine solche Halbbrücke ist eine bekannte, konventionelle und somit zuverlässige Komponente. Eine aktiv geschaltete Halbbrücke oder H-Brücke ermöglicht die unabhängige Steuerung des Verschiebungswinkels der am Transformator anliegenden Wechselspannungen und damit die gezielte Steuerung des Leistungsflusses. Die H-Brücke kann insbesondere in Ausgangstufen für niedrige Zwischenkreisspannungen, bei denen keine Serienschaltung von Halbleiterschaltern notwendig ist, verwendet werden. In einer bevorzugten Ausführungsform ist die H-Brücke eine 2-level H-Brücke.
- In einer weiteren Ausführungsform ist die Anzahl erster und zweiter Halbleiterschalter gleich. Hiermit kann die zulässige Zwischenkreisspannung und der verwendbare Eingangsspannungsbereich verdoppelt werden. In einer Anordnung des bidirektionalen Gleichspannungsschalters mit einer 3-level NPC Umrichterstufe mit zwei Clamping-Dioden und einer 2-level H-Brücke bei gleicher Anzahl an Halbleiterschaltern kann über Anpassung der Spannungsamplituden das Spannungsverhältnis gleich 1 gesetzt werden, wodurch das verlustlose Einschalten über einen im Vergleich zu konventionellen DAB-Gleichspannungswandlern vergrößerten Lastbereich garantiert wird.
- In einer Ausführungsform ist die Anzahl der zweiten Halbleiterschalter in der Halbbrücke vier, die zweiten Halbleiterschalter sind unabhängig voneinander schaltbar und der erste und der zweite der zweiten Halbleiterschalter sind auf eine positive Zwischenkreisschiene geschaltet, siehe dazu
Figur 7 . Dadurch wird der Transformatorstrom bei kleinen Leistungen minimiert. Bei DC/DC Wandlern spricht man auch von der Minimierung der Blindleistung. Die positive Zwischenkreisschiene bezeichnet dabei das obere Potential des Kondensators. Indem die ersten und zweiten Halbleiterschalter parallel betrieben werden, wird der Transformator kurzgeschlossen und in der Halbbrücke ein drittes Spannungsniveau, das Nullniveau, erzeugt. Insofern kann eine 2-level Halbbrücke bei entsprechender Ansteuerung der zweiten Halbleiterschalter auch als 3-level Halbbrücke betrieben werden. Hiermit kann die Blindleistung des Umrichters minimiert werden. Dies kann alternativ auch dadurch erreicht werden, dass der dritte und der vierte der zweiten Halbleiterschalter auf eine negative Zwischenkreisschiene geschaltet sind. Die negative Zwischenkreisschiene bezeichnet entsprechend das untere Potential des Kondensators. Für die Minimierung der Blindleistung ist hier eine unabhängige Triggerung der diagonalen zweiten Halbleiterschalter (der erste und der vierte bzw. der zweite und der dritte der zweiten Halbleiterschalter) notwendig. - In einer weiteren Ausführungsform umfasst auch die Ausgangsstufe zur Gleichrichtung der zweiten AC-Spannung einen Zweig eines zweiten Multilevel-Umrichters. Der Begriff Multilevel-Umrichter umfasst hierbei alle geeigneten Multilevel-Umrichter, also beispielsweise 2-level-Umrichter, 3-level-Umrichter, 4-level-Umrichter, 5-level-Umrichter usw. In einer Ausführungsform ist der zweite Multilevel-Umrichter ein 3-level Umrichter oder ein 5-level Umrichter. Vorzugsweise ist der zweite Multilevel-Umrichter ein 3-level NPC Umrichter mit zwei Clamping-Dioden.
- In einer weiteren Ausführungsform ist die DC-Eingangsspannung variabel und die Spannungsamplitude der Eingangsspannung ist an die Amplitude der Ausgangsspannung angepasst. Das Spannungsverhältnis ist damit gleich 1, womit das verlustlose Einschalten für nahezu den gesamten Lastbereich garantiert werden kann. Im Vergleich zum 2-level DAB-Gleichspannungswandler besitzt der vorgestellte Wandler pro hinzugefügtem Spannungslevel einen weiteren Freiheitsgrad in der Modulation. Beispielsweise durch den zusätzlichen Freiheitsgrad des 3. Levels bei der 3-level Ausführung bzw. die zusätzlichen Freiheitsgrade der 5 Level bei der 5-level Ausführung etc. kann man die Gesamtverluste des Umrichters inklusive Transformator etc. minimieren. Das ZVS-Einschalten (Nullspannungsschalten) und das Schalten bei minimalem Strom kann dadurch auch beeinflusst werden. Der Lastbereich für ein verlustloses Einschalten ist im Vergleich zu konventionellen DAB-Gleichspannungswandlern auch für Spannungsübersetzungsverhältnisse ungleich 1 vergrößert.
- In einer weiteren Ausführungsform ist die Topologie des bidirektionalen Gleichspannungswandlers auf drei oder mehr Phasen erweitert. Dadurch erschließt sich dem erfindungsgemäßen bidirektionalen Gleichspannungswandler ein größeres Einsatzfeld für höhere Leistungen.
- Der erfindungsgemäße bidirektionale Gleichspannungswandler kann verschiedene Multilevel-Multilevel-Verhältnisse besitzen. Beispielsweise kann der erfindungsgemäße bidirektionale Gleichspannungswandler ein bidirektionaler 3-level / 2-level DC-DC-Wandler sein. In anderen Ausführungsformen kann der erfindungsgemäße bidirektionale Gleichspannungswandler auch ein 5-level / 2-level DC-DC-Wandler oder ein 5-level /3-level DC-DC-Wandler oder ein 3-level / 3-level Wandler sein. Fachleute können auch andere Multilevel-Multilevel-Kombinationen im Rahmen der vorliegenden Erfindung in Abhängigkeit vom gewünschten Anwendungsgebiet wählen.
- Diese und andere Aspekte der vorliegenden Erfindung sind in den Zeichnungen im Detail dargestellt.
- Fig.1:
- mehrere Ausführungsformen des bidirektionalen Gleichspannungswandlers mit mindestens einem Multilevel-Umrichter in Eingangs- und/oder Ausgangstufe;
- Fig.2:
- ein bidirektionaler Gleichspannungswandler gemäß vorliegender Erfindung mit einem 3-level NPC Umrichter in der Eingangsstufe und einer 2-level Halbbrücke in der Ausgangsstufe;
- Fig.3:
- simulierte Verläufe für erste und zweite AC-Spannungen sowie für die entsprechenden Ströme am Transformator für einen bidirektionalen Gleichspannungswandler gemäß
Figur 2 für einen ersten Operationsmodus; - Fig.4:
- Stromverläufe der Eingangs- und Ausgangsstufe eines erfindungsgemäßen bidirektionalen Gleichspannungswandlers gemäß
Figur 2 für den ersten Operationsmodus; - Fig.5:
- Verläufe für erste und zweite AC-Spannungen sowie für die entsprechenden Ströme am Transformator für einen bidirektionalen Gleichspannungswandler gemäß
Figur 2 für einen zweiten Operationsmodus; - Fig.6:
- Stromverläufe in den Zwischenkreisen der Eingans- und Ausgangsstufe eines erfindungsgemäßen bidirektionalen Gleichspannungswandlers gemäß
Figur 2 für den zweiten Operationsmodus; - Fig.7:
- Ausgangsstufe als 3-level Halbbrücke;
- Fig.8:
- ein alternativer bidirektionaler Gleichspannungswandler gemäß vorliegender Erfindung mit zwei 3-level NPC Umrichtern als Eingangs- und Ausgangsstufe.
-
Figur 1 zeigt mehrere Ausführungsformen (a) - (d) des bidirektionalen Gleichspannungswandlers 1 mit jeweils einer Eingangsstufe 2 zur Umwandlung einer DC-Eingangsspannung in eine erste AC-Spannung, einem Transformator 3 zur Transformierung der ersten AC-Spannung in eine zweite AC-Spannung und einer Ausgangsstufe 4 zur Umwandlung der zweiten AC-Spannung in eine DC-Ausgangsspannung. Die verschiedenen Ausführungsformen (a) - (d) umfassen mindestens einen Multilevel-Umrichter 5 in Eingangsstufe 2 und/oder Ausgangstufe 4. In Ausführungsform (a) ist der Multilevel-Umrichter 5 in der Eingangsstufe 2 angeordnet. In Ausführungsform (b) ist der Multilevel-Umrichter 5 in der Ausgangsstufe 4 angeordnet. In Ausführungsform (c) ist jeweils ein Multilevel-Umrichter 5 in der Eingangsstufe 2 und in der Ausgangsstufe 4 angeordnet. In Ausführungsform (d) ist der Multilevel-Umrichter 5 in der Eingangsstufe 2 angeordnet, während die Ausgangsstufe 8 eine Halbbrücke oder H-Brücke umfasst. -
Figur 2 zeigt einen bidirektionaler Gleichspannungswandler gemäß vorliegender Erfindung mit einem 3-level NPC Umrichter 51 in der Eingangsstufe und einer 2-level H-Brücke 81 in der Ausgangsstufe 4. An der Eingangsstufe liegt eine DC-Eingangsspannung 21 an, die Ausgangsstufe 4 speist eine Last 11. Zwischen Eingangs- und Ausgangsstufe 2,4 wird die Ausgangsspannung der Eingangsstufe 2 mittels eines Transformators 3 in eine Eingangsspannung der Ausgangsstufe 4 transformiert. Der 3-level NPC Umrichter 51 umfasst hierbei zwei obere und zwei untere erste Halbleiterschalter 61 mit jeweils einer parallel dazu angeordneten Diode 7a, zwei Clamping-Dioden 71 und zwei Kondensatoren 9. Geeignete aktive erste Halbleiterschalter 61 (Leistungshalbleiter) sind hierbei beispielsweise MOFFETs, IGBTs oder IGCTs. Die Komponenten des 3-level NPC Umrichter 51 bilden einen Zwischenkreis, in dem die elektrische Energie für den Wandlungsvorgang gespeichert wird. In diesem Zwischenkreis können in anderen Ausführungsformen noch zusätzliche Filter, beispielsweise Frequenzfilter eingebaut werden. Die vom Multilevel-Umrichter 51 an den Transformator 3 zur Transformierung übertragene erste AC-Spannung setzt sich aus einer Vielzahl an Spannungszuständen (Level) zusammen. Wie bei konventionellen DAB-Gleichspannungswandlern wird die Streuinduktivität des Transformators, und, falls diese nicht ausreicht, eine zusätzliche Induktivität dazu in Serie benutzt, um die Leistung zwischen -Pmax, 0 und +Pmax steuern zu können, wobei Pmax die maximal übertragbare Leistung bezeichnet. Die Ausgangsstufe 4 umfasst in dieser Ausführungsform zur Gleichrichtung der aus der ersten AC-Spannung transformierten zweiten AC-Spannung eine 2-level Halbbrücke 81 mit vier aktiven zweiten Halbleiterschaltern 62 mit jeweils einer parallel dazu angeordneten Diode 7b , so dass die Anzahl der Halbleiterschalter 61, 62 in den Eingangs- und Ausgangsstufen 2, 4 gleich ist. Der Kondensator 10 dient zur Glättung der gleichgerichteten Ausgangsspannung. -
Figur 3 zeigt Verläufe als Funktion von ωt für eine erste AC-Spannung V1(Eingangsspannung am Transformator) und eine zweite AC-Spannungen V2 (Ausgangsspannung) am Transformator sowie für die entsprechenden Ströme I1 am Transformator 3 für einen bidirektionalen Gleichspannungswandler 1 und I2 am Zwischenkreis gemäßFigur 2 im Falle eines ersten Operationsmodus OP1, bei dem die Eingangsspannung V1 größer als die Ausgangsspannung V2 ist, wobei für den Phasenverschiebungswinkel φ zwischen erster und zweiter AC-Spannung V1 und V2 gilt: 0 < φ ≤ β/2. In der Darstellung von V1 und V2 über ωt sind bei V1 die drei Spannungslevel +V1, 0, -V1, die der 3-level NPC Umrichters bereitstellt, sowie die beiden Spannungslevel +V2, -V2 ersichtlich, die nach Transformation über die 2-level Halbbrücke gleichgerichtet werden. Die maximale Energieübertragung wird bei einem Phasenverschiebungswinkel φ = β/2 erreicht, bei φ = 0 ist diese für den Operationsmodus 1 minimal. Für φ > β/2 wird die Energieübertragung ebenfalls wieder geringer, die Blindleistung steigt jedoch an. -
Figur 4 zeigt die derFigur 3 (erster Operationsmodus OP1) entsprechenden Stromverläufe (gestrichelte Kreise mit Stromflussrichtung dargestellt als Pfeil) in der Topologie der Zwischenkreise der Eingangs- und Ausgangsstufe eines erfindungsgemäßen bidirektionalen Gleichspannungswandlers gemäßFigur 2 mit V1 ≥ V2 und 0 < φ ≤ β/2 für den Gesamtbereich 0 < ωt < 2Π.Figur 4 umfasst acht Darstellungen, bei denen die unterschiedlichen Stromverläufe für die acht Intervalle im Bereiche 0 < ωt < 2Π gezeigt sind: (1) 0 < ωt < ωt0, (2) ωt0 < ωt < φ, (3) φ < ωt < β, (4) β < ωt < Π, (5) Π < ωt < (Π + ωt0), (6) (Π + ωt0) < ωt < (Π + φ), (7) (Π + φ) < ωt < (Π + β), und (8) (Π + β) < ωt < 2Π. Die Kreise um die ersten und zweiten Halbleiterschalter in den Darstellungen (1) und (4) bezeichnen die Schalter, die spannungslos eingeschaltet werden können, da noch ein Stromfluss in der antiparallelen Diode vorliegt. - Für einen bidirektionalen Betrieb des erfindungsgemäßen Gleichspannungswandlers 1 kann die 3-level / 2-level DAB-Anordnung aus
Figur 2 in einem zweiten Operationsmodus OP2 mit einem negativen Phasenverschiebungswinkel φ < 0 betrieben werden.Figur 5 zeigt für den Operationsmodus 2 mit - π + β ≤ Φ < 0 simulierte Verläufe für die erste AC-Spannung V1 und zweite AC-Spannungen V2 sowie für die entsprechenden Ströme I1 am Transformator 3 für einen bidirektionalen Gleichspannungswandler 1 und I2 am Zwischenkreis. Aus Symmetriegründen ist der transformierte Strom für eine volle Periode durch eine Periode von π vollständig charakterisiert. In der Darstellung von V1 und V2 über ωt sind bei V1 die drei Spannungslevel +V1, 0, -V1, die der 3-level NPC Umrichter bereitstellt, sowie die beiden Spannungslevel +V2, -V2 ersichtlich, die nach Transformation über die 2-level Halbbrücke gleichgerichtet werden. Die Energieübertragung wird Null bei einem Phasenverschiebungswinkel φ = (-π + β)/2. Die maximale Energieübertragung in diesem Operationsmodus wird bei einem Phasenverschiebungswinkel φ = 0 erreicht. -
Figur 6 zeigt die derFigur 5 (zweiter Operationsmodus OP2) entsprechenden Stromverläufe (gestrichelte Kreise mit Stromflussrichtung dargestellt als Pfeil) in der Topologie der Zwischenkreise der Eingangs- und Ausgangsstufe eines erfindungsgemäßen bidirektionalen Gleichspannungswandlers gemäßFigur 2 mit V1 ≥ V2 und - π + β ≤ Φ < 0 für den Gesamtbereich 0 < ωt < 2π.Figur 4 umfasst acht Darstellungen, bei denen die unterschiedlichen Stromverläufe für die acht Intervalle im Bereiche 0 < ωt < 2π gezeigt sind: (1) 0 < ωt < ωt0, (2) ωt0 < ωt < β, (3) β < ωt < (φ - π), (4) (φ - π) < ωt < π, (5) π < ωt < (π + ωt0), (6) (π + ωt0) < ωt < (π + β), (7) (π + β) < ωt < φ, und (8) φ < ωt < 2π. Die Kreise um die ersten und zweiten Halbleiterschalter in den Darstellungen (1) und (4) bezeichnen die Schalter, die spannungslos eingeschaltet werden können, da noch ein Stromfluss in der antiparallelen Diode vorliegt.. -
Figur 7 zeigt die H-Brücke 81 als Ausgangsstufe des erfindungsgemäßen bidirektionalen Gleichspannungswandlers ausFigur 2 als vergrößerter Ausschnitt. Hier sind die zweiten Halbleiterschalter 62 unabhängig voneinander schaltbar und der erste 621 und der zweite 622 der zweiten Halbleiterschalter 62 sind auf eine positive Zwischenkreisschiene +Z geschaltet. Dadurch wird der Transformatorstrom bei kleinen Leistungen minimiert. Der Zwischenkreis besteht hier aus der H-Brücke und einem Kondensator 10 parallel zur Brücke. Die positive Zwischenkreisschiene +Z bezeichnet dabei das obere Potential des Kondensators 10. Indem die ersten 621 und zweiten Halbleiterschalter 622 parallel betrieben werden, wird der Transformator 3 kurzgeschlossen (angedeutet durch die gestrichelten Pfeile) und in der Halbbrücke 81 ein drittes Spannungsniveau, das Nullniveau, erzeugt. Insofern kann eine 2-level Halbbrücke 81 bei entsprechender Ansteuerung der zweiten Halbleiterschalter 62 auch als 3-level Halbbrücke betrieben werden. Hiermit kann die Blindleistung des Umrichters minimiert werden. Dies kann alternativ auch dadurch erreicht werden, dass der dritte 623 und der vierte 624 der zweiten Halbleiterschalter 62 auf eine negative Zwischenkreisschiene -Z geschaltet sind. Die negative Zwischenkreisschiene - Z bezeichnet entsprechend das untere Potential des Kondensators 10. Für die Minimierung der Blindleistung ist hier eine unabhängige Triggerung der diagonalen zweiten Halbleiterschalter (der erste 621 und der vierte 624 bzw. der zweite 622 und der dritte 623 der zweiten Halbleiterschalter 62) notwendig. -
Figur 8 zeigt einen alternativen bidirektionalen Gleichspannungswandler 1 gemäß vorliegender Erfindung mit zwei 3-level NPC Umrichtern als Eingangs-und Ausgangsstufe 2,4. Die Eingangseite 2 entspricht der Eingangsseite 2 ausFigur 2 , für die Details der Eingangsstufe 2 wird daher auf die Beschreibung zu -
Figur 2 verwiesen. Die Ausgangsstufe 4 umfasst einen zweiten 3-level NPC Umrichters 52, der ebenso zwei obere und zwei untere erste Halbleiterschalter 61 mit jeweils einer parallel dazu angeordneten Diode 7a, zwei Clamping-Dioden 71 und zwei Kondensatoren 9 umfasst. Geeignete aktive erste Halbleiterschalter 61 (Leistungshalbleiter) sind hierbei beispielsweise MOSFETs, IGBTs oder IGCTs. Die Komponenten des zweiten 3-level NPC Umrichter 52 bilden ebenfalls einen Zwischenkreis, in dem die elektrische Energie für den Wandlungsvorgang gespeichert wird. In diesem Zwischenkreis können in anderen Ausführungsformen noch zusätzliche Filter eingebaut werden. - Figuren ist als Beispiel für mögliche Ausführungsformen im Rahmen der Erfindung und daher nicht einschränkend zu verstehen. Insbesondere angegebene Größen sind auf die jeweiligen Betriebsbedingungen des Schalters (Strom, Spannung) vom Fachmann anzupassen. Daher sind alle angegebenen Größen nur als Beispiele für bestimmte Ausführungsformen zu verstehen.
- Alternative Ausführungsformen, die der Fachmann möglicherweise im Rahmen der vorliegenden Erfindung in Betracht zieht, sind vom Schutzbereich der vorliegenden Erfindung ebenfalls mit umfasst. In den Ansprüchen umfassen Ausdrücke wie "ein" auch die Mehrzahl. In den Ansprüchen angegebene Bezugszeichen sind nicht einschränkend auszulegen.
-
- 1
- bidirektionaler Gleichspannungswandler
- 2
- Eingangsstufe
- 21
- DC-Eingangsspannungsversorgung
- 3
- Transformator
- 4
- Ausgangsstufe
- 5
- Multilevel-Umrichter
- 51
- 3-level NPC Umrichter in der Eingangsstufe
- 52
- 3-level NPC Umrichter in der Ausgangsstufe
- 61
- erste Halbleiterschalter
- 62
- zweite Halbleiterschalter
- 621
- erster der zweiten Halbleiterschalter
- 622
- zweiter der zweiten Halbleiterschalter
- 623
- dritter der zweiten Halbleiterschalter
- 624
- vierter der zweiten Halbleiterschalter
- 7a
- Gleichrichterdioden des ;Multilevel-Umrichters
- 7b
- Gleichrichterdioden der Halbbrücke
- 71
- Clamping-Dioden des Multilevel-Umrichters, hier ein 3-level NPC Umrichter
- 8
- H-Brücke oder Halbbrücke
- 81
- 2-level H-Brücke oder 2-level Halbbrücke
- 9
- Zwischenkreiskondensator
- 10
- Kondensator zur Glättung des Ausgangsspannung
- 11
- Last
- OP1
- ersten Operationsmodus
- OP2
- zweiter Operationsmodus
- V1, I1
- Spannung / Strom der ersten AC-Spannung
- V2, I2
- Spannung / Strom der zweiten AC-Spannung
- +Z, -Z
- positive / negative Zwischenkreisschiene der Halbbrücke
Claims (15)
- Ein bidirektionaler Gleichspannungswandler (1) mit einer Eingangsstufe (2) zur Umwandlung einer DC-Eingangsspannung in eine erste AC-Spannung, einem Transformator (3) zur Transformierung der ersten AC-Spannung in eine zweite AC-Spannung und einer Ausgangsstufe (4) zur Umwandlung der zweiten AC-Spannung in eine DC-Ausgangsspannung, wobei mindestens eine der Eingangsstufen (2) und/oder Ausgangsstufen (4) zur Bereitstellung der ersten und/oder zweiten AC-Spannung einen Zweig eines Multilevel-Umrichters (5) mit einer ersten Anzahl an aktiven ersten Halbleiterschaltern (61) umfasst.
- Der bidirektionale Gleichspannungswandler (1) nach Anspruch 1,
dadurch gekennzeichnet,
dass der Multilevel-Umrichter (5) ein 3-level Umrichter oder ein 5-level Umrichter ist. - Der bidirektionale Gleichspannungswandler (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet,
der Multilevel-Umrichter ein 3-level NPC Umrichter (51, 52) mit zwei Clamping-Dioden (71) ist. - Der bidirektionale Gleichspannungswandler (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet,
der Multilevel-Umrichter ein 3-level NPC Umrichter (51, 52) mit zwei IGBTs oder Kapazitäten ist. - Der bidirektionale Gleichspannungswandler (1) nach Anspruch 3 oder 4, dadurch gekennzeichnet,
der 3-level NPC Umrichter (51, 52) bei einem großen Transformationsverhältnis auf der Seite der Eingangs- oder Ausgangsstufe (2, 4) angeordnet ist, auf der die höhere Spannung anliegt. - Der bidirektionale Gleichspannungswandler (1) nach einem der voranstehenden Ansprüche,
dadurch gekennzeichnet,
dass die Ausgangsstufe (4) zur Gleichrichtung der zweiten AC-Spannung eine H-Brücke oder Halbbrücke (8) mit einer zweiten Anzahl an aktiven zweiten Halbleiterschaltern (62) umfasst. - Der bidirektionale Gleichspannungswandler (1) nach Anspruch 6,
dadurch gekennzeichnet,
die H-Brücke (8) eine 2-level H-Brücke (81) ist. - Der bidirektionale Gleichspannungswandler (1) nach Anspruch 6 oder 7, dadurch gekennzeichnet,
dass die Anzahl erster und zweiter Halbleiterschalter (61, 62) gleich ist. - Der bidirektionale Gleichspannungswandler (1) nach einem der Ansprüche 6 bis 8,
dadurch gekennzeichnet,
dass die Anzahl der zweiten Halbleiterschalter (62) vier ist, die zweiten Halbleiterschalter unabhängig voneinander schaltbar sind und der erste (621) und der zweite (622) der zweiten Halbleiterschalter (62) auf eine positive Zwischenkreisschiene geschaltet sind. - Der bidirektionale Gleichspannungswandler nach einem der Ansprüche 6 bis 8,
dadurch gekennzeichnet,
dass die Anzahl der zweiten Halbleiterschalter (62) vier ist, die zweiten Halbleiterschalter unabhängig voneinander schaltbar sind und der dritte (623) und der vierte (624) der zweiten Halbleiterschalter (62) auf eine negative Zwischenkreisschiene geschaltet sind. - Der bidirektionale Gleichspannungswandler (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet,
dass die Ausgangsstufe (4) zur Gleichrichtung der zweiten AC-Spannung einen Zweig eines zweiten Multilevel-Umrichters (5) umfasst. - Der bidirektionale Gleichspannungswandler (1) nach Anspruch 11,
dadurch gekennzeichnet,
dass der zweite Multilevel-Umrichter (5) ein 3-level Umrichter oder ein 5-level Umrichter ist. - Der bidirektionale Gleichspannungswandler (1) nach Anspruch 12,
dadurch gekennzeichnet,
dass der zweite Multilevel-Umrichter ein 3-level NPC Umrichter (52) mit zwei Clamping-Dioden (71) ist. - Der bidirektionale Gleichspannungswandler (1) nach einem der voranstehenden Ansprüche,
dadurch gekennzeichnet,
dass die DC-Eingangsspannung (21) variabel ist und die Spannungsamplitude der Eingangsspannung (21) an die Amplitude der Ausgangsspannung angepasst ist. - Der bidirektionale Gleichspannungswandler (1) nach einem der voranstehenden Ansprüche,
dadurch gekennzeichnet,
dass die Topologie des bidirektionalen Gleichspannungswandlers (1) auf drei oder mehr Phasen erweitert ist.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11156405A EP2495858A1 (de) | 2011-03-01 | 2011-03-01 | Bidirektionaler Gleichspannungswandler |
JP2013555841A JP6169980B2 (ja) | 2011-03-01 | 2012-02-27 | 双方向dc−dcコンバータ |
RU2013141468/07A RU2013141468A (ru) | 2011-03-01 | 2012-02-27 | Двунаправленный преобразователь постоянного тока |
BR112013022243-3A BR112013022243A2 (pt) | 2011-03-01 | 2012-02-27 | transformador de corrente contínua bidirecional |
PCT/EP2012/053265 WO2012116953A2 (de) | 2011-03-01 | 2012-02-27 | Bidirektionaler gleichspannungswandler |
CN201280010996.3A CN103620935B (zh) | 2011-03-01 | 2012-02-27 | 双向dc-dc变换器 |
US14/002,593 US9148065B2 (en) | 2011-03-01 | 2012-02-27 | Bidirectional DC-DC converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11156405A EP2495858A1 (de) | 2011-03-01 | 2011-03-01 | Bidirektionaler Gleichspannungswandler |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2495858A1 true EP2495858A1 (de) | 2012-09-05 |
Family
ID=44314936
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11156405A Withdrawn EP2495858A1 (de) | 2011-03-01 | 2011-03-01 | Bidirektionaler Gleichspannungswandler |
Country Status (7)
Country | Link |
---|---|
US (1) | US9148065B2 (de) |
EP (1) | EP2495858A1 (de) |
JP (1) | JP6169980B2 (de) |
CN (1) | CN103620935B (de) |
BR (1) | BR112013022243A2 (de) |
RU (1) | RU2013141468A (de) |
WO (1) | WO2012116953A2 (de) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9318974B2 (en) | 2014-03-26 | 2016-04-19 | Solaredge Technologies Ltd. | Multi-level inverter with flying capacitor topology |
US9941813B2 (en) | 2013-03-14 | 2018-04-10 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
CN114006532A (zh) * | 2021-09-28 | 2022-02-01 | 株洲中车时代电气股份有限公司 | 一种变流装置 |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5872494B2 (ja) * | 2013-01-24 | 2016-03-01 | 株式会社東芝 | 車両用電力変換装置 |
CN104038085B (zh) * | 2013-03-08 | 2016-07-06 | 台达电子工业股份有限公司 | 三电平变流器 |
US9859803B2 (en) * | 2013-04-23 | 2018-01-02 | Analog Devices Global | Transformer-based isolated bi-directional DC-DC power converter, and method and controller for using same |
WO2014192398A1 (ja) * | 2013-05-30 | 2014-12-04 | 日産自動車株式会社 | 位相制御型dc-dcコンバータおよびその制御方法 |
JP6013294B2 (ja) * | 2013-08-09 | 2016-10-25 | 株式会社日本自動車部品総合研究所 | 電力変換装置 |
DE102014214542A1 (de) * | 2014-07-24 | 2016-02-11 | Rheinisch-Westfälisch-Technische Hochschule Aachen | Gleichspannungswandler mit Transformator |
US9800071B2 (en) | 2015-02-24 | 2017-10-24 | Green Cubes Technology Corporation | Methods and system for add-on battery |
KR102400554B1 (ko) | 2015-04-24 | 2022-05-20 | 삼성전자주식회사 | Dc/dc 컨버터 및 그 구동 방법과 이를 적용하는 전원 공급 장치 |
US9973099B2 (en) * | 2015-08-26 | 2018-05-15 | Futurewei Technologies, Inc. | AC/DC converters with wider voltage regulation range |
WO2017038294A1 (ja) | 2015-08-28 | 2017-03-09 | 株式会社村田製作所 | Dc-dcコンバータ |
BR112018009080B1 (pt) | 2015-11-13 | 2022-08-16 | Siemens Aktiengesellschaft | Conversor de múltiplos níveis, método para controlar um conversor de múltiplos níveis e sistema de acionamento elétrico |
EP3403321B1 (de) | 2016-01-15 | 2020-05-06 | General Electric Company | System und verfahren zum betreiben eines dc/dc leistungswandlers |
DE102016105542A1 (de) * | 2016-03-24 | 2017-09-28 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Verfahren zum Betreiben eines elektrischen Netzes |
US10587200B2 (en) | 2016-05-31 | 2020-03-10 | Toshiba Mitsubishi-Electric Industrial Systems Corporation | Bidirectional insulated DC/DC converter and smart network |
US20170373600A1 (en) * | 2016-06-23 | 2017-12-28 | Cirrus Logic International Semiconductor Ltd. | Multi-mode switching power converter |
FR3053545A1 (fr) * | 2016-06-30 | 2018-01-05 | Inst Supergrid | Nouveau convertisseur dc/dc de type cascade |
DE102016220679A1 (de) * | 2016-10-21 | 2018-04-26 | Robert Bosch Gmbh | Gleichspannungswandler und Verfahren zur Ansteuerung eines Gleichspannungswandlers |
KR102380513B1 (ko) * | 2017-02-08 | 2022-03-31 | 삼성에스디아이 주식회사 | 전력 변환 장치 및 이를 포함하는 배터리의 충전 시스템 |
CN110383663B (zh) | 2017-03-01 | 2020-04-24 | 株式会社村田制作所 | Dc-dc变换器 |
JP6711449B2 (ja) * | 2017-03-14 | 2020-06-17 | 株式会社村田製作所 | Dc−dcコンバータ |
AU2018268716A1 (en) * | 2017-05-15 | 2020-01-16 | Dynapower Company Llc | DC/DC converter and control thereof |
DE102018202484A1 (de) * | 2018-02-19 | 2019-08-22 | Zf Friedrichshafen Ag | Leistungselektronikanordnung |
US11626809B1 (en) * | 2018-03-02 | 2023-04-11 | Apple Inc. | Multilevel power converters |
CN109245541A (zh) * | 2018-10-08 | 2019-01-18 | 东北大学 | 双向直流变换器电路拓扑结构 |
CN109245549A (zh) * | 2018-11-09 | 2019-01-18 | 东北大学 | 一种适用于三电平双半桥的双向直流变换器功率回路拓扑 |
CN109861549A (zh) * | 2019-04-03 | 2019-06-07 | 东北大学 | 一种五电平双桥双向隔离型直流变换器 |
CN110768534B (zh) * | 2019-10-21 | 2020-12-08 | 华中科技大学 | 一种隔离式双半桥anpc有源桥三电平dc/dc变换器 |
CN110912428A (zh) * | 2019-11-14 | 2020-03-24 | 东北大学 | 多输出多电压等级可移植的多级电力电子变换器拓扑结构 |
CN113630012A (zh) * | 2020-06-15 | 2021-11-09 | 株洲中车时代电气股份有限公司 | 一种双有源桥变换器及变流器 |
CN112234838A (zh) * | 2020-09-11 | 2021-01-15 | 燕山大学 | 一种高频链互联的三端口mmc-sst拓扑及控制策略 |
CN112271746B (zh) * | 2020-09-11 | 2022-10-28 | 燕山大学 | 一种高频链互联的无电解电容mmc拓扑结构及控制策略 |
DE102021108278A1 (de) | 2021-03-31 | 2022-10-06 | Keba Industrial Automation Germany Gmbh | Bidirektionaler DC/DC-Wandler |
DE102021108250A1 (de) | 2021-03-31 | 2022-10-06 | KEBA Energy Automation GmbH | Ladestation und Verfahren zum Betreiben einer Ladestation |
US11996764B2 (en) | 2021-07-22 | 2024-05-28 | Texas Instruments Incorporated | Power converter with asymmetric switch levels |
KR20230147418A (ko) * | 2022-04-14 | 2023-10-23 | 엘에스일렉트릭(주) | 전력변환 시스템의 dc-dc 컨버터 |
CN114785129B (zh) * | 2022-04-24 | 2024-08-30 | 华南理工大学 | 一种高变比非隔离dc/dc变换器 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5027264A (en) | 1989-09-29 | 1991-06-25 | Wisconsin Alumni Research Foundation | Power conversion apparatus for DC/DC conversion using dual active bridges |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3140042B2 (ja) * | 1990-11-28 | 2001-03-05 | 株式会社日立製作所 | 電力変換装置 |
CA2369060C (en) * | 2001-01-24 | 2005-10-04 | Nissin Electric Co., Ltd. | Dc-dc-converter and bi-directional dc-dc converter and method of controlling the same |
US7372709B2 (en) * | 2003-09-11 | 2008-05-13 | The Board Of Trustees Of The University Of Illinois | Power conditioning system for energy sources |
TWI268041B (en) * | 2004-09-09 | 2006-12-01 | Delta Electronics Inc | Input stage circuit of a three-level DC/DC converter |
JP4661256B2 (ja) * | 2005-02-15 | 2011-03-30 | 富士電機ホールディングス株式会社 | 電力変換装置 |
JP4378400B2 (ja) * | 2007-08-28 | 2009-12-02 | 日立コンピュータ機器株式会社 | 双方向dc−dcコンバータ及び双方向dc−dcコンバータの制御方法 |
JP5308682B2 (ja) * | 2008-01-24 | 2013-10-09 | 新電元工業株式会社 | 双方向dc/dcコンバータ |
US8462528B2 (en) * | 2010-07-19 | 2013-06-11 | GM Global Technology Operations LLC | Systems and methods for reducing transient voltage spikes in matrix converters |
US8587962B2 (en) * | 2010-11-08 | 2013-11-19 | GM Global Technology Operations LLC | Compensation for electrical converter nonlinearities |
US8467197B2 (en) * | 2010-11-08 | 2013-06-18 | GM Global Technology Operations LLC | Systems and methods for compensating for electrical converter nonlinearities |
-
2011
- 2011-03-01 EP EP11156405A patent/EP2495858A1/de not_active Withdrawn
-
2012
- 2012-02-27 JP JP2013555841A patent/JP6169980B2/ja not_active Expired - Fee Related
- 2012-02-27 US US14/002,593 patent/US9148065B2/en not_active Expired - Fee Related
- 2012-02-27 RU RU2013141468/07A patent/RU2013141468A/ru not_active Application Discontinuation
- 2012-02-27 WO PCT/EP2012/053265 patent/WO2012116953A2/de active Application Filing
- 2012-02-27 CN CN201280010996.3A patent/CN103620935B/zh not_active Expired - Fee Related
- 2012-02-27 BR BR112013022243-3A patent/BR112013022243A2/pt not_active Application Discontinuation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5027264A (en) | 1989-09-29 | 1991-06-25 | Wisconsin Alumni Research Foundation | Power conversion apparatus for DC/DC conversion using dual active bridges |
Non-Patent Citations (5)
Title |
---|
AGGELER, D. ; BIELA, J. ; INOUE, S. ; AKAGI, H. ; KOLAR, J.W.: "Bi-Directional Isolated DC-DC Converter for Next-Generation Power Distribution - Comparison of Converters using Si and SiC Devices", POWER CONVERSION CONFERENCE, 2 April 2007 (2007-04-02) - 5 April 2007 (2007-04-05), Internet, pages 510 - 517, XP002656113, ISBN: 1-4244-0844-X, DOI: 10.1109/PCCON.2007.373015 * |
CANALES F ET AL: "A wide input voltage and load output variations fixed-frequency ZVS DC/DC LLC resonant converter for high-power applications", CONFERENCE RECORD OF THE 2002 IEEE INDUSTRY APPLICATIONS CONFERENCE : 37TH IAS ANNUAL MEETING ; 13 - 18 OCTOBER 2002, PITTSBURGH, PENNSYLVANIA, USA; [CONFERENCE RECORD OF THE IEEE INDUSTRY APPLICATIONS CONFERENCE. IAS ANNUAL MEETING], IEEE SERVICE CE, vol. 4, 13 October 2002 (2002-10-13), pages 2306 - 2313, XP010609911, ISBN: 978-0-7803-7420-1, DOI: 10.1109/IAS.2002.1042768 * |
FAN ZHANG ET AL: "Study of the multilevel converters in DC-DC applications", POWER ELECTRONICS SPECIALISTS CONFERENCE, 2004. PESC 04. 2004 IEEE 35TH ANNUAL, AACHEN, GERMANY 20-25 JUNE 2004, PISCATAWAY, NJ, USA,IEEE, US, 20 June 2004 (2004-06-20), pages 1702 - 1706, XP010739842, ISBN: 978-0-7803-8399-9 * |
GHODKE ET AL: "Three-Phase/Level, Zero Voltage and Zero Current, Phase Shift PWM DC-DC Converter for High Power Application", POWER ELECTRONICS SPECIALISTS CONFERENCE, 2005. PESC '05. IEEE 36TH, IEEE, PISCATAWAY, NJ, USA, 1 January 2005 (2005-01-01), pages 368 - 374, XP031000202, ISBN: 978-0-7803-9033-1, DOI: 10.1109/PESC.2005.1581650 * |
PINHEIRO J R ET AL: "The three-level ZVS PWM converter-a new concept in high voltage DC-to-DC conversion", POWER ELECTRONICS AND MOTION CONTROL. SAN DIEGO, NOV. 9 - 13, 1992; [PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INDUSTRIAL ELECTRONICS, CONTROL, INSTRUMENTATION AND AUTOMATION (IECON)], NEW YORK, IEEE, US, vol. CONF. 18, 9 November 1992 (1992-11-09), pages 173 - 178, XP010060727, ISBN: 978-0-7803-0582-3, DOI: 10.1109/IECON.1992.254637 * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11545912B2 (en) | 2013-03-14 | 2023-01-03 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
US9941813B2 (en) | 2013-03-14 | 2018-04-10 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
US12119758B2 (en) | 2013-03-14 | 2024-10-15 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
US11742777B2 (en) | 2013-03-14 | 2023-08-29 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
US10886831B2 (en) | 2014-03-26 | 2021-01-05 | Solaredge Technologies Ltd. | Multi-level inverter |
US10680506B2 (en) | 2014-03-26 | 2020-06-09 | Solaredge Technologies Ltd. | Multi-level inverter |
US10700588B2 (en) | 2014-03-26 | 2020-06-30 | Solaredge Technologies Ltd. | Multi-level inverter |
US10886832B2 (en) | 2014-03-26 | 2021-01-05 | Solaredge Technologies Ltd. | Multi-level inverter |
US9318974B2 (en) | 2014-03-26 | 2016-04-19 | Solaredge Technologies Ltd. | Multi-level inverter with flying capacitor topology |
US11296590B2 (en) | 2014-03-26 | 2022-04-05 | Solaredge Technologies Ltd. | Multi-level inverter |
US10680505B2 (en) | 2014-03-26 | 2020-06-09 | Solaredge Technologies Ltd. | Multi-level inverter |
US11632058B2 (en) | 2014-03-26 | 2023-04-18 | Solaredge Technologies Ltd. | Multi-level inverter |
US10404154B2 (en) | 2014-03-26 | 2019-09-03 | Solaredge Technologies Ltd | Multi-level inverter with flying capacitor topology |
US11855552B2 (en) | 2014-03-26 | 2023-12-26 | Solaredge Technologies Ltd. | Multi-level inverter |
US10153685B2 (en) | 2014-03-26 | 2018-12-11 | Solaredge Technologies Ltd. | Power ripple compensation |
CN114006532A (zh) * | 2021-09-28 | 2022-02-01 | 株洲中车时代电气股份有限公司 | 一种变流装置 |
CN114006532B (zh) * | 2021-09-28 | 2023-09-19 | 株洲中车时代电气股份有限公司 | 一种变流装置 |
Also Published As
Publication number | Publication date |
---|---|
US20140003095A1 (en) | 2014-01-02 |
CN103620935A (zh) | 2014-03-05 |
JP6169980B2 (ja) | 2017-07-26 |
US9148065B2 (en) | 2015-09-29 |
CN103620935B (zh) | 2016-11-02 |
WO2012116953A2 (de) | 2012-09-07 |
JP2014508495A (ja) | 2014-04-03 |
BR112013022243A2 (pt) | 2020-09-01 |
RU2013141468A (ru) | 2015-04-10 |
WO2012116953A3 (de) | 2013-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2495858A1 (de) | Bidirektionaler Gleichspannungswandler | |
EP2537239B1 (de) | 3-stufen-pulswechselrichter mit entlastungsnetzwerk | |
EP3172823B1 (de) | Gleichspannungswandler mit transformator | |
EP1311058B1 (de) | Frequenzumrichter | |
EP2898595B1 (de) | Modularen multilevel dc/dc wandler für hvdc anwendungen | |
EP2826139B1 (de) | Stromregelung für gleichspannungswandler | |
DE102009034354A1 (de) | Sternpunktreaktor | |
EP2107672A1 (de) | Dreiphasiger Wechselrichter ohne Verbindung zwischen dem Neutralleiter des Netzes und dem Mittelpunkt des Zwischenkreises | |
DE102018210806A1 (de) | Elektrische Schaltung mit Hilfsspannungsquelle für Zero-Voltage-Switching in einem Gleichspannungswandler unter sämtlichen Lastbedingungen | |
DE102011003576A1 (de) | Gegentaktwandler und Modulationsverfahren zum Ansteuern eines Gegentaktwandlers | |
DE102011051482A1 (de) | Brückenschaltungsanordnung und Betriebsverfahren für einen Spannungswandler und Spannungswandler | |
DE112013006881T5 (de) | DC/DC-Umsetzer | |
CH707553A2 (de) | Elektrischer Leistungswandler zur DC/DC-Wandlung mit dualen aktiven Brücken. | |
EP2845288B1 (de) | Ein- oder auskopplung einer leistung in einem abzweig eines gleichspannungsnetzknotens mit einer längsspannungsquelle | |
DE102018210807A1 (de) | Elektrische Schaltung für Zero-Voltage-Soft-Switching in einem Gleichspannungswandler | |
DE102011086087A1 (de) | Elektrischer Umrichter | |
EP2262088A1 (de) | DC-DC-Wandlerschaltung mit einem Umrichter | |
DE10303421A1 (de) | Strom-/Spannungswandleranordnung | |
EP3304718B1 (de) | Gleichspannungswandler für hohe spannungen | |
EP3513475B1 (de) | Anlage zum übertragen elektrischer leistung mit filtereinheit | |
EP3806314B1 (de) | Umrichter für ein wechselstromnetz | |
WO2016091300A1 (de) | Bidirektionaler dc/dc-steller mit geteiltem zwischenkreis | |
DE102014005124A1 (de) | Schaltungsanordnung und Verfahren zum Austausch elektrischer Energie | |
EP2262087A1 (de) | Wandlerschaltung mit einem Umrichter | |
EP3291433A1 (de) | Gleichspannungswandler mit transformator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20121030 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: FLEXIBLE ELEKTRISCHE NETZE FEN GMBH |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20170320 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Effective date: 20191106 |