EP2454340A1 - Co-dotierte silicooxynitride - Google Patents
Co-dotierte silicooxynitrideInfo
- Publication number
- EP2454340A1 EP2454340A1 EP10725994A EP10725994A EP2454340A1 EP 2454340 A1 EP2454340 A1 EP 2454340A1 EP 10725994 A EP10725994 A EP 10725994A EP 10725994 A EP10725994 A EP 10725994A EP 2454340 A1 EP2454340 A1 EP 2454340A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- phosphor
- compound according
- compound
- thorium
- osmium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 150000001875 compounds Chemical class 0.000 claims abstract description 56
- 229910052776 Thorium Inorganic materials 0.000 claims abstract description 29
- 229910052707 ruthenium Inorganic materials 0.000 claims abstract description 22
- 238000006243 chemical reaction Methods 0.000 claims abstract description 20
- 238000000034 method Methods 0.000 claims abstract description 19
- 229910052712 strontium Inorganic materials 0.000 claims abstract description 10
- 229910052788 barium Inorganic materials 0.000 claims abstract description 9
- 239000000126 substance Substances 0.000 claims abstract description 7
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 66
- 239000011575 calcium Substances 0.000 claims description 56
- 239000000460 chlorine Substances 0.000 claims description 35
- 239000000463 material Substances 0.000 claims description 27
- 229910052762 osmium Inorganic materials 0.000 claims description 25
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 claims description 21
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 claims description 21
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 18
- 238000000576 coating method Methods 0.000 claims description 18
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 17
- 229910052693 Europium Inorganic materials 0.000 claims description 15
- 239000011248 coating agent Substances 0.000 claims description 15
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 14
- 239000002019 doping agent Substances 0.000 claims description 14
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 claims description 14
- 230000005855 radiation Effects 0.000 claims description 14
- 229910052731 fluorine Inorganic materials 0.000 claims description 13
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims description 12
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 11
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 11
- 229910052791 calcium Inorganic materials 0.000 claims description 11
- 229910052801 chlorine Inorganic materials 0.000 claims description 10
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims description 9
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 claims description 9
- 239000011737 fluorine Substances 0.000 claims description 9
- 238000002156 mixing Methods 0.000 claims description 9
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 9
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 8
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 7
- 239000002105 nanoparticle Substances 0.000 claims description 7
- 230000003287 optical effect Effects 0.000 claims description 7
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 7
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 6
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 239000002245 particle Substances 0.000 claims description 6
- 239000007858 starting material Substances 0.000 claims description 6
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 6
- 238000005406 washing Methods 0.000 claims description 5
- 239000004593 Epoxy Substances 0.000 claims description 4
- 238000005286 illumination Methods 0.000 claims description 4
- 229910002601 GaN Inorganic materials 0.000 claims description 3
- 238000009792 diffusion process Methods 0.000 claims description 3
- 125000000524 functional group Chemical group 0.000 claims description 3
- 229920000647 polyepoxide Polymers 0.000 claims description 3
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 claims description 3
- 229920002050 silicone resin Polymers 0.000 claims description 3
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 2
- 239000012190 activator Substances 0.000 claims description 2
- 230000008878 coupling Effects 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 claims description 2
- 238000005859 coupling reaction Methods 0.000 claims description 2
- 230000008569 process Effects 0.000 abstract description 9
- 239000000203 mixture Substances 0.000 description 23
- 239000010410 layer Substances 0.000 description 22
- 229910004283 SiO 4 Inorganic materials 0.000 description 11
- 238000002360 preparation method Methods 0.000 description 11
- 239000011230 binding agent Substances 0.000 description 8
- 239000000919 ceramic Substances 0.000 description 8
- 229910017639 MgSi Inorganic materials 0.000 description 7
- 229910052701 rubidium Inorganic materials 0.000 description 7
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 7
- 229910004261 CaF 2 Inorganic materials 0.000 description 6
- 229910004762 CaSiO Inorganic materials 0.000 description 6
- 101100476480 Mus musculus S100a8 gene Proteins 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000004570 mortar (masonry) Substances 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- 229910003668 SrAl Inorganic materials 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 229920001296 polysiloxane Polymers 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- 101100382570 Danio rerio caspb gene Proteins 0.000 description 3
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 3
- 229910008484 TiSi Inorganic materials 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- -1 borate compound Chemical class 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 150000004820 halides Chemical class 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 2
- 229910052688 Gadolinium Inorganic materials 0.000 description 2
- 229910010199 LiAl Inorganic materials 0.000 description 2
- 101100496858 Mus musculus Colec12 gene Proteins 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229910002367 SrTiO Inorganic materials 0.000 description 2
- 229910052771 Terbium Inorganic materials 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N coumarin Chemical compound C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000000462 isostatic pressing Methods 0.000 description 2
- 239000010445 mica Substances 0.000 description 2
- 229910052618 mica group Inorganic materials 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- AZTFYJYLDIQSAG-UHFFFAOYSA-N 1-(4-chlorophenyl)-2-(propan-2-ylamino)propan-1-one Chemical compound CC(C)NC(C)C(=O)C1=CC=C(Cl)C=C1 AZTFYJYLDIQSAG-UHFFFAOYSA-N 0.000 description 1
- MCSXGCZMEPXKIW-UHFFFAOYSA-N 3-hydroxy-4-[(4-methyl-2-nitrophenyl)diazenyl]-N-(3-nitrophenyl)naphthalene-2-carboxamide Chemical compound Cc1ccc(N=Nc2c(O)c(cc3ccccc23)C(=O)Nc2cccc(c2)[N+]([O-])=O)c(c1)[N+]([O-])=O MCSXGCZMEPXKIW-UHFFFAOYSA-N 0.000 description 1
- CSDQQAQKBAQLLE-UHFFFAOYSA-N 4-(4-chlorophenyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridine Chemical compound C1=CC(Cl)=CC=C1C1C(C=CS2)=C2CCN1 CSDQQAQKBAQLLE-UHFFFAOYSA-N 0.000 description 1
- 206010001497 Agitation Diseases 0.000 description 1
- 229910016066 BaSi Inorganic materials 0.000 description 1
- 101150027751 Casr gene Proteins 0.000 description 1
- 102100040501 Contactin-associated protein 1 Human genes 0.000 description 1
- 101710196304 Contactin-associated protein 1 Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 150000000994 L-ascorbates Chemical class 0.000 description 1
- 229910017414 LaAl Inorganic materials 0.000 description 1
- 229910002420 LaOCl Inorganic materials 0.000 description 1
- 229910012506 LiSi Inorganic materials 0.000 description 1
- 229910020068 MgAl Inorganic materials 0.000 description 1
- 229910017857 MgGa Inorganic materials 0.000 description 1
- 229910017625 MgSiO Inorganic materials 0.000 description 1
- 229910007709 ZnTe Inorganic materials 0.000 description 1
- 125000005595 acetylacetonate group Chemical group 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- AUCDRFABNLOFRE-UHFFFAOYSA-N alumane;indium Chemical compound [AlH3].[In] AUCDRFABNLOFRE-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910021486 amorphous silicon dioxide Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000003667 anti-reflective effect Effects 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- XZCJVWCMJYNSQO-UHFFFAOYSA-N butyl pbd Chemical compound C1=CC(C(C)(C)C)=CC=C1C1=NN=C(C=2C=CC(=CC=2)C=2C=CC=CC=2)O1 XZCJVWCMJYNSQO-UHFFFAOYSA-N 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229960000956 coumarin Drugs 0.000 description 1
- 235000001671 coumarin Nutrition 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 150000001912 cyanamides Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010616 electrical installation Methods 0.000 description 1
- 238000009429 electrical wiring Methods 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 230000009881 electrostatic interaction Effects 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 150000002118 epoxides Chemical class 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-L fumarate(2-) Chemical class [O-]C(=O)\C=C\C([O-])=O VZCYOOQTPOCHFL-OWOJBTEDSA-L 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 230000005525 hole transport Effects 0.000 description 1
- 238000001513 hot isostatic pressing Methods 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- RHZWSUVWRRXEJF-UHFFFAOYSA-N indium tin Chemical compound [In].[Sn] RHZWSUVWRRXEJF-UHFFFAOYSA-N 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 150000002690 malonic acid derivatives Chemical class 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 150000004681 metal hydrides Chemical class 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000005424 photoluminescence Methods 0.000 description 1
- 239000004038 photonic crystal Substances 0.000 description 1
- 229920002098 polyfluorene Polymers 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 238000010671 solid-state reaction Methods 0.000 description 1
- 229910052950 sphalerite Inorganic materials 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- HPNURIVGONRLQI-UHFFFAOYSA-K trifluoroeuropium Chemical compound F[Eu](F)F HPNURIVGONRLQI-UHFFFAOYSA-K 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7783—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
- C09K11/779—Halogenides
- C09K11/7791—Halogenides with alkali or alkaline earth metals
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/082—Compounds containing nitrogen and non-metals and optionally metals
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/082—Compounds containing nitrogen and non-metals and optionally metals
- C01B21/0821—Oxynitrides of metals, boron or silicon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/597—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon oxynitride, e.g. SIALONS
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
- C04B35/6268—Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/6269—Curing of mixtures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62802—Powder coating materials
- C04B35/62805—Oxide ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62802—Powder coating materials
- C04B35/62805—Oxide ceramics
- C04B35/62807—Silica or silicates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62802—Powder coating materials
- C04B35/62805—Oxide ceramics
- C04B35/62813—Alumina or aluminates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62802—Powder coating materials
- C04B35/62805—Oxide ceramics
- C04B35/62815—Rare earth metal oxides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62802—Powder coating materials
- C04B35/62805—Oxide ceramics
- C04B35/62818—Refractory metal oxides
- C04B35/62821—Titanium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62802—Powder coating materials
- C04B35/62805—Oxide ceramics
- C04B35/62818—Refractory metal oxides
- C04B35/62823—Zirconium or hafnium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62802—Powder coating materials
- C04B35/62828—Non-oxide ceramics
- C04B35/62836—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62892—Coating the powders or the macroscopic reinforcing agents with a coating layer consisting of particles
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/02—Use of particular materials as binders, particle coatings or suspension media therefor
- C09K11/025—Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/0883—Arsenides; Nitrides; Phosphides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7783—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
- C09K11/77927—Silicon Nitrides or Silicon Oxynitrides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
- C01P2002/54—Solid solutions containing elements as dopants one element only
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/84—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3208—Calcium oxide or oxide-forming salts thereof, e.g. lime
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3213—Strontium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3215—Barium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3289—Noble metal oxides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
- C04B2235/3873—Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
- C04B2235/3873—Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
- C04B2235/3878—Alpha silicon nitrides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3895—Non-oxides with a defined oxygen content, e.g. SiOC, TiON
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/444—Halide containing anions, e.g. bromide, iodate, chlorite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/444—Halide containing anions, e.g. bromide, iodate, chlorite
- C04B2235/445—Fluoride containing anions, e.g. fluosilicate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/449—Organic acids, e.g. EDTA, citrate, acetate, oxalate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/46—Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
- C04B2235/465—Ammonia
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/528—Spheres
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5292—Flakes, platelets or plates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5296—Constituents or additives characterised by their shapes with a defined aspect ratio, e.g. indicating sphericity
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
Definitions
- the invention relates to compounds which consist of thorium, ruthenium, osmium, fluorine and / or chlorine-co-doped 6-3-6-4-Erdalkali- silicooxynitriden, their preparation and their use as
- Phosphors and LED conversion phosphors for warm white LEDs or so-called color-on-demand applications.
- This concept is e.g. used to create certain corporate designs, e.g. for illuminated company logos, brands etc. To achieve high color spaces using LED TV backlighting are deep red
- Phosphors having an emission maximum in the range from 620 nm to 660 nm are required.
- Material systems known and suitable to the person skilled in the art are siliconitrides and aluminosiliconitrile phosphors (Xie, Sei. Technol. Adv. Mater. 2007, 8, 588-600):
- 1-1-2-Nitrides such as the CaSiN 2 : Eu 2+ (Le Toquin, Cheetham, Chem.
- 2-5-8-nitrides such as the (Ca 1 Sr 1 Ba) 2 Si 5 N 8 ) Eu 2+ (Li et al., Chem. Mater. 2005, 15, 4492). and aluminosiliconitrides such as the (Ca, Sr) AISiN 3 : Eu 2+ (K. Uheda et al., Electrochem., Solid State Lett., 2006, 9, H22).
- Nitridic phosphors as mentioned above, have a number of
- Oxygen is introduced into the phosphor.
- Common manufacturing processes, such as carbothermic reduction and nitridation lead to
- the object of the present invention is therefore the o.g. 6-3-6-4 Modify alkaline earth silicooxynitrides so that these compounds achieve even greater light efficiency.
- the present invention thus relates to compounds of the 6-3- 6-4 alkaline earth silicooxynitride type with europium doping which additionally contain co-dopants from the series thorium, rubidium, osmium, fluorine and / or chlorine.
- compositions M 6 Si 3 O 6 N 4 IEu 2+ where M is an alkaline earth metal
- the x value is 0.003 to 0.2
- the y value (which is the atomic concentration of the co-dopants Me) is 0.0001 to 0.2
- the z value is 0.0005 to 0.03.
- composition but without the co-dopants thorium, rubidium, osmium, fluorine and / or chlorine can be explained with the theories known to the expert. This is due to the higher
- Diffusion barriers which must overcome the ions in the solid state reaction to occupy the desired lattice sites in the solid state structure can.
- the heavy metals Th, Ru or Os are likely to cause an increase in the so-called heavy atom effect
- the particle size of the compounds according to the invention is between 50 nm and 30 .mu.m, preferably between 1 .mu.m and 20 .mu.m, more preferably between 2 and 15 .mu.m. - A -
- Another object of the present invention is a compound obtainable by mixing silicon nitride, europium and calcium and / or strontium and / or barium-containing educts with at least one thorium, osmium, ruthenium, fluoride and / or Chloride-containing co-dopant by solid-state diffusion methods and subsequent thermal aftertreatment, which optionally a flux from the series of alkali or alkaline earth halides or a
- a further subject of the present invention is a process for the preparation of a compound of the 6-3-6-4 alkaline earth silicooxynitride type with europium doping with the following process steps:
- an Eu-doped 6-3-6-4 alkaline earth silicooxynitride compound which is co-doped with thorium, rubidium, osmium, fluoride and / or chloride containing materials by mixing at least 4 starting materials selected from silicon nitride, europium, calcium, strontium, barium, thorium, rubidium, osmium, fluoride and / or chloride-containing materials,
- the starting materials for the preparation of the compound consist of silicon nitride (Si 3 N 4 ), calcium hydride and europium fluoride and at least one Th, Ru, Os, F and Cl-containing co-dopant.
- silicon nitride Si 3 N 4
- calcium hydride and europium fluoride and at least one Th, Ru, Os, F and Cl-containing co-dopant.
- other inorganic and / or organic substances such as cyanamides, dicyanamides, cyanides, oxalates, malonates, fumarates, carbonates, citrates,
- the abovementioned thermal aftertreatment runs for several hours under reducing conditions, for. B with forming gas (eg 90/10), pure hydrogen and / or in an ammonia atmosphere with or without the above mentioned atmospheres.
- forming gas eg 90/10
- pure hydrogen e.g., pure hydrogen
- ammonia atmosphere e.g., ammonia
- the phosphors are transferred to a high-pressure sintering furnace and there at 40 to 70 bar and a temperature of
- the phosphors are hot isostatic under
- the phosphors are first washed with HCl and then with KOH, whereby amorphous SiO 2 is eliminated. This washing step advantageously increases the
- Methods can be made of any external forms of the compounds or phosphors according to the invention, such as spherical particles, platelets and structured materials and
- the shaped body is preferably a "phosphor body”.
- Another object of the present invention is thus a
- the shaped body on the, an LED chip opposite side of a structured eg.
- the structured surface on the shaped article is formed by subsequent coating with a suitable material, which is already structured, or in a subsequent step by (photo) lithographic
- a rough surface opposite side a rough surface, the nanoparticles of SiO 2 , TiO 2 , Al 2 O 3 , ZnO 2 , ZrO 2 and / or Y 2 O 3 or combinations of these materials and / or of particles with the phosphor composition according to formula I with or without dopants from the series Th, Ru, Os, F and / or Cl carries.
- a rough surface has a roughness of up to several 100 nm.
- the coated surface has the advantage that total reflection can be reduced or prevented and the light can be better decoupled from the phosphor according to the invention (see WO2008 / 058619 (Merck) is fully incorporated by reference in the context of the present application)
- the shaped bodies according to the invention have a refractive index-adapted layer on the surface facing away from the chip, which facilitates the decoupling of the primary radiation and / or the radiation emitted by the phosphor body.
- the shaped bodies have a closed surface coating consisting of SiO 2 , TiO 2 , Al 2 O 3, ZnO , ZrO 2 and / or Y 2 O 3 or mixed oxides and / or of the compounds according to formula I without the activator europium.
- Luminescent decreases and a greater proportion of the light can penetrate into the phosphor and absorbed and converted there.
- Phosphor must be encapsulated. This may be necessary to one
- closed shell is a thermal decoupling of the actual phosphor from the heat that arises in the chip. This heat leads to a reduction in the fluorescent light output of the phosphor and may also affect the color of the fluorescent light. Finally, it is possible by such a coating to increase the efficiency of the phosphor by preventing lattice vibrations arising in the phosphor from propagating to the environment.
- the shaped body is a porous one
- Has surface coating consisting of SiO 2 , TiO 2 , Al 2 O 3, ZnO , ZrO 2 and / or Y 2 O 3 or mixed oxides thereof and / or of the compounds according to formulas I with or without dopants from the series Eu, Th, Ru,
- porous coatings offer the possibility of further reducing the refractive index of a single layer.
- the preparation of such porous coatings can after three
- the shaped body has a surface which carries functional groups which allow a chemical or physical connection to the environment, preferably consisting of epoxy or silicone resin.
- functional groups may e.g. oxo group-attached esters or other derivatives which can form linkages with components based on epoxides and / or silicones.
- Such surfaces have the advantage that a homogeneous mixing of the phosphors is made possible in the binder. Furthermore, this can be the
- Phosphor layer preferably consists of a mixture of silicone and homogeneous phosphor particles, and the silicone one
- this phosphor layer is on
- the thickness of the layer is not consistently constant.
- platelet-shaped phosphors can be prepared by a natural or synthetically produced highly stable support or a substrate of, for example mica, SiO 2 , Al 2 O 3 , ZrO 2 , glass or TiO 2 platelets, which is a very has high aspect ratio, has an atomically smooth surface and an adjustable thickness, can be coated by precipitation reaction in aqueous dispersion or suspension with a phosphor layer.
- the platelets may also consist of the phosphor material itself, or be composed of a material. If the plate itself only as a carrier for the
- Phosphor coating is used, it must be made of a material that is transparent to the primary radiation of the LED, or the
- the flake phosphors are dispersed in a resin (e.g., silicone or epoxy) and this dispersion is applied to the LED chip.
- a resin e.g., silicone or epoxy
- the platelet-shaped phosphors can be produced on a large scale in thicknesses of 50 nm up to about 20 ⁇ m, preferably between 150 nm and 5 ⁇ m.
- the diameter is from 50 nm to 20 microns. It usually has an aspect ratio (ratio of diameter to particle thickness) of 1: 1 to 400: 1, and in particular 3: 1 to 100: 1.
- the platelet extent (length x width) depends on the arrangement. Platelets are also suitable as scattering centers within the conversion layer, especially if they have particularly small dimensions.
- the LED chip surface facing the platelet-shaped phosphor according to the invention can be provided with a coating which anti-reflective with respect to the emitted from the LED chip Primary radiation acts. This leads to a reduction in the backscattering of the primary radiation, as a result of which it can be better coupled into the phosphor body according to the invention.
- the production of the shaped bodies according to the invention in the form of ceramic bodies takes place analogously to the process described in WO 2008/017353 (Merck), which is incorporated by reference in its entirety into the context of the present application.
- the phosphor is prepared by mixing the corresponding reactants and dopants, then isostatically pressed and applied in the form of a homogeneous thin and non-porous platelets directly on the surface of the chip or at a distance from the chip (remote phosphor concept).
- the particular arrangement depends i.a. from the architecture of the LED devices, wherein the skilled person is capable of the advantageous
- Phosphor bodies can e.g. be produced industrially as platelets in thicknesses of a few 100 nm up to about 500 .mu.m.
- Platelet expansion depends on the arrangement.
- the size of the wafer according to the chip size (from about 100 .mu.m * 100 microns to several mm 2 ) with a certain excess of about 10% - 30% of the chip surface with a suitable chip arrangement (eg Flip Chip arrangement) or accordingly to choose. If the phosphor plate is placed over a finished LED, the emerging cone of light is completely covered by the plate.
- the side surfaces of the ceramic phosphor body can with a
- Light or precious metal preferably aluminum or silver are mirrored.
- the mirroring causes no light to escape laterally from the
- ceramic phosphor body takes place in a process step after the isostatic pressing to bars or plates, which may be done before the mirroring a tailor of the rods or plates in the required size.
- the side surfaces are for this purpose e.g. wetted with a solution of silver nitrate and glucose and then exposed at elevated temperature to an ammonia atmosphere.
- a silver coating on the side surfaces e.g. a silver coating on the side surfaces.
- the ceramic phosphor body may, if necessary, with a
- Water-gas solution can be fixed on the substrate of an LED chip.
- the ceramic has
- Phosphor body has a patterned (e.g., pyramidal) surface on the side opposite an LED chip. Thus, as much light as possible can be coupled out of the phosphor body.
- the pressing tool has a structured pressing plate and thereby embosses a structure in the surface.
- Another object of the present invention is a process for the preparation of a shaped body, preferably phosphor body, with the following process steps:
- the excitability of the phosphors according to the invention also extend over a wide range, ranging from about 350 nm to 530 nm, preferably 430 nm to about 500 nm.
- these phosphors are not only suitable for excitation by UV or blue emitting primary light sources such as LEDs or conventional discharge lamps (eg based on Hg), but also for light sources such as those which exploit the blue In 3+ line at 451 nm.
- Another object of the present invention is a
- Lighting unit with at least one primary light source whose emission maximum or maximum in the range 250 nm to 530 nm, preferably 350 nm to about 500 nm ranges. Particularly preferred is a range between 440 and 480 nm, wherein the primary radiation is partially or completely converted by the compounds or phosphors according to the invention into longer-wave radiation.
- this lighting unit emits white or emits light with a certain color point (color-on-demand principle).
- Preferred embodiments of the lighting units according to the invention are shown in FIGS. 1 to 7. In a preferred embodiment of the invention
- Lighting unit is the light source to a
- the light source is a
- the light source is a source which
- Electroluminescence and / or photoluminescence shows.
- the light source may also be a plasma or discharge source.
- the phosphors according to the invention can either be dispersed in a resin (for example epoxy or silicone resin) or suitable Depending on the application, size ratios may be arranged directly on the primary light source or may be arranged remotely, depending on the application (the latter arrangement also includes the "remote phosphor technology”.)
- the advantages of the "remote phosphor technology” are known to the person skilled in the art and are, for example, the following Publication: Japanese
- the optical coupling of the illumination unit between the phosphor and the primary light source is realized by a light-conducting arrangement.
- the primary light source is installed at a central location and this by means of light-conducting devices, such as
- the lighting requirements adapted lights can only consist of one or
- different phosphors which may be arranged to form a luminescent screen, and a light guide, which is connected to the primary light source
- Another object of the present invention is the use of the compounds of the invention and shaped articles as a phosphor or phosphor body.
- Another object of the present invention is the use of the compounds of the invention for the partial or complete conversion of the blue or in the near UV emission of a
- Emitting diode Further preferred is the use of the invention
- BaTiP 2 O 7 (Ba 1 Ti) 2 P 2 O 7 Ti, Ba 3 WO 6 : U, BaY 2 F 8 Er 3+ , Yb + , Be 2 SiO 4 : Mn 2+ , Bi 4 Ge 3 Oi 2 , CaAl 2 O 4 : Ce 3+ , CaLa 4 O 7 : Ce 3+ , CaAl 2 O 4 : Eu 2+ , CaAl 2 O 4 : Mn 2+ , CaAl 4 O 7 : Pb 2+ , Mn 2+ , CaAl 2 O 4 Tb 3+ , Ca 3 Al 2 Si 3 O 12 Oe 3+ ,
- Cao. 5 Ba 0 5 Al 12 O 19 Ce 3+ , Mn 2+ , Ca 2 Ba 3 (PO 4) 3 CI: Eu 2+ , CaBr 2 : Eu 2+ in SiO 2 , CaCl 2 : Eu 2+ in SiO 2 , CaCl 2 : Eu 2+ , Mn 2+ in SiO 2 , CaF 2 : Ce 3+ ,
- CaF 2 Ce 3+ , Mn 2+ , CaF 2 : Ce 3+ , Tb 3+ , CaF 2 : Eu 2+ , CaF 2 : Mn 2+ , CaF 2 : U,
- CaGa 2 O 4 Mn 2+ , CaGa 4 O 7 : Mn 2+ , CaGa 2 S 4 : Ce 3+ , CaGa 2 S 4 : Eu 2+ ,
- CaGa 2 S 4 Mn 2+ , CaGa 2 S 4 Pb 2+ , CaGeO 3 : Mn 2+ , Cal 2 : Eu 2+ in SiO 2 , Cal 2 : Eu 2+ , Mn 2+ in SiO 2 , CaLaBO 4 Eu 3+ , CaLaB 3 O 7 : Ce 3+ , Mn 2+ ,
- Ca 2 MgSi 2 O 7 Eu 2+ , Mn 2+ , CaMoO 4 , CaMoO 4 : Eu 3+ , CaO: Bi 3+ , CaOOd 2+ , CaO: Cu + , CaO: Eu 3+ , CaO: Eu 3 + , Na + , CaO: Mn 2+ , CaOPb 2+ , CaO: Sb 3+ , CaO: Sm 3+ , CaOTb 3+ , CaOTI, CaO: Zn 2+ , Ca 2 P 2 O 7 Oe 3+ , ⁇ -Ca 3 (PO 4 ) 2 : Ce 3+ , ⁇ -Ca 3 (PO 4 ) 2 : Ce 3+ , Ca 5 (PO 4 ) 3 Cl: Eu 2+ , Ca 5 (PO 4 ) 3 Cl: Mn 2+ , Ca 5 (PO 4 ) 3 Cl: Sb 3+ , Ca 5 (PO 4 ) 3 Cl: Sn 2+ , ⁇ -C
- Ca s (PO 4 ) 3 F Sb 3+
- Ca s (PO 4 ) 3 F Sn 2+ , ⁇ -Ca 3 (PO 4 ) 2 : Eu 2+ , ⁇ -Ca 3 (PO 4 ) 2 : Eu 2+ , Ca 2 P 2 O 7 : Eu 2+ , Ca 2 P 2 O 7 : Eu 2+ , Mn 2+ , CaP 2 O 6 : Mn 2+ , ⁇ -Ca 3 (PO 4 ) 2 Pb 2 + , ⁇ -Ca 3 (PO 4 ) 2 : Sn 2+ , ⁇ -Ca 3 (PO 4 ) 2 : Sn 2+ , ⁇ -Ca 2 P 2 O 7 : Sn, Mn, ⁇ -Ca 3 (PO 4 ) 2 : Tr, CaS: Bi 3+ , CaS: Bi 3+ , Na, CaS: Ce 3+ , CaS: Eu 2+ , CaS: Cu + , Na + , CaS
- CaSiO 3 Mn 2+ , Pb, CaSiO 3 Pb 2+ , CaSiO 3 : Pb 2+ , Mn 2+ , CaSiO 3 Ti 4+ ,
- CaSr 2 (PO 4 ) 2 Bi 3+ , ⁇ - (Ca, Sr) 3 (PO 4 ) 2 : Sn 2+ Mn 2+ , CaTi 0 . 9 Alo.iO 3 : Bi 3+ ,
- CaTiO 3 Eu 3+ , CaTiO 3 Pr 3+ , Ca 5 (VO 4 ) 3 Cl, CaWO 4 , CaWO 4 Pb 2+ , CaWO 4 : W, Ca 3 WO 6 : U, CaYAIO 4 : Eu 3+ , CaYBO 4 : Bi 3+ , CaYBO 4 : Eu 3+ , CaYB 0 . 8 O 3 .
- CdS ln, CdSMn, CdS: In, Te, CdSTe, CdWO 4 , CsF, CsI, CsLNa + , CsITI, (ErCl 3 ) o . 2 5 (BaCl 2 ) o.75, GaN: Zn, Gd 3 Ga 5 O 12 Or 3+ , Gd 3 Ga 5 O 12 : Cr, Ce,
- GdNbO 4 Bi 3+ , Gd 2 O 2 S: Eu 3+ , Gd 2 O 2 Pr 3+ , Gd 2 O 2 SPr 1 Ce 1 F, Gd 2 O 2 STb 3+ , Gd 2 SiO 5 : Ce 3 + , KAl 11 O 17 TI + , KGa 11 O 17 Mn 2+ , K 2 La 2 Ti 3 O 10 : Eu, KMgF 3 : Eu 2+ , KMgF 3 : Mn 2+ , K 2 SiF 6 : Mn 4+ , LaAl 3 B 4 Oi 2 : Eu 3+ , LaAIB 2 O 6 : Eu 3+ , LaAIO 3 : Eu 3+ ,
- LaAIO 3 Sm 3+ , LaAsO 4 : Eu 3+ , LaBr 3 : Ce 3+ , LaBO 3 : Eu 3+ ,
- (La, Ce, Tb) PO 4 Ce: Tb, LaCl 3 : Ce 3+ , La 2 O 3 : Bi 3+ , LaOBrTb 3+ , LaOBrTm 3+ , LaOCl: Bi 3+ , LaOChEu 3+ , LaOF: Eu 3+ , La 2 O 3 : Eu 3+ , La 2 O 3 Pr 3+ , La 2 O 2 STb 3+ , LaPO 4 : Ce 3+ , LaPO 4 : Eu 3+ , LaSiO 3 ChCe 3+ , LaSiO 3 ChCe 3+ Tb 3+ , LaVO 4 : Eu 3+ , La 2 W 3 O 12 : Eu 3+ , LiAIF 4 : Mn 2+ , LiAl 5 O 8 Pe 3+ , LiAIO 2 Pe 3+ , LiAIO 2 : Mn 2+ ,
- LiAl 5 O 8 Mn 2+ , Li 2 CaP 2 O 7 : Ce 3+ , Mn 2+ , LiCeBa 4 Si 4 O 14 : Mn 2+ ,
- LiCeSrBa 3 Si 4 O 14 Mn 2+ , LilnO 2 : Eu 3+ , LilnO 2 : Sm 3+ , LiLaO 2 : Eu 3+ ,
- LuAIO 3 Ce 3+
- (Lu, Gd) 2 Si0 5 Ce 3+
- Lu 2 SiO 5 Ce 3+
- Lu 2 Si 2 0 7 Ce 3+
- LuTaO 4 Nb 5+ , Lu 1-x Y x AIO 3 : Ce 3+ , MgAl 2 O 4 : Mn 2+ , MgSrAl 10 O 17 : Ce,
- MgB 2 O 4 Mn 2+
- MgBa 2 (PO 4 ) 2 Sn 2+
- MgBa 2 (PO 4 ) 2 U
- MgBaP 2 O 7 Pu 2+
- MgBaP 2 O 7 Eu 2+ , Mn 2+ , MgBa 3 Si 2 O 8 Pu 2+ , MgBa (SO 4 ) 2 : Eu 2+ ,
- Mg 2 Ca (SO 4 ) 3 Eu 2+ , Mn 2 , MgCeAl n O 19 Tb 3+ , Mg 4 (F) GeO 6 : Mn 2+ ,
- Mg 4 (F) (Ge, Sn) O 6 Mn 2+ , MgF 2 : Mn 2+ , MgGa 2 O 4 : Mn 2+ , Mg 8 Ge 2 O 11 F 2 Mn 4+ , MgS: Eu 2+ , MgSiO 3 : Mn 2+ , Mg 2 SiO 4 : Mn 2+ , Mg 3 SiO 3 F 4 Ti 4+ , MgSO 4 Pu 2+ ,
- SrB 4 O 7 Eu 2+ (F, CI, Br), SrB 4 O 7 Pb 2+ , SrB 4 O 7 Pb 2+ , Mn 2+ , SrB 8 Oi 3 : Sm 2+ , Sr x Ba y Cl z Al 2 O 4-zy2 : Mn 2+ , Ce 3+ , SrBaSiO 4 : Eu 2+ , Sr (Cl, Br, I) 2 : Eu 2+ in SiO 2 , SrCl 2 : Eu 2+ in SiO 2 , Sr 5 Cl (PO 4 ) 3 : Eu, Sr w F x B 4 O 6 5 : Eu 2+ , Sr w F x B y O z : Eu 2+ , Sm 2+ , SrF 2 : Eu 2+ , SrGai 2 O 19 : Mn 2+ , SrGa 2 S 4 Oe 3+ , SrGa 2 S 4 : Eu
- Sr 5 (PO 4 ) 3 F Sb 3+ , Sr 5 (PO 4 ) 3 F: Sb 3+ , Mn 2+ , Sr 5 (PO 4 ) 3 F: Sn 2+ , Sr 2 P 2 O 7 ) Sn 2+ , ⁇ -Sr 3 (PO 4 ) 2 : Sn 2+ , ⁇ -Sr 3 (PO 4 ) 2 : Sn 2+ , Mn 2+ (Al), SrS) Ce 3+ , SrS) Eu 2+ , SrS) Mn 2+ , SrS: Cu ⁇ Na, SrSO 4 ) Bi, SrSO 4 ) Ce 3+ , SrSO 4 ) Eu 2+ , SrSO 4 : Eu 2+ , Mn 2+ ,
- ZnS P 3 , Cr, ZnS) Pb 2+ , ZnS: Pb 2+ , Cr, ZnS) Pb 1 Cu 1 Zn 3 (PO 4 ) 2 : Mn 2+ , Zn 2 SiO 4 ) Mn 2+ , Zn 2 SiO 4 : Mn 2+ , As 5+ , Zn 2 SiO 4 IMn 1 Sb 2 O 2 , Zn 2 SiO 4 : Mn 2+ , P, Zn 2 SiO 4 Ti 4 + , ZnS: Sn 2+ , ZnS: Sn, Ag, ZnS: Sn 2+ , Li + , ZnSTe 1 Mn, ZnS-ZnTe: Mn 2+ , ZnSe: Cu + , Cl, ZnWO 4
- Example 2 Preparation of 5 g Sr5.9 4 Euo, o6 Si3 ⁇ 5l 88N 4 Fo, 24 6.6736 g SrC 2 O 4 (Alfa Aesar, 95%), 0.0689 g Eu 2 O 3 (Treibacher, 99.99%), 0.0984 g SrF 2 (Aldrich, 99.998%) and 0.9159 g Ci-Si 3 N 4 (UBE, 99 %) are mixed thoroughly in an agate mortar with a dry N 2 glove box. The resulting mixture of raw materials is transferred into a Mo foil-lined Al 2 O 3 boat. The mixture is heated at 1200 - 1600 0 C for 8 hours under N 2 / H 2 / NH 3 atmosphere.
- Raw material mixture is transferred to a Mo foil-lined Al 2 O 3 boat.
- the mixture is heated at 1200 - 1600 0 C for 8 hours under N 2 / H 2 / NH 3 atmosphere.
- Example 5 Preparation of 5 g Sr 5182 Os 01O eEu 01O eSi 3 O 6 N 4 6.6658 g of SrC 2 O 4 (Alfa Aesar, 95%), 0.0688 g of Eu 2 O 3 (Treibacher, 99.99%), 0.0869 g of OsO 2 (Alfa Aesar, Os 83% min) and 0.9148 g of Q-Si 3 N 4 ( UBE, 99%) are placed in a glove box filled with dry N 2 in one
- Raw material mixture is transferred to a Mo foil-lined Al 2 O 3 boat.
- the mixture is heated at 1200 - 1600 0 C for 8 hours under N 2 / H 2 / NH 3 atmosphere.
- Raw material mixture is transferred to a Mo foil-lined Al 2 O 3 boat.
- the mixture is heated at 1200 - 1600 0 C for 8 hours under N 2 / H 2 / NH 3 atmosphere.
- Example 7 High pressure sintering of the phosphors of Examples 1-6
- Example 8 Hot isostatic pressing of the phosphors from the
- Examples 1-6 In each case 5 g of the compounds from Examples 1-6 are transferred to an isostatic hot press. The hot press is placed under vacuum and the temperature is raised to 200 ° C. Subsequently, the temperature is increased at 5-10 K / min to 1400-1600 0 C, at the same time, the pressure is readjusted to values between 50 and 200 MPa, the holding time is 6-10 hours.
- Example 9 Washing the phosphors of Examples 1-8
- Tab. 1 Optical properties of Sr 5 94 Eu 0 O eSi S OeN 4 IEu (as a reference) and co-doped phosphors according to the invention
- COB chip on board package of the type InGaN, which serves as light source (LED) for white light
- LED light source
- 1 semiconductor chip
- 2.3 electrical connections
- 4 conversion luminescent material
- 7 board (board) .
- Phosphor is dispersed in a binder lens, which simultaneously constitutes a secondary optical element and influences the light emission characteristic as a lens.
- COB chip on board package of the type InGaN, which serves as a light source (LED) for white light
- LED light source
- Phosphor is distributed in a thin binder layer directly on the LED chip.
- a secondary optical element consisting of a transparent material can be placed thereon.
- Conversion luminescent material in cavity with reflector Conversion luminescent material in cavity with reflector.
- the conversion phosphor is dispersed in a binder, the mixture filling the cavity.
- the semiconductor chip is completely covered with the phosphor according to the invention.
- the SMD design has the advantage that it has a small design and thus fits into conventional luminaires.
- Bonding wire wherein the phosphor is applied as a thin layer dispersed in a binder.
- a further component acting as a secondary optical element, such as a lens, can easily be applied to this layer.
- Fig. 7 shows an example of a further application, as already known in principle from US Pat. No. 6,700,322.
- the phosphor according to the invention is used together with an OLED.
- the light source is an organic light-emitting diode 31, consisting of the actual organic film 30 and a transparent substrate 32.
- the film 30 emits in particular blue primary light, produced for example by means of PVK: PBD: coumarin (PVK, abbreviation for poly (n-vinylcarbazole) PBD, abbreviation for 2- (4-biphenyl) -5- (4-tert-butylphenyl) -1, 3,4-oxadiazole)).
- the emission is partially converted into a yellow, secondarily emitted light by a cover layer, formed from a layer 33 of the phosphor according to the invention, so that a white emission is achieved overall by color mixing of the primary and secondary emitted light.
- the OLED consists essentially of at least one layer of a light-emitting
- Indium tin oxide as an anode and a highly reactive metal, such as Ba or Ca, as a cathode.
- a highly reactive metal such as Ba or Ca
- several layers are used between the electrodes, which either serve as a hole transport layer or serve as electron transport layers in the area of the "small molecules.”
- Polyfluorene or polyspiro materials, for example, are used as emitting polymers.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Structural Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Luminescent Compositions (AREA)
- Led Device Packages (AREA)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102009032711A DE102009032711A1 (de) | 2009-07-11 | 2009-07-11 | Co-dotierte Silicooxynitride |
| PCT/EP2010/003656 WO2011006565A1 (de) | 2009-07-11 | 2010-06-17 | Co-dotierte silicooxynitride |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP2454340A1 true EP2454340A1 (de) | 2012-05-23 |
Family
ID=43033074
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP10725994A Withdrawn EP2454340A1 (de) | 2009-07-11 | 2010-06-17 | Co-dotierte silicooxynitride |
Country Status (9)
| Country | Link |
|---|---|
| US (1) | US8721925B2 (enExample) |
| EP (1) | EP2454340A1 (enExample) |
| JP (1) | JP2012532819A (enExample) |
| KR (1) | KR20120052974A (enExample) |
| CN (1) | CN102471681B (enExample) |
| DE (1) | DE102009032711A1 (enExample) |
| SG (1) | SG177475A1 (enExample) |
| TW (1) | TW201127938A (enExample) |
| WO (1) | WO2011006565A1 (enExample) |
Families Citing this family (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102230225A (zh) * | 2011-06-27 | 2011-11-02 | 中国科学院福建物质结构研究所 | 非线性光学晶体硒化镓锗钡及其生长方法与用途 |
| TWI474967B (zh) * | 2011-07-14 | 2015-03-01 | Getters Spa | 有關磷光體之改良 |
| TWI448538B (zh) | 2012-10-23 | 2014-08-11 | Ind Tech Res Inst | 螢光材料與紫外光發光裝置 |
| DE102013105056A1 (de) * | 2013-05-16 | 2014-11-20 | Osram Opto Semiconductors Gmbh | Verfahren zur Herstellung eines Leuchtstoffs, Leuchtstoff und optoelektronisches Bauelement |
| DE102013113382A1 (de) | 2013-12-03 | 2015-06-03 | Osram Gmbh | Leuchtstoffmischung, Licht emittierendes Halbleiterbauelement mit einer Leuchtstoffmischung und Straßenlaterne mit einer Leuchtstoffmischung |
| CN104371712A (zh) * | 2014-11-03 | 2015-02-25 | 天津理工大学 | 一种钙基氮化物红色荧光粉的常压制备方法 |
| JP6164258B2 (ja) * | 2015-07-13 | 2017-07-19 | 日立化成株式会社 | 太陽電池モジュール |
| US10720554B2 (en) * | 2017-09-20 | 2020-07-21 | General Electric Company | Green-emitting phosphors and devices thereof |
| WO2021211600A1 (en) | 2020-04-14 | 2021-10-21 | General Electric Company | Green-emitting phosphors and devices thereof |
| KR20220165280A (ko) | 2020-04-14 | 2022-12-14 | 제네럴 일렉트릭 컴퍼니 | 협대역 발광 형광체 물질을 함유하는 잉크 조성물 및 필름 |
| KR20230059803A (ko) | 2020-09-01 | 2023-05-03 | 제네럴 일렉트릭 컴퍼니 | 야간 투시 장비와 호환성인 소자 |
| WO2022221385A1 (en) | 2021-04-13 | 2022-10-20 | General Electric Company | Uranium-based phosphors and compositions for displays and lighting applications |
| KR102684145B1 (ko) * | 2021-12-30 | 2024-07-11 | 주식회사 원익큐엔씨 | 오염입자 발생 저감을 극대화 하는 반도체 장비 불화대상물의 불화 가공 방법 및 이에 의해 불화 가공된 부품 |
| CN117401982B (zh) * | 2023-10-26 | 2025-11-11 | 浙江上硅聚力特材科技有限公司 | 一种氮氧化硅陶瓷升液管制备方法 |
Family Cites Families (23)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4019884A (en) | 1976-01-22 | 1977-04-26 | Corning Glass Works | Method for providing porous broad-band antireflective surface layers on chemically-durable borosilicate glasses |
| JP3242561B2 (ja) | 1995-09-14 | 2001-12-25 | メルク・ジヤパン株式会社 | 薄片状酸化アルミニウム、真珠光沢顔料及びその製造方法 |
| US6700322B1 (en) | 2000-01-27 | 2004-03-02 | General Electric Company | Light source with organic layer and photoluminescent layer |
| DE50210518D1 (de) | 2001-09-21 | 2007-08-30 | Merck Patent Gmbh | Neuartiges hybrid-sol zur herstellung abriebfester sio 2 antireflexschichten |
| JP2005105244A (ja) * | 2003-01-24 | 2005-04-21 | National Institute Of Advanced Industrial & Technology | 半導体超微粒子及び蛍光体 |
| JP2007513469A (ja) * | 2003-11-11 | 2007-05-24 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 水銀を含まないガスが充填された低圧蒸気放電ランプ |
| JP2005298721A (ja) * | 2004-04-14 | 2005-10-27 | Nichia Chem Ind Ltd | 酸窒化物蛍光体及びそれを用いた発光装置 |
| US7575697B2 (en) * | 2004-08-04 | 2009-08-18 | Intematix Corporation | Silicate-based green phosphors |
| US8017035B2 (en) * | 2004-08-04 | 2011-09-13 | Intematix Corporation | Silicate-based yellow-green phosphors |
| JP4760082B2 (ja) * | 2005-03-25 | 2011-08-31 | 日亜化学工業株式会社 | 発光装置、発光素子用蛍光体及びその製造方法 |
| ATE486917T1 (de) | 2005-05-30 | 2010-11-15 | Nemoto Tokushu Kagaku Kk | Grünes licht emittierender leuchtstoff |
| US8062549B2 (en) * | 2005-09-27 | 2011-11-22 | Mitsubishi Chemical Corporation | Phosphor and manufacturing method therefore, and light emission device using the phosphor |
| US20070075629A1 (en) * | 2005-09-30 | 2007-04-05 | The Regents Of The University Of California | Nitride and oxy-nitride cerium based phosphor materials for solid-state lighting applications |
| JP4733535B2 (ja) * | 2006-02-24 | 2011-07-27 | パナソニック株式会社 | 酸窒化物蛍光体、酸窒化物蛍光体の製造方法、半導体発光装置、発光装置、光源、照明装置、及び画像表示装置 |
| JP5292723B2 (ja) * | 2006-06-01 | 2013-09-18 | 三菱化学株式会社 | 蛍光体の製造方法 |
| DE102006037730A1 (de) | 2006-08-11 | 2008-02-14 | Merck Patent Gmbh | LED-Konversionsleuchtstoffe in Form von keramischen Körpern |
| US20080054793A1 (en) * | 2006-08-30 | 2008-03-06 | Everlight Electronics Co., Ltd. | White light-emitting apparatus |
| DE102006054330A1 (de) | 2006-11-17 | 2008-05-21 | Merck Patent Gmbh | Leuchtstoffplättchen für LEDs aus strukturierten Folien |
| DE102006054331A1 (de) | 2006-11-17 | 2008-05-21 | Merck Patent Gmbh | Leuchtstoffkörper basierend auf plättchenförmigen Substraten |
| CN100415849C (zh) * | 2007-02-06 | 2008-09-03 | 江苏苏博特新材料股份有限公司 | 稀土红色荧光粉及其制造方法 |
| TW200925250A (en) * | 2007-12-12 | 2009-06-16 | wei-hong Luo | Warm white light emitting semiconductor and yellow-orange silicate phosphor powder thereof |
| KR100902415B1 (ko) * | 2007-12-17 | 2009-06-11 | 한국화학연구원 | 할로실리케이트계 형광체 및 이의 제조방법 |
| KR101565988B1 (ko) * | 2009-10-23 | 2015-11-05 | 삼성전자주식회사 | 적색형광체, 그 제조방법, 이를 이용한 발광소자 패키지, 조명장치 |
-
2009
- 2009-07-11 DE DE102009032711A patent/DE102009032711A1/de not_active Ceased
-
2010
- 2010-06-17 US US13/383,236 patent/US8721925B2/en not_active Expired - Fee Related
- 2010-06-17 EP EP10725994A patent/EP2454340A1/de not_active Withdrawn
- 2010-06-17 SG SG2012000089A patent/SG177475A1/en unknown
- 2010-06-17 KR KR1020127003519A patent/KR20120052974A/ko not_active Withdrawn
- 2010-06-17 CN CN201080031262.4A patent/CN102471681B/zh not_active Expired - Fee Related
- 2010-06-17 WO PCT/EP2010/003656 patent/WO2011006565A1/de not_active Ceased
- 2010-06-17 JP JP2012518776A patent/JP2012532819A/ja not_active Ceased
- 2010-07-09 TW TW099122715A patent/TW201127938A/zh unknown
Non-Patent Citations (1)
| Title |
|---|
| See references of WO2011006565A1 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN102471681A (zh) | 2012-05-23 |
| US8721925B2 (en) | 2014-05-13 |
| DE102009032711A1 (de) | 2011-01-20 |
| SG177475A1 (en) | 2012-02-28 |
| WO2011006565A1 (de) | 2011-01-20 |
| KR20120052974A (ko) | 2012-05-24 |
| JP2012532819A (ja) | 2012-12-20 |
| CN102471681B (zh) | 2014-11-05 |
| US20120140438A1 (en) | 2012-06-07 |
| TW201127938A (en) | 2011-08-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2401342B1 (de) | Mit zirkonium und hafnium co-dotierte nitridosilikate | |
| EP2454340A1 (de) | Co-dotierte silicooxynitride | |
| EP2616523B1 (de) | Silicophosphat-leuchtstoffe | |
| EP2129740B1 (de) | Verfahren zur herstellung von leuchtstoffen basierend auf orthosilikaten für pcleds | |
| EP2324096B1 (de) | Co-dotierte 1-1-2 nitride | |
| EP2576725B1 (de) | Leuchtstoffe | |
| EP2596078B1 (de) | Aluminat-leuchtstoffe | |
| WO2008058620A1 (de) | Leuchtstoffkörper basierend auf plättchenförmigen substraten | |
| EP2115092A1 (de) | Leuchtstoffe bestehend aus dotierten granaten für pcleds | |
| EP2350231A1 (de) | Dotierte granat-leuchtstoffe mit rotverschiebung für pcleds | |
| DE102006054330A1 (de) | Leuchtstoffplättchen für LEDs aus strukturierten Folien | |
| WO2014067609A1 (de) | Eu-aktivierte leuchtstoffe | |
| WO2012045393A1 (de) | Mn-aktivierte leuchtstoffe | |
| DE102009050542A1 (de) | Sm-aktivierte Aluminat- und Borat-Leuchtstoffe | |
| EP2683790A1 (de) | Carbodiimid-leuchtstoffe |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20111115 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
| RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: UHLICH, DOMINIK Inventor name: JUESTEL, THOMAS Inventor name: KATELNIKOVAS, ARTURAS Inventor name: PETRY, RALF Inventor name: WINKLER, HOLGER Inventor name: VOSGROENE, TIM |
|
| DAX | Request for extension of the european patent (deleted) | ||
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 20160105 |