EP2438767B1 - Bauelement mit einer mikromechanischen mikrofonstruktur und verfahren zu dessen herstellung - Google Patents

Bauelement mit einer mikromechanischen mikrofonstruktur und verfahren zu dessen herstellung Download PDF

Info

Publication number
EP2438767B1
EP2438767B1 EP20100715187 EP10715187A EP2438767B1 EP 2438767 B1 EP2438767 B1 EP 2438767B1 EP 20100715187 EP20100715187 EP 20100715187 EP 10715187 A EP10715187 A EP 10715187A EP 2438767 B1 EP2438767 B1 EP 2438767B1
Authority
EP
European Patent Office
Prior art keywords
layer
membrane
component
microphone
sacrificial layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP20100715187
Other languages
English (en)
French (fr)
Other versions
EP2438767A1 (de
Inventor
Frank Reichenbach
Thomas Buck
Jochen Zoellin
Franz Laermer
Ulrike Scholz
Kathrin Teeffelen
Christina Leinenbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2438767A1 publication Critical patent/EP2438767A1/de
Application granted granted Critical
Publication of EP2438767B1 publication Critical patent/EP2438767B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/005Electrostatic transducers using semiconductor materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane

Definitions

  • the invention relates to a component with a micromechanical microphone structure.
  • the microphone structure includes an acoustically active diaphragm that acts as a deflectable electrode of a microphone capacitor, a fixed acoustically transmissive mating element that acts as a counter electrode of the microphone capacitor, and means for detecting and evaluating the capacitance changes of the microphone capacitor.
  • the membrane is realized in a membrane layer over the semiconductor substrate of the device and spans a sound opening in the back of the substrate.
  • the counter element is formed in a further layer over the membrane.
  • the invention relates to a method for producing such components in the wafer composite and subsequent separation.
  • the micromechanical microphone structure is realized in a layer structure over a semiconductor substrate.
  • the perforated counter element here forms a base-like elevation in the device surface and is adapted to the size of the underlying membrane. This spans a sound opening in the back of the substrate. Between the counter element and the membrane there is an air gap, which was produced by sacrificial layer etching.
  • the rigidity of the counter element depends substantially on its peripheral shape, ie on the shape of the base edge region, by which the counter element is kept at a distance from the diaphragm.
  • the separation of micromechanical microphone components of the type mentioned above is done so far with the help of special processes.
  • Particularly often the so-called stealth dicing is used are generated in the predetermined breaking points in the wafer material.
  • the wafer is broken into individual chips along these predetermined breaking points, partly with the aid of a doctor blade.
  • additional investment costs are required.
  • the process times of the typically used 400 .mu.m to 800 .mu.m thick wafers are relatively long, not least because of the high number of required "laser cuts".
  • the counter element is integrated with equal rigidity on all sides, the strength essentially depending only on the layer thickness. The thicker the layer, the stiffer the counter element, the stronger the counter element is integrated in the layer structure of the component and the better the leveling effect, especially in the edge region of the counter element.
  • the thus modified microphone structure of the known component can be easily produced in a sequence of processes of bulk and surface micromechanics, as already used in the production of inertial sensors.
  • the largely flat component surface simplifies in particular the separation of the microphone components according to the invention, which will be explained in more detail in connection with the production method according to the invention.
  • the membrane layer of the microphone device according to the invention is realized in the form of a thin polysilicon layer which is electrically insulated from the semiconductor substrate by a first insulating layer, and if the counter element in a thick epi-polysilicon layer is formed, which is electrically insulated from the membrane layer by a second insulating layer.
  • the layer thickness of this second insulation layer determines the distance between the membrane and the counter element.
  • the acoustic properties of the microphone component in question here are determined not only by the distance between the membrane and the counter element, but also by the intrinsic stresses in the layer structure and in particular in the membrane. Uncontrolled voltages within the membrane can lead to undesired deflection of the membrane and thus alter the sensitivity-determining properties of the microphone capacitor. Therefore, a stress-relaxing spring suspension for the membrane is formed in the membrane layer of an advantageous development of the microphone component according to the invention.
  • the spring elements thus consist here of the same material as the membrane and are as far as possible designed to compensate for the layer stresses which occur during the production of the thin polysilicon layer and which are difficult to control. Due to this layer stress compensation, the sound pressure sensitivity of the membrane is essentially determined only by its bending stiffness.
  • the spring suspension of the membrane also contributes to the maximization of the microphone use signal, since a sound pressure-induced deformation preferably occurs in the region of the spring elements, while the contributing to the measuring capacity membrane is deflected almost plane-parallel to the counter electrode.
  • the influence of occurring in the connection region of the membrane parasitic capacitances is comparatively low due to the recesses between the spring elements. Therefore, the resonance frequency of the membrane and thus the acoustic working range of the microphone component according to the invention on the design of the spring suspension in conjunction with a defined predeterminable layer thickness of the membrane can be adjusted very easily controlled.
  • the spring suspension advantageously comprises at least three spring elements.
  • the fixed points of these spring elements can be embedded between the first and the second insulating layer and thus connected to the semiconductor substrate and the counter element.
  • the spring elements can also be connected via one of the two insulation layers either to the semiconductor substrate or to the counterelement.
  • a particularly advantageous method for producing such components is also proposed. Accordingly, first a first electrically insulating Sacrificial layer applied to a semiconductor substrate. A membrane layer is then applied to this first sacrificial layer and patterned in order to produce for each component at least one membrane with a spring suspension. Thereafter, a second electrically insulating sacrificial layer is applied to the structured membrane layer, to which then at least one further layer is applied and patterned in order to produce an acoustically permeable counter element for each membrane. In addition, at least one sound opening is produced under each membrane in the rear side of the semiconductor substrate. The first sacrificial layer and the second sacrificial layer are now removed at least in the area below and above each membrane and its spring suspension. Only after the exposure of the microphone structures, the components are finally isolated.
  • a thin polysilicon layer is advantageously deposited on the first sacrificial layer.
  • the process sequence of this method variant for producing a microphone component is based on a proven and easily controllable method for the production of inertial sensors.
  • the polysilicon layer used according to the invention as a membrane layer is used in the case of the production of inertial sensors for the realization of buried interconnects.
  • the thick epi-polysilicon layer in which the counterelements are realized according to the invention serves as a functional layer.
  • the first and the second electrically insulating sacrificial layer have the function of an electrical insulation between the two electrodes of the microphone capacitor and with respect to the semiconductor substrate.
  • the membranes are exposed using the sacrificial layers.
  • these sacrificial layers may additionally each have the function of an etch stop boundary.
  • the second sacrificial layer advantageously acts as an etch stop in the structuring of the counterelements or the thick epi-polysilicon layer, if this takes place in an anisotropic etching process, in particular in a trench process or in a DRIE process.
  • the first sacrificial layer advantageously acts as an etch stop in the generation of the Sound openings in an anisotropic etching process, especially in a DRIE process.
  • the first sacrificial layer and the second sacrificial layer are advantageously removed in an isotropic etching process, wherein the etching attack takes place via the sound openings and through passage openings in the counterelements.
  • SiO 2 or SiGe are particularly suitable as sacrificial layer materials.
  • a sacrificial SiGe layer with ClF3 as etching gas is particularly advantageous because of the high selectivity of the etching process compared to numerous materials used in microsystems technology, and in particular to silicon.
  • This etching process is characterized by its high etching speed and the large undercuts that can be achieved with it.
  • SiGe sacrificial layers are particularly stress-free, so that relatively thick sacrificial layers and thus large electrode spacings can be realized with this material without additional voltages being introduced into the component structure. This increases the freedom of design in the design of the microphone component.
  • the microphone structures according to the invention are exposed in the wafer composite and only then separated.
  • a particularly advantageous variant of the method according to the invention makes use of the structure of the microphone component according to the invention, namely that the layer in which the counter-elements are realized, located at the top of the layer structure and that this layer is relatively thick and stable and according to the invention largely flat ,
  • These layer properties enable the application of a protective film, which reliably prevents the penetration of particles and liquid into the microphone structures.
  • the microphone components can be singulated in a sawing process standardized in micromechanics, which has enormous cost advantages compared with the methods currently used for singulating microphone components.
  • the protective film is removed as far as possible without residue.
  • a protective film which loses its adhesive power by UV irradiation or by a heat treatment or by UV irradiation in combination with a heat treatment.
  • a protective film can easily under vacuum the largely flat surface of the layer structure are laminated and after the separation process by a UV irradiation in combination with a heat treatment without residue and without damaging the microphone structures are again detached from the component surfaces.
  • FIG. 1 illustrated component 10 comprises a micromechanical microphone structure with a deflectable acoustically active membrane 11 and a fixed acoustically permeable counter-element 12, which is also referred to as backplate.
  • the membrane 11 and the counter element 12 are realized here in a layer structure on a semiconductor substrate 1.
  • a sound opening 13 is formed, which extends over the entire thickness of the semiconductor substrate 1 and is spanned by the arranged on top of the semiconductor substrate 1 membrane 11.
  • the membrane 11 is realized in a thin polysilicon layer 3 and electrically insulated by a first insulating layer 2 against the semiconductor substrate 1.
  • the deflectability of the thin membrane 11 is favored by its formed in the polysilicon layer 3 spring suspension 14.
  • the counter element 12 is formed in a relatively thick epi-polysilicon layer 5 over the membrane 11 and fixedly connected to the layer structure.
  • the counter-element 12 is electrically insulated via a second insulation layer 4 both against the membrane 11 and against the semiconductor substrate 1.
  • the thickness of this second insulating layer 4 also determines the distance between the diaphragm 11 and counter element 12 in the idle state.
  • passage openings 15 are formed, so that the counter element 12 is acoustically permeable and does not impair the sound-induced deflections of the diaphragm 11.
  • the membrane 11 and the counter-element 12 form the electrodes of a microphone capacitor whose capacitance changes with the distance between the diaphragm 11 and the counter-element 12.
  • a charging voltage is applied between the diaphragm 11 and the counter electrode 12, which is also referred to as a bias voltage.
  • the means for detecting and evaluating the capacitance changes of the microphone capacitor are not shown here in detail.
  • the epi-polysilicon layer 5, in which the counter-element 12 is formed extends over the entire device surface and compensates for differences in level, so that the entire device surface corresponding to this epi-polysilicon layer 5 is substantially planar. This proves to be particularly advantageous in connection with the separation of these components, which will be described below in connection with FIGS FIGS. 4a to 4f will be explained in more detail.
  • a first electrically insulating sacrificial layer 2 was applied to the wafer front side. This may be an SiO 2 layer or even a SiGe layer.
  • a membrane layer 3 was then deposited and patterned to produce at least one membrane with a spring suspension for each component.
  • the membrane layer 3 is a polysilicon layer whose layer thickness is between 0.1 ⁇ m and 3 ⁇ m, depending on the requirements of the microphone component.
  • Fig. 2b shows the layer structure after a second electrically insulating sacrificial layer 4 has been applied to the structured membrane layer 3 and patterned.
  • the electrical contacting of the microphone structure was prepared here.
  • the same material is selected for the two sacrificial layers 2 and 4, which can then be removed in a subsequent process stage in a common etching process from the front and from the back of the membranes.
  • a thick epi-polysilicon layer 5 was then produced, which is shown in FIG Fig. 2c is shown.
  • the layer material is advantageously grown epitaxially from the gas phase starting from a starting layer of thin LPCVD polysilicon.
  • the thickness of an epi-polysilicon layer 5 thus produced may be of the order of magnitude of 3 ⁇ m to 20 ⁇ m, depending on the requirements of the microphone component.
  • Fig. 2c illustrates that the layer structure was leveled by means of the epi-polysilicon layer 5, which is favored by the deposition process in conjunction with the relatively large layer thickness.
  • planar surface of the epi-polysilicon layer 5 has now been provided with a structured metallization 6, which likewise serves for contacting the individual components of the microphone structures.
  • a structured metallization 6 can also be applied to the layer structure at a later time in the production process.
  • Fig. 2d shows the layer structure after the structuring of the epi-polysilicon layer 5 in an anisotropic trench process or in a DRIE process.
  • the second sacrificial layer 4 was used as the etch stop limit.
  • the counter-elements 12 of the microphone structures within the epi-polysilicon layer 5 were exposed and provided with passage openings 15.
  • the trench trenches 7 serve not only to define but also to electrically decouple individual regions of the epi-polysilicon layer 5.
  • the contact regions 16 and 17 for the substrate 1 and the membranes have also been defined.
  • the sound openings 13 were produced in an anisotropic DRIE process emanating from the substrate rear side, which is shown in FIG Fig. 2e is shown.
  • the sacrificial layer 2 formed the etch stop boundary for this backside etching process, which can just as well be performed before the structuring of the epi-polysilicon layer 5.
  • the diaphragms 11 of the microphone structures and the associated spring suspensions 14 were exposed by means of isotropic sacrificial layer etching.
  • the required etching attack took place simultaneously from both sides of the layer structure.
  • the etching gas reached the sacrificial layer 4 from the front side via the trenches 7 and the through openings 15 and from the back via the sound openings 13 to the sacrificial layer 2.
  • the sacrificial layer material is preferably dissolved out with HF vapor.
  • ClF3 is used as the etching gas.
  • Fig. 2f shows the in Fig. 1 illustrated microphone structure as a result of this etching process and illustrates that the distance between the diaphragm 11 and counter element 12 by the layer thickness of the sacrificial layer 4 is determined.
  • the membranes of the microphone components according to the invention are realized together with their spring suspensions in a thin polysilicon layer.
  • the spring elements of the individual membranes are designed as much as possible so that the membranes are largely independent of the layer tension of the membrane material suspended.
  • Fig. 3 shows an advantageous layout for the spring suspension of a circular membrane 30.
  • the membrane 30 is suspended here on a total of six spring elements 31.
  • the spring elements 31 are realized in the form of curved webs which are arranged along the circumference of the membrane and each extend over one sixth of the circumference of the membrane. An end to everyone Spring element 31 is connected to the membrane 30, while the other end is integrated into the surrounding edge region of the layer structure.
  • these ends of the spring elements 31 may, for example, be embedded between the two sacrificial layers such that they are connected both to the counter element and to the substrate. Alternatively, however, these spring ends can also be connected on one side only to either the counter element or the substrate.
  • the spring suspension shown here is designed so that it can compensate for the occurring during the production of the polysilicon membrane layer and difficult to control layer voltages, at least within certain limits, when the polysilicon was deposited Tensile, as well as when it was deposited compressively.
  • the membrane 30 shown here is stably suspended via the spring elements 31.
  • the deformation during pressurization takes place mainly in the region of the spring elements 31.
  • the membrane surface acting as the movable electrode which is decisive for the microphone function, is deflected approximately plane-parallel to the counter element, which has a favorable effect on the microphone user signal.
  • a simple electronic function is provided as overload protection for the microphone structure.
  • the transmitter automatically detects a striking of the membrane on the counter element, which in case of overload, e.g. at very high sound pressure or shock.
  • the bias voltage is temporarily interrupted. In the tension-free state, the membrane can then automatically detach again from the counter element.
  • This concept is particularly suitable for bias voltages of less than 5 V, since at these low bias voltages still no electrical welding can take place between membrane and counter element.
  • the production of the microphone structures according to the invention including the exposure of the membranes in the wafer composite takes place.
  • the following is in conjunction with the FIGS. 4a to 4f a particularly advantageous method for separating these microphone structures described.
  • a protective film 41 with special adhesion properties is applied to the largely planar upper side of the layer structure 40 which is according to the invention Fig. 4a is shown.
  • This protective film 41 loses its adhesive force when exposed to UV light in combination with heat, which allows a simple, residue-free detachment of the protective film 41 after the singulation process.
  • Fig. 4b shows the layer structure 40 with the protective film 41 after it has been glued onto a saw frame covered with a sawing foil 42.
  • the sawing foil 42 must be heat-resistant at least to the extent that it is insensitive to temperatures at which the protective foil 41 loses its adhesive force.
  • the adhesive force of the protective film 41 and the adhesive force of the sawing foil 42 must each be so large that chips with a chip size of, for example, 1x1 mm 2 remain stuck during a sawing process.
  • the layer structure 40 and in particular the microphone structures exposed in the layer structure 40 are protected by the protective film 41, the layer structure 40 can now be sawn with the aid of a water-cooled circular saw.
  • the protective film 41 effectively prevents the penetration of water or sawing particles into the microphone structures.
  • the layer structure 40 with the protective film 41 is already sawn. However, the individual components 50 still adhere to the continuous sawing foil 42.
  • the protective film 41 can be removed from the top of the individual components 50. For this, it is first exposed to UV radiation. This is followed by a temperature treatment, during which the laminated protective film 41 completely dissolves from the top of the component. Accordingly, after the temperature treatment on each component 50 pieces of film that can be sucked off or blown off. In the embodiment described here, the film pieces are recorded with a stamping process, which in the Fig. 4d and 4e is shown. For this purpose, a second wafer 43 is used, on the stamp surface of which a two-sided adhesive film 44, a soft polymer layer or a soft lacquer layer has been applied.
  • the sawing foil 42 can be expanded and the individual components 50 can be picked and packed with pick-and-place tools of the sawing foil 42, which by Fig. 4f is illustrated.
  • the microphone structure according to the invention with a largely planar component surface makes it possible to apply a protective film to the top side of the wafer layer structure.
  • the microphone components according to the invention can be singulated in a standard sawing process, wherein the additional process complexity caused by the application and removal of a second film is negligible.
  • the protective film 41 itself is also relatively inexpensive, its use within the scope of the singulation method contributes only insignificantly to the overall costs of a single component.

Description

    Stand der Technik
  • Die Erfindung betrifft ein Bauelement mit einer mikromechanischen Mikrofonstruktur. Die Mikrofonstruktur umfasst eine akustisch aktive Membran, die als auslenkbare Elektrode eines Mikrofonkondensators fungiert, ein feststehendes akustisch durchlässiges Gegenelement, das als Gegenelektrode des Mikrofonkondensators fungiert, und Mittel zum Erfassen und Auswerten der Kapazitätsänderungen des Mikrofonkondensators. Die Membran ist in einer Membranschicht über dem Halbleitersubstrat des Bauelements realisiert und überspannt eine Schallöffnung in der Substratrückseite. Das Gegenelement ist in einer weiteren Schicht über der Membran ausgebildet.
  • Des Weiteren betrifft die Erfindung ein Verfahren zur Herstellung derartiger Bauelemente im Waferverbund und anschließenden Vereinzelung.
  • Das Dokument DE 10 2004 011145 zeigt ein Bauelement samt Verfahren zu dessen Herstellung mit einer mikromechanischen Mikrofonstruktur, mindestens umfassend
    • eine akustisch aktive Membran, die als auslenkbare Elektrode eines Mikrofonkondensators fungiert,
    • ein feststehendes akustisch durchlässiges Gegenelement, das als Gegenelektrode des Mikrofonkondensators fungiert, und
    • Mittel zum Erfassen und Auswerten der Kapazitätsänderungen des Mikrofonkondensators, wobei die Membran in einer Membranschicht über dem Halbleitersubstrat des Bauelements realisiert ist und eine Schallöffnung in der Substratrückseite überspannt, und wobei das Gegenelement in einer weiteren Schicht über der Membran ausgebildet ist; wobei sich diese weitere Schicht im wesentlichen über die gesamte Bauelementfläche erstreckt.
  • In der US 2002/0067663 A1 wird ein Mikrofonbauelement der eingangs genannten Art beschrieben, dessen mikromechanische Mikrofonstruktur in einem Schichtaufbau über einem Halbleitersubstrat realisiert ist. Das perforierte Gegenelement bildet hier eine sockelartige Erhebung in der Bauelementoberfläche und ist an die Größe der darunter liegenden Membran angepasst. Diese überspannt eine Schallöffnung in der Substratrückseite. Zwischen dem Gegenelement und der Membran befindet sich ein Luftspalt, der durch Opferschichtätzen erzeugt wurde. Bei dem bekannten Mikrofonbauelement hängt die Steifigkeit des Gegenelements wesentlich von seiner Umfangsform ab, d.h. von der Form des Sockelrandbereichs, durch den das Gegenelement auf Abstand zur Membran gehalten wird.
  • Aus Kostengründen erfolgt die Fertigung derartiger Mikrofonbauelemente möglichst weitgehend im Waferverbund. Üblicherweise wird dazu auf einem Halbleiterwafer eine Vielzahl von in einem Raster angeordneten Mikrofonstrukturen erzeugt. Erst danach werden die Bauelemente vereinzelt. Dabei erweist sich die sehr fragile und gegenüber Wasser empfindliche Struktur des bekannten Mikrofonbauelements als problematisch.
  • Das in der Mikrotechnologie weit verbreitete kostengünstige Sägen mit wassergekühlter Kreissäge kommt für diese Bauelemente nicht ohne zusätzliche Schutzmaßnahmen in Frage. So ist davon auszugehen, dass die empfindlichen Mikrofonstrukturen dem auftreffenden Wasserstrahl nicht standhalten. Außerdem führt Wasser, das zwischen die beiden Elektroden des Mikrofonkondensators gelangt, zu einem irreversiblen Anhaften der Membran am Gegenelement, wodurch die Mikrofonfunktion ebenfalls außer Kraft gesetzt wird.
  • Deshalb erfolgt die Vereinzelung von mikromechanischen Mikrofonbauelementen der eingangs genannten Art bislang mit Hilfe von speziellen Prozessen. Besonders häufig wird das sogenannte Stealth-Dicing eingesetzt, bei dem Sollbruchstellen im Wafermaterial erzeugt werden. Anschließend wird der Wafer entlang dieser Sollbruchstellen, teilweise unter Zuhilfenahme eines Rakels, in Einzelchips zerbrochen. Hierfür sind spezielle Maschinen und damit zusätzliche Investitionskosten erforderlich. Außerdem sind die Prozesszeiten bei den üblicherweise verwendeten 400 µm bis 800 µm dicken Wafern nicht zuletzt aufgrund der hohen Zahl an erforderlichen "Laserschnitten" relativ lang.
  • Offenbarung der Erfindung
  • Mit der vorliegenden Erfindung wird ein Bauelement mit einer stabilen aber akustisch empfindlichen Mikrofonstruktur vorgeschlagen sowie und ein einfaches und kostengünstiges Verfahren zu dessen Herstellung.
  • Dies wird erfindungsgemäß dadurch erreicht, dass sich - im Unterschied zu dem aus der US 2002/0067663 A1 bekannten Mikrofonbauelement - die weitere Schicht, in der das Gegenelement ausgebildet ist, im wesentlichen über die gesamte Bauelementfläche erstreckt und Niveauunterschiede ausgleicht, so dass die gesamte Bauelementoberfläche entsprechend dieser weiteren Schicht weitgehend eben ist.
  • Erfindungsgemäß ist erkannt worden, dass es sich vorteilhaft auf die Steifigkeit des Gegenelements der Mikrofonstruktur auswirkt, wenn das Gegenelement in einer relativ dicken Schicht ausgebildet ist, die sich über die gesamte Bauelementoberfläche erstreckt und Niveauunterschiede ausgleicht. In diesem Fall ist das Gegenelement allseitig gleichfest eingebunden, wobei die Festigkeit im Wesentlichen nur von der Schichtdicke abhängt. Um so dicker die Schicht ist, um so steifer ist das Gegenelement, um so fester ist das Gegenelement in den Schichtaufbau des Bauelements eingebunden und um so besser ist die nivellierende Wirkung, insbesondere im Randbereich des Gegenelements.
  • Erfindungsgemäß ist ferner erkannt worden, dass sich die so modifizierte Mikrofonstruktur des bekannten Bauelements einfach in einer Abfolge von Prozessen der Bulk- und Oberflächenmikromechanik fertigen lässt, wie sie schon bei der Fertigung von Inertialsensoren zum Einsatz kommt. Die weitgehend ebene Bauteiloberfläche vereinfacht insbesondere die Vereinzelung der erfindungsgemäßen Mikrofonbauelemente, was in Verbindung mit dem erfindungsgemäßen Herstellungsverfahren näher erläutert wird.
  • Grundsätzlich gibt es verschiedene Möglichkeiten für die Realisierung der erfindungsgemäßen Mikrofonstruktur.
  • Unter dem Gesichtspunkt der Großserienfertigung von Mikrofonbauelementen mit möglichst identischen akustischen Eigenschaften erweist es sich als vorteilhaft, wenn die Membranschicht des erfindungsgemäßen Mikrofonbauelements in Form einer dünnen Polysiliziumschicht realisiert wird, die gegenüber dem Halbleitersubstrat durch eine erste Isolationsschicht elektrisch isoliert ist, und wenn das Gegenelement in einer dicken Epi-Polysiliziumschicht ausgebildet wird, die gegenüber der Membranschicht durch eine zweite Isolationsschicht elektrisch isoliert ist. Dabei bestimmt die Schichtdicke dieser zweiten Isolationsschicht den Abstand zwischen der Membran und dem Gegenelement. Für die Herstellung eines derartigen Schichtaufbaus mit vorgegebenen definierten Schichtdicken stehen gut kontrollierbare Standardverfahren der Bulk- und Oberflächenmikromechanik zur Verfügung.
  • Die akustischen Eigenschaften des hier in Rede stehenden Mikrofonbauelements werden aber nicht nur durch den Abstand zwischen der Membran und dem Gegenelement bestimmt, sondern auch durch die intrinsischen Spannungen im Schichtaufbau und insbesondere in der Membran. Unkontrollierte Spannungen innerhalb der Membran können zu einer unerwünschten Vorauslenkung der Membran führen und so die empfindlichkeitsbestimmenden Eigenschaften des Mikrofonkondensators verändern. Deshalb ist in der Membranschicht einer vorteilhaften Weiterbildung des erfindungsgemäßen Mikrofonbauelements eine stressrelaxierende Federaufhängung für die Membran ausgebildet. Die Federelemente bestehen hier also aus demselben Material wie die Membran und werden möglichst so ausgelegt, dass sie die bei der Erzeugung der dünnen Polysiliziumschicht auftretenden und schwer zu kontrollierenden Schichtspannungen ausgleichen. Aufgrund dieser Schichtspannungskompensation wird die Schalldruckempfindlichkeit der Membran im Wesentlichen nur durch ihre Biegesteifigkeit bestimmt. Die Federaufhängung der Membran trägt außerdem zur Maximierung des Mikrofonnutzsignals bei, da eine schalldruckbedingte Verformung bevorzugt im Bereich der Federelemente auftritt, während die zur Messkapazität beitragende Membran nahezu planparallel zur Gegenelektrode ausgelenkt wird. Der Einfluss von im Anbindungsbereich der Membran auftretenden Parasitärkapazitäten ist bedingt durch die Aussparungen zwischen den Federelementen vergleichsweise gering. Deshalb kann die Resonanzfrequenz der Membran und damit der akustische Arbeitsbereich des erfindungsgemäßen Mikrofonbauelements über das Design der Federaufhängung in Verbindung mit einer definiert vorgebbaren Schichtdicke der Membran sehr gut kontrollierbar eingestellt werden.
  • Die Federaufhängung umfasst vorteilhafterweise mindestens drei Federelemente. Die Festpunkte dieser Federelemente können zwischen der ersten und der zweiten Isolationsschicht eingebettet sein und so mit dem Halbleitersubstrat und dem Gegenelement verbunden sein. Alternativ dazu können die Federelemente aber auch nur über eine der beiden Isolationsschichten entweder mit dem Halbleitersubstrat oder mit dem Gegenelement verbunden sein.
  • Wie bereits erwähnt, wird neben dem voranstehend beschriebenen Mikrofonbauelement auch ein besonders vorteilhaftes Verfahren zur Herstellung derartiger Bauelemente vorgeschlagen. Demnach wird zunächst eine erste elektrisch isolierende Opferschicht auf ein Halbleitersubstrat aufgebracht. Auf diese erste Opferschicht wird dann eine Membranschicht aufgebracht und strukturiert, um für jeweils ein Bauelement mindestens eine Membran mit einer Federaufhängung zu erzeugen. Danach wird eine zweite elektrisch isolierende Opferschicht auf die strukturierte Membranschicht aufgebracht, auf die dann mindestens eine weitere Schicht aufgebracht und strukturiert wird, um für jede Membran ein akustisch durchlässiges Gegenelement zu erzeugen. Außerdem wird in der Rückseite des Halbleitersubstrats mindestens eine Schallöffnung unter jeder Membran erzeugt. Die erste Opferschicht und die zweite Opferschicht werden nun zumindest im Bereich unter und über jeder Membran und deren Federaufhängung entfernt. Erst nach dem Freilegen der Mikrofonstrukturen werden die Bauelemente schließlich vereinzelt.
  • Als Membranschicht wird vorteilhafterweise eine dünne Polysiliziumschicht auf der ersten Opferschicht abgeschieden. Zudem erweist es sich als vorteilhaft, auf der zweiten Opferschicht eine dicke Epi-Polysiliziumschicht als weitere Schicht aufzuwachsen, in der die Gegenelemente ausgebildet werden.
  • Die Prozessfolge dieser Verfahrensvariante zur Herstellung eines Mikrofonbauelements ist an ein erprobtes und gut kontrollierbares Verfahrens zur Herstellung von Inertialsensoren angelehnt. So wird die erfindungsgemäß als Membranschicht dienende Polysiliziumschicht im Fall der Herstellung von Inertialsensoren zur Realisierung von vergrabenen Leiterbahnen verwendet. Und die dicke Epi-Polysiliziumschicht, in der erfindungsgemäß die Gegenelemente realisiert werden, dient im Fall der Inertialsensoren als Funktionsschicht.
  • Die erste und die zweite elektrisch isolierende Opferschicht haben zum einen die Funktion einer elektrischen Isolation zwischen den beiden Elektroden des Mikrofonkondensators und gegenüber dem Halbleitersubstrat. Zum anderen werden mit Hilfe der Opferschichten die Membranen freigelegt. Im Rahmen des erfindungsgemäßen Verfahrens kann diesen Opferschichten zusätzlich jeweils die Funktion einer Ätzstoppgrenze zukommen. So fungiert die zweite Opferschicht vorteilhafterweise als Ätzstopp bei der Strukturierung der Gegenelemente bzw. der dicken Epi-Polysiliziumschicht, sofern dies in einem anisotropen Ätzprozess, insbesondere in einem Trenchprozess oder in einem DRIE-Prozess, erfolgt. Die erste Opferschicht fungiert vorteilhafterweise als Ätzstopp bei der Erzeugung der Schallöffnungen in einem anisotropen Ätzprozess, insbesondere in einem DRIE-Prozess.
  • Zur Freistellung der Membranen werden die erste Opferschicht und die zweite Opferschicht vorteilhafterweise in einem isotropen Ätzprozess entfernt, wobei der Ätzangriff über die Schallöffnungen und über Durchgangsöffnungen in den Gegenelementen erfolgt. Als Opferschichtmaterialien eignen sich besonders SiO2 oder SiGe.
  • Die Verwendung einer SiGe-Opferschicht mit ClF3 als Ätzgas ist aufgrund der hohen Selektivität des Ätzprozesses gegenüber zahlreichen in der Mikrosystemtechnik verwendeten Materialien und insbesondere gegenüber Silizium besonders vorteilhaft. Dieser Ätzprozess zeichnet sich durch seine hohe Ätzgeschwindigkeit und die damit erzielbaren großen Unterätzweiten aus. Zudem sind SiGe-Opferschichten besonders spannungsarm, so dass sich mit diesem Material auch relativ dicke Opferschichten und damit große Elektrodenabstände realisieren lassen, ohne dass zusätzliche Spannungen in den Bauelementaufbau eingetragen werden. Dadurch erhöht sich die Designfreiheit bei der Auslegung des Mikrofonbauelements.
  • Wie bereits erwähnt, werden die erfindungsgemäßen Mikrofonstrukturen im Waferverbund freigelegt und erst danach vereinzelt. Eine besonders vorteilhafte Variante des erfindungsgemäßen Verfahrens macht sich dabei den Aufbau des erfindungsgemäßen Mikrofonbauelements zu Nutze, nämlich dass sich die Schicht, in der die Gegenelemente realisiert sind, an der Oberseite des Schichtaufbaus befindet und dass diese Schicht relativ dick und stabil ist und erfindungsgemäß weitgehend plan. Diese Schichteigenschaften ermöglichen das Aufbringen einer Schutzfolie, die das Eindringen von Partikeln und Flüssigkeit in die Mikrofonstrukturen zuverlässig verhindert. Damit lassen sich die Mikrofonbauelemente in einem in der Mikromechanik standardisierten Sägeprozess vereinzeln, was enorme Kostenvorteile gegenüber den derzeit zur Vereinzelung von Mikrofonbauelementen eingesetzten Verfahren hat. Nach dem Vereinzeln wird die Schutzfolie möglichst rückstandsfrei entfernt.
  • In diesem Zusammenhang erweist es sich als vorteilhaft, eine Schutzfolie zu verwenden, die ihre Haftkraft durch UV-Bestrahlung verliert oder durch eine Wärmebehandlung oder durch eine UV-Bestrahlung in Kombination mit einer Wärmebehandlung. Eine derartige Schutzfolie kann einfach unter Vakuum auf die weitgehend ebene Oberfläche des Schichtaufbaus auflaminiert werden und nach dem Vereinzelungsprozess durch eine UV-Bestrahlung in Kombination mit einer Wärmebehandlung rückstandsfrei und ohne die Mikrofonstrukturen zu beschädigen wieder von den Bauteiloberflächen abgelöst werden.
  • Kurze Beschreibung der Zeichnungen
  • Wie bereits voranstehend erörtert, gibt es verschiedene Möglichkeiten, die Lehre der vorliegenden Erfindung in vorteilhafter Weise auszugestalten und weiterzubilden. Dazu wird einerseits auf die den unabhängigen Patentansprüchen nachgeordneten Patentansprüche verwiesen und andererseits auf die nachfolgende Beschreibung mehrerer Ausführungsbeispiele der Erfindung anhand der Figuren.
  • Fig. 1
    zeigt eine schematische Schnittdarstellung durch die Mikrofonstruktur eines erfindungsgemäßen Bauelements 10,
    Fig. 2a bis 2f
    veranschaulichen anhand von schematischen Schnittdarstellungen des Schichtaufbaus das erfindungsgemäße Verfahren zur Herstellung der in Fig. 1 dargestellten Mikrofonstruktur,
    Fig. 3
    zeigt die Draufsicht auf eine kreisrunde Membran mit Federaufhängung eines erfindungsgemäßen Mikrofonbauelements, und
    Fig. 4a bis 4f
    veranschaulichen anhand von schematischen Schnittdarstellungen den erfindungsgemäßen Vereinzelungsprozess von im Waferverbund erzeugten Mikrofonstrukturen.
    Ausführungsformen der Erfindung
  • Das in Fig. 1 dargestellte Bauelement 10 umfasst eine mikromechanische Mikrofonstruktur mit einer auslenkbaren akustisch aktiven Membran 11 und einem feststehenden akustisch durchlässigen Gegenelement 12, das auch als Backplate bezeichnet wird. Die Membran 11 und das Gegenelement 12 sind hier in einem Schichtaufbau auf einem Halbleitersubstrat 1 realisiert. In der Rückseite des Halbleitersubstrats 1 ist eine Schallöffnung 13 ausgebildet, die sich über die gesamte Dicke des Halbleitersubstrats 1 erstreckt und von der auf der Oberseite des Halbleitersubstrats 1 angeordneten Membran 11 überspannt wird. Die Membran 11 ist in einer dünnen Polysilizium-Schicht 3 realisiert und durch eine erste Isolationsschicht 2 gegen das Halbleitersubstrat 1 elektrisch isoliert. Die Auslenkbarkeit der dünnen Membran 11 wird durch ihre in der Polysiliziumschicht 3 ausgebildete Federaufhängung 14 begünstigt. Im Unterschied dazu ist das Gegenelement 12 in einer relativ dicken Epi-Polysilizium-Schicht 5 über der Membran 11 ausgebildet und fest mit dem Schichtaufbau verbunden. Das Gegenelement 12 ist über eine zweite Isolationsschicht 4 sowohl gegen die Membran 11 als auch gegen das Halbleitersubstrat 1 elektrisch isoliert. Die Dicke dieser zweiten Isolationsschicht 4 bestimmt außerdem den Abstand zwischen Membran 11 und Gegenelement 12 im Ruhezustand. Im Mittelbereich des Gegenelements 12 sind Durchgangsöffnungen 15 ausgebildet, so dass das Gegenelement 12 akustisch durchlässig ist und die schallbedingten Auslenkungen der Membran 11 nicht beeinträchtigt.
  • Die Membran 11 und das Gegenelement 12 bilden die Elektroden eines Mikrofonkondensators, dessen Kapazität sich mit dem Abstand zwischen Membran 11 und Gegenelement 12 ändert. Zum Erfassen der Kapazitätsänderungen des Mikrofonkondensators wird eine Ladespannung zwischen der Membran 11 und der Gegenelektrode 12 angelegt, die auch als Bias-Spannung bezeichnet wird. Die Mittel zum Erfassen und Auswerten der Kapazitätsänderungen des Mikrofonkondensators sind hier nicht im einzelnen dargestellt.
  • Erfindungsgemäß erstreckt sich die Epi-Polysilizium-Schicht 5, in der das Gegenelement 12 ausgebildet ist, über die gesamte Bauelementfläche und gleicht Niveauunterschiede aus, so dass die gesamte Bauelementoberfläche entsprechend dieser Epi-Polysilizium-Schicht 5 weitgehend eben ist. Dies erweist sich insbesondere im Zusammenhang mit der Vereinzelung dieser Bauelemente als vorteilhaft, was nachfolgend in Verbindung mit den Figuren 4a bis 4f nochmals näher erläutert wird.
  • Eine besonders vorteilhafte Verfahrensvariante zur Herstellung der Mikrofonstruktur des in Fig. 1 dargestellten Bauelements 10 wird nachfolgend in Verbindung mit den Figuren 2a bis 2f beschrieben. Den Ausgangspunkt dieses Verfahrens bildet ein Halbleitersubstrat 1, beispielsweise in Form eines Siliziumwafers, wie er in Fig. 2a dargestellt ist. In einem ersten Verfahrensschritt wurde eine erste elektrisch isolierende Opferschicht 2 auf die Wafervorderseite aufgebracht. Dabei kann es sich um eine SiO2-Schicht oder auch um eine SiGe-Schicht handeln. Über der ersten Opferschicht 2 wurde dann eine Membranschicht 3 abgeschieden und strukturiert, um für jeweils ein Bauelement mindestens eine Membran mit einer Federaufhängung zu erzeugen. Ein Beispiel für eine derartige Membranstruktur ist in Fig. 3 dargestellt und wird in Verbindung mit dieser Figur näher erläutert. Im hier beschriebenen Ausführungsbeispiel handelt es sich bei der Membranschicht 3 um eine Polysiliziumschicht, deren Schichtdicke je nach Anforderung an das Mikrofonbauelement zwischen 0,1µm und 3µm liegt.
  • Fig. 2b zeigt den Schichtaufbau, nachdem eine zweite elektrisch isolierende Opferschicht 4 auf die strukturierte Membranschicht 3 aufgebracht und strukturiert wurde. Mit der Strukturierung der zweiten Opferschicht wurde hier die elektrische Kontaktierung der Mikrofonstruktur vorbereitet. Vorteilhafterweise wird für die beiden Opferschichten 2 und 4 dasselbe Material gewählt, das dann in einem späteren Verfahrensstadium in einem gemeinsamen Ätzprozess von der Vorderseite und von der Rückseite der Membranen entfernt werden kann.
  • Auf der zweiten Opferschicht 4 wurde dann eine dicke Epi-Polysilizium-Schicht 5 erzeugt, was in Fig. 2c dargestellt ist. Dazu wird das Schichtmaterial vorteilhafterweise ausgehend von einer Startschicht aus dünnem LPCVD-Polysilizium epitaktisch aus der Gasphase aufgewachsen. Die Dicke einer so erzeugten Epi-Polysilizium-Schicht 5 kann je nach den Anforderungen an das Mikrofonbauelement in der Größenordnung von 3µm bis 20µm liegen. Fig. 2c verdeutlicht, dass der Schichtaufbau mit Hilfe der Epi-Polysiliziumschicht 5 nivelliert wurde, was durch das Abscheidungsverfahren in Verbindung mit der relativ großen Schichtdicke begünstigt wird. Die plane Oberfläche der Epi-Polysilizium-Schicht 5 wurde nun mit einer strukturierten Metallisierung 6 versehen, was ebenfalls der Kontaktierung der einzelnen Komponenten der Mikrofonstrukturen dient. Eine derartige Metallisierung kann aber auch zu einem späteren Zeitpunkt des Herstellungsverfahrens auf den Schichtaufbau aufgebracht werden.
  • Fig. 2d zeigt den Schichtaufbau nach der Strukturierung der Epi-Polysilizium-Schicht 5 in einem anisotropen Trenchprozess oder in einem DRIE-Prozess. Dabei wurde die zweite Opferschicht 4 als Ätzstoppgrenze genutzt. Im Rahmen dieser Strukturierung wurden die Gegenelemente 12 der Mikrofonstrukturen innerhalb der Epi-Polysilizium-Schicht 5 freigelegt und mit Durchgangsöffnungen 15 versehen. Die Trenchgräben 7 dienen nicht nur der Definition sondern auch der elektrischen Entkopplung einzelner Bereiche der Epi-Polysiliziumschicht 5. So wurden bei der Strukturierung der Epi-Polysiliziumschicht auch die Kontaktbereiche 16 und 17 für das Substrat 1 und die Membranen festgelegt.
  • Danach wurden im hier dargestellten Ausführungsbeispiel die Schallöffnungen 13 in einem von der Substratrückseite ausgehenden anisotropen DRIE-Prozess erzeugt, was in Fig. 2e dargestellt ist. Die Opferschicht 2 bildete die Ätzstoppgrenze für diesen Rückseitenätzprozess, der ebensogut auch vor der Strukturierung der Epi-Polysiliziumschicht 5 durchgeführt werden kann.
  • Durch isotropes Opferschichtätzen wurden schließlich die Membranen 11 der Mikrofonstrukturen und die dazugehörigen Federaufhängungen 14 freigelegt. Der dafür erforderliche Ätzangriff erfolgte simultan von beiden Seiten des Schichtaufbaus. Dabei gelangte das Ätzgas von der Vorderseite über die Trenchgrägen 7 und die Durchgangsöffnungen 15 an die Opferschicht 4 und von der Rückseite über die Schallöffnungen 13 an die Opferschicht 2. Im Fall von SiO2-Oferschichten wird das Opferschichtmaterial bevorzugt mit HF-Dampf herausgelöst. Bei SiGe-Opferschichten wird ClF3 als Ätzgas verwendet. Fig. 2f zeigt die in Fig. 1 dargestellte Mikrofonstruktur als Ergebnis dieses Ätzprozesses und veranschaulicht, dass der Abstand zwischen Membran 11 und Gegenelement 12 durch die Schichtdicke der Opferschicht 4 bestimmt wird.
  • Gemäß dem voranstehend beschriebenen Verfahren werden die Membranen der erfindungsgemäßen Mikrofonbauelemente zusammen mit ihren Federaufhängungen in einer dünnen Polysiliziumschicht realisiert. Dabei werden die Federelemente der einzelnen Membranen möglichst so ausgelegt, dass die Membranen weitgehend unabhängig von der Schichtspannung des Membranmaterials aufgehängt sind. Fig. 3 zeigt ein vorteilhaftes Layout für die Federaufhängung einer kreisrunden Membran 30. Die Membran 30 ist hier an insgesamt sechs Federelementen 31 aufgehängt. Die Federelemente 31 sind in Form von gekrümmten Stegen realisiert, die entlang des Membranumfangs angeordnet sind und sich jeweils über ein Sechstel des Membranumfangs erstrecken. Ein Ende eines jeden Federelements 31 ist mit der Membran 30 verbunden, während das andere Ende in den umliegenden Randbereich des Schichtaufbaus eingebunden ist. Dazu können diese Enden der Federelemente 31 beispielsweise so zwischen den beiden Opferschichten eingebettet sein, dass sie sowohl mit dem Gegenelement als auch mit dem Substrat verbunden sind. Alternativ können diese Federenden aber auch nur einseitig entweder mit dem Gegenelement oder dem Substrat verbunden sein. Die hier dargestellte Federaufhängung ist so ausgelegt, dass sie die bei der Erzeugung der Polysilizium-Membranschicht auftretenden und schwer zu kontrollierenden Schichtspannungen zumindest in gewissen Grenzen sowohl dann ausgleichen kann, wenn das Polysilizium tensil abgeschieden wurde, als auch dann, wenn es kompressiv abgeschieden wurde.
  • Die hier dargestellte Membran 30 ist über die Federelemente 31 stabil aufgehängt. Die Verformung bei Druckbeaufschlagung erfolgt hauptsächlich im Bereich der Federelemente 31. Dadurch wird die für die Mikrofonfunktion maßgebliche als bewegliche Elektrode fungierende Membranfläche annähernd planparallel zum Gegenelement ausgelenkt, was sich günstig auf das Mikrofonnutzsignal auswirkt.
  • Im hier beschriebenen Ausführungsbeispiel ist eine einfache Elektronikfunktion als Überlastschutz für die Mikrofonstruktur vorgesehen. Die Auswerteelektronik erkennt automatisch ein Anschlagen der Membran am Gegenelement, was im Überlastfall, z.B. bei sehr hohen Schalldrücken oder bei Schockeinwirkung, auftreten kann. Um die dabei auftretenden elektrostatischen Haftkräfte zu lösen und ein dauerhaftes elektrostatisch bedingtes Anhaften der Membran am Gegenelement zu vermeiden, wird die Bias-Spannung temporär unterbrochen. Im spannungsfreien Zustand kann sich die Membran dann selbsttätig wieder vom Gegenelement ablösen. Dieses Konzept eignet sich insbesondere für Biasspannungen von unter 5 V, da bei diesen niedrigen Biasspannungen noch kein elektrisches Verschweißen zwischen Membran und Gegenelement stattfinden kann.
  • Wie in Verbindung mit den Figuren 2a bis 2f beschrieben, erfolgt die Herstellung der erfindungsgemäßen Mikrofonstrukturen einschließlich der Freilegung der Membranen im Waferverbund. Nachfolgend wird in Verbindung mit den Figuren 4a bis 4f ein besonders vorteilhaftes Verfahren zur Vereinzelung dieser Mikrofonstrukturen beschrieben.
  • Zunächst wird mit Hilfe eines Vakuum-Laminiergeräts eine Schutzfolie 41 mit speziellen Hafteigenschaften auf die erfindungsgemäß weitgehend plane Oberseite des Schichtaufbaus 40 aufgebracht, was in Fig. 4a dargestellt ist. Diese Schutzfolie 41 verliert ihre Haftkraft bei Einwirkung von UV-Licht in Kombination mit Wärme, was ein einfaches rückstandsfreies Ablösen der Schutzfolie 41 nach dem Vereinzelungsprozess ermöglicht.
  • Fig. 4b zeigt den Schichtaufbau 40 mit der Schutzfolie 41, nachdem er auf einen mit einer Sägefolie 42 bespannten Sägerahmen geklebt worden ist. Die Sägefolie 42 muss zumindest soweit hitzebeständig sein, dass sie unempfindlich ist für Temperaturen, bei denen die Schutzfolie 41 ihre Haftkraft verliert. Außerdem muss die Haftkraft der Schutzfolie 41 und die Haftkraft der Sägefolie 42 jeweils so groß sein, dass Chips mit einem Chipmaß von beispielsweise 1x1mm2 während eines Sägeprozesses haften bleiben.
  • Da der Schichtaufbau 40 und insbesondere die im Schichtaufbau 40 freigelegten Mikrofonstrukturen durch die Schutzfolie 41 geschützt sind, kann der Schichtaufbau 40 nun mit Hilfe einer wassergekühlten Kreissäge zersägt werden. Die Schutzfolie 41 verhindert dabei wirkungsvoll das Eindringen von Wasser oder Sägepartikeln in die Mikrofonstrukturen. In Fig. 4c ist der Schichtaufbau 40 mit der Schutzfolie 41 bereits zersägt. Die einzelnen Bauelemente 50 haften jedoch noch auf der zusammenhängenden Sägefolie 42.
  • Nach dem Sägeprozess kann die Schutzfolie 41 von der Oberseite der einzelnen Bauelemente 50 entfernt werden. Dafür wird sie zunächst mit UV-Strahlung belichtet. Danach erfolgt eine Temperaturbehandlung, während der sich die auflaminierte Schutzfolie 41 vollständig von der Bauteiloberseite löst. Dementsprechend liegen nach der Temperaturbehandlung auf jedem Bauelement 50 Folienstücke, die abgesaugt oder abgeblasen werden können. Im hier beschriebenen Ausführungsbeispiel werden die Folienstücke mit einem Stempelverfahren aufgenommen, was in den Fig. 4d und 4e dargestellt ist. Dazu wird hier ein zweiter Wafer 43 verwendet, auf dessen Stempeloberfläche eine zweiseitig klebende Folie 44, eine weiche Polymerschicht oder eine weiche Lackschicht aufgebracht wurde.
  • Danach kann die Sägefolie 42 expandiert werden und die einzelnen Bauteile 50 können mit Pick-and-Place-Tools von der Sägefolie 42 abgepickt und verpackt werden, was durch Fig. 4f veranschaulicht wird.
  • Die erfindungsgemäße Mikrofonstruktur mit einer weitgehend ebenen Bauteiloberfläche ermöglicht das Aufbringen einer Schutzfolie auf die Oberseite des Waferschichtaufbaus. Dadurch lassen sich die erfindungsgemäßen Mikrofonbauelemente in einem Standard-Sägeprozess vereinzeln, wobei der durch das Aufbringen und Entfernen einer zweiten Folie bedingte zusätzliche Prozessaufwand vernachlässigbar ist. Da auch die Schutzfolie 41 selbst relativ kostengünstig ist, trägt ihre Verwendung im Rahmen des Vereinzelungsverfahrens nur unwesentlich zu den Gesamtkosten eines einzelnen Bauteils bei.

Claims (14)

  1. Bauelement mit einer mikromechanischen Mikrofonstruktur, mindestens umfassend
    - eine akustisch aktive Membran (11), die als auslenkbare Elektrode eines Mikrofonkondensators fungiert,
    - ein feststehendes akustisch durchlässiges Gegenelement (12), das als Gegenelektrode des Mikrofonkondensators fungiert, und
    - Mittel zum Erfassen und Auswerten der Kapazitätsänderungen des Mikrofonkondensators,
    wobei die Membran (11) in einer Membranschicht (3) über dem Halbleitersubstrat (1) des Bauelements realisiert ist und eine Schallöffnung (13) in der Substratrückseite überspannt, und
    wobei das Gegenelement (12) in einer weiteren Schicht (5) über der Membran (11) ausgebildet ist;
    dadurch gekennzeichnet, dass sich diese weitere Schicht (5) im wesentlichen über die gesamte Bauelementfläche erstreckt und Niveauunterschiede ausgleicht, so dass die gesamte Bauelementoberfläche entsprechend dieser weiteren Schicht (5) weitgehend eben ist.
  2. Bauelement nach Anspruch 1, dadurch gekennzeichnet, dass die Membranschicht (3) in Form einer dünnen Polysiliziumschicht realisiert ist, die gegenüber dem Halbleitersubstrat (1) durch eine erste Isolationsschicht (2) elektrisch isoliert ist, und dass das Gegenelement (11) in einer dicken Epi-Polysiliziumschicht (5) ausgebildet ist, die gegenüber der Membranschicht (3) durch eine zweite Isolationsschicht (4) elektrisch isoliert ist, wobei die Schichtdicke dieser zweiten Isolationsschicht (4) den Abstand zwischen der Membran (11) und dem Gegenelement (12) bestimmt.
  3. Bauelement nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass in der Membranschicht (3) eine Federaufhängung (14) für die Membran (11) ausgebildet ist.
  4. Bauelement nach Anspruch 3, dadurch gekennzeichnet, dass die Federaufhängung (14) mindestens drei Federelemente umfasst, die über die erste und/oder die zweite Isolationsschicht mit dem Halbleitersubstrat und/oder dem Gegenelement verbunden sind.
  5. Verfahren zur Herstellung von Bauelementen nach einem der Ansprüche 1 bis 4,
    - bei dem eine erste elektrisch isolierende Opferschicht (2) auf ein Halbleitersubstrat (1) aufgebracht wird,
    - bei dem eine Membranschicht (3) auf die erste Opferschicht (2) aufgebracht und strukturiert wird, um für jeweils ein Bauelement mindestens eine Membran (11) mit einer Federaufhängung (14) zu erzeugen,
    - bei dem eine zweite elektrisch isolierende Opferschicht (4) auf die strukturierte Membranschicht (3) aufgebracht wird,
    - bei dem mindestens eine weitere Schicht (5) auf die zweite Opferschicht (4) aufgebracht und strukturiert wird, um für jede Membran (11) ein akustisch durchlässiges Gegenelement (12) zu erzeugen,
    - bei dem in der Rückseite des Halbleitersubstrats (1) mindestens eine Schallöffnung (13) unter jeder Membran (11) erzeugt wird,
    - bei dem die erste Opferschicht (2) und die zweite Opferschicht (4) zumindest im Bereich unter und über jeder Membran (11) und deren Federaufhängung (14) entfernt werden, und
    - bei dem die Bauelemente erst nach dem Freilegen der Mikrofonstrukturen vereinzelt werden.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass eine dünne Polysiliziumschicht als Membranschicht (3) auf der ersten Opferschicht (2) abgeschieden wird, und dass auf der zweiten Opferschicht (4) eine dicke Epi-Polysiliziumschicht (5) aufgewachsen wird, in der die Gegenelemente (12) ausgebildet werden.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Epi-Polysiliziumschicht (5) in einem anisotropen Ätzprozess, insbesondere in einem Trenchprozess oder in einem DRIE-Prozess, strukturiert wird, wobei die zweite Opferschicht (4) als Ätzstopp fungiert.
  8. Verfahren nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass die Schallöffnungen (13) in einem anisotropen Ätzprozess, insbesondere in einem DRIE-Prozess, erzeugt werden, wobei die erste Opferschicht (2) als Ätzstopp fungiert.
  9. Verfahren nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass die erste Opferschicht (2) und die zweite Opferschicht (4) in einem isotropen Ätzprozess entfernt werden, wobei der Ätzangriff über die Schallöffnung (13) und über Durchgangsöffnungen (15) in den Gegenelementen (12) erfolgt.
  10. Verfahren nach einem der Ansprüche 5 bis 9, dadurch gekennzeichnet, dass die erste Opferschicht (2) und/oder die zweite Opferschicht (4) aus SiO2 oder SiGe gebildet werden.
  11. Verfahren nach einem der Ansprüche 5 bis 10, dadurch gekennzeichnet, dass nach dem Freilegen der Mikrofonstrukturen auf den Schichtaufbau (40) über dem Halbleitersubstrat eine Schutzfolie (41) aufgebracht wird, die das Eindringen von Partikeln und Flüssigkeit in die Mikrofonstrukturen verhindert, und dass diese Schutzfolie (41) nach dem Vereinzeln der Bauelemente rückstandsfrei von der Bauelementoberfläche entfernt wird.
  12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass eine Schutzfolie (41) verwendet wird, die ihre Haftkraft durch UV-Bestrahlung, durch eine Wärmebehandlung oder durch eine UV-Bestrahlung in Kombination mit einer Wärmebehandlung verliert.
  13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass die Schutzfolie (41) unter Vakuum auf die weitgehend ebene Oberfläche des Schichtaufbaus (40) auflaminiert wird und nach dem Vereinzelungsprozess durch eine UV-Bestrahlung in Kombination mit einer Wärmebehandlung von den Bauteiloberflächen abgelöst wird.
  14. Verfahren nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, dass die Bauelemente in einem Standard-Sägeprozess vereinzelt werden.
EP20100715187 2009-06-03 2010-04-07 Bauelement mit einer mikromechanischen mikrofonstruktur und verfahren zu dessen herstellung Not-in-force EP2438767B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200910026682 DE102009026682A1 (de) 2009-06-03 2009-06-03 Bauelement mit einer mikromechanischen Mikrofonstruktur und Verfahren zu dessen Herstellung
PCT/EP2010/054583 WO2010139498A1 (de) 2009-06-03 2010-04-07 Bauelement mit einer mikromechanischen mikrofonstruktur und verfahren zu dessen herstellung

Publications (2)

Publication Number Publication Date
EP2438767A1 EP2438767A1 (de) 2012-04-11
EP2438767B1 true EP2438767B1 (de) 2013-01-30

Family

ID=42312804

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20100715187 Not-in-force EP2438767B1 (de) 2009-06-03 2010-04-07 Bauelement mit einer mikromechanischen mikrofonstruktur und verfahren zu dessen herstellung

Country Status (5)

Country Link
US (1) US8637945B2 (de)
EP (1) EP2438767B1 (de)
JP (2) JP2012529207A (de)
DE (1) DE102009026682A1 (de)
WO (1) WO2010139498A1 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9331656B1 (en) * 2010-06-17 2016-05-03 Steven M. Gottlieb Audio systems and methods employing an array of transducers optimized for particular sound frequencies
US9544678B2 (en) * 2011-01-12 2017-01-10 Blackberry Limited Printed circuit board with an acoustic channel for a microphone
JP5775409B2 (ja) * 2011-09-29 2015-09-09 スタンレー電気株式会社 光スキャナの製造方法
JP2015502692A (ja) * 2011-11-14 2015-01-22 エプコス アクチエンゲゼルシャフトEpcos Ag 寄生容量が低減されたmemsマイクロフォン
US9258652B2 (en) * 2011-11-18 2016-02-09 Chuan-Wei Wang Microphone structure
DE102012210052B4 (de) * 2012-06-14 2023-12-14 Robert Bosch Gmbh Hybrid integriertes Bauteil und Verfahren zu dessen Herstellung
US9181086B1 (en) 2012-10-01 2015-11-10 The Research Foundation For The State University Of New York Hinged MEMS diaphragm and method of manufacture therof
DE102012218501A1 (de) * 2012-10-11 2014-04-17 Robert Bosch Gmbh Bauelement mit einer mikromechanischen Mikrofonstruktur
US9624091B2 (en) 2013-05-31 2017-04-18 Robert Bosch Gmbh Trapped membrane
DE102013212173B4 (de) 2013-06-26 2016-06-02 Robert Bosch Gmbh MEMS-Bauelement mit einer auslenkbaren Membran und einem feststehenden Gegenelement sowie Verfahren zu dessen Herstellung
US9439017B2 (en) * 2014-02-10 2016-09-06 Infineon Technologies Ag Method for manufacturing a plurality of microphone structures, microphone and mobile device
CN103888887A (zh) * 2014-03-27 2014-06-25 上海集成电路研发中心有限公司 一种mems麦克风芯片切割方法
US9736590B2 (en) * 2014-06-06 2017-08-15 Infineon Technologies Ag System and method for a microphone
KR101807146B1 (ko) * 2016-09-09 2017-12-07 현대자동차 주식회사 고감도 마이크로폰 및 그 제조 방법
KR102212575B1 (ko) 2017-02-02 2021-02-04 현대자동차 주식회사 마이크로폰 및 그 제조 방법
KR20230158478A (ko) * 2021-03-23 2023-11-20 니신보 마이크로 디바이즈 인크. Mems 소자 및 그 제조 방법

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0680094B1 (de) * 1994-04-29 2003-02-26 Shell Solar GmbH Netzunabhängiger elektrischer Energieverbraucher mit zusätzlicher photovoltaischer Stromversorgung
JPH08230093A (ja) * 1995-03-01 1996-09-10 Lintec Corp 表面保護シートの剥離方法
JPH09286971A (ja) * 1996-04-19 1997-11-04 Toray Dow Corning Silicone Co Ltd シリコーン系ダイボンディング剤、半導体装置の製造方法および半導体装置
JP2000223446A (ja) * 1998-11-27 2000-08-11 Denso Corp 半導体装置およびその製造方法
JP2003533871A (ja) * 2000-04-04 2003-11-11 シノヴァ エス.アー. 対象物を切断して切断物を機械加工するための方法および対象物または切断物を保持するための支持台
US6535460B2 (en) 2000-08-11 2003-03-18 Knowles Electronics, Llc Miniature broadband acoustic transducer
ATE392790T1 (de) * 2000-08-11 2008-05-15 Knowles Electronics Llc Erhobene mikrostrukturen
US7053530B2 (en) * 2002-11-22 2006-05-30 General Electric Company Method for making electrical connection to ultrasonic transducer through acoustic backing material
JP2005244150A (ja) * 2004-01-28 2005-09-08 Ajinomoto Co Inc 樹脂組成物、それを用いた接着フィルム及び多層プリント配線板
DE102004011145B4 (de) 2004-03-08 2006-01-12 Infineon Technologies Ag Mikrophon und Verfahren zur Herstellung eines Mikrophons
JP2005326310A (ja) * 2004-05-14 2005-11-24 Hosiden Corp 振動センサ
US7259106B2 (en) * 2004-09-10 2007-08-21 Versatilis Llc Method of making a microelectronic and/or optoelectronic circuitry sheet
DE102005004877A1 (de) * 2005-02-03 2006-08-10 Robert Bosch Gmbh Mikromechanisches Bauelement und entsprechendes Herstellungsverfahren
SG127754A1 (en) * 2005-05-16 2006-12-29 Sensfab Pte Ltd Silicon microphone
JP2007104641A (ja) * 2005-09-09 2007-04-19 Yamaha Corp コンデンサマイクロホン
US7449640B2 (en) * 2005-10-14 2008-11-11 Sonosite, Inc. Alignment features for dicing multi element acoustic arrays
JP4811035B2 (ja) * 2006-01-31 2011-11-09 パナソニック電工株式会社 音響センサ
JP2008011154A (ja) * 2006-06-29 2008-01-17 Matsushita Electric Ind Co Ltd コンデンサマイクロホン用チップ、コンデンサマイクロホンおよびその製造方法
EP1931173B1 (de) * 2006-12-06 2011-07-20 Electronics and Telecommunications Research Institute Kondensatormikrofon mit Membran mit Biegescharnier und Herstellungsverfahren dafür
US8114248B2 (en) * 2007-01-03 2012-02-14 Asahi Kasei Kabushiki Kaisha Roll-to-roll method and system for micro-replication of a pattern of large relief three-dimensional microstructures
DE102007029911A1 (de) 2007-06-28 2009-01-02 Robert Bosch Gmbh Akustisches Sensorelement
GB2452941B (en) 2007-09-19 2012-04-11 Wolfson Microelectronics Plc Mems device and process

Also Published As

Publication number Publication date
WO2010139498A1 (de) 2010-12-09
JP2012529207A (ja) 2012-11-15
US8637945B2 (en) 2014-01-28
JP2014090514A (ja) 2014-05-15
DE102009026682A9 (de) 2013-01-03
DE102009026682A1 (de) 2010-12-09
US20120091544A1 (en) 2012-04-19
EP2438767A1 (de) 2012-04-11

Similar Documents

Publication Publication Date Title
EP2438767B1 (de) Bauelement mit einer mikromechanischen mikrofonstruktur und verfahren zu dessen herstellung
DE102012210052B4 (de) Hybrid integriertes Bauteil und Verfahren zu dessen Herstellung
DE102015108918B4 (de) System und Verfahren für ein Mikrofon
DE102017215381B4 (de) Doppelmembran-MEMS-Bauelement und Herstellungsverfahren für ein Doppelmembran-MEMS-Bauelement
DE102017212613B9 (de) MEMS-Bauelement und Herstellungsverfahren für ein MEMS-Bauelement
EP1846319B1 (de) Mikromechanisches bauelement und entsprechendes herstellungsverfahren
EP2029474B1 (de) Mikromechanisches memranbauelement und verfahren zu dessen herstellung
EP2214421B1 (de) Bauelement mit einer mikromechanischen Mikrofonstruktur und Verfahren zum Betreiben eines solchen Bauelements
DE102015103311B4 (de) Schallwandlerstruktur mit Einzeldiaphragma
DE102017204006B3 (de) MEMS-Schallwandler, MEMS-Mikrophon und Verfahren zum Bereitstellen eines MEMS-Schallwandlers
DE102015213757B4 (de) Mikromechanische Struktur und Verfahren zur Herstellung derselben
DE102014214525A1 (de) Mikro-elektromechanisches Bauteil und Herstellungsverfahren für mikro-elektromechanische Bauteile
DE102013111163B4 (de) MEMS-Bauelement und Verfahren zum Fertigen eines MEMS-Bauelements
WO2009127455A2 (de) Verfahren zur herstellung einer mikromechanischen membranstruktur mit feststehendem gegenelement
EP2019812B1 (de) Verfahren zur herstellung eines mikromechanischen bauelements mit membran und mikromechanisches bauelement
WO2016030040A1 (de) Mems-bauelement
DE102009002485A1 (de) Verfahren zur Herstellung von verkappten MEMS-Bauelementen
EP2207364B1 (de) Bauelement mit einer mikromechanischen Mikrofonstruktur
US10448168B2 (en) MEMS microphone having reduced leakage current and method of manufacturing the same
JP4944494B2 (ja) 静電容量型センサ
WO2022078771A1 (de) Herstellungsverfahren für ein mikromechanisches bauteil für eine sensor- oder mikrofonvorrichtung
JP2006196588A (ja) マイクロマシン及び静電容量型センサの製造方法
DE102016216870B4 (de) Verfahren zum Herstellen eines mikromechanischen Bauteils mit einer freigestellten Drucksensoreinrichtung
DE102017213636A1 (de) Verfahren zur Herstellung von dünnen MEMS Chips auf SOI Substrat und mikromechanisches Bauelement
EP2168910B1 (de) Verfahren zur Herstellung einer mikromechanischen SiC-Struktur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120103

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 595896

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010002261

Country of ref document: DE

Effective date: 20130321

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130430

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130511

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130130

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130430

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130130

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130130

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130501

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130130

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130130

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130130

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130130

BERE Be: lapsed

Owner name: ROBERT BOSCH G.M.B.H.

Effective date: 20130430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130130

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130130

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130130

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130130

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130130

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20131031

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010002261

Country of ref document: DE

Effective date: 20131031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130407

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140407

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130407

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100407

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130130

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 595896

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150407

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160422

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170407

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20190418

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190423

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190627

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010002261

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20200501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201103

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200501