EP2455658B1 - Procédé et dispositif d'évaporation de fluides de travail organiques - Google Patents
Procédé et dispositif d'évaporation de fluides de travail organiques Download PDFInfo
- Publication number
- EP2455658B1 EP2455658B1 EP10014706.5A EP10014706A EP2455658B1 EP 2455658 B1 EP2455658 B1 EP 2455658B1 EP 10014706 A EP10014706 A EP 10014706A EP 2455658 B1 EP2455658 B1 EP 2455658B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- medium
- heat
- supplying
- temperature
- evaporator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 18
- 230000008016 vaporization Effects 0.000 title description 2
- 238000009834 vaporization Methods 0.000 title 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 38
- 239000003546 flue gas Substances 0.000 claims description 38
- 238000002156 mixing Methods 0.000 claims description 18
- 238000001704 evaporation Methods 0.000 claims description 17
- 238000000354 decomposition reaction Methods 0.000 claims description 9
- 239000007788 liquid Substances 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 2
- 230000003134 recirculating effect Effects 0.000 claims 2
- 238000010438 heat treatment Methods 0.000 claims 1
- 230000008020 evaporation Effects 0.000 description 16
- 239000003921 oil Substances 0.000 description 10
- 239000012530 fluid Substances 0.000 description 9
- 230000008569 process Effects 0.000 description 7
- 239000000567 combustion gas Substances 0.000 description 6
- 238000002485 combustion reaction Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000012546 transfer Methods 0.000 description 5
- 239000003570 air Substances 0.000 description 4
- 239000012080 ambient air Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000002803 fossil fuel Substances 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- MSSNHSVIGIHOJA-UHFFFAOYSA-N pentafluoropropane Chemical compound FC(F)CC(F)(F)F MSSNHSVIGIHOJA-UHFFFAOYSA-N 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000011165 process development Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B1/00—Methods of steam generation characterised by form of heating method
- F22B1/02—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
- F22B1/18—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/30—Injector mixers
- B01F25/31—Injector mixers in conduits or tubes through which the main component flows
- B01F25/314—Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
- B01F25/3142—Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit the conduit having a plurality of openings in the axial direction or in the circumferential direction
- B01F25/31425—Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit the conduit having a plurality of openings in the axial direction or in the circumferential direction with a plurality of perforations in the axial and circumferential direction covering the whole surface
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/08—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
- F01K25/10—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B35/00—Control systems for steam boilers
- F22B35/002—Control by recirculating flue gases
Definitions
- the present invention relates to a device for direct evaporation of organic working media for generating electrical energy from heat sources by the use of organic media.
- ORC Organic Rankine Cycle
- the working medium is brought to a working pressure by a feed pump, and it is supplied to it in a heat exchanger energy in the form of heat, which is provided by a combustion or a waste heat flow available.
- the working fluid flows via a pressure tube to an ORC turbine, where it is expanded to a lower pressure.
- the expanded working medium vapor flows through a condenser, in which a heat exchange between the vaporous working medium and a cooling medium takes place, after which the condensed working medium is returned by a feed pump to the evaporator in a cyclic process.
- organic media have significantly lower decomposition temperatures compared to water, i. H. Temperatures at which the molecular bonds of the medium break, resulting in destruction of the working medium and decomposition into corrosive or toxic reaction products. Even if the temperature of the live steam is lower than the decomposition temperature of the medium, the latter can be significantly exceeded at insufficiently flowed through points, as is possible in particular on steam-exposed areas of the heat exchanger. Also, a failure of the feed pump causes the flow through the heat exchanger is interrupted and the working fluid is thus exposed directly to the temperature of the heat source used for evaporation.
- intermediate circuits are conventionally used in ORC plants, in which the heat from the hot medium used for evaporation (flue gas) is transported via an intermediate circuit to the evaporator.
- a thermal oil is typically used whose temperature stability is higher than that of the working medium.
- the single-phase heat transfer with the help of thermal oil allows a more even flow through the heat exchanger, in which the evaporation of the working medium takes place.
- thermal oils are typically combustible, and thus the thermal oil circuit must be pre-pressurized with nitrogen to prevent oxidation of the thermal oil, making the equipment technically complex and expensive.
- thermal oils age due to the high thermal load and must be replaced at regular intervals. This results in downtime for the plant and an increase in costs.
- the circulating pump which transports the oil due to the high viscosity of the thermal oil to perform a large electrical power. Then, the use of the thermal oil results in a significant reduction of the heat transferable and thus the electrical power obtained in comparison to the direct evaporation of a working medium, which manages without an intermediate circuit.
- the object of the present invention to provide an improved ORC process which overcomes the abovementioned disadvantages and in particular is able to guarantee a temperature of the working medium below the decomposition temperature.
- the task is to regulate the temperature at a heat exchanger so that excessive temperatures can be avoided.
- EP 1 221 573 A1 discloses a method for recovering electrical and thermal energy from biomass boilers, where the spent combustion gases are mixed as needed by a bypass duct with cooled combustion gases prior to being fed to a heat exchanger.
- US 2007/0034704 A1 shows a method for recirculation of exhaust gases, with which a desired concentration of oxygen for a stable combustion is achieved.
- the hot combustion gases originating from the combustion in a burner are mixed via a return line and a mixing line with a stream of fresh air to feed the mixture of combustion gases and fresh air into the supply line to the burner, so that a complete mixing of the coming from an upstream gas turbine combustion gases and the mixture of combustion gases and fresh air can take place.
- DE 29 07 694 A1 discloses a mixing device for flowing liquid, gaseous or vaporous media, especially for those with large temperature differences.
- an Organic Rankine Cycle apparatus with a heat exchanger for transferring heat of a heat-supplying medium to a different working medium from this; a first supply means configured to supply a flow of the heat-supplying medium at a first temperature from a heat source to the heat exchanger; and a second supply means, which is adapted to at least partially the heat-supplying medium after it has passed through the heat exchanger, and / or another medium each having a second temperature which is lower than the first temperature, to the flow of the heat-carrying medium with the to deliver the first temperature.
- the heat exchanger is provided in the form of an evaporator, in which the working medium is evaporated.
- the temperature of the heat-supplying medium is not only given by the heat source upon exposure of the heat exchanger / evaporator, but it is governed by the return of the heat-carrying medium after passing through the heat exchanger and / or the other medium in the flow of the heat-supplying medium to the Heat exchanger is delivered, regulated.
- another medium may be supplied to the flow of the heat-carrying medium at the second temperature.
- This additional medium may in particular be ambient air that is supplied from outside the device.
- the heat-supplying medium may, in particular, be a hot flue gas, as arises, for example, in the combustion of fossil fuels as a heat source.
- the working medium is an organic material.
- Said heat exchanger may be a shell and tube heat exchanger, such as a flue or water tube boiler, or a plate heat exchanger, in which the working medium is guided in a jacket of the boiler, through which the flue gas is passed in tubes.
- the above device is part of a steam power plant, ie an Organic Rankine Cycle (ORC) plant.
- the ORC system comprises according to the invention an expansion machine, such as a turbine, a generator, and means for supplying the working fluid evaporated in the evaporator to the turbine.
- the expanded vaporized working fluid can be supplied by a conveyor (eg a pipe) for condensing to a condenser and the working fluid there liquefied can be delivered back to the heat exchanger in a cycle process by a feed pump.
- a conveyor eg a pipe
- a decomposition of the organic working medium is reliably prevented by appropriate regulation of the temperature of the heat-supplying medium below the decomposition temperature of the working medium to the heat exchanger.
- the second supply device comprises a fan or a vacuum device in order to return the cooled heat-supplying medium, after it has passed through the heat exchanger, and / or the further medium into the flow, which acts on the heat exchanger.
- a blower provides a cost effective and efficient means of recycling.
- the first feed device may comprise a vacuum device in order to suck the medium from the second feed device.
- the second supply device is designed to supply the heat-supplying medium, after it has passed through the heat exchanger, and / or the further medium to the flow of the heat-supplying medium at the first temperature in such a way that it is distributed over the circumference of the stream becomes.
- the first supply means may comprise a first conduit for conducting the heat-carrying medium at the first temperature
- the second supply means a second A conduit for conducting the heat-carrying medium after it has passed through the heat exchanger and / or further comprising medium
- the apparatus comprising a mixing section or a mixing section, which is for a fluid connection of the heat-supplying medium with the first temperature in the first conduit and the heat-supplying Medium, after it has passed through the heat exchanger, and / or the other medium is formed in the second line.
- the mixing section or the mixing section may include a portion of the first conduit having openings formed therein in the shell thereof and a portion of the second conduit surrounding the portion of the first conduit (see also detailed description below).
- the present invention also provides a steam power plant with a device according to one of the above examples of the device according to the invention.
- the additional medium may be ambient air provided outside or inside the steam power plant.
- a method of vaporizing an organic working fluid in an Organic Rankine Cycle thermal power plant which comprises, among other things, the steps of supplying the working fluid in a liquid state to an evaporator; Supplying a heat-supplying medium different from the working medium at a first temperature from a heat source to the evaporator, and Returning at least a portion of the heat-carrying medium after passing through the evaporator and at a second temperature lower than the first temperature; and / or feeding another medium (e.g., ambient air) into the flow of the heat-supplying medium supplied from the heat source to the evaporator ,
- another medium e.g., ambient air
- the step of returning the at least one part of the heat-supplying medium after passing through the evaporator or supplying the further medium, eg from ambient air, can be performed by means of a blower and / or a vacuum device.
- the at least part of the heat-supplying medium may be mixed after passing through the evaporator with the flow of the heat-supplying medium supplied from the heat source to the evaporator at the first temperature distributed over the circumference of this flow.
- the additional medium can also be supplied over the circumference of the flow of the heat-supplying medium supplied by the heat source to the evaporator.
- the working medium is or comprises an organic material and the heat-carrying medium may be or include flue gas.
- FIG. 1 shows a conventional ORC system with direct evaporation (left) or with an intermediate circuit (right).
- An evaporator 1 which functions as a heat exchanger or heat exchanger, is supplied with heat from a heat source (not shown) by, for example, a flue gas resulting from the combustion of a fuel, as indicated by the left arrow in the left part of FIG. 1 is displayed.
- heat is supplied to a working medium supplied through a feed pump 2. For example, it is completely evaporated or evaporated by flash evaporation after the heat exchanger.
- the working medium vapor is fed via a pressure line of a turbine 3.
- the working medium vapor is released, and the turbine 3 drives an electric energy generator 4 (indicated by the right arrow in FIG. 1, respectively).
- the relaxed working medium vapor is condensed in a condenser 5 and the liquefied working medium is fed back to the evaporator 1 via the feed pump.
- an intermediate circuit 6 is used, as it is in the right part of FIG. 1 is shown, the heat transfer of the flue gas is not directly to the evaporator to the working fluid, but by means of a medium, such as a thermal oil, the intermediate circuit 6.
- the intermediate circuit 6 includes a heat exchanger 7, where the flue gas transfers heat to the medium of the intermediate circuit 6 .
- the heat exchanger 7, the medium of the intermediate circuit 6 is supplied by a pump 8. From the heat exchanger 7, the medium of the intermediate circuit 6 passes to the evaporator 1, where it leads to the evaporation of the working medium, which is supplied to the turbine 3.
- FIG. 2 an exemplary embodiment of the present invention is illustrated. Elements related to the in FIG. 1 have already been described, are provided with the same reference numerals.
- the medium eg a flue gas
- the medium which evaporates the working medium is used after the evaporation of the evaporator 1 partially led to the ORC system again.
- part of the cooled after exposure to the evaporator 1 flue gas 10 for example by means of a (recirculation) blower 9 is added to the flow of the originating from a heat source hot flue gas.
- the ORC system itself can be, for example, a geothermal or solar thermal system or also have the combustion of fossil fuels as a heat source.
- working media all "dry media” used in conventional ORC systems, such as R245fa, "wet” media, such as ethanol or “isentropic media”, such as R134a, are suitable.
- silicone-based synthetic working media such as GL160 can be used.
- FIG. 3 shows a comparison of the temperature-transferable heat (TQ) diagrams for a conventional evaporation process by direct evaporation (left) and the process according to the invention with the inclusion of the recirculated cooled flue gas.
- TQ temperature-transferable heat
- recirculation of at least part of the cooled flue gas after passing through the evaporator 1 reduces the inlet temperature of the heat-transporting medium at the evaporator 1.
- the slope of the cooling curve decreases but not so much as it would be due to the mere decrease in the flue gas temperature, since this effect is partly compensated by the larger mass flow.
- the residual heat of the recirculated cooled flue gas which is simply lost in conventional methods, is provided for the heat transfer in the evaporator 1 again and is in the right figure of FIG. 3 marked by the hatched bar.
- the pinch point of the next approximation of the TQ curves of flue gas and working medium is at the end of the preheater, which is typically upstream of the evaporator 1 or can be considered as a part thereof, and thus reduces the heat transferable in the evaporator 1 at a constant held Pinch point temperature ⁇ T pinch (temperature difference between heat-emitting (relatively hot) and heat-absorbing (relatively cold) mass flow, here the difference at the point of the next approximation of flue gas and working medium TQ curves).
- the transmittable heat flow per unit time of the evaporator 1 is determined to be U ⁇ A ⁇ ⁇ T M , where ⁇ T M is the average logarithmic driving temperature difference.
- Typical rates for the recirculation mass flow are in the range of 10 to 60% of the flue gas mass flow for mixing temperatures when the flue gas enters the heat exchanger from 300 ° C to 200 ° C.
- the additional amount of heat of the recirculated gas according to the invention leads to a mitigation of the effect of reducing the amount of heat transferable due to the lower flue gas inlet temperature.
- the mixture of the supplied from a heat source to the evaporator 1 hot flue gas and the cooled flue gas, the evaporator 1 has happened through a Y-piece of pipe.
- hot streaks can arise in the mixed gas, which lead to an inhomogeneous loading of the evaporator 1.
- a conventional gas mixer of the prior art can be used.
- the mixture may be via a mixing piece comprising a portion 21 of a first conduit for directing the hot flue gas flow having openings 22 formed therein in the shell thereof and a portion 23 of a second conduit for conducting the recirculated flue gas, the portion 23 of the second conduit surrounds the part 21 of the first conduit and is sealed with this outside by a seal 24, as in FIG. 4 is illustrated.
- the pressurized by a blower recirculated flue gas is forced through the openings 22 in the part of the jacket of the first line in this, so that it can mix homogeneously with the hot flue gas.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Control Of Steam Boilers And Waste-Gas Boilers (AREA)
Claims (12)
- Un appareil de cycle organique de Rankine, comprenant
un échangeur de chaleur (1) pour transférer de la chaleur d'un fluide caloporteur à un fluide de travail organique qui est différent du fluide caloporteur;
une machine à détente (3), notamment une turbine;
un générateur (4) relié à la machine à détente (3);
des moyens pour fournir le fluide de travail organique vaporisé dans l'échangeur de chaleur (1) à la machine à détente (3);
un premier dispositif d'alimentation qui est adapté pour fournir un flux du fluide caloporteur ayant une première température à partir d'une source de chaleur à l'échangeur de chaleur (1);
un second dispositif d'alimentation qui est adapté pour fournir au moins partiellement le fluide caloporteur, après avoir traversé l'échangeur de chaleur (1), et / ou un autre fluide à une seconde température, qui est inférieure à la première température, au flux du fluide caloporteur ayant la première température de telle sorte que la température du fluide caloporteur au niveau de l'échangeur de chaleur (1) soit inférieure à une température de décomposition du fluide de travail organique; et
un dispositif qui est adapté pour échauffer ou refroidir le fluide caloporteur, après avoir traversé l'échangeur de chaleur (1), et / ou l'autre fluide, avant qu'il soit fourni au flux du fluide caloporteur fourni à partir de la source de chaleur à l'échangeur de chaleur (1), à la seconde température. - Appareil selon la revendication 1, dans lequel le premier dispositif d'alimentation comprend un dispositif à dépression et / ou le second dispositif d'alimentation comprend un ventilateur (9) et / ou un dispositif à dépression.
- Appareil selon la revendication 1 ou 2, dans lequel le second dispositif d'alimentation est adapté pour fournir le fluide caloporteur, après avoir traversé l'échangeur de chaleur (1), et / ou l'autre fluide au flux du fluide caloporteur ayant la première température de telle sorte qu'il soit fourni à celui-ci d'une manière répartie sur la circonférence du flux.
- Appareil selon la revendication 3, dans lequel le premier dispositif d'alimentation comprend une première conduite pour amener le fluide caloporteur ayant la première température et le second dispositif d'alimentation comprend une seconde conduite pour amener le fluide caloporteur, après avoir traversé l'échangeur de chaleur (1), et / ou pour amener l'autre fluide, et dans lequel l'appareil comprend une pièce de mélange ou une zone de mélange qui est adaptée pour une communication de fluide du fluide caloporteur ayant la première température dans la première conduite et du fluide caloporteur, après avoir traversé l'échangeur de chaleur (1), et / ou de l'autre fluide dans la seconde conduite.
- Appareil selon la revendication 4, dans lequel la pièce de mélange ou la zone de mélange comprend une partie (21) de la première conduite avec des ouvertures (22) formées là-dedans dans l'enveloppe de celle-ci et une partie (23) de la seconde conduite, qui entoure ladite partie (21) de la première conduite.
- Appareil selon l'une quelconque des revendications précédentes, comprenant en outre un condenseur (5) adapté pour condenser le fluide de travail organique détendu après le passage à travers la machine à détente (3) de l'état de vapeur à l'état liquide.
- Une centrale à vapeur, comprenant l'appareil selon l'une quelconque des revendications précédentes.
- Un procédé pour vaporiser un fluide de travail organique dans une centrale thermique de cycle organique de Rankine, comprenant les étapes consistant
à fournir le fluide de travail organique dans un état liquide à un évaporateur (1);
à fournir un fluide caloporteur différent du fluide de travail organique et ayant une première température à partir d'une source de chaleur à l'évaporateur (1),
à faire recirculer au moins une partie du fluide caloporteur, après avoir traversé l'évaporateur (1) et à une seconde température qui est inférieure à la première température, et / ou fournir un autre fluide dans le flux du fluide caloporteur fourni à partir de la source de chaleur à l'évaporateur (1) de telle sorte que la température du fluide caloporteur au niveau de l'évaporateur (1) soit inférieure à une température de décomposition du fluide de travail organique; et
à refroidir ou échauffer refroidir le fluide caloporteur, après avoir traversé l'évaporateur (1), et / ou l'autre fluide, avant qu'il soit fourni au flux du fluide caloporteur fourni à partir de la source de chaleur à l'évaporateur (1), à la seconde température. - Procédé selon la revendication 8, dans lequel l'étape consistant à faire recirculer ladite au moins une partie du fluide caloporteur, après avoir traversé l'évaporateur (1), et / ou à fournir l'autre fluide est exécutée au moyen d'un ventilateur (9) et / ou d'un dispositif à dépression.
- Procédé selon la revendication 8 ou 9, dans lequel l'au moins une partie du fluide caloporteur, après avoir traversé l'évaporateur (1), et / ou l'autre fluide est mélangé avec le flux du fluide caloporteur ayant la première température et fourni à partir de la source de chaleur à l'évaporateur (1) d'une manière répartie sur la circonférence de ce flux.
- Procédé selon l'une quelconque des revendications 8 à 10, dans lequel le fluide caloporteur est ou comprend du gaz de fumée.
- Procédé selon l'une quelconque des revendications 8 à 11, comprenant en outre:fournir le fluide de travail organique vaporisé dans l'évaporateur (1) à une turbine (3) pour détendre le fluide de travail organique vaporisé;fournir le fluide de travail organique vaporisé et détendu à un condenseur (5) destiné à liquéfier le fluide de travail organique vaporisé et détendu; etfournir le fluide de travail organique liquéfié à l'évaporateur (1).
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10014706.5A EP2455658B1 (fr) | 2010-11-17 | 2010-11-17 | Procédé et dispositif d'évaporation de fluides de travail organiques |
JP2013539164A JP6047098B2 (ja) | 2010-11-17 | 2011-11-16 | 有機作動媒体を蒸発させる方法および装置 |
PCT/EP2011/005778 WO2012065734A1 (fr) | 2010-11-17 | 2011-11-16 | Procédé et dispositif pour la vaporisation de fluides de travail organiques |
US13/883,882 US9829194B2 (en) | 2010-11-17 | 2011-11-16 | Method and apparatus for evaporating organic working media |
CN201180055672.7A CN103282719B (zh) | 2010-11-17 | 2011-11-16 | 用于蒸发有机工作介质的方法和装置 |
JP2015041287A JP2015158205A (ja) | 2010-11-17 | 2015-03-03 | 有機作動媒体を蒸発させる方法および装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10014706.5A EP2455658B1 (fr) | 2010-11-17 | 2010-11-17 | Procédé et dispositif d'évaporation de fluides de travail organiques |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2455658A1 EP2455658A1 (fr) | 2012-05-23 |
EP2455658B1 true EP2455658B1 (fr) | 2016-03-02 |
Family
ID=44148713
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10014706.5A Active EP2455658B1 (fr) | 2010-11-17 | 2010-11-17 | Procédé et dispositif d'évaporation de fluides de travail organiques |
Country Status (5)
Country | Link |
---|---|
US (1) | US9829194B2 (fr) |
EP (1) | EP2455658B1 (fr) |
JP (2) | JP6047098B2 (fr) |
CN (1) | CN103282719B (fr) |
WO (1) | WO2012065734A1 (fr) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2455658B1 (fr) * | 2010-11-17 | 2016-03-02 | Orcan Energy AG | Procédé et dispositif d'évaporation de fluides de travail organiques |
JP6217426B2 (ja) * | 2014-02-07 | 2017-10-25 | いすゞ自動車株式会社 | 廃熱回収システム |
JP6485688B2 (ja) * | 2014-12-25 | 2019-03-20 | パナソニックIpマネジメント株式会社 | 熱発電装置 |
FR3036178A1 (fr) * | 2015-05-13 | 2016-11-18 | Aqylon | Procede de refroidissement d'une source chaude destinee a echanger avec un fluide de travail d'un systeme thermodynamique, installation mettant en œuvre ce procede et systeme thermodynamique |
CN105937759A (zh) * | 2016-04-28 | 2016-09-14 | 上海光热实业有限公司 | 用于电厂烟气余热利用的orc省煤器和系统及方法 |
JP6718802B2 (ja) * | 2016-12-02 | 2020-07-08 | 株式会社神戸製鋼所 | 熱エネルギー回収装置及びその立ち上げ運転方法 |
JP7009227B2 (ja) * | 2018-01-18 | 2022-01-25 | 株式会社神戸製鋼所 | 熱エネルギー回収装置 |
JP6980546B2 (ja) * | 2018-01-31 | 2021-12-15 | 株式会社神戸製鋼所 | 熱エネルギー回収装置 |
US11493029B2 (en) | 2021-04-02 | 2022-11-08 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US11592009B2 (en) | 2021-04-02 | 2023-02-28 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US11644015B2 (en) | 2021-04-02 | 2023-05-09 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US11480074B1 (en) | 2021-04-02 | 2022-10-25 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11187212B1 (en) | 2021-04-02 | 2021-11-30 | Ice Thermal Harvesting, Llc | Methods for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on working fluid temperature |
US11326550B1 (en) | 2021-04-02 | 2022-05-10 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11421663B1 (en) | 2021-04-02 | 2022-08-23 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power in an organic Rankine cycle operation |
US11293414B1 (en) | 2021-04-02 | 2022-04-05 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power in an organic rankine cycle operation |
US11486370B2 (en) | 2021-04-02 | 2022-11-01 | Ice Thermal Harvesting, Llc | Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations |
Family Cites Families (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS48100502A (fr) * | 1972-04-07 | 1973-12-19 | ||
DE2907694C2 (de) * | 1979-02-27 | 1984-11-22 | Mannesmann AG, 4000 Düsseldorf | Mischvorrichtung für strömende flüssige, gas- oder dampfförmige Medien |
FR2500324A1 (fr) * | 1981-02-24 | 1982-08-27 | Stein Industrie | Dispositif de melange homogene de liquides en ecoulement a des temperatures differentes |
JPS58174109A (ja) * | 1982-04-07 | 1983-10-13 | Hitachi Ltd | 低沸点媒体利用の発電プラント |
JPS5997402A (ja) * | 1982-11-26 | 1984-06-05 | 株式会社日立製作所 | 廃熱利用プラント |
JPS6128705A (ja) * | 1984-07-17 | 1986-02-08 | Ishikawajima Harima Heavy Ind Co Ltd | 熱源からの動力発生方法 |
JPH0742844B2 (ja) * | 1985-10-23 | 1995-05-15 | 株式会社東芝 | 温水利用タ−ビンプラント |
KR920002504B1 (ko) | 1989-05-06 | 1992-03-27 | 강희동 | 폴리올레핀의 염소화 방법 |
JPH0321604U (fr) * | 1989-06-28 | 1991-03-05 | ||
US4996846A (en) * | 1990-02-12 | 1991-03-05 | Ormat Inc. | Method of and apparatus for retrofitting geothermal power plants |
JPH05272308A (ja) * | 1992-03-26 | 1993-10-19 | Toshiba Corp | 有機媒体適用動力回収プラント |
JPH06170197A (ja) * | 1992-12-08 | 1994-06-21 | Kanegafuchi Chem Ind Co Ltd | 流体混合装置 |
ES2091153B1 (es) * | 1993-12-20 | 1998-07-01 | Colorobbia Espana Sa | Sistema de recuperacion de calor y filtracion de gases de combustion procedentes de una fusion, con produccion de energia electrica. |
US5632143A (en) * | 1994-06-14 | 1997-05-27 | Ormat Industries Ltd. | Gas turbine system and method using temperature control of the exhaust gas entering the heat recovery cycle by mixing with ambient air |
JPH08100502A (ja) | 1994-09-30 | 1996-04-16 | Tanita Haujingu Wear:Kk | 金属製たてとい |
EP1221573B1 (fr) * | 2001-01-08 | 2007-07-04 | Josef Jun. Stöger | Procédé de récuperation d'énergie thermique et électrique des gaz de combustion de biomasse |
US7069716B1 (en) * | 2002-04-24 | 2006-07-04 | Express Integrated Technologies Llc | Cooling air distribution apparatus |
DE10228335B3 (de) | 2002-06-25 | 2004-02-12 | Siemens Ag | Abhitzedampferzeuger mit Hilfsdampferzeugung |
US6782703B2 (en) * | 2002-09-11 | 2004-08-31 | Siemens Westinghouse Power Corporation | Apparatus for starting a combined cycle power plant |
DE102004037417B3 (de) * | 2004-07-30 | 2006-01-19 | Siemens Ag | Verfahren und Vorrichtung zur Übertragung von Wärme von einer Wärmequelle an einen thermodynamischen Kreislauf mit einem Arbeitsmittel mit zumindest zwei Stoffen mit nicht-isothermer Verdampfung und Kondensation |
EP1819835B1 (fr) | 2004-12-08 | 2010-08-04 | Gen-Probe Incorporated | Detection d'acides nucleiques de types multiples de papillomavirus humains |
US7350471B2 (en) * | 2005-03-01 | 2008-04-01 | Kalex Llc | Combustion system with recirculation of flue gas |
JP4989062B2 (ja) | 2005-04-28 | 2012-08-01 | バブコック日立株式会社 | 流体混合装置 |
US7950217B2 (en) * | 2005-08-12 | 2011-05-31 | American Air Liquide, Inc. | Oxygen-enriched air assisting system for improving the efficiency of cogeneration system |
DE102006057448A1 (de) * | 2006-12-06 | 2008-06-12 | Ibb Technology Gmbh | Verfahren zur Erhöhung von Leistung und Wirkungsgrad im ORC-Kraftwerksprozess |
US8209951B2 (en) * | 2007-08-31 | 2012-07-03 | General Electric Company | Power generation system having an exhaust attemperating device |
US20100064655A1 (en) * | 2008-09-16 | 2010-03-18 | General Electric Company | System and method for managing turbine exhaust gas temperature |
US8555796B2 (en) * | 2008-09-26 | 2013-10-15 | Air Products And Chemicals, Inc. | Process temperature control in oxy/fuel combustion system |
US8479489B2 (en) * | 2009-08-27 | 2013-07-09 | General Electric Company | Turbine exhaust recirculation |
US20110061388A1 (en) * | 2009-09-15 | 2011-03-17 | General Electric Company | Direct evaporator apparatus and energy recovery system |
CN101705846A (zh) * | 2009-11-19 | 2010-05-12 | 绍兴文理学院 | 一种工质相变循环的蒸气压缩式热力发动机 |
US8511085B2 (en) * | 2009-11-24 | 2013-08-20 | General Electric Company | Direct evaporator apparatus and energy recovery system |
EP2455658B1 (fr) * | 2010-11-17 | 2016-03-02 | Orcan Energy AG | Procédé et dispositif d'évaporation de fluides de travail organiques |
US8671688B2 (en) * | 2011-04-13 | 2014-03-18 | General Electric Company | Combined cycle power plant with thermal load reduction system |
JP6170197B1 (ja) | 2016-02-29 | 2017-07-26 | 荏原実業株式会社 | 脱硫システム及び脱硫方法 |
-
2010
- 2010-11-17 EP EP10014706.5A patent/EP2455658B1/fr active Active
-
2011
- 2011-11-16 JP JP2013539164A patent/JP6047098B2/ja active Active
- 2011-11-16 CN CN201180055672.7A patent/CN103282719B/zh active Active
- 2011-11-16 WO PCT/EP2011/005778 patent/WO2012065734A1/fr active Application Filing
- 2011-11-16 US US13/883,882 patent/US9829194B2/en active Active
-
2015
- 2015-03-03 JP JP2015041287A patent/JP2015158205A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
JP2015158205A (ja) | 2015-09-03 |
US9829194B2 (en) | 2017-11-28 |
JP2014501899A (ja) | 2014-01-23 |
WO2012065734A1 (fr) | 2012-05-24 |
JP6047098B2 (ja) | 2016-12-21 |
EP2455658A1 (fr) | 2012-05-23 |
US20160047540A1 (en) | 2016-02-18 |
CN103282719A (zh) | 2013-09-04 |
CN103282719B (zh) | 2016-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2455658B1 (fr) | Procédé et dispositif d'évaporation de fluides de travail organiques | |
EP0558899B1 (fr) | Installation pour utiliser la chaleur des gaz sortant d'une chaudière chauffée au charbon | |
DE69927925T2 (de) | Abhitzewiedergewinnung in einem organischen Energiewandler mittels einem Zwischenflüssigkeitskreislauf | |
DE60025415T2 (de) | Zweidruck-Gasturbinensystem mit partieller Regeneration und Dampfeinspritzung | |
WO2008067855A2 (fr) | Procédé et dispositif d'augmentation de la puissance et du rendement d'un processus de centrale orc | |
DE102018201172A1 (de) | Verbrennungsanlage mit Restwärmenutzung | |
EP2409003A2 (fr) | Dispositif et procédé de production de vapeur avec un rendement élevé | |
DE102012217929A1 (de) | Kraft-Wärme-Kraftwerk und Verfahren zum Betrieb eines Kraft-Wärme-Kraftwerks | |
DE102011054744A1 (de) | Wärmetauscher für ein Kombikraftwerk | |
DE102012102368A1 (de) | Kombikraftwerk | |
WO2014128056A1 (fr) | Installation de combustion, installation de traitement de pièces et procédé de fonctionnement d'une installation de combustion | |
DE4126036A1 (de) | Gas- und dampfturbinenkraftwerk mit einem solar beheizten dampferzeuger | |
DE102016112601A1 (de) | Vorrichtung zur Energieerzeugung nach dem ORC-Prinzip, Geothermieanlage mit einer solchen Vorrichtung und Betriebsverfahren | |
DE10155508C5 (de) | Verfahren und Vorrichtung zur Erzeugung von elektrischer Energie | |
EP2659099B1 (fr) | Dispositif de production d'énergie | |
DE102010056516A1 (de) | ORC-Direktverdampfer für Biomassefeuerungen | |
DE202010017143U1 (de) | ORC-Direktverdampfer für Biomassefeuerungen | |
AT518186B1 (de) | Wärmekraftwerk und Verfahren zum Speichern von Wärme | |
EP2372239A2 (fr) | Procédé destiné au fonctionnement d'une centrale à turbines à vapeur avec combustion à lit fluidisé | |
EP2559867A1 (fr) | Procédé de production d'énergie électrique à l'aide d'une centrale électrique combinée et centrale électrique combinée destinée à l'exécution du procédé | |
DE2551430A1 (de) | Verfahren und vorrichtung zum anheben der dampftemperatur im ueberhitzer eines kraftwerks | |
DE2506333A1 (de) | Verfahren und anlage zur verdampfung und erwaermung von fluessigem naturgas | |
EP3862547B1 (fr) | Agencement de turbine à gaz et procédé de fonctionnement d'un agencement de turbine à gaz | |
DE102014119686A1 (de) | Druckspeicherkraftwerk mit kombiniertem, rekuperativem Abhitzedampferzeuger | |
DE102011115394B4 (de) | Vorrichtung zur Kraft-Wärmeerzeugung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20111027 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ORCAN ENERGY GMBH |
|
17Q | First examination report despatched |
Effective date: 20140507 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ORCAN ENERGY AG |
|
INTG | Intention to grant announced |
Effective date: 20150903 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: SICHERT, ANDREAS Inventor name: SCHUSTER, ANDREAS Inventor name: AUMANN, RICHARD |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 778312 Country of ref document: AT Kind code of ref document: T Effective date: 20160315 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502010011102 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160603 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160302 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160302 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160302 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160602 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160302 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160302 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160302 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160302 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160302 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160302 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160702 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160302 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160704 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160302 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160302 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502010011102 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160302 |
|
26N | No opposition filed |
Effective date: 20161205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160602 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160302 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161130 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161130 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161130 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161117 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 778312 Country of ref document: AT Kind code of ref document: T Effective date: 20161117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160302 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20101117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160302 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160302 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160302 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160302 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160302 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20231130 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231128 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20231130 Year of fee payment: 14 Ref country code: FR Payment date: 20231128 Year of fee payment: 14 Ref country code: DE Payment date: 20231129 Year of fee payment: 14 Ref country code: CZ Payment date: 20231025 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20231128 Year of fee payment: 14 |