EP2214421B1 - Bauelement mit einer mikromechanischen Mikrofonstruktur und Verfahren zum Betreiben eines solchen Bauelements - Google Patents

Bauelement mit einer mikromechanischen Mikrofonstruktur und Verfahren zum Betreiben eines solchen Bauelements Download PDF

Info

Publication number
EP2214421B1
EP2214421B1 EP20090178802 EP09178802A EP2214421B1 EP 2214421 B1 EP2214421 B1 EP 2214421B1 EP 20090178802 EP20090178802 EP 20090178802 EP 09178802 A EP09178802 A EP 09178802A EP 2214421 B1 EP2214421 B1 EP 2214421B1
Authority
EP
European Patent Office
Prior art keywords
membrane
electrode
counter
compensation
counter electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20090178802
Other languages
English (en)
French (fr)
Other versions
EP2214421A1 (de
Inventor
Jochen Reinmuth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2214421A1 publication Critical patent/EP2214421A1/de
Application granted granted Critical
Publication of EP2214421B1 publication Critical patent/EP2214421B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/005Electrostatic transducers using semiconductor materials

Definitions

  • the invention relates to a component with a micromechanical microphone structure.
  • This comprises at least one sound pressure deflectable membrane acting as a deflectable electrode, a fixed acoustically permeable counter element comprising a counter electrode, and means for applying a charging voltage between the membrane and the counter electrode.
  • the invention further relates to methods for operating such a device.
  • the sound pressure is usually detected in the form of a capacitance change between an acoustically active membrane and a substantially rigid counter electrode. If a relatively high charging voltage, for example of 10 V, is applied between the diaphragm and the counterelectrode and the measuring signal is read out via a high-impedance preamplifier, for example in the region of 10GOhm, the charge ratios between the diaphragm and counterelectrode change significantly more slowly than the frequency of the signal to be detected sound.
  • a relatively high charging voltage for example of 10 V
  • a micromechanical structure for receiving and / or generating acoustic signals is described.
  • a membrane is placed between two counter-elements such that it has a high mechanical stability.
  • the two-sided arrangement of the counter-elements can be used to allow a differential evaluation of the capacitance change due to the membrane movement.
  • the first counter-element can be used in addition to its function as an electrode for other mechanical or electrical functions, such as the electrical adjustment of sensitivity.
  • From the DE 10 2005 008 512 A1 is a micromechanical microphone module with a compensation circuit for preventing non-linear effects in the detection of large vibration amplitudes known.
  • the deflection of the diaphragm caused by the compensation circuit counteracts the deflection caused by the acoustic pressure, so that the diaphragm oscillates at a reduced amplitude or not at all.
  • the present invention proposes a very space-saving and robust micromechanical microphone structure with high measuring sensitivity, in which a relatively high charging voltage can be applied to the measuring capacitance with a comparatively small electrode spacing.
  • the microphone structure according to the invention comprises a second fixed and acoustically permeable counter element comprising a compensation electrode.
  • the membrane is disposed between the counter electrode and the compensation electrode.
  • means for applying a compensation voltage between the counter electrode and the compensation electrode are provided.
  • the microphone function of the component according to the invention can be realized in two metrologically different ways, both of which ensure a high measuring sensitivity and a low susceptibility to interference.
  • the compensation voltage between the counterelectrode and the compensating electrode is selected as a function of the charging voltage of the measuring capacitance in such a way that the electrical attraction between the diaphragm and the counterelectrode produced by the charging voltage is compensated by the compensation voltage.
  • the movable membrane is in a virtually potential-free space where no electrostatic forces act on the membrane and membrane deflections caused solely by the sound pressure. Therefore, the charging voltage for the measuring capacitance can be set here relatively high, even with a small electrode gap, in order to obtain a high measuring signal in the form of the voltage change between the membrane and the counterelectrode. An electrostatic collapse of the microphone structure is not to be feared.
  • the compensation voltage is regulated in a second advantageous operating variant, so that the movable membrane is kept as possible in its rest position even with sound effects.
  • the voltage between the counter electrode and the diaphragm which changes due to the sound pressure with the electrode spacing, is used as a control variable for the compensation voltage control.
  • a microphone signal serves the compensation voltage.
  • the two counter elements additionally form a mechanical protection for the movable and thus also sensitive diaphragm of the microphone structure arranged therebetween.
  • the microphone structure proposed here is therefore also advantageous in mechanical terms.
  • the microphone structure may be constructed, for example, mirror-symmetrical to the membrane, in the sense that the membrane is arranged centrally between the two counter-elements and the two counter-elements have a substantially identical structure.
  • the component structure according to the invention enables different operating variants for the realization of the microphone function. Both variants described above are based on a suitable choice or regulation of the compensation voltage.
  • electrical parameters such as charging voltage or tapped voltage between counter electrode and membrane
  • structural parameters such as distance to the rest position of the membrane and hole or grid structure, taken into account.
  • the membrane surfaces and / or the membrane facing surface of the first and / or second counter element are provided with a dielectric coating to avoid a short circuit within the microphone structure even in overload situations.
  • the microphone structure can also comprise an overload protection in the form of stops, which are formed in the surfaces of the membrane and / or in the membrane-facing surface of the first and / or second counter-element. It is particularly advantageous if these stops are arranged in a region, such as the edge region of the microphone structure, where the stops and the surface opposite them can be set to a defined potential. In this case, there is no short-circuit between the membrane and the counter electrode or compensation electrode when placing the stops.
  • This in Fig. 1 illustrated component 10 includes a micromechanical microphone structure, which is formed in a layer structure.
  • This microphone structure consists essentially of a deflectable by the sound pressure membrane 11, which is arranged between two fixed and acoustically permeable counter-elements 12 and 13.
  • the membrane 11 is electrically insulated by insulation layers against both counter elements 12 and 13.
  • Both the membranes 11 and the two counter-elements 12 and 13 are at least partially made of an electrically conductive material, such as a correspondingly doped polysilicon or silicon substrate.
  • the counter element 12, which is arranged in the layer structure over the membrane 11, here comprises a counter electrode 22 for the membrane 11, which acts as a deflectable electrode. Together they form a measuring capacity which is charged by means not shown here for applying a charging voltage. So can deflections the membrane 11 are detected as capacitance changes or fluctuations of a voltage tapped at the measuring capacitance.
  • the second counter element 13 is formed in the component substrate 1 below the diaphragm 11 and comprises a compensation electrode 33.
  • the component 10 comprises means for applying and regulating a compensation voltage between the counter electrode 22 and the compensation electrode 33. These means are likewise not shown here .
  • the compensation voltage is selected such that the electrostatic attraction between the membrane 11 and the counterelectrode 22 caused by the state of charge of the measuring capacitance is canceled by a corresponding potential difference to the compensation electrode 33 and the diaphragm 11 is deflected exclusively due to the sound pressure.
  • the compensation voltage is regulated as a function of the voltage tapped off at the measuring capacitance, ie as a function of the diaphragm deflection, in such a way that the diaphragm 11 is held in its rest position as far as possible.
  • the sound pressure acting on the membrane 11 is also compensated with the aid of the compensation voltage.
  • the compensation voltage is used as a microphone signal.
  • the counter-elements 12 and 13 are in the illustrated embodiment significantly thicker than the membrane 11 and thus substantially rigid. Both counter-elements 12 and 13 have the same lattice structure with passage openings 121 and 131, so that the counter-elements 12 and 13 are equally acoustically permeable and only the centrally disposed between the counter-elements 12 and 13 membrane 11 is acoustically active.
  • a counter element can also be realized in a thinner polysilicon layer, which is more rigidly suspended than the membrane in the layer structure.
  • Another possibility is to realize a counter element in the form of a layer stack of polysilicon and oxide or nitride, which is under tensile stress.
  • the microphone structure of the component 10 includes a mechanical overload protection in the form of stops 122 and 112. These are to prevent sticking and burning of the membrane 11 on the counter electrode 22 on the one hand or on the compensation electrode 33 on the other.
  • the stops 122 are formed in the edge region 124 of the counter element 12 on its underside
  • the stops 112 are formed in the edge region of the membrane 11 on its underside.
  • the stops 122 and 112 form the contact surfaces between the diaphragm 11 and the counter-elements 12 and 13 of the microphone structure. The smaller these contact surfaces, the lower the adhesive force between these components and, accordingly, the force required to bring the membrane 11 back to its original position.
  • the stops 122 and 112 may be made of, or at least coated with, a dielectric material such as SiN or silicon-rich nitride so as to prevent a short circuit between the diaphragm 11 and one of the mating elements 12 or 13 in overload situations. As a result, not only the microphone structure but also the electronics of the component 10 are protected.
  • a dielectric material such as SiN or silicon-rich nitride
  • FIG. 2 Another way to prevent a short circuit between the individual components of the microphone structure is through Fig. 2 illustrating the potential conditions within the microphone structure.
  • the measuring capacitance is charged with a relatively high charging voltage.
  • the counter electrode 12 and the diaphragm 11 with the stops 112 are at different electrical potentials.
  • the size of the potential difference is in Fig. 2 represented by the different hatch width.
  • Fig. 2 also clarifies that the edge regions 124 and 134 of the counter-elements 12 and 13 by isolation trenches 125 and 135 of the electrode portions of the counter-elements 12 and 13 are electrically decoupled but mechanically connected to each other.
  • edge regions 124 and 134 can now either be placed on the membrane potential, or be placed from the outside to a potential which is very close to the membrane potential. Since the stops 122 of the counter element 12 are formed in the edge region 124 and the stops 112 of the membrane 11 in overload situations only with the edge region 134 of the counter element 13 into contact, at most small currents between the membrane 11 and the counter-elements 12 and 13 can flow that neither cause a short circuit still sufficient for welding the membrane 11.
  • the manufacturing method is based on a substrate 1, such as a silicon wafer, on which first a first sacrificial layer 2 is deposited and patterned. In this case, a negative impression of the stops 112 of the membrane 11 is generated.
  • the sacrificial layer material is a thermal oxide or a TEOS oxide, which also forms an electrical insulation for individual layer regions within the scope of the component 10.
  • Fig. 3a shows the layer structure after the application of a further sacrificial layer 3, in which the structuring of the sacrificial layer 2 has transferred.
  • a polysilicon layer is deposited, doped and patterned as the membrane layer 4, as in FIG Fig. 3b shown.
  • a spring suspension for the membrane 11 can be realized in order to favor membrane deflections and thus to increase the microphone sensitivity.
  • a further sacrificial layer 5 is deposited and patterned, wherein a negative impression of the stops 122 of the counter-element 12 is generated.
  • Fig. 3c shows the layer structure after the application of a further sacrificial layer 6, in which the structuring of the sacrificial layer 5 has been transferred.
  • a polysilicon starter layer 7 is now deposited and patterned, which results in Fig. 3d is shown. This starting layer 7 is subsequently used for the generation of the counter element 12.
  • edge regions 124 and 134 of the counter-elements 12 and 13 and the definition of the contacts for the substrate 1, for the edge regions 124 and 134, for the compensation electrode 33 and the membrane 11 takes place here in an etching step following the structuring of the starting layer 7 Alternatively, you can but this also be done in advance by an appropriate structuring of the sacrificial layers 2, 3 and 5, 6.
  • a thick epi-polysilicon layer 8 is deposited on the layer structure after this etching step, which results in Fig. 3e is shown. From this epi-polysilicon layer 8, the fixed counter-element 12 is formed.
  • the epi-polysilicon layer 8 is doped and can also be planarized for better further processing in a CMP step.
  • the mating element can also be realized in a thinner polysilicon layer that is stiffer than the membrane, or in a layer stack of polysilicon and oxide or nitride, which is under tensile stress. In this way it can also be achieved that the counter element reacts less to sound waves than the membrane.
  • a metal layer or a metal layer stack can now be deposited and patterned. This can be done before the structuring of the counter-element 12 or the epi-polysilicon layer 8 or at a later time.
  • the epi-polysilicon layer 8 is patterned in a trench step starting from the front or upper side of the layer structure. In this case, the passage openings 121 and the isolation trenches 125 are generated, which is in Fig. 3f is shown.
  • the sacrificial layer 6 acts as a stop layer for this trench process.
  • the substrate 1 is first thinned. Then, the size and position of the second mating member 13 are defined by means of back masking. Finally, in a backside trenching process, the thickness of the second counter-element 13 or of the compensation electrode 33 is adjusted via the trenching depth.
  • the counter-element 13 is then patterned in a further trenching step, wherein on the one hand the through-openings 131 are produced and on the other hand the electrical decoupling of the edge region 134 via the isolation trenches 135. In this trenching step, the sacrificial layer serves 2 as an etch stop layer. The resulting layer structure is in Fig. 3g shown.
  • Fig. 3h shows the resulting component structure and corresponds essentially to the Fig. 1 ,
  • the backside trench process can also be run before the front side trench process.
  • the membrane is then completely released after the second trench step in a second etching step.
  • a dielectric coating of the membrane and / or the surfaces of the counter-elements facing the membrane may be realized by depositing a suitable material before or after the respective sacrificial layers are formed.
  • Suitable coating material is, for example, SiN or silicon-rich nitride, since its etching rate is significantly lower than that of the sacrificial layer material and the adhesive force between SiN or silicon-rich nitride and silicon is very low.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)

Description

    Stand der Technik
  • Die Erfindung betrifft ein Bauelement mit einer mikromechanischen Mikrofonstruktur. Diese umfasst mindestens eine durch den Schalldruck auslenkbare Membran, die als auslenkbare Elektrode fungiert, ein feststehendes akustisch durchlässiges Gegenelement, das eine Gegenelektrode umfasst, und Mittel zum Anlegen einer Ladespannung zwischen der Membran und der Gegenelektrode.
  • Die Erfindung betrifft ferner Verfahren zum Betreiben eines solchen Bauelements.
  • Bei den aus der Praxis bekannten MEMS(Micro-Electro-Mechanical-System)-Mikrofonen wird der Schalldruck meist in Form einer Kapazitätsänderung zwischen einer akustisch aktiven Membran und einer weitgehend starren Gegenelektrode erfasst.
    Wird eine relativ hohe Ladespannung, von beispielsweise 10V, zwischen Membran und Gegenelektrode angelegt und das Messsignal über einen Vorverstärker mit hoher Impedanz, beispielsweise im Bereich von 10GOhm, ausgelesen, so ändern sich die Ladungsverhältnisse zwischen Membran und Gegenelektrode deutlich langsamer als die Frequenz des zu erfassenden Schalls. Deshalb kann für diesen Fall in erster Näherung angenommen werden, dass die Ladung Q konstant bleibt und eine lineare Beziehung zwischen der Kapazität C bzw. Kapazitätsänderung und der abgreifbaren Spannung V besteht, nämlich Q=C·V.
    Bei Anwendung dieses Messprinzips muss also eine relativ hohe Ladespannung zwischen der Membran und der Gegenelektrode angelegt werden, um auch ein hohes Messsignal zu erhalten. Eine hohe Ladespannung führt allerdings auch zu starken anziehenden Kräften zwischen der beweglichen Membran und der starren Gegenelektrode. Um einen Kurzschluss und ein Anhaften der Membran an der Gegenelektrode zu vermeiden, wird in der Praxis entweder die Membran relativ steif aufgehängt oder der Abstand zwischen Membran und Gegenelektrode wird erhöht. Beide Maßnahmen wirken sich nachteilig auf die Empfindlichkeit des Mikrofons aus. Des Weiteren werden derartige MEMS-Mikrofone in der Regel mit Mitteln ausgestattet, durch die sich die Membran nach einem solchen Kollaps wieder in ihre Ruhestellung bringen lässt.
  • In der DE 10 2005 056 759 A1 wird eine mikromechanische Struktur zum Empfang und/oder zur Erzeugung von akustischen Signalen beschrieben. Dabei wird eine Membran derart zwischen zwei Gegenelementen platziert, dass sie eine große mechanische Stabilität aufweist. Durch die Verwendung von Elektroden auf bzw. in den beiden Gegenelementen sowie der Membran kann die beidseitige Anordnung der Gegenelemente dazu genutzt werden, eine differentielle Auswertung der Kapazitätsänderung aufgrund der Membranbewegung zu ermöglichen. Das erste Gegenelement kann neben seiner Funktion als Elektrode auch für andere mechanische oder elektrische Funktionen genutzt werden, z.B. zur elektrischen Einstellung der Empfindlichkeit.
  • Aus der DE 10 2005 008 512 A1 ist ein mikromechanisches Mikrofon-Modul mit einer Kompensationsschaltung zur Vermeidung nichtlinearer Effekte bei der Erfassung großer Schwingungsamplituden bekannt. Dabei wirkt die durch die Kompensationsschaltung hervorgerufene Auslenkung der Membran der durch den akustischen Druck verursachte Auslenkung entgegen, so dass die Membran mit einer verringerten Amplitude oder gar nicht schwingt.
  • Offenbarung der Erfindung
  • Mit der vorliegenden Erfindung wird eine sehr platzsparende und robuste mikromechanische Mikrofonstruktur mit hoher Messempfindlichkeit vorgeschlagen, bei der bei einem vergleichsweise geringen Elektrodenabstand eine relativ hohe Ladespannung an die Messkapazität angelegt werden kann.
  • Dazu umfasst die erfindungsgemäße Mikrofonstruktur ein zweites feststehendes und akustisch durchlässiges Gegenelement, das eine Kompensationselektrode umfasst. Die Membran ist zwischen der Gegenelektrode und der Kompensationselektrode angeordnet. Zudem sind Mittel zum Anlegen einer Kompensationsspannung zwischen der Gegenelektrode und der Kompensationselektrode vorgesehen.
  • Mit Hilfe der Kompensationselektrode lässt sich die Mikrofonfunktion des erfindungsgemäßen Bauelements auf zwei messtechnisch unterschiedliche Arten realisieren, die beide eine hohe Messempfindlichkeit und eine geringe Störanfälligkeit gewährleisten.
  • In einer ersten Betriebsvariante wird die Kompensationsspannung zwischen der Gegenelektrode und der Kompensationselektrode in Abhängigkeit von der Ladespannung der Messkapazität gewählt, und zwar so, dass die durch die Ladespannung erzeugte elektrische Anziehung zwischen der Membran und der Gegenelektrode durch die Kompensationsspannung ausgeglichen wird. Dadurch befindet sich die bewegliche Membran in einem nahezu potentialfreien Raum, wo keine elektrostatischen Kräfte auf die Membran wirken und Membranauslenkun-gen allein durch den Schalldruck verursacht werden. Deshalb kann die Ladespannung für die Messkapazität hier auch bei kleinem Elektrodenabstand relativ hoch angesetzt werden, um ein hohes Messsignal in Form der Spannungsänderung zwischen Membran und Gegenelektrode zu erhalten. Ein elektrostatisch bedingter Kollaps der Mikrofonstruktur ist dabei nicht zu befürchten.
  • Im Unterschied dazu wird die Kompensationsspannung bei einer zweiten vorteilhaften Betriebsvariante, so geregelt, dass die bewegliche Membran auch bei Schalleinwirkungen möglichst in ihrer Ruhelage gehalten wird. In diesem Fall wird die Spannung zwischen der Gegenelektrode und der Membran, die sich aufgrund des Schalldrucks mit dem Elektrodenabstand ändert, als Stellgröße für die Regelung der Kompensationsspannung verwendet. Als Mikrofonsignal dient hier die Kompensationsspannung. Auch bei dieser Variante kann mit relativ hohen Ladespannungen bei vergleichsweise geringem Elektrodenabstand gearbeitet werden. Zudem erweist sie sich als besonders unempfindlich gegenüber elektromagnetischen Störsignalen.
  • Neben den voranstehend erörterten elektrisch messtechnischen Vorteilen des erfindungsgemäßen Bauelements sei an dieser Stelle noch erwähnt, dass die beiden Gegenelemente zudem einen mechanischen Schutz für die dazwischen angeordnete bewegliche und damit auch empfindliche Membran der Mikrofonstruktur bilden. Die hier vorgeschlagene Mikrofonstruktur ist also auch in mechanischer Hinsicht vorteilhaft.
  • Grundsätzlich gibt es verschiedene Möglichkeiten für die Realisierung der erfindungsgemäßen Mikrofonstruktur.
  • So kann die Mikrofonstruktur beispielsweise spiegelsymmetrisch zur Membran aufgebaut sein, in dem Sinne, dass die Membran mittig zwischen den beiden Gegenelementen angeordnet ist und die beiden Gegenelemente eine im wesentlichen gleiche Struktur aufweisen.
  • Bei bestimmten Anwendungen kann es sich aber auch als günstig erweisen, unterschiedliche Abstände zwischen Gegenelektrode und Membran und zwischen Kompensationselektrode und Membran vorzusehen, um eine höhere Mikrofonempfindlichkeit zu erreichen.
  • Ebenso kann es anwendungsbedingt von Vorteil sein, die Gegenelektrode und die Kompensationselektrode mit unterschiedlichen Loch- bzw. Gittergeometrien zu realisieren.
  • Wie bereits erläutert, ermöglicht die erfindungsgemäße Bauelementstruktur unterschiedliche Betriebsvarianten zur Realisierung der Mikrofonfunktion. Beide voranstehend beschriebenen Varianten beruhen auf einer geeigneten Wahl bzw. Regelung der Kompensationsspannung. Vorteilhafterweise werden dabei neben elektrischen Parametern, wie Ladespannung bzw. abgegriffenen Spannung zwischen Gegenelektrode und Membran, auch strukturbedingte Parameter, wie Abstand zur Ruhelage der Membran und Loch- bzw. Gitterstruktur, berücksichtigt. Insbesondere bei einem asymmetrischen Aufbau der Mikrofonstruktur ist es oftmals sinnvoll, die Gegenelektrode und die Kompensationselektrode auf unterschiedliche elektrische Potentiale zu legen.
  • In einer vorteilhaften Ausgestaltung des erfindungsgemäßen Bauelements sind die Membranoberflächen und/oder die der Membran zugewandte Oberfläche des ersten und/oder zweiten Gegenelements mit einer dielektrischen Beschichtung versehen, um auch in Überlastsituationen einen Kurzschluss innerhalb der Mikrofonstruktur zu vermeiden.
  • Des Weiteren kann die Mikrofonstruktur auch einen Überlastschutz in Form von Anschlägen umfassen, die in den Oberflächen der Membran und/oder in der der Membran zugewandten Oberfläche des ersten und/oder zweiten Gegenelements ausgebildet sind. Von besonderem Vorteil ist es, wenn diese Anschläge in einem Bereich, wie z.B. dem Randbereich der Mikrofonstruktur, angeordnet sind, wo die Anschläge und die ihnen gegenüberliegende Oberfläche auf ein definiertes Potential gelegt werden können. In diesem Fall tritt beim Aufsetzten der Anschläge kein Kurzschluss zwischen Membran und Gegenelektrode oder Kompensationselektrode auf.
  • Kurze Beschreibung der Zeichnungen
  • Wie bereits voranstehend erörtert, gibt es verschiedene Möglichkeiten, die Lehre der vorliegenden Erfindung in vorteilhafter Weise auszugestalten und weiterzubilden. Dazu wird einerseits auf die dem unabhängigen Patentanspruch 1 nachgeordneten Patentansprüche verwiesen und andererseits auf die nachfolgende Beschreibung eines Ausführungsbeispiels der Erfindung. Anhand der Figuren wird auch das beanspruchte Herstellungsverfahren näher erläutert.
  • Fig. 1
    zeigt eine schematische Schnittdarstellung eines Bauelements 10 mit einer erfindungsgemäßen Mikrofonstruktur,
    Fig. 2
    veranschaulicht die Potentialverhältnisse innerhalb der Mikrofon- struktur des Bauelements 10, und
    Fig. 3a bis 3h
    veranschaulichen die einzelnen Verfahrensschritte zur Herstel- lung des Bauelements 10 anhand von schematischen Schnitt- darstellungen.
    Ausführungsformen der Erfindung
  • Das in Fig. 1 dargestellte Bauelement 10 umfasst eine mikromechanische Mikrofonstruktur, die in einem Schichtaufbau ausgebildet ist. Diese Mikrofonstruktur besteht im Wesentlichen aus einer durch den Schalldruck auslenkbaren Membran 11, die zwischen zwei feststehenden und akustisch durchlässigen Gegenelementen 12 und 13 angeordnet ist. Die Membran 11 ist über Isolationsschichten gegen beide Gegenelemente 12 und 13 elektrisch isoliert. Sowohl die Membranen 11 als auch die beiden Gegenelemente 12 und 13 bestehen zumindest bereichsweise aus einem elektrisch leitfähigen Material, wie z.B. einem entsprechend dotierten Polysilizium oder Siliziumsubstrat. Das Gegenelement 12, das im Schichtaufbau über der Membran 11 angeordnet ist, umfasst hier eine Gegenelektrode 22 für die Membran 11, die als auslenkbare Elektrode fungiert. Zusammen bilden sie eine Messkapazität, die mit Hilfe von hier nicht dargestellten Mitteln zum Anlegen einer Ladespannung aufgeladen wird. So können Auslenkungen der Membran 11 als Kapazitätsänderungen bzw. Schwankungen einer an der Messkapazität abgegriffenen Spannung erfasst werden.
  • Das zweite Gegenelement 13 ist im vorliegenden Ausführungsbeispiel im Bauelementsubstrat 1 unterhalb der Membran 11 ausgebildet und umfasst eine Kompensationselektrode 33. Dazu umfasst das Bauelement 10 Mittel zum Anlegen und Regeln einer Kompensationsspannung zwischen der Gegenelektrode 22 und der Kompensationselektrode 33. Diese Mittel sind hier ebenfalls nicht dargestellt.
    In einer ersten Betriebsvariante wird die Kompensationsspannung so gewählt, dass die durch den Ladezustand der Messkapazität bedingte elektrostatische Anziehung zwischen der Membran 11 und der Gegenelektrode 22 durch eine entsprechende Potentialdifferenz zur Kompensationselektrode 33 aufgehoben wird und die Membran 11 ausschließlich aufgrund des Schalldrucks ausgelenkt wird. In einer alternativen Betriebsvariante wird die Kompensationsspannung in Abhängigkeit von der an der Messkapazität abgegriffenen Spannung, d.h. in Abhängigkeit von der Membranauslenkung, geregelt, und zwar so, dass die Membran 11 möglichst in ihrer Ruhestellung gehalten wird. In diesem Fall wird mit Hilfe der Kompensationsspannung auch der auf die Membran 11 wirkende Schalldruck kompensiert. Als Mikrofonsignal wird hier die Kompensationsspannung genutzt.
  • Die Gegenelemente 12 und 13 sind im hier dargestellten Ausführungsbeispiel deutlich dicker als die Membran 11 und damit im Wesentlichen starr. Beide Gegenelemente 12 und 13 weisen die gleiche Gitterstruktur mit Durchgangsöffnungen 121 bzw. 131 auf, so dass die Gegenelemente 12 und 13 gleichermaßen akustisch durchlässig sind und nur die mittig zwischen den Gegenelementen 12 und 13 angeordnete Membran 11 akustisch aktiv ist.
    Um zu erreichen, dass die Gegenelemente deutlich weniger auf Schallwellen reagieren als die Membran, kann ein Gegenelement aber auch in einer dünneren Polysiliziumschicht realisiert werden, die steifer als die Membran im Schichtaufbau aufgehängt ist. Eine weitere Möglichkeit besteht darin, ein Gegenelement in Form eines Schichtstapels aus Polysilizium und Oxid bzw. Nitrid zu realisieren, der unter Zugstress steht.
  • Die Mikrofonstruktur des Bauelements 10 umfasst einen mechanischen Überlastschutz in Form von Anschlägen 122 und 112. Diese sollen ein Anhaften und Festbrennen der Membran 11 an der Gegenelektrode 22 einerseits oder an der Kompensationselektrode 33 andererseits verhindern. So sind die Anschläge 122 im Randbereich 124 des Gegenelements 12 an dessen Unterseite ausgebildet, während die Anschläge 112 im Randbereich der Membran 11 an deren Unterseite ausgebildet sind. Im Falle von Überlastsituationen bilden die Anschläge 122 und 112 die Berührungsflächen zwischen der Membran 11 und den Gegenelementen 12 und 13 der Mikrofonstruktur. Je kleiner diese Berührungsflächen sind, um so geringer ist die Haftkraft zwischen diesen Komponenten und dementsprechend auch die Kraft, die erforderlich ist, um die Membran 11 wieder in ihre Ausgangslage zu bringen. Die Anschläge 122 und 112 können aus einem dielektrischen Material, wie beispielsweise aus SiN oder aus siliziumreichem Nitrid, bestehen oder zumindest mit einem solchen beschichtet sein, um so in Überlastsituationen einen Kurzschluss zwischen der Membran 11 und einem der Gegenelemente 12 oder 13 zu verhindern. Dadurch wird neben der Mikrofonstruktur auch die Elektronik des Bauelements 10 geschützt.
  • Eine weitere Möglichkeit zur Verhinderung eines Kurzschlusses zwischen den einzelnen Komponenten der Mikrofonstruktur wird durch Fig. 2 veranschaulicht, die die Potentialverhältnisse innerhalb der Mikrofonstruktur wiedergibt. Bei beiden voranstehend beschriebenen Betriebsvarianten wird die Messkapazität mit einer relativ hohen Ladespannung aufgeladen. Dementsprechend befinden sich die Gegenelektrode 12 und die Membran 11 mit den Anschlägen 112 auf unterschiedlichen elektrischen Potentialen. Die Größe der Potentialdifferenz ist in Fig. 2 durch die unterschiedliche Schraffurbreite dargestellt. Fig. 2 verdeutlicht außerdem, dass die Randbereiche 124 und 134 der Gegenelemente 12 und 13 durch Isolationsgräben 125 und 135 von den Elektrodenbereichen der Gegenelemente 12 und 13 elektrisch abgekoppelt aber mechanisch miteinander verbunden sind. Diese Randbereiche 124 und 134 können nun entweder auf das Membranpotential gelegt werden, oder von außen auf ein Potential gelegt werden, das sehr nahe am Membranpotential liegt. Da die Anschläge 122 des Gegenelements 12 im Randbereich 124 ausgebildet sind und die Anschläge 112 der Membran 11 in Überlastsituationen lediglich mit dem Randbereich 134 des Gegenelements 13 in Berührung treten, können hier allenfalls geringe Ströme zwischen der Membran 11 und den Gegenelementen 12 bzw. 13 fließen, die weder einen Kurzschluss verursachen noch zum Anschweißen der Membran 11 ausreichen.
  • Die Herstellung des in den Figuren 1 und 2 dargestellten Bauelements 10 wird nachfolgend anhand der Figuren 3a bis 3h erläutert.
  • Das Herstellungsverfahren geht von einem Substrat 1 aus, wie z.B. einem Siliziumwafer, auf dem zunächst eine erste Opferschicht 2 abgeschieden und strukturiert wird. Dabei wird ein Negativabdruck der Anschläge 112 der Membran 11 erzeugt. Typischerweise handelt es sich bei dem Opferschichtmaterial um ein thermisches Oxid oder ein TEOS-Oxid, das im Rahmen des Bauelements 10 auch eine elektrische Isolation für einzelne Schichtbereiche bildet. Fig. 3a zeigt den Schichtaufbau nach dem Aufbringen einer weiteren Opferschicht 3, in die sich die Strukturierung der Opferschicht 2 übertragen hat.
  • Nun wird eine Polysiliziumschicht als Membranschicht 4 abgeschieden, dotiert und strukturiert, wie in Fig. 3b dargestellt. Dabei kann auch eine Federaufhängung für die Membran 11 realisiert werden, um Membranauslenkungen zu begünstigen und so die Mikrofonempfindlichkeit zu steigern.
  • Auf der strukturierten Membranschicht 4 wird eine weitere Opferschicht 5 abgeschieden und strukturiert, wobei ein Negativabdruck der Anschläge 122 des Gegenelements 12 erzeugt wird. Fig. 3c zeigt den Schichtaufbau nach dem Aufbringen einer weiteren Opferschicht 6, in die sich die Strukturierung der Opferschicht 5 übertragen hat.
  • Im hier beschriebenen Ausführungsbeispiel wird nun eine Polysilizium-Startschicht 7 abgeschieden und strukturiert, was in Fig. 3d dargestellt ist. Diese Startschicht 7 wird nachfolgend für die Erzeugung des Gegenelements 12 genutzt.
  • Die Definition der Randbereiche 124 und 134 der Gegenelemente 12 und 13 und die Definition der Kontakte für das Substrat 1, für die Randbereiche 124 und 134, für die Kompensationselektrode 33 und die Membran 11 erfolgt hier in einem Ätzschritt im Anschluss an die Strukturierung der Startschicht 7. Alternativ kann dies aber auch schon vorher durch eine entsprechende Strukturierung der Opferschichten 2, 3 und 5, 6 vorgenommen werden.
  • Im hier beschriebenen Ausführungsbeispiel wird nach diesem Ätzschritt eine dicke Epi-Polysiliziumschicht 8 auf dem Schichtaufbau abgeschieden, was in Fig. 3e dargestellt ist. Aus dieser Epi-Polysiliziumschicht 8 wird das feststehende Gegenelement 12 herausgebildet. Dazu wird die Epi-Polysiliziumschicht 8 dotiert und kann außerdem noch zur besseren Weiterverarbeitung in einem CMP-Schritt planarisiert werden.
    Alternativ dazu kann das Gegenelement auch in einer dünneren Polysiliziumschicht realisiert werden, die steifer als die Membran aufgehängt ist, oder in einem Schichtstapel aus Polysilizium und Oxid bzw. Nitrid, der unter Zugstress steht. Auf diese Weise kann ebenfalls erreicht werden, dass das Gegenelement weniger auf Schallwellen reagiert als die Membran.
  • Zur späteren elektrischen Kontaktierung kann nun eine Metallschicht oder ein Metallschichtstapel abgeschieden und strukturiert werden. Dies kann noch vor der Strukturierung des Gegenelements 12 bzw. die Epi-Polysiliziumschicht 8 erfolgen oder auch zu einem späteren Zeitpunkt.
  • Die Epi-Polysiliziumschicht 8 wird in einem von der Vorderseite bzw. Oberseite des Schichtaufbaus ausgehenden Trenchschritt strukturiert. Dabei werden die Durchgangsöffnungen 121 sowie die Isolationsgräben 125 erzeugt, was in Fig. 3f dargestellt ist. Die Opferschicht 6 wirkt als Stoppschicht für diesen Trenchprozess.
  • Nachfolgend wird die Bearbeitung der Substratrückseite beschrieben, die innerhalb der Prozessfolge auch vorgezogen werden kann.
    In der Regel wird das Substrat 1 zunächst abgedünnt. Dann werden die Größe und Lage des zweiten Gegenelements 13 mit Hilfe einer Rückseitenmaskierung definiert. In einem Rückseiten-Trenchprozess wird schließlich über die Trenchtiefe noch die Dicke des zweiten Gegenelements 13 bzw. der Kompensationselektrode 33 eingestellt. Das Gegenelement 13 wird dann in einem weiteren Trenchschritt strukturiert, wobei zum einen die Durchgangsöffnungen 131 erzeugt werden und zum anderen die elektrische Entkopplung des Randbereichs 134 über die Isolationsgräben 135. Bei diesem Trenchschritt dient die Opferschicht 2 als Ätzstoppschicht. Der resultierende Schichtaufbau ist in Fig. 3g dargestellt.
  • Schließlich wird noch die Membran 11 freigelegt, indem das Opferschichtmaterial beispielsweise mit Hilfe von HF oder in einem Gasphasenätzverfahren rund um die Membran 11 entfernt wird. Dabei werden die Durchgangsöffnungen 121, 131 und die Isolationsgräben 125 und 135 als Ätzzugänge genutzt. Fig. 3h zeigt die dabei entstehende Bauelementstruktur und entspricht im Wesentlichen der Fig. 1.
  • An dieser Stelle sei angemerkt, dass auch Abweichungen von der voranstehend beschriebenen Prozessfolge möglich sind. So kann der rückseitige Trenchprozess auch vor dem Vorderseiten-Trenchprozess gefahren werden. Außerdem kann es sich als günstig erweisen, bereits nach dem ersten Trenchschritt einen Teil des Opferschichtmaterials zu entfernen. Die Membran wird dann nach dem zweiten Trenchschritt in einem zweiten Ätzschritt vollständig freigestellt. Eine dielektrische Beschichtung der Membran und/oder der Oberflächen der Gegenelemente, die der Membran zugewandt sind, kann durch Abscheidung eines geeigneten Materials vor bzw. nach dem Erzeugen der jeweiligen Opferschichten realisiert werden. Als Beschichtungsmaterial eignet sich beispielsweise SiN oder siliziumreiches Nitrid, da dessen Ätzrate deutlich geringer ist, als die des Opferschichtmaterials und die Haftkraft zwischen SiN bzw. siliziumreichem Nitrid und Silizium sehr gering ist.

Claims (10)

  1. Bauelement (10) mit einer mikromechanischen Mikrofonstruktur, mindestens umfassend
    - eine durch den Schalldruck auslenkbare Membran (11), die als auslenkbare Elektrode fungiert,
    - ein feststehendes akustisch durchlässiges Gegenelement (12), das mindestens eine Gegenelektrode (22) umfasst, und
    - Mittel zum Anlegen einer Ladespannung zwischen der Membran (11) und der Gegenelektrode (22); und
    - ein zweites feststehendes und akustisch durchlässiges Gegenelement (13), das mindestens eine Kompensationselektrode (33) umfasst, wobei die Membran (11) zwischen der Gegenelektrode (22) und der Kompensationselektrode (33) angeordnet ist; und
    - Mittel zum Anlegen einer Kompensationsspannung zwischen der
    Gegenelektrode (22) und der Kompensationselektrode (33);
    dadurch gekennzeichnet, dass
    die Kompensationsspannung (33) eine Abhängigkeit
    - von der zwischen der Membran und der Gegenelektrode angelegten Ladespannung oder
    - von der zwischen der Membran und der Gegenelektrode anliegenden
    durch die Auslenkung veränderte Spannung
    aufweist.
  2. Bauelement nach Anspruch 1, dadurch gekennzeichnet, dass die Mikrofonstruktur im wesentlichen spiegelsymmetrisch zur Membran ist.
  3. Bauelement nach Anspruch 1, dadurch gekennzeichnet, dass der Abstand zwischen der Gegenelektrode und der Membran und der Abstand zwischen der Kompensationselektrode und der Membran unterschiedlich sind.
  4. Bauelement nach Anspruch 3, dadurch gekennzeichnet, dass die Gegenelektrode und die Kompensationselektrode mit unterschiedlichen Loch- bzw. Gittergeometrien realisiert sind.
  5. Bauelement nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Membranoberflächen und/oder die der Membran zugewandte Oberfläche des ersten und/oder zweiten Gegenelements mit einer dielektrischen Beschichtung versehen sind.
  6. Bauelement (10) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Mikrofonstruktur einen Überlastschutz in Form von Anschlägen (112,122) umfasst, die in den Oberflächen der Membran (11) und/oder in der der Membran (11) zugewandten Oberfläche des ersten und/oder zweiten Gegenelements (12) ausgebildet sind.
  7. Bauelement nach Anspruch 6, dadurch gekennzeichnet, dass die Anschläge (122) in einem elektrischen isolierten Bereich (124) angeordnet sind, so dass sie auf ein definiertes Potential gelegt werden können, insbesondere auf das Potential der Membran (11) oder ein Potential, das sich nur wenig vom Potential der Membran (11) unterscheidet.
  8. Verfahren zum Betreiben eines Bauelements mit einer mikromechanischen Mikrofonstruktur mit
    - mit einer akustisch aktiven Membran (11), die zwischen zwei feststehenden und akustisch durchlässigen Gegenelementen (12, 13) angeordnet ist, wobei das eine Gegenelement (12) mindestens eine Gegenelektrode (22) umfasst und das andere Gegenelement (13) mindestens eine Kompensationselektrode (33) umfasst,
    - mit Mitteln zum Anlegen einer Ladespannung zwischen der Membran (11) und der Gegenelektrode (22) und
    - mit Mitteln zum Anlegen einer Kompensationsspannung zwischen
    der Gegenelektrode (22) und der Kompensationselektrode (33);
    dadurch gekennzeichnet, dass die Kompensationsspannung so gewählt wird, dass die durch die Ladespannung bedingten elektrostatischen Anziehungskräfte zwischen der Gegenelektrode (22) und der Membran (11) aufgehoben werden, und dass die sich aufgrund der Auslenkung der Membran (11) ändernde Spannung zwischen der Gegenelektrode (22) und der Membran (11) als Mikrofonsignal abgegriffen wird.
  9. Verfahren zum Betreiben eines Bauelements mit einer mikromechanischen Mikrofonstruktur mit
    - mit einer akustisch aktiven Membran (11), die zwischen zwei feststehenden und akustisch durchlässigen Gegenelementen (12, 13) angeordnet ist, wobei das eine Gegenelement (12) mindestens eine Gegenelektrode (22) umfasst und das andere Gegenelement (13) mindestens eine Kompensationselektrode (33) umfasst,
    - mit Mitteln zum Anlegen einer Ladespannung zwischen der Membran (11) und der Gegenelektrode (22) und
    - mit Mitteln zum Anlegen und Regeln einer Kompensationsspannung zwischen der Gegenelektrode (22) und der Kompensationselektrode (33);
    dadurch gekennzeichnet, dass die sich aufgrund der Auslenkung der Membran (11) ändernde Spannung zwischen der Gegenelektrode (22) und der Membran (11) als Stellgröße für die Regelung der Kompensationsspannung abgegriffen wird und dass die Kompensationsspannung so geregelt wird, dass die Membran (11) möglichst in ihrer Ruhelage gehalten wird.
  10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass die Abstände der Gegenelektrode (22) und der Kompensationselektrode (33) zur Ruhelage der Membran (11) und/oder deren Loch- bzw. Gittergeometrien bei der Wahl bzw. Regelung der Kompensationsspannung berücksichtigt werden.
EP20090178802 2009-02-03 2009-12-11 Bauelement mit einer mikromechanischen Mikrofonstruktur und Verfahren zum Betreiben eines solchen Bauelements Active EP2214421B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200910000583 DE102009000583A1 (de) 2009-02-03 2009-02-03 Bauelement mit einer mikromechanischen Mikrofonstruktur und Verfahren zum Betreiben eines solchen Bauelements

Publications (2)

Publication Number Publication Date
EP2214421A1 EP2214421A1 (de) 2010-08-04
EP2214421B1 true EP2214421B1 (de) 2014-04-23

Family

ID=42125022

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20090178802 Active EP2214421B1 (de) 2009-02-03 2009-12-11 Bauelement mit einer mikromechanischen Mikrofonstruktur und Verfahren zum Betreiben eines solchen Bauelements

Country Status (2)

Country Link
EP (1) EP2214421B1 (de)
DE (1) DE102009000583A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021206005A1 (de) 2021-06-14 2022-12-15 Robert Bosch Gesellschaft mit beschränkter Haftung Mikromechanisches Bauteil für eine Mikrofonvorrichtung

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2681928A1 (de) 2011-03-04 2014-01-08 Sony Mobile Communications AB Verfahren zur ansteuerung einer kondensatormikrofons
WO2012119637A1 (en) * 2011-03-04 2012-09-13 Epcos Ag Microphone and method to position a membrane between two backplates
US20130028459A1 (en) * 2011-07-28 2013-01-31 Yunlong Wang Monolithic Silicon Microphone
US8625823B2 (en) 2011-07-12 2014-01-07 Robert Bosch Gmbh MEMS microphone overtravel stop structure
US8723277B2 (en) * 2012-02-29 2014-05-13 Infineon Technologies Ag Tunable MEMS device and method of making a tunable MEMS device
ITTO20130225A1 (it) 2013-03-21 2014-09-22 St Microelectronics Srl Struttura sensibile microelettromeccanica per un trasduttore acustico capacitivo includente un elemento di limitazione delle oscillazioni di una membrana, e relativo processo di fabbricazione
ITTO20130540A1 (it) 2013-06-28 2014-12-29 St Microelectronics Srl Dispositivo mems dotato di membrana sospesa e relativo procedimento di fabbricazione
US9628886B2 (en) 2013-08-26 2017-04-18 Infineon Technologies Ag MEMS device
US9369804B2 (en) 2014-07-28 2016-06-14 Robert Bosch Gmbh MEMS membrane overtravel stop
DE102017204006B3 (de) 2017-03-10 2018-08-02 Infineon Technologies Ag MEMS-Schallwandler, MEMS-Mikrophon und Verfahren zum Bereitstellen eines MEMS-Schallwandlers
DE102017206777B4 (de) 2017-04-21 2018-06-14 Robert Bosch Gmbh MEMS-Mikrofon sowie Herstellungsverfahren

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005008512B4 (de) * 2005-02-24 2016-06-23 Epcos Ag Elektrisches Modul mit einem MEMS-Mikrofon
DE102005056759A1 (de) * 2005-11-29 2007-05-31 Robert Bosch Gmbh Mikromechanische Struktur zum Empfang und/oder zur Erzeugung von akustischen Signalen, Verfahren zur Herstellung einer mikromechanischen Struktur und Verwendung einer mikromechanischen Struktur

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021206005A1 (de) 2021-06-14 2022-12-15 Robert Bosch Gesellschaft mit beschränkter Haftung Mikromechanisches Bauteil für eine Mikrofonvorrichtung

Also Published As

Publication number Publication date
EP2214421A1 (de) 2010-08-04
DE102009000583A1 (de) 2010-08-05

Similar Documents

Publication Publication Date Title
EP2214421B1 (de) Bauelement mit einer mikromechanischen Mikrofonstruktur und Verfahren zum Betreiben eines solchen Bauelements
EP2460365B1 (de) Bauelement mit einer mikromechanischen mikrofonstruktur und verfahren zur herstellung eines solchen bauelements
DE102017212613B4 (de) MEMS-Bauelement und Herstellungsverfahren für ein MEMS-Bauelement
DE102006055147B4 (de) Schallwandlerstruktur und Verfahren zur Herstellung einer Schallwandlerstruktur
DE102006011545B4 (de) Mikromechanisches Kombi-Bauelement und entsprechendes Herstellungsverfahren
DE102012206531B4 (de) Verfahren zur Erzeugung einer Kavität innerhalb eines Halbleitersubstrats
DE102012210052A1 (de) Hybrid integriertes Bauteil und Verfahren zu dessen Herstellung
DE102004061796A1 (de) Mikromechanisches kapazitives Sensorelement
DE102009026682A9 (de) Bauelement mit einer mikromechanischen Mikrofonstruktur und Verfahren zu dessen Herstellung
DE102015206863B3 (de) Verfahren zur Herstellung einer Mikrofonstruktur und einer Drucksensorstruktur im Schichtaufbau eines MEMS-Bauelements
DE102013217312B4 (de) Kapazitives MEMS-Bauelement mit einer druckempfindlichen Membran
EP2029474A1 (de) Mikromechanisches bauelement und verfahren zu dessen herstellung
DE102017203722A1 (de) Mems und verfahren zum herstellen derselben
DE102008001185A1 (de) Verfahren zur Herstellung einer mikromechanischen Membranstruktur mit feststehendem Gegenelement
DE102010062555B4 (de) Mikromechanische Membranvorrichtung und entsprechendes Herstellungsverfahren sowie Membrananordnung
DE102017211080B3 (de) Mikromechanischer Sensor und Verfahren zum Herstellen eines mikromechanischen Sensors und eines mikromechanischen Sensorelements
EP2438004A2 (de) Halbleiterbauelement mit einer mikromechanischen mikrofonstruktur
DE102010061795A1 (de) Verfahren zum Erzeugen einer mikromechanischen Membranstruktur und MEMS-Bauelement
DE102012223605A1 (de) MEMS-Bauelement zum Erzeugen von Druckpulsen
DE102017200108A1 (de) Mikromechanische Schallwandleranordnung und ein entsprechendes Herstellungsverfahren
DE102013208688A1 (de) Sensiereinrichtung für eine mikromechanische Sensorvorrichtung
WO2016030040A1 (de) Mems-bauelement
EP2207364B1 (de) Bauelement mit einer mikromechanischen Mikrofonstruktur
DE102011002457A1 (de) Mikromechanische Mikrofoneinrichtung und Verfahren zum Herstellen einer mikromechanischen Mikrofoneinrichtung
DE102016210444A1 (de) Mikroelektromechanisches Mikrofon

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20110204

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140206

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 664428

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009009237

Country of ref document: DE

Effective date: 20140605

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140423

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140724

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140823

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140825

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009009237

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150126

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009009237

Country of ref document: DE

Effective date: 20150126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141211

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141211

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141211

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141211

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 664428

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141211

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091211

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20211220

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502009009237

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20211230

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230223

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221211