EP2455658A1 - Verfahren und Vorrichtung zur Verdampfung organischer Arbeitsmedien - Google Patents

Verfahren und Vorrichtung zur Verdampfung organischer Arbeitsmedien Download PDF

Info

Publication number
EP2455658A1
EP2455658A1 EP10014706A EP10014706A EP2455658A1 EP 2455658 A1 EP2455658 A1 EP 2455658A1 EP 10014706 A EP10014706 A EP 10014706A EP 10014706 A EP10014706 A EP 10014706A EP 2455658 A1 EP2455658 A1 EP 2455658A1
Authority
EP
European Patent Office
Prior art keywords
medium
heat
supplying
evaporator
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10014706A
Other languages
English (en)
French (fr)
Other versions
EP2455658B1 (de
Inventor
Richard Aumann
Andreas Schuster
Andreas Sichert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orcan Energy AG
Original Assignee
Technische Universitaet Muenchen
Orcan Energy AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universitaet Muenchen, Orcan Energy AG filed Critical Technische Universitaet Muenchen
Priority to EP10014706.5A priority Critical patent/EP2455658B1/de
Priority to CN201180055672.7A priority patent/CN103282719B/zh
Priority to PCT/EP2011/005778 priority patent/WO2012065734A1/de
Priority to JP2013539164A priority patent/JP6047098B2/ja
Priority to US13/883,882 priority patent/US9829194B2/en
Publication of EP2455658A1 publication Critical patent/EP2455658A1/de
Priority to JP2015041287A priority patent/JP2015158205A/ja
Application granted granted Critical
Publication of EP2455658B1 publication Critical patent/EP2455658B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • B01F25/3142Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit the conduit having a plurality of openings in the axial direction or in the circumferential direction
    • B01F25/31425Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit the conduit having a plurality of openings in the axial direction or in the circumferential direction with a plurality of perforations in the axial and circumferential direction covering the whole surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/002Control by recirculating flue gases

Definitions

  • the present invention relates to a device for direct evaporation of organic working media for generating electrical energy from heat sources by the use of organic media.
  • ORC Organic Rankine Cycle
  • the working medium is brought to a working pressure by a feed pump, and it is supplied to it in a heat exchanger energy in the form of heat, which is provided by a combustion or a waste heat flow available.
  • the working fluid flows via a pressure tube to an ORC turbine, where it is expanded to a lower pressure.
  • the expanded working medium vapor flows through a condenser, in which a heat exchange between the vaporous working medium and a cooling medium takes place, after which the condensed working medium is returned by a feed pump to the evaporator in a cyclic process.
  • organic media have significantly lower decomposition temperatures compared to water, i. H. Temperatures at which the molecular bonds of the medium break, resulting in destruction of the working medium and decomposition into corrosive or toxic reaction products. Even if the temperature of the live steam is lower than the decomposition temperature of the medium, the latter can be significantly exceeded at insufficiently flowed through points, as is possible in particular on steam-exposed areas of the heat exchanger. Also, a failure of the feed pump causes the flow through the heat exchanger is interrupted and the working fluid is thus exposed directly to the temperature of the heat source used for evaporation.
  • intermediate circuits are conventionally used in ORC plants, in which the heat from the hot medium used for evaporation (flue gas) is transported via an intermediate circuit to the evaporator.
  • a thermal oil is typically used whose temperature stability is higher than that of the working medium.
  • the single-phase heat transfer with the help of thermal oil allows a more even flow through the heat exchanger, in which the evaporation of the working medium takes place.
  • thermal oils are typically combustible, and thus the thermal oil circuit must be pre-pressurized with nitrogen to prevent oxidation of the thermal oil, making the equipment technically complex and expensive.
  • thermal oils age due to the high thermal load and must be replaced at regular intervals. This results in downtime for the plant and an increase in costs.
  • the circulating pump which transports the oil due to the high viscosity of the thermal oil to perform a large electrical power. Then, the use of the thermal oil results in a significant reduction of the heat transferable and thus the electrical power obtained in comparison to the direct evaporation of a working medium, which manages without an intermediate circuit.
  • the object of the present invention to provide an improved ORC process which overcomes the abovementioned disadvantages and in particular is able to guarantee a temperature of the working medium below the decomposition temperature.
  • the task is to regulate the temperature at a heat exchanger so that excessive temperatures can be avoided.
  • the heat exchanger may be provided in particular in the form of an evaporator, in which the working medium is evaporated.
  • the temperature of the heat-supplying medium is not only given by the heat source upon exposure of the heat exchanger / evaporator, but it is governed by the return of the heat-carrying medium after passing through the heat exchanger and / or the other medium in the flow of the heat-supplying medium to the Heat exchanger is delivered, regulated. Through this Temperature control can be compared to the prior art homogeneous loading of the heat exchanger done and it can be avoided at the heat exchanger excess temperatures.
  • another medium may be supplied to the flow of the heat-carrying medium at the second temperature.
  • This additional medium may in particular be ambient air that is supplied from outside the device.
  • the heat-supplying medium may, in particular, be a hot flue gas, as arises, for example, in the combustion of fossil fuels as a heat source.
  • the working medium may in particular be an organic material.
  • Said heat exchanger may be a shell and tube heat exchanger, such as a flue or water tube boiler, or a plate heat exchanger, in which the working medium is guided in a jacket of the boiler, through which the flue gas is passed in tubes.
  • the above device is part of a steam power plant, in particular an Organic Rankine Cycle (ORC) plant.
  • the ORC system further comprises an expansion machine, such as a turbine, a generator, and means for providing the working fluid vaporized in the evaporator to the turbine.
  • the expanded, vaporized working fluid may be delivered to a condenser by condensing means (e.g., a pipeline) for condenser, and the working fluid liquefied there may be returned to the heat exchanger in a circulatory process by a feed pump.
  • condensing means e.g., a pipeline
  • a decomposition of the organic working medium can be reliably prevented according to the invention by appropriate control of the temperature of the heat-supplying medium below the decomposition temperature of the working medium to the heat exchanger.
  • the second supply device comprises a fan or a vacuum device in order to return the cooled heat-supplying medium, after it has passed through the heat exchanger, and / or the further medium into the flow, which acts on the heat exchanger.
  • a blower is a cost effective and efficient means for the return available.
  • the first feed device may comprise a vacuum device in order to suck the medium from the second feed device.
  • the second supply device is designed to supply the heat-supplying medium, after it has passed through the heat exchanger, and / or the further medium to the flow of the heat-supplying medium at the first temperature in such a way that it is distributed over the circumference of the stream becomes.
  • the first supply means may comprise a first conduit for conducting the heat-supplying medium at the first temperature
  • the second supply means may comprise a second conduit for conducting the heat-supplying medium after passing through the heat exchanger, and / or of the further medium
  • the device comprising a mixing section or a mixing section, which is for a fluid connection of the heat-supplying medium with the first temperature in the first conduit and the heat-carrying medium after it has passed through the heat exchanger, and / or the other medium in the second line is formed.
  • the mixing section or the mixing section may include a portion of the first conduit having openings formed therein in the shell thereof and a portion of the second conduit surrounding the portion of the first conduit (see also detailed description below).
  • the present invention also provides a steam power plant with a device according to one of the above examples of the device according to the invention.
  • the additional medium may be ambient air provided outside or inside the steam power plant.
  • the step of returning the at least one part of the heat-carrying medium after passing through the evaporator or supplying the further medium, e.g. ambient air, can be performed by means of a fan and / or a vacuum device.
  • the at least part of the heat-supplying medium may be mixed after passing through the evaporator with the flow of the heat-supplying medium supplied from the heat source to the evaporator at the first temperature distributed over the circumference of this flow.
  • the additional medium can also be supplied over the circumference of the flow of the heat-supplying medium supplied by the heat source to the evaporator.
  • the working medium may be or include an organic material and the heat-carrying medium may be or comprise flue gas.
  • an increased flexibility in the adaptation of the mixing temperature of the heat-supplying medium when entering the heat exchanger can be provided in that the heat-carrying medium is heated or cooled as desired after exiting the heat exchanger.
  • the heat-supplying Medium after passing through the evaporator and before being supplied to the flow of heat supplied from the heat source to the evaporator supplied heat medium to the second temperature or cooled.
  • the other medium such as outside air, may be heated or cooled before being supplied to the flow of the heat-supplying medium supplied from the heat source to the evaporator.
  • the method may further include the steps of supplying the working medium evaporated in the evaporator to an expansion machine for expanding the evaporated working medium, supplying the expanded, evaporated working medium to a condenser for liquefying the expanded, evaporated working medium, and supplying the liquefied working medium include the evaporator.
  • FIG. 1 shows a conventional ORC system with direct evaporation (left) or with an intermediate circuit (right).
  • An evaporator 1 which functions as a heat exchanger or heat exchanger, is supplied with heat from a heat source (not shown) by, for example, a flue gas resulting from the combustion of a fuel, as indicated by the left arrow in the left part of FIG. 1 is displayed.
  • heat is supplied to a working medium supplied through a feed pump 2. For example, it is completely evaporated or evaporated by flash evaporation after the heat exchanger.
  • the working medium vapor is fed via a pressure line of a turbine 3.
  • the turbine the working medium vapor is released, and the turbine 3 drives an electric energy generator 4 (indicated by the right arrow in FIG FIG. 1 ) on.
  • the relaxed working medium vapor is condensed in a condenser 5 and the liquefied working medium is fed back to the evaporator 1 via the feed pump.
  • an intermediate circuit 6 is used, as it is in the right part of FIG. 1 is shown, the heat transfer of the flue gas is not directly to the evaporator to the working fluid, but by means of a medium, such as a thermal oil, the intermediate circuit 6.
  • the intermediate circuit 6 includes a heat exchanger 7, where the flue gas transfers heat to the medium of the intermediate circuit 6 .
  • the heat exchanger 7, the medium of the intermediate circuit 6 is supplied by a pump 8. From the heat exchanger 7, the medium of the intermediate circuit 6 passes to the evaporator 1, where it leads to the evaporation of the working medium, which is supplied to the turbine 3.
  • FIG. 2 an exemplary embodiment of the present invention is illustrated. Elements related to the in FIG. 1 have already been described, are provided with the same reference numerals.
  • the medium eg a flue gas
  • the medium which evaporates the working medium is used after the evaporation of the evaporator 1 partially led to the ORC system again.
  • part of the cooled after exposure to the evaporator 1 flue gas 10 for example by means of a (recirculation) blower 9 is added to the flow of the originating from a heat source hot flue gas.
  • the ORC system itself can be, for example, a geothermal or solar thermal system or also have the combustion of fossil fuels as a heat source.
  • all "dry media” used in conventional ORC systems such as R245fa, "wet” media, such as ethanol or “isentropic media”, such as R134a, are suitable. Find use.
  • FIG. 3 shows a comparison of the temperature-transferable heat (TQ) diagrams for a conventional evaporation process by direct evaporation (left) and the process according to the invention with the inclusion of the recirculated cooled flue gas.
  • TQ temperature-transferable heat
  • recirculation of at least part of the cooled flue gas after passing through the evaporator 1 reduces the inlet temperature of the heat-transporting medium at the evaporator 1.
  • the slope of the cooling curve decreases but not so much as it would be due to the mere decrease in the flue gas temperature, since this effect is partly compensated by the larger mass flow.
  • the residual heat of the recirculated cooled flue gas which is simply lost in conventional methods, is provided for the heat transfer in the evaporator 1 again and is in the right figure of FIG. 3 marked by the hatched bar.
  • the pinch point of the next approximation of the TQ curves of flue gas and working medium is at the end of the preheater, which is typically upstream of the evaporator 1 or can be considered as a part thereof, and thus reduces the heat transferable in the evaporator 1 at a constant held Pinch point temperature ⁇ T pinch (temperature difference between heat-emitting (relatively hot) and heat-absorbing (relatively cold) mass flow, here the difference at the point of the next approximation of flue gas and working medium TQ curves).
  • the transmittable heat flow per unit time of the evaporator 1 is determined to be U - A ⁇ ⁇ T M , where ⁇ T M is the average logarithmic driving temperature difference.
  • Typical rates for the recirculation mass flow are in the range of 10 to 60% of the flue gas mass flow for mixing temperatures when the flue gas enters the heat exchanger from 300 ° C to 200 ° C.
  • the additional amount of heat of the recirculated gas according to the invention leads to a mitigation of the effect of reducing the amount of heat transferable due to the lower flue gas inlet temperature.
  • the mixture of the supplied from a heat source to the evaporator 1 hot flue gas and the cooled flue gas, the evaporator 1 has happened through a Y-piece of pipe.
  • hot streaks can arise in the mixed gas, which lead to an inhomogeneous loading of the evaporator 1.
  • a conventional gas mixer of the prior art can be used.
  • the mixture may be via a mixing piece comprising a portion 21 of a first conduit for directing the hot flue gas flow having openings 22 formed therein in the shell thereof and a portion 23 of a second conduit for conducting the recirculated flue gas, the portion 23 of the second conduit surrounds the part 21 of the first conduit and is sealed with this outside by a seal 24, as in FIG. 4 is illustrated.
  • the pressurized by a blower recirculated flue gas is forced through the openings 22 in the part of the jacket of the first line in this, so that it can mix homogeneously with the hot flue gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

Die vorliegende Erfindung stellt eine Vorrichtung zur Verfügung, die umfasst: Einen Wärmeübertrager (1) zum Übertragen von Wärme eines wärmezuführenden Mediums auf ein von diesem verschiedenes Arbeitsmedium eine erste Zuführeinrichtung (9), die dazu ausgebildet ist, einen Strom des wärmezuführenden Mediums mit einer ersten Temperatur von einer Wärmequelle zu dem Wärmeübertrager zu liefern und eine zweite Zuführeinrichtung, die dazu ausgebildet ist, das wärmezuführende Medium, nachdem es den Wärmeübertrager passiert hat, und/oder ein weiteres Medium mit einer zweiten Temperatur, die niedriger als die erste Temperatur ist, zu dem Strom des wärmezuführenden Mediums mit der ersten Temperatur zu liefern.

Description

    Gebiet der Erfindung
  • Die vorliegende Erfindung betrifft eine Vorrichtung zur Direktverdampfung organischer Arbeitsmedien zur Erzeugung elektrischer Energie aus Wärmequellen durch den Einsatz organischer Medien.
  • Stand der Technik
  • Der Betrieb von Expansionsmaschinen, wie z.B. Dampfturbinen, mit Hilfe des Organic Rankine Cycle (ORC)-Verfahrens zur Erzeugung elektrischer Energie durch den Einsatz organischer Medien, beispielsweise organischer Medien mit niedriger Verdampfungstemperatur, die bei gleichen Temperaturen verglichen mit Wasser als Arbeitsmedium im allgemeinen höhere Verdampfungsdrücke aufweisen, ist im Stand der Technik bekannt. ORC-Anlagen stellen eine Realisierung des Clausius-Rankine-Kreisprozesses dar, in dem beispielsweise prinzipiell über adiabatische und isobare Zustandsänderungen eines Arbeitsmediums elektrische Energie gewonnen wird. Über Verdampfung, Expansion und anschließende Kondensation des Arbeitsmediums wird hierbei mechanische Energie gewonnen und in elektrische Energie gewandelt. Prinzipiell wird das Arbeitsmedium durch eine Speisepumpe auf Betriebsdruck gebracht, und es wird ihm in einem Wärmeübertrager Energie in Form von Wärme, die durch eine Verbrennung oder einen Abwärmestrom zur Verfügung gestellt wird, zugeführt. Vom Verdampfer aus strömt das Arbeitsmedium über ein Druckrohr zu einer ORC-Turbine, wo es auf einen niedrigeren Druck entspannt wird. Im Anschluss strömt der entspannte Arbeitsmediumsdampf durch einen Kondensator, in dem ein Wärmeaustausch zwischen dem dampfförmigen Arbeitsmedium und einem Kühlmedium stattfindet, wonach das auskondensierte Arbeitsmedium durch eine Speisepumpe zu dem Verdampfer in einem Kreisprozess zurückgeführt wird.
  • Organische Medien besitzen im Vergleich zu Wasser jedoch deutlich geringere Zersetzungstemperaturen, d. h. Temperaturen, bei denen die Molekülbindungen des Mediums aufbrechen, woraus eine Zerstörung des Arbeitsmediums und Zersetzung in korrosive oder giftige Reaktionsprodukte resultiert. Selbst wenn die Temperatur des Frischdampfes geringer als die Zersetzungstemperatur des Mediums ist, kann letztere an unzureichend durchströmten Stellen deutlich überschritten werden, wie dies insbesondere an dampfbeaufschlagten Bereichen des Wärmeübertragers möglich ist. Auch führt ein Ausfall der Speisepumpe dazu, dass die Durchströmung des Wärmeübertragers unterbrochen wird und das Arbeitsmedium somit der Temperatur der zur Verdampfung eingesetzten Wärmequelle direkt ausgesetzt wird.
  • Um zu vermeiden, dass das Arbeitsmedium auf Temperaturen oberhalb der Zersetzungstemperatur erwärmt wird, werden in ORC-Anlagen herkömmlicherweise Zwischenkreisläufe eingesetzt, in denen die Wärme von dem heißen zur Verdampfung eingesetzten Medium (Rauchgas) über einen Zwischenkreislauf zu dem Verdampfer transportiert wird. Für einen solchen Zwischenkreislauf wird typischerweise ein Thermoöl verwendet, dessen Temperaturstabilität höher ist als diejenige des Arbeitsmediums. Der einphasige Wärmeübergang mithilfe des Thermoöls ermöglicht eine gleichmäßigere Durchströmung des Wärmeübertragers, in dem die Verdampfung des Arbeitsmediums erfolgt. Diese Lösung weist jedoch die folgenden Nachteile auf. Erstens sind Thermoöle typischerweise brennbar und somit muss der Thermoölkreislauf zur Verhinderung der Oxidation des Thermoöls mit einem Stickstoff-Vordruck versehen werden, wodurch die Anlage technisch aufwendig und kostenaufwendig wird. Zudem altern Thermoöle aufgrund der hohen thermischen Belastung und müssen in regelmäßigen Abständen ausgetauscht werden. Hieraus resultieren Stillstandzeiten für die Anlage und einen Erhöhung der Kosten. Zudem muss die Umwälzpumpe, die das Öl transportiert aufgrund der hohen Viskosität des Thermoöls eine große elektrische Leistung verrichten. Sodann resultiert der Einsatz des Thermoöls in einer signifikanten Reduktion der übertragbaren Wärme und somit der gewonnen elektrischen Leistung im Vergleich zur Direktverdampfung eines Arbeitsmediums, die ohne einen Zwischenkreislauf auskommt.
  • Es liegt somit der vorliegenden Erfindung die Aufgabe zugrunde, ein verbessertes ORC-Verfahren zur Verfügung zu stellen, das die oben genannten Nachteile überwindet, und insbesondere eine Temperatur des Arbeitsmediums unterhalb der Zersetzungstemperatur zu garantieren vermag. Ganz allgemein besteht die Aufgabe, die Temperatur an einem Wärmeübertrager so zu regulieren, dass Übertemperaturen vermieden werden können.
  • Beschreibung der Erfindung
  • Die oben genannte Aufgabe wird gelöst durch eine Vorrichtung, mit
    einem Wärmeübertrager zum Übertragen von Wärme eines wärmezuführenden Mediums auf ein von diesem verschiedenes Arbeitsmedium;
    einer ersten Zuführeinrichtung, die dazu ausgebildet ist, einen Strom des wärmezuführenden Mediums mit einer ersten Temperatur von einer Wärmequelle zu dem Wärmeübertrager zu liefern; und
    einer zweiten Zuführeinrichtung, die dazu ausgebildet ist, zumindest teilweise das wärmezuführende Medium, nachdem es den Wärmeübertrager passiert hat, und/oder ein weiteres Medium jeweils mit einer zweiten Temperatur, die niedriger als die erste Temperatur ist, zu dem Strom des wärmezuführenden Mediums mit der ersten Temperatur zu liefern.
  • Der Wärmeübertrager kann insbesondere in Form eines Verdampfers vorgesehen sein, in dem das Arbeitsmedium verdampft wird. Erfindungsgemäß ist die Temperatur des wärmezuführenden Mediums bei Beaufschlagung der Wärmeübertragers/Verdampfers nicht allein durch die Wärmequelle gegeben, sondern sie wird maßgeblich durch die Rückführung des wärmezuführenden Mediums nach Passieren des Wärmeübertragers und/oder des weiteren Mediums in den Strom des wärmezuführenden Mediums, der an den Wärmeübertrager geliefert wird, geregelt. Durch diese Temperaturregelung kann eine gegenüber dem Stand der Technik homogenere Beaufschlagung des Wärmeübertragers erfolgen und es können Übertemperaturen am Wärmeübertrager vermieden werden. Wie oben angegeben kann alternativ oder zusätzlich zu der Rückführung des wärmezuführenden Mediums nach Passieren des Wärmeübertragers ein weiteres Medium dem Strom des wärmezuführenden Mediums mit der zweiten Temperatur zugeführt werden. Dieses weitere Medium kann insbesondere Umgebungsluft sein, die von außerhalb der Vorrichtung zugeführt wird.
  • Das wärmezuführende Medium kann insbesondere ein heißes Rauchgas sein, wie es beispielsweise bei der Verbrennung fossiler Brennstoffe als Wärmequelle, entsteht. Das Arbeitsmedium kann insbesondere ein organisches Material sein. Der genannte Wärmeübertrager kann ein Rohrbündelwärmeübertrager, wie ein Rauchrohr- oder Wasserrohrkessel, oder ein Plattenwäremübertrager sein, in dem das Arbeitsmedium in einem Mantel des Kessels geführt wird, durch den das Rauchgas in Röhren geleitet wird. Somit ist obige Vorrichtung gemäß einem Beispiel Bestandteil eines Dampfkraftwerks, insbesondere einer Organic Rankine Cycle (ORC) - Anlage. Die ORC-Anlage umfasst weiterhin eine Expansionsmaschine, wie z.B. eineTurbine, einen Generator und eine Einrichtung zum Liefern des in dem Verdampfer verdampften Arbeitsmediums zu der Turbine. Von der Turbine kann das entspannte verdampfte Arbeitsmedium durch eine Fördereinrichtung (z.B. eine Rohrleitung) zum Kondensieren zu einem Kondensator geliefert werden und das dort verflüssigte Arbeitsmedium kann in Rahmen eines Kreislaufprozesses durch eine Speisepumpe wieder an den Wärmeübertrager geliefert werden.
  • Eine Zersetzung des organischen Arbeitsmediums kann erfindungsgemäß durch entsprechende Regelung der Temperatur des wärmezuführenden Mediums unterhalb der Zersetzungstemperatur des Arbeitsmediums an dem Wärmeübertrager zuverlässig vermieden werden.
  • Gemäß einer Weiterbildung umfasst die zweite Zuführeinrichtung ein Gebläse oder eine Unterdruckeinrichtung, um das abgekühlte wärmezuführende Medium, nachdem es den Wärmeübertrager passiert hat, und/oder das weitere Medium in den Strom zurückzuführen, der den Wärmeübertrager beaufschlagt. Ein Gebläse stellt ein kostengünstiges und effizientes Mittel für die Rückführung zur Verfügung. Alternativ oder ergänzend kann die erste Zuführeinrichtung eine Unterdruckeinrichtung umfassen, um das Medium aus der zweiten Zuführeinrichtung zu saugen.
  • Gemäß einer weiteren Weiterbildung ist die zweite Zuführeinrichtung dazu ausgebildet, das wärmezuführende Medium, nachdem es den Wärmeübertrager passiert hat, und/oder das weitere Medium dem Strom des wärmezuführenden Mediums mit der ersten Temperatur derart zuzuführen, dass es diesem über den Umfang des Stroms verteilt zugeführt wird. Hierduch wird eine homogene Durchmischung der Komponenten, beispielsweise des direkt von der Wärmequelle kommenden heißen Rauchgases und des nach Passieren des Verdampfers rezirkulierten abgekühlten Rauchgases unter Vermeidung der Bildung heißer Gassträhnen, erreicht.
  • In den oben genannten Beispielen für die erfindungsgemäße Vorrichtung kann die erste Zuführeinrichtung eine erste Leitung zum Leiten des wärmezuführenden Mediums mit der ersten Temperatur umfassen, und die zweite Zuführeinrichtung eine zweite Leitung zum Leiten des wärmezuführenden Mediums, nachdem es den Wärmeübertrager passiert hat, und/oder des weiteren Mediums umfassen, wobei die Vorrichtung ein Mischstück oder eine Mischstrecke umfasst, das für eine Fluidverbindung des wärmezuführenden Mediums mit der ersten Temperatur in der ersten Leitung und dem wärmezuführenden Medium, nachdem es den Wärmeübertrager passiert hat, und/oder dem weiteren Medium in der zweiten Leitung ausgebildet ist. Das Mischstück oder die Mischstrecke kann ein Teil der ersten Leitung mit darin ausgebildeten Öffnungen im Mantel derselben und ein Teil der zweiten Leitung, der das Teil der ersten Leitung umgibt, umfassen (s. auch detaillierte Beschreibung unten).
  • Die vorliegende Erfindung stellt auch ein Dampfkraftwerk mit einer Vorrichtung gemäß einem der oben genannten Beispiele der erfindungsgemäßen Vorrichtung zur Verfügung. Das weitere Medium kann hierbei von außerhalb oder innerhalb der Dampfkraftwerks bereitgestellte Umgebungsluft sein.
  • Die oben genannte Aufgabe wird auch durch ein Verfahren zum Verdampfen eines Arbeitsmediums in einer Wärmekraftanlage gelöst, das die Schritte umfasst
  • Zuführen des Arbeitsmediums in einem flüssigen Zustand zu einem Verdampfer;
    Zuführen eines von dem Arbeitsmedium verschiedenen wärmezuführenden Mediums mit einer ersten Temperatur von einer Wärmequelle zu dem Verdampfer, und
    Rückführen zumindest eines Teils des wärmezuführenden Mediums nach Passieren des Verdampfers und mit einer zweiten Temperatur, die geringer als die erste Temperatur ist, und/oder Zuführen eines weiteren Mediums (beispielsweise von Umgebungsluft) in den Strom des von der Wärmequelle zu dem Verdampfer gelieferten wärmezuführenden Mediums.
  • Der Schritt des Rückführens des zumindest einen Teils des wärmezuführenden Mediums nach Passieren des Verdampfers bzw. des Zuführens des weiteren Mediums, z.B. von Umgebungsluft, kann mithilfe eines Gebläses und/oder einer Unterdruckeinrichtung durchgeführt werden. Der zumindest eine Teil des wärmezuführenden Mediums kann nach Passieren des Verdampfers mit dem Strom des von der Wärmequelle zu dem Verdampfer gelieferten wärmezuführenden Mediums mit der ersten Temperatur über den Umfang dieses Stroms verteilt gemischt werden. Auch das weitere Medium kann über den Umfang des Stroms des von der Wärmequelle zu dem Verdampfer gelieferten wärmezuführenden Mediums zugeführt werden. Das Arbeitsmedium kann ein organisches Material sein oder umfassen und das wärmezuführende Medium Rauchgas sein oder umfassen.
  • In sämtlichen oben beschriebenen Beispielen für das erfindungsgemäße Verfahren bzw. die erfindungsgemäße Vorrichtung kann dadurch eine erhöhte Flexibilität in der Anpassung der Mischtemperatur des wärmezuführenden Mediums bei Eintritt in den Wärmeübertrager bereitgestellt werden, dass das wärmezuführende Medium nach Austritt aus dem Wärmeübertrager wunschgemäß erwärmt oder gekühlt wird. Somit kann in den oben beschriebenen Verfahrensweiterbildungen das wärmezuführende Medium nach Passieren des Verdampfers und vor dem Zuführen zu dem Strom des von der Wärmequelle zu dem Verdampfer gelieferten wärmezuführenden Mediums auf die zweite Temperatur erwärmt oder gekühlt werden. Auch das weitere Medium, wie Außenluft, kann vor dem Zuführen zu dem Strom des von der Wärmequelle zu dem Verdampfer gelieferten wärmezuführenden Mediums erwärmt oder gekühlt werden.
  • Weiterhin kann in den obigen Beispielen das Verfahren weiterhin die Schritte des Zuführens des in dem Verdampfer verdampften Arbeitsmediums zu einer Expansionsmaschine zum Entspannen des verdampften Arbeitsmediums, des Zuführens des entspannten verdampften Arbeitsmediums zu einem Kondensator zum Verflüssigen des entspannten verdampften Arbeitsmediums und des Zuführens des verflüssigten Arbeitsmediums zu dem Verdampfer umfassen.
  • Weitere Merkmale und beispielhafte Ausführungsformen sowie Vorteile der vorliegenden Erfindung werden nachfolgend anhand der Zeichnungen näher erläutert. Es versteht sich, dass die Ausführungsformen nicht den Bereich der vorliegenden Erfindung erschöpfen. Es versteht sich weiterhin, dass einige oder sämtliche der im Weiteren beschriebenen Merkmale auch auf andere Weise miteinander kombiniert werden können.
    • Figur 1 stellt eine Prinzipskizze für eine herkömmliche ORC-Anlage ohne (links) und mit (rechts) einem Zwischenkreislauf dar.
    • Figur 2 stellt eine Prinzipskizze für ein Beispiel einer ORC-Anlage gemäß der vorliegenden Erfindung dar.
    • Figur 3 zeigt TQ - Diagramme für ein herkömmliches Verdampfungsverfahren durch Direktverdampfung (links) und das erfindungsgemäße Verfahren unter Einbezug rezirkulierten abgekühlten Rauchgases (rechts).
    • Figur 4 zeigt eine Ausbildung für ein Mischstück zum Mischen heißen Rauchgases und abgekühlten rezirkulierten Rauchgases.
  • Figur 1 zeigt eine herkömmliche ORC-Anlage mit Direktverdampfung (links) bzw. mit einem Zwischenkreislauf (rechts). Einem Verdampfer 1, der als Wärmetauscher oder Wärmeübertrager fungiert, wird Wärme von einer Wärmequelle (nicht gezeigt) beispielsweise durch ein Rauchgas, das bei der Verbrennung eines Brennstoffs entsteht, zugeführt, wie es jeweils durch den linken Pfeil im linken Teil der Figur 1 angezeigt ist.
  • In dem Verdampfer 1 wird einem durch eine Speisepumpe 2 zugeführten Arbeitsmedium Wärme zugeführt. Beispielsweise wird es vollständig verdampft oder auch mittels Flash-Verdampfung nach dem Wärmeübertrager verdampft. Der Arbeitsmediumsdampf wird über eine Druckleitung einer Turbine 3 zugeleitet. In der Turbine wird der Arbeitsmediumsdampf entspannt, und die Turbine 3 treibt einen Generator 4 zur Gewinnung elektrischer Energie (angezeigt jeweils durch den rechten Pfeil in der Figur 1) an. Der entspannte Arbeitsmediumsdampf wird in einem Kondensator 5 kondensiert und das verflüssigte Arbeitsmedium wird über die Speisepumpe wieder dem Verdampfer 1 zugeführt.
  • Wird ein Zwischenkreislauf 6 verwendet, wie es in dem rechten Teil der Figur 1 gezeigt ist, erfolgt der Wärmeübertrag des Rauchgases nicht direkt an dem Verdampfer an das Arbeitsmedium, sondern mittels eines Mediums, beispielsweise eines Thermoöls, des Zwischenkreislaufes 6. Der Zwischenkreislauf 6 umfasst einen Wärmeübertrager 7, an dem das Rauchgas Wärme an das Medium des Zwischenkreislaufes 6 überträgt. Dem Wärmeübertrager 7 wird das Medium des Zwischenkreislaufes 6 durch eine Pumpe 8 geliefert. Von dem Wärmeübertrager 7 gelangt das Medium des Zwischenkreislaufes 6 zu dem Verdampfer 1, an dem es zur Verdampfung des Arbeitsmediums, das an die Turbine 3 geliefert wird, führt.
  • In Figur 2 ist eine beispielhafte Ausführungsform der vorliegenden Erfindung veranschaulicht. Elemente, die mit Bezug auf den in Figur 1 gezeigten Stand der Technik bereits beschrieben wurden, sind mit denselben Bezugszeichen versehen. Im Gegensatz zum Stand der Technik wird das Medium (z.B. ein Rauchgas), das zum Verdampfen des Arbeitsmediums verwendet wird, nach dem Beaufschlagen des Verdampfers 1 teilweise der ORC-Anlage wieder zu geführt. So wird ein Teil des nach Beaufschlagung des Verdampfers 1 abgekühlten Rauchgases 10 beispielsweise mithilfe eines (Rezirkulations-)Gebläses 9 dem Strom des von einer Wärmequelle stammenden heißen Rauchgas beigemengt.
  • Die ORC-Anlage selbst kann beispielsweise eine geothermische oder solarthermische Anlage sein oder auch die Verbrennung fossiler Brennstoffe als Wärmequelle aufweisen. Als Arbeitsmedien kommen sämtliche in herkömmlichen ORC-Anlagen verwendeten ,,trockenen Medien", wie R245fa, ,,nasse" Medien, wie Ethanol oder ,,isentrope Medien", wie R134a, in Frage. Ebenso können synthetische Arbeitsmedien auf Silikonbasis, wie GL160, Verwendung finden.
  • Gemäß der obigen Beschreibung besteht somit in der gezeigten Ausführungsform nicht die Gefahr der Zerstörung des Arbeitsmediums durch Übertemperaturen infolge von Betriebsstörungen, wie einem Ausfall der Speisepumpe 5 oder durch einen inhomogene Durchströmung des Verdampfers mit dem wärmezuführenden Medium (Rauchgas).
  • Dies ist nicht der einzige Vorteil der erfindungsgemäßen Ausbildung. Figur 3 zeigt einen Vergleich der Temperatur - übertragbare Wärme - (TQ -) Diagramme für ein herkömmliches Verdampfungsverfahren durch Direktverdampfung (links) und das erfindungsgemäße Verfahren unter Einbezug des rezirkulierten abgekühlten Rauchgases. Im Vergleich zu der direkten Beaufschlagung des Verdampfers 1 mit heißem Rauchgas sinkt unter Verwendung der Rezirkulation zumindest eines Teils des abgekühlten Rauchgases nach dem Passieren des Verdampfers 1 die Eintrittstemperatur des wärmetransportierenden Mediums am Verdampfer 1. Zudem nimmt die Steigung der Abkühlkurve ab, jedoch nicht so stark wie es durch die bloße Abnahme der Rauchgastemperatur bedingt wäre, da dieser Effekt zum Teil durch den größeren Massenstrom kompensiert wird.
  • Die Restwärme des rezirkulierten abgekühlten Rauchgases, die in herkömmlichen Verfahren schlicht verloren geht, wird für die Wärmeübertragung im Verdampfer 1 wieder zur Verfügung gestellt und ist in der rechten Abbildung der Figur 3 mithilfe des schraffierten Balkens gekennzeichnet. Der Pinch-Point der nächsten Annäherung der TQ-Kurven von Rauchgas und Arbeitsmedium liegt am Ende des Vorwärmers, der typischerweise dem Verdampfer 1 vorgeschaltet ist oder als ein Teil desselben angesehen werden kann, und somit reduziert sich die im Verdampfer 1 übertragbare Wärme bei konstant gehaltener Pinch-Point-Temperatur ΔTPinch (Temperaturdifferenz zwischen wärmeabgebendem (relativ heißem) und wärmeaufnehmendem (relativ kaltem) Massenstrom, hier die Differenz am Punkt der der nächsten Annäherung der TQ-Kurven von Rauchgas und Arbeitsmedium) nicht.
  • Zwar ist gegenüber dem herkömmlichen Verfahren der Temperaturgradient zwischen der Temperatur des Eintritts des gemischten Rauchgases und der Temperatur des Rauchgases bei Austritt aus dem Verdampfer 1 geringer, da jedoch der Verdampfer 1 von einem größeren Massenstrom pro Zeiteinheit durchströmt wird, steigt jedoch der Wärmedurchgangskoeffizient U, so dass für einen gleichen Durchsatz an Rauchgas theoretisch keine signifikante Vergrößerung der Fläche A des Verdampfers nötig wird. In praxi wird man jedoch die Fläche anpassen, um den Abgasgegendruck nicht zu sehr steigen zu lassen. Hierbei bestimmt sich der übertragbare Wärmestrom pro Zeiteinheit des Verdampfers 1 zu U - A · ΔTM, wobei mit ΔTM die mittlere logarithmische treibende Temperaturdifferenz bezeichnet wird. Typische Raten für den Rezirkulationsmassenstrom liegen im Bereich von 10 bis 60 % des Rauchgasmassenstroms für Mischtemperaturen bei Eintritt des Rauchgases in den Wärmeübertrager von 300 °C bis 200 °C.
  • Die zusätzliche Wärmemenge des rezirkulierten Gases führt erfindungsgemäß zu einer Abmilderung des Effekts der Reduktion der übertragbaren Wärmemenge aufgrund der geringeren Rauchgaseintrittstemperatur.
  • Im einfachsten Fall kann die Mischung des von einer Wärmequelle zu dem Verdampfer 1 gelieferten heißen Rauchgas und dem abgekühlten Rauchgas, das den Verdampfer 1 passiert hat, durch ein Y-Rohrstück erfolgen. Bei einer derart realisierten Mischung können jedoch heiße Strähnen in dem Mischgas entstehen, die zu einer inhomogenen Beaufschlagung des Verdampfers 1 führen. Prinzipiell kann ein herkömmlicher Gasmischer des Stands der Technik Anwendung finden.
  • Eine bessere Vermischung lässt sich erreichen, wenn das abgekühlte Rauchgas, das den Verdampfer 1 passiert hat, über den Umfang des heißen Rauchgasstroms verteilt diesem zugeführt wird. Beispielsweise kann die Mischung über ein Mischstück erfolgen, das einen Teil 21 einer ersten Leitung zum Leiten des heißen Rauchgasstroms mit darin ausgebildeten Öffnungen 22 im Mantel derselben und einen Teil 23 einer zweiten Leitung zum Leiten des rezirkulierten Rauchgases umfasst, wobei der Teil 23 der zweiten Leitung den Teil 21 der ersten Leitung umgibt und außerhalb dieser mit dieser durch eine Dichtung 24 abgedichtet ist, wie es in Figur 4 veranschaulicht ist. Das durch ein Gebläse unter Druck gesetzte rezirkulierte Rauchgas wird durch die Öffnungen 22 in dem Teil des Mantels der ersten Leitung in diese hineingedrückt, so dass es sich homogen mit dem heißen Rauchgas mischen kann.

Claims (14)

  1. Vorrichtung, mit
    einem Wärmeübertrager zum Übertragen von Wärme eines wärmezuführenden Mediums auf ein von diesem verschiedenes Arbeitsmedium;
    einer ersten Zuführeinrichtung, die dazu ausgebildet ist, einen Strom des wärmezuführenden Mediums mit einer ersten Temperatur von einer Wärmequelle zu dem Wärmeübertrager zu liefern; und
    einer zweiten Zuführeinrichtung, die dazu ausgebildet ist, zumindest teilweise das wärmezuführende Medium, nachdem es den Wärmeübertrager passiert hat, und/oder ein weiteres Medium mit einer zweiten Temperatur, die niedriger als die erste Temperatur ist, zu dem Strom des wärmezuführenden Mediums mit der ersten Temperatur zu liefern.
  2. Die Vorrichtung gemäß Anspruch 1, in der die erste Zuführeinrichtung eine Unterdruckeinrichtung und/oder die zweite Zuführeinrichtung ein Gebläse und/oder eine Unterdruckeinrichtung umfasst.
  3. Die Vorrichtung gemäß Anspruch 1 oder 2, in der die zweite Zuführeinrichtung dazu ausgebildet ist, das wärmezuführende Medium, nachdem es den Wärmeübertrager passiert hat, und/oder das weitere Medium dem Strom des wärmezuführenden Mediums mit der ersten Temperatur derart zuzuführen, dass es diesem über den Umfang des Stroms verteilt zugeführt wird.
  4. Die Vorrichtung gemäß Anspruch 3, in der die erste Zuführeinrichtung eine erste Leitung zum Leiten des wärmezuführenden Mediums mit der ersten Temperatur umfasst, und die zweite Zuführeinrichtung eine zweite Leitung zum Leiten des wärmezuführenden Mediums, nachdem es den Wärmeübertrager passiert hat, und/oder zum Leiten des weiteren Mediums umfasst, und worin die Vorrichtung ein Mischstück oder eine Mischstrecke umfasst, das für eine Fluidverbindung des wärmezuführenden Mediums mit der ersten Temperatur in der ersten Leitung und dem wärmezuführenden Medium, nachdem es den Wärmeübertrager passiert hat, und/oder dem weiteren Medium in der zweiten Leitung ausgebildet ist.
  5. Die Vorrichtung gemäß Anspruch 3, in der das Mischstück oder die Mischstrecke ein Teil der ersten Leitung mit darin ausgebildeten Öffnungen im Mantel derselben und ein Teil der zweiten Leitung, der das Teil der ersten Leitung umgibt, umfasst.
  6. Die Vorrichtung gemäß einem der vorhergehenden Ansprüche, wobei das Arbeitsmedium ein organisches Material ist und die Vorrichtung eine Organic Rankine Cycle - Vorrichtung ist, die weiterhin eine Expansionsmaschine, insbesondere eine Turbine, einen Generator und eine Einrichtung zum Liefern des in dem Verdampfer verdampften Arbeitsmediums zu der Turbine umfasst.
  7. Die Vorrichtung gemäß einem der vorhergehenden Ansprüche, weiterhin eine Turbine und einen Generator und einen Kondensator umfassend, wobei letzterer dazu ausgebildet ist, das entspannte Arbeitsmedium nach Durchgang durch die Turbine von dem dampfförmigen in den flüssigen Zustand zu kondensieren.
  8. Dampfkraftwerk, das die Vorrichtung gemäß einem der vorhergehenden Ansprüche umfasst.
  9. Verfahren zum Verdampfen eines Arbeitsmediums in einer Wärmekraftanlage, mit den Schritten
    Zuführen des Arbeitsmediums in einem flüssigen Zustand zu einem Verdampfer;
    Zuführen eines von dem Arbeitsmedium verschiedenen wärmezuführenden Mediums mit einer ersten Temperatur von einer Wärmequelle zu dem Verdampfer, und
    Rückführen zumindest eines Teils des wärmezuführenden Mediums nach Passieren des Verdampfers und mit einer zweiten Temperatur, die geringer als die erste Temperatur ist, und/oder Zuführen eines weiteren Mediums in den Strom des von der Wärmequelle zu dem Verdampfer gelieferten wärmezuführenden Mediums.
  10. Das Verfahren gemäß Anspruch 9, in dem der Schritt des Rückführens des zumindest einen Teils des wärmezuführenden Mediums nach Passieren des Verdampfers und/oder des Zuführens des weiteren Mediums mithilfe eines Gebläses und/oder einer Unterdruckeinrichtung durchgeführt wird.
  11. Das Verfahren gemäß Anspruch 9 oder 10, in dem der zumindest eine Teil des wärmezuführenden Mediums nach Passieren des Verdampfers und/oder das weitere Medium mit dem Strom des von der Wärmequelle zu dem Verdampfer gelieferten wärmezuführenden Mediums mit der ersten Temperatur über den Umfang dieses Stroms verteilt gemischt wird.
  12. Das Verfahren gemäß einem der Ansprüche 9 bis 11, in dem das Arbeitsmedium ein organisches Material ist oder umfasst und das wärmezuführende Medium Rauchgas ist oder umfasst.
  13. Das Verfahren gemäß einem der Ansprüche 9 bis 12, in dem das weitere Medium und/oder das wärmezuführenden Medium nach Passieren des Verdampfers und vor dem Zuführen zu dem Strom des von der Wärmequelle zu dem Verdampfer gelieferten wärmezuführenden Mediums auf die zweite Temperatur erwärmt oder gekühlt wird.
  14. Das Verfahren gemäß einem der Ansprüche 9 bis 13, weiterhin umfassend:
    Zuführen des in dem Verdampfer verdampften Arbeitsmediums zu einer Turbine zum Entspannen des verdampften Arbeitsmediums;
    Zuführen des entspannten verdampften Arbeitsmediums zu einem Kondensator zum Verflüssigen des entspannten verdampften Arbeitsmediums; und
    Zuführen des verflüssigten Arbeitsmediums zu dem Verdampfer.
EP10014706.5A 2010-11-17 2010-11-17 Verfahren und Vorrichtung zur Verdampfung organischer Arbeitsmedien Active EP2455658B1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP10014706.5A EP2455658B1 (de) 2010-11-17 2010-11-17 Verfahren und Vorrichtung zur Verdampfung organischer Arbeitsmedien
CN201180055672.7A CN103282719B (zh) 2010-11-17 2011-11-16 用于蒸发有机工作介质的方法和装置
PCT/EP2011/005778 WO2012065734A1 (de) 2010-11-17 2011-11-16 Verfahren und vorrichtung zur verdampfung organischer arbeitsmedien
JP2013539164A JP6047098B2 (ja) 2010-11-17 2011-11-16 有機作動媒体を蒸発させる方法および装置
US13/883,882 US9829194B2 (en) 2010-11-17 2011-11-16 Method and apparatus for evaporating organic working media
JP2015041287A JP2015158205A (ja) 2010-11-17 2015-03-03 有機作動媒体を蒸発させる方法および装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP10014706.5A EP2455658B1 (de) 2010-11-17 2010-11-17 Verfahren und Vorrichtung zur Verdampfung organischer Arbeitsmedien

Publications (2)

Publication Number Publication Date
EP2455658A1 true EP2455658A1 (de) 2012-05-23
EP2455658B1 EP2455658B1 (de) 2016-03-02

Family

ID=44148713

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10014706.5A Active EP2455658B1 (de) 2010-11-17 2010-11-17 Verfahren und Vorrichtung zur Verdampfung organischer Arbeitsmedien

Country Status (5)

Country Link
US (1) US9829194B2 (de)
EP (1) EP2455658B1 (de)
JP (2) JP6047098B2 (de)
CN (1) CN103282719B (de)
WO (1) WO2012065734A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160254674A1 (en) * 2014-02-07 2016-09-01 Isuzu Motors Limited Waste heat recovery system
CN105937759A (zh) * 2016-04-28 2016-09-14 上海光热实业有限公司 用于电厂烟气余热利用的orc省煤器和系统及方法
FR3036178A1 (fr) * 2015-05-13 2016-11-18 Aqylon Procede de refroidissement d'une source chaude destinee a echanger avec un fluide de travail d'un systeme thermodynamique, installation mettant en œuvre ce procede et systeme thermodynamique

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2455658B1 (de) * 2010-11-17 2016-03-02 Orcan Energy AG Verfahren und Vorrichtung zur Verdampfung organischer Arbeitsmedien
JP6485688B2 (ja) * 2014-12-25 2019-03-20 パナソニックIpマネジメント株式会社 熱発電装置
JP6718802B2 (ja) * 2016-12-02 2020-07-08 株式会社神戸製鋼所 熱エネルギー回収装置及びその立ち上げ運転方法
JP7009227B2 (ja) * 2018-01-18 2022-01-25 株式会社神戸製鋼所 熱エネルギー回収装置
JP6980546B2 (ja) * 2018-01-31 2021-12-15 株式会社神戸製鋼所 熱エネルギー回収装置
US11421663B1 (en) 2021-04-02 2022-08-23 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11493029B2 (en) 2021-04-02 2022-11-08 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11236735B1 (en) 2021-04-02 2022-02-01 Ice Thermal Harvesting, Llc Methods for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature
US11293414B1 (en) 2021-04-02 2022-04-05 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic rankine cycle operation
US11359576B1 (en) 2021-04-02 2022-06-14 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11644015B2 (en) 2021-04-02 2023-05-09 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11592009B2 (en) 2021-04-02 2023-02-28 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11486370B2 (en) 2021-04-02 2022-11-01 Ice Thermal Harvesting, Llc Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations
US11480074B1 (en) 2021-04-02 2022-10-25 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2907694A1 (de) * 1979-02-27 1980-08-28 Mannesmann Ag Mischvorrichtung fuer stroemende fluessige, gas- oder dampffoermige medien
EP1221573A1 (de) * 2001-01-08 2002-07-10 Josef Jun. Stöger Zapfgasverfahren zur Gewinnung von elektrischer und thermischer Energie aus Biomassekesseln
US20070034704A1 (en) * 2005-08-12 2007-02-15 Tailai Hu Oxygen-enriched air assisting system for improving the efficiency of cogeneration system

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48100502A (de) * 1972-04-07 1973-12-19
FR2500324A1 (fr) * 1981-02-24 1982-08-27 Stein Industrie Dispositif de melange homogene de liquides en ecoulement a des temperatures differentes
JPS58174109A (ja) * 1982-04-07 1983-10-13 Hitachi Ltd 低沸点媒体利用の発電プラント
JPS5997402A (ja) * 1982-11-26 1984-06-05 株式会社日立製作所 廃熱利用プラント
JPS6128705A (ja) * 1984-07-17 1986-02-08 Ishikawajima Harima Heavy Ind Co Ltd 熱源からの動力発生方法
JPH0742844B2 (ja) * 1985-10-23 1995-05-15 株式会社東芝 温水利用タ−ビンプラント
KR920002504B1 (ko) 1989-05-06 1992-03-27 강희동 폴리올레핀의 염소화 방법
JPH0321604U (de) * 1989-06-28 1991-03-05
US4996846A (en) * 1990-02-12 1991-03-05 Ormat Inc. Method of and apparatus for retrofitting geothermal power plants
JPH05272308A (ja) * 1992-03-26 1993-10-19 Toshiba Corp 有機媒体適用動力回収プラント
JPH06170197A (ja) * 1992-12-08 1994-06-21 Kanegafuchi Chem Ind Co Ltd 流体混合装置
ES2091153B1 (es) * 1993-12-20 1998-07-01 Colorobbia Espana Sa Sistema de recuperacion de calor y filtracion de gases de combustion procedentes de una fusion, con produccion de energia electrica.
US5632143A (en) * 1994-06-14 1997-05-27 Ormat Industries Ltd. Gas turbine system and method using temperature control of the exhaust gas entering the heat recovery cycle by mixing with ambient air
JPH08100502A (ja) 1994-09-30 1996-04-16 Tanita Haujingu Wear:Kk 金属製たてとい
US7069716B1 (en) * 2002-04-24 2006-07-04 Express Integrated Technologies Llc Cooling air distribution apparatus
DE10228335B3 (de) 2002-06-25 2004-02-12 Siemens Ag Abhitzedampferzeuger mit Hilfsdampferzeugung
US6782703B2 (en) * 2002-09-11 2004-08-31 Siemens Westinghouse Power Corporation Apparatus for starting a combined cycle power plant
DE102004037417B3 (de) * 2004-07-30 2006-01-19 Siemens Ag Verfahren und Vorrichtung zur Übertragung von Wärme von einer Wärmequelle an einen thermodynamischen Kreislauf mit einem Arbeitsmittel mit zumindest zwei Stoffen mit nicht-isothermer Verdampfung und Kondensation
WO2006063065A2 (en) 2004-12-08 2006-06-15 Gen-Probe Incorporated Detection of nucleic acids from multiple types of human papillomaviruses
US7350471B2 (en) * 2005-03-01 2008-04-01 Kalex Llc Combustion system with recirculation of flue gas
JP4989062B2 (ja) 2005-04-28 2012-08-01 バブコック日立株式会社 流体混合装置
DE102006057448A1 (de) * 2006-12-06 2008-06-12 Ibb Technology Gmbh Verfahren zur Erhöhung von Leistung und Wirkungsgrad im ORC-Kraftwerksprozess
US8209951B2 (en) * 2007-08-31 2012-07-03 General Electric Company Power generation system having an exhaust attemperating device
US20100064655A1 (en) * 2008-09-16 2010-03-18 General Electric Company System and method for managing turbine exhaust gas temperature
US8555796B2 (en) * 2008-09-26 2013-10-15 Air Products And Chemicals, Inc. Process temperature control in oxy/fuel combustion system
US8479489B2 (en) * 2009-08-27 2013-07-09 General Electric Company Turbine exhaust recirculation
US20110061388A1 (en) * 2009-09-15 2011-03-17 General Electric Company Direct evaporator apparatus and energy recovery system
CN101705846A (zh) * 2009-11-19 2010-05-12 绍兴文理学院 一种工质相变循环的蒸气压缩式热力发动机
US8511085B2 (en) * 2009-11-24 2013-08-20 General Electric Company Direct evaporator apparatus and energy recovery system
EP2455658B1 (de) * 2010-11-17 2016-03-02 Orcan Energy AG Verfahren und Vorrichtung zur Verdampfung organischer Arbeitsmedien
US8671688B2 (en) * 2011-04-13 2014-03-18 General Electric Company Combined cycle power plant with thermal load reduction system
JP6170197B1 (ja) 2016-02-29 2017-07-26 荏原実業株式会社 脱硫システム及び脱硫方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2907694A1 (de) * 1979-02-27 1980-08-28 Mannesmann Ag Mischvorrichtung fuer stroemende fluessige, gas- oder dampffoermige medien
EP1221573A1 (de) * 2001-01-08 2002-07-10 Josef Jun. Stöger Zapfgasverfahren zur Gewinnung von elektrischer und thermischer Energie aus Biomassekesseln
US20070034704A1 (en) * 2005-08-12 2007-02-15 Tailai Hu Oxygen-enriched air assisting system for improving the efficiency of cogeneration system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160254674A1 (en) * 2014-02-07 2016-09-01 Isuzu Motors Limited Waste heat recovery system
US9819193B2 (en) * 2014-02-07 2017-11-14 Isuzu Motors Limited Waste heat recovery system
FR3036178A1 (fr) * 2015-05-13 2016-11-18 Aqylon Procede de refroidissement d'une source chaude destinee a echanger avec un fluide de travail d'un systeme thermodynamique, installation mettant en œuvre ce procede et systeme thermodynamique
CN105937759A (zh) * 2016-04-28 2016-09-14 上海光热实业有限公司 用于电厂烟气余热利用的orc省煤器和系统及方法

Also Published As

Publication number Publication date
US9829194B2 (en) 2017-11-28
JP2014501899A (ja) 2014-01-23
EP2455658B1 (de) 2016-03-02
JP2015158205A (ja) 2015-09-03
CN103282719B (zh) 2016-04-20
WO2012065734A1 (de) 2012-05-24
CN103282719A (zh) 2013-09-04
US20160047540A1 (en) 2016-02-18
JP6047098B2 (ja) 2016-12-21

Similar Documents

Publication Publication Date Title
EP2455658B1 (de) Verfahren und Vorrichtung zur Verdampfung organischer Arbeitsmedien
DE69927925T2 (de) Abhitzewiedergewinnung in einem organischen Energiewandler mittels einem Zwischenflüssigkeitskreislauf
DE60025415T2 (de) Zweidruck-Gasturbinensystem mit partieller Regeneration und Dampfeinspritzung
WO2008067855A2 (de) Verfahren und vorrichtung zur erhöhung von leistung und wirkungsgrad eines orc-kraftwerkprozesses
EP2409003A2 (de) Vorrichtung und verfahren zur erzeugung von dampf mit hohem wirkungsgrad
WO2013135718A1 (de) Energiespeicherkraftwerk und verfahren zum betreiben eines solchen kraftwerks
DE102004037417B3 (de) Verfahren und Vorrichtung zur Übertragung von Wärme von einer Wärmequelle an einen thermodynamischen Kreislauf mit einem Arbeitsmittel mit zumindest zwei Stoffen mit nicht-isothermer Verdampfung und Kondensation
DE102012217929A1 (de) Kraft-Wärme-Kraftwerk und Verfahren zum Betrieb eines Kraft-Wärme-Kraftwerks
DE102018201172A1 (de) Verbrennungsanlage mit Restwärmenutzung
DE2227435A1 (de) Verfahren zum Verdampfen eines strömenden kryogenen Mediums
DE102012102368A1 (de) Kombikraftwerk
WO2018172107A1 (de) Kraftwerk zum erzeugen von elektrischer energie und verfahren zum betreiben eines kraftwerks
DE102006029524A1 (de) Stromgenerator/Wasserstoffgewinnungs-Kombinationsanlage
WO2005056994A1 (de) Luftspeicherkraftanlage
DE10155508C5 (de) Verfahren und Vorrichtung zur Erzeugung von elektrischer Energie
DE102016112601A1 (de) Vorrichtung zur Energieerzeugung nach dem ORC-Prinzip, Geothermieanlage mit einer solchen Vorrichtung und Betriebsverfahren
EP2659099A2 (de) Vorrichtung zur energieerzeugung
AT518186B1 (de) Wärmekraftwerk und Verfahren zum Speichern von Wärme
DE102016220634A1 (de) Abwärme-Kraftanlage mit stufenweiser Wärmezufuhr
DE102010010539A1 (de) Verfahren zum Betreiben eines Dampfturbinenkraftwerks
AT510457A2 (de) Betriebsverfahren für eine anlage der grundstoffindustrie
DE2506333A1 (de) Verfahren und anlage zur verdampfung und erwaermung von fluessigem naturgas
EP3995673B1 (de) Verfahren und einrichtung zur rekuperation von energie aus wärmeführenden medien
DE102014119686A1 (de) Druckspeicherkraftwerk mit kombiniertem, rekuperativem Abhitzedampferzeuger
EP3690204A1 (de) Speichervorrichtung und verfahren zur wärmespeicherung und (rück-)umwandlung in elektrische energie

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111027

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ORCAN ENERGY GMBH

17Q First examination report despatched

Effective date: 20140507

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ORCAN ENERGY AG

INTG Intention to grant announced

Effective date: 20150903

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SICHERT, ANDREAS

Inventor name: SCHUSTER, ANDREAS

Inventor name: AUMANN, RICHARD

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 778312

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160315

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010011102

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160603

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160702

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160704

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010011102

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

26N No opposition filed

Effective date: 20161205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160602

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161117

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 778312

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231130

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231128

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231130

Year of fee payment: 14

Ref country code: FR

Payment date: 20231128

Year of fee payment: 14

Ref country code: DE

Payment date: 20231129

Year of fee payment: 14

Ref country code: CZ

Payment date: 20231025

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231128

Year of fee payment: 14