EP2422927A2 - Dispositif de mesure - Google Patents

Dispositif de mesure Download PDF

Info

Publication number
EP2422927A2
EP2422927A2 EP11005887A EP11005887A EP2422927A2 EP 2422927 A2 EP2422927 A2 EP 2422927A2 EP 11005887 A EP11005887 A EP 11005887A EP 11005887 A EP11005887 A EP 11005887A EP 2422927 A2 EP2422927 A2 EP 2422927A2
Authority
EP
European Patent Office
Prior art keywords
measuring
measuring head
measuring device
angle sensor
angular position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11005887A
Other languages
German (de)
English (en)
Other versions
EP2422927A3 (fr
Inventor
Raimund Volk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jenoptik Industrial Metrology Germany GmbH
Original Assignee
Hommel Etamic GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hommel Etamic GmbH filed Critical Hommel Etamic GmbH
Publication of EP2422927A2 publication Critical patent/EP2422927A2/fr
Publication of EP2422927A3 publication Critical patent/EP2422927A3/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B5/00Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor
    • B24B5/36Single-purpose machines or devices
    • B24B5/42Single-purpose machines or devices for grinding crankshafts or crankpins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/02Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent
    • B24B49/04Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent involving measurement of the workpiece at the place of grinding during grinding operation
    • B24B49/045Specially adapted gauging instruments

Definitions

  • the invention relates to a measuring device referred to in the preamble of claim 1, in particular for in-process measurement of specimens during a machining operation on a processing machine, in particular a grinding machine.
  • crankshafts In the manufacture of crankshafts, it is necessary to grind the crankpins of the crankshaft to size on a grinding machine. In order to ensure that the grinding process is terminated as soon as a desired level is reached, it is necessary to continuously check the crank pin during the machining process, in particular with regard to its diameter and roundness, during an in-process measuring process.
  • EP-A-0859689 discloses a corresponding measuring device.
  • a measuring device of the type in question is known, which is used for in-process measurement of crankpins during a grinding operation on a grinding machine.
  • the known measuring device has a measuring head, which is movable relative to a main body of the device between a rest position and a measuring position in which the measuring head is in Meßcard with the test object.
  • the known measuring device of the measuring head via a linkage about a first pivot axis pivotally connected to a main body of the measuring device.
  • the known measuring device further comprises means for pivoting the measuring head in the measuring position or from the measuring position.
  • the measuring head is pivoted into the measuring position by the means provided for this purpose, in which the measuring head, for example by means of a measuring prism, comes into contact with the crank pin to be measured.
  • the crank pin performs an orbital rotation about the axis of rotation of the crankshaft.
  • the grinding wheel remains in contact with the crank pin and is mounted for this purpose to be movable radially to the axis of rotation of the crankshaft.
  • the measuring head retraces the movements of the crankpin.
  • the main body of the measuring device is connected to a main body of the grinding machine, so that the measuring device is moved synchronously with the grinding wheel of the grinding machine during the grinding process in the radial direction of the crankshaft.
  • EP 1 063 052 B1 a measuring device is known in which at a connection point at which the measuring head is connected via a linkage to the main body of the measuring device, a rotary encoder is provided.
  • the invention has for its object to provide a measuring device referred to in the preamble of claim 1, in which the risk of measurement inaccuracies is reduced.
  • the invention initially assumes that the measuring head usually during the measuring his
  • Angular position relative to the test specimen changes, wherein the change in the angular position is an oscillatory movement corresponding to the kinematics, for example, a linkage, via which the measuring head is connected to the main body of the measuring device.
  • measured values which are equidistantly measured in the circumferential direction are assigned to equidistant points of the test object by a probe of the measuring head during a rotation of the test object about its axis of rotation.
  • measurements measured equidistantly by the measuring probe do not correspond circumferentially to equidistant circumferential points of the test object, but are displaced circumferentially in accordance with the oscillating angular position of the measuring head.
  • the invention is based on the idea to avoid measurement errors that arise in connection with this correction.
  • the rotational position of a crankshaft is detected and the correction of the angular position determined by calculation based on the predetermined by the mechanical conditions kinematics of the measuring head. This correction is based on the assumption that every rotational position of the crankshaft uniquely associated with an angular position of the measuring head.
  • the invention is detached from the idea of performing the correction by calculation. Rather, it is based on the idea of detecting angular position changes of the measuring head relative to the test object by means of an angle sensor adapted thereto and assigned to the measuring head. Accordingly, the invention provides that the measuring head is associated with an angle sensor for detecting the angular position of the measuring head, in particular angular position changes of the measuring head relative to the DUT, during a measuring operation.
  • angular position changes of the measuring head are detected by sensors.
  • the sensory detected angular position changes can be incorporated with high accuracy in the correction of the measured values or their assignment to peripheral locations of the test specimen.
  • the measuring device has the particular advantage that changes in the kinematics of the measuring head, resulting for example from wear of the measuring head connected to the main body of the measuring device linkage or occur in a conversion of the measuring device to adapt to a crankshaft with other dimensions, the correction Do not affect the assignment of the measured values. In this way, the accuracy in the correction of the assignment of the measured values can be increased.
  • Another advantage of the invention is that it can be used without modification when a component of a grinding machine to which the measuring device is attached moves during the measuring process. Corresponding movements of the device carrying the measuring device and thus the measuring device can be scheduled and desired. However, the movements may also be random and undesirable. Regardless of which cause corresponding movements, they do not affect the measurement accuracy of the measuring device according to the invention, because angular position changes due to the use of a separate and the measuring head associated sensor are detected regardless of their cause. In this way, the flexibility of the measuring device according to the invention is increased with respect to the use in cooperation with a processing machine.
  • the evaluation of the measured values recorded by a measuring probe of the measuring head takes place in that first the angular position change of the measuring head relative to the test object is compensated or corrected during the measuring process. Subsequently, the compensated or corrected measured values can be further processed for the reconstruction of, for example, the correction of the test object.
  • the angle sensor which is assigned to the measuring head according to the invention may be a machine-sensor-free operating angle sensor.
  • a machine-reference-free operating angle sensor an angle sensor understood that detects the angular position or angular position changes of the measuring head independently of a reference, which is defined by the measuring device or the machine tool.
  • those sensors whose operating principle is based on interaction with a magnetic field or the gravitational field of the earth are regarded as machine-angle-free operating angle sensors.
  • a sensor is considered as he from the prior art is known and sensed with the rotations of the specimen relative to the grinding machine, to calculate therefrom and a known kinematics of the measuring head during the measuring process starting angular position changes of the measuring head.
  • the measuring head is assigned a single angle sensor. If required or desired according to the respective requirements, at least two angle sensors can also be assigned to the measuring head.
  • the sensor principle of the inventively provided angle sensor can be selected according to the respective requirements and conditions within wide limits, as long as it is ensured that the angular position or angular position changes of the measuring head can be determined relative to the DUT during the measuring process with an accuracy corresponding to the application.
  • angle sensor is a tilt sensor.
  • Corresponding inclination sensors as a result represent an angle measuring device with respect to the earth's surface and measure the deviation from the horizontal or vertical. Reference here is the gravitational field of the earth, so that a corresponding sensor works machine reference free.
  • the angle sensor is an acceleration sensor.
  • An acceleration sensor measures the acceleration, for example, by determining the force of inertia acting on a test mass.
  • the static or dynamic acceleration can be used for this purpose.
  • corresponding acceleration sensors which are also known as accelerometers, B-knife and G-sensor are called, as relatively small, versatile and inexpensive standard components are available.
  • other inertial sensors may optionally be used instead of acceleration sensors.
  • the angle sensor has a fiber gyro, which is also referred to as a fiber optic gyroscope or IFOG (Interferometer Fiber-Optic Gyroscope).
  • a fiber gyro is also referred to as a fiber optic gyroscope or IFOG (Interferometer Fiber-Optic Gyroscope).
  • the working principle of a fiber gyro is the interference of two light beams circulating in opposite directions in a wound glass fiber.
  • a fiber gyroscope is based on the principle of the Sagnac interferometer.
  • Corresponding fiber gyros are also available as relatively inexpensive components. Since they do not operate completely drift-free during operation, a calibration is required to ensure that the measurement results recorded during a measurement process are not corrupted by drift effects.
  • a laser gyroscope can also be used whose function is also based on the Sagnac effect.
  • the mode of operation of a fiber gyro or laser gyro in detail is generally known to the person skilled in the art and will therefore not be explained in more detail here.
  • a modified with respect to the operating principle of the sensor further embodiment provides that the angle sensor is a magnetic field sensor.
  • the operating principle of such a magnetic field sensor may be, for example, that the position of a permanent magnet is detected, which moves in a magnetic field generated by a coil.
  • the construction of corresponding magnetic field sensors is generally known to the person skilled in the art and will therefore not be explained in any more detail here.
  • an optical sensor arrangement can be used with which the angular position or angular position changes of the measuring head are optically detected.
  • the arrangement of the angle sensor or the angle sensors can be selected according to the respective requirements within wide limits.
  • An advantageous embodiment provides so far that the angle sensor is arranged on the measuring device.
  • the angle sensor is arranged on the measuring head or a rigid or almost rigidly connected to the measuring head part of a linkage, via which the measuring head is connected to the main body of the measuring device.
  • the angle sensor is directly connected to the measuring head or a rigidly connected part of the linkage.
  • the angle sensor is connected to an evaluation device which determines the angular position or angular position changes of the measuring head 12 relative to the DUT as a function of at least one output signal of the angle sensor.
  • a sensor is connected, which determines the respective rotational position of a rotating during the measurement process around a rotation axis specimen. If the test object is, for example, a crankshaft which rotates about a rotation axis during a grinding process, then the respectively instantaneous rotational position of the crankshaft can be sensed by means of a corresponding rotational position sensor. A corresponding signal can then be transmitted to the evaluation device which, in dependence on these output signals and the output signals of the angle sensor, produces an unambiguous assignment of measured values, which are recorded by means of a probe of the measuring head, to corresponding peripheral locations of the crankshaft.
  • Fig. 1 shows an embodiment of a measuring device 2 according to the invention, which is used for in-process measurement of specimens during a machining operation on a grinding machine 4.
  • the grinding machine 4 which is only partially shown for reasons of simplicity, has a rotatable about a machine-fixed axis of rotation 6 grinding wheel 8, which serves for processing a test specimen, which is formed in this embodiment by a crank pin 10 of a crankshaft.
  • the measuring device 2 has a measuring head 12, which is connected via a linkage 14 about a first pivot axis 16 pivotally connected to a base body 18 of the measuring device 2.
  • the measuring device 2 further comprises means for pivoting the measuring head 12 in and out of the measuring position or from the measuring position, which will be explained in more detail below.
  • the linkage 18 has a first linkage element 20 and a second linkage element 22, which are arranged pivotably about the first pivot axis 16.
  • a third linkage element 26 is pivotably connected about a second pivot axis 24, with its fourth end remote from a third pivot axis 28 pivotally connected to a fourth linkage element remote from the third pivot axis 24 Swivel axis 28 is pivotally connected to the first linkage member 20 about a fourth pivot axis.
  • first linkage member 20 and the third linkage member 26 are arranged non-parallel to each other, wherein the distance between the first pivot axis 16 and the second pivot axis 24 is smaller than the distance between the third pivot axis 28 and the fourth pivot axis 32nd
  • the second linkage member 22 has a lever arm 34, such that the lever arm 34 together with the linkage member 22 forms a two-armed angle lever whose function will be explained in more detail below.
  • the measuring head 12 is arranged in this embodiment on a holding arm 35, which is connected to the fourth linkage member 30 which is extended beyond the fourth pivot axis 32 out.
  • the connection between the support arm 34 and the fourth linkage member 30 is rigid. How out Fig. 2A it can be seen, in the illustrated embodiment, a free end of the holding arm 34 holding the measuring head 12 angled towards the first pivot axis 16, wherein a part of the holding arm 34 connected to the fourth link element 40 forms an angle of greater than 90 ° with the fourth link element 30.
  • the measuring head 12 a linearly deflectable probe 36, which in Fig. 2a is indicated by a dashed line.
  • the measuring head 12 also has a measuring prism 38 in the illustrated embodiment.
  • the manner in which roundness and / or dimensional measurements are carried out on a test specimen, in particular a crank pin of a crankshaft or another cylindrical component, by means of an arrangement of a linearly deflectable probe 36 and a measuring prism 38 is well known to the person skilled in the art and therefore becomes not explained here.
  • the measuring device 2 further comprises means for pivoting in and out of the measuring head 12, which engage the linkage 14 and based on Fig. 1 be explained in more detail.
  • the Einschwenkvoretti 40 spring means which in this embodiment, designed as a compression spring spring 44, the measuring head 12 via the linkage 14 in a in Fig. 1 symbolized by an arrow 46 Einschwenkraum.
  • the spring 44 is formed in this embodiment as a compression spring and is supported at its one end on the base body 18 of the measuring device 2 and at its other end on the lever arm 34, so that the spring 44, the lever arm 34 in Fig. 1 counterclockwise and so that the measuring head 12 is acted upon by means of the linkage 14 in the pivoting 46 and seeks to move.
  • the Ausschwenkvoretti 42 has in this embodiment, a hydraulic cylinder 48, the piston is connected at its free end to the base body 18 of the measuring device 2. With the piston rod 50 of the hydraulic cylinder 48 formed in this embodiment as a toggle lever assembly 42 is connected, the piston rod 50 facing away from the free end to the first pivot axis 16 is eccentrically connected to a one-armed lever 54 which is coaxially mounted to the pivot axis 16.
  • the lever 54 has at its free end in the plane extending into a pin 56 which acts on the first linkage element 20 loose, so that the lever 54 when moving in a Ausschwenkoplasty, which corresponds to a clockwise movement in the drawing, as a driver for the first linkage element 20 acts.
  • sensor means For sensing the respective position of the measuring head 12 sensor means are provided, which are in operative connection with control means for controlling the Einschwenkvortechnisch 40 and the Ausschwenkvortechnisch 42.
  • the evaluation of measured values which are recorded by means of the measuring probe 36 during a measuring process is carried out by means of an evaluation device of an evaluation computer.
  • the manner in which corresponding measured values are evaluated is generally known to the person skilled in the art and will therefore not be explained in more detail here.
  • the measuring head 12 is assigned an angle sensor 55 for detecting the angular position of the measuring head 12 and in particular angular position changes of the measuring head 12 relative to the test piece (crank pin 10).
  • the angle sensor 55 is arranged on the measuring device 2.
  • the angle sensor 55 is connected to the holding arm 35 and thus to a part of the linkage 18 which is rigidly or almost rigidly connected to the measuring head 12.
  • the angle sensor 55 is a machine-reference-free operating sensor, which is formed in this embodiment by an acceleration sensor, which determines the static acceleration of the measuring head 12 based on the gravitational acceleration.
  • the inclination sensor can be based for example on a commercially available so-called accelerometer, as it is available, for example, under the name ADXL 322 from the company Analog Devices (www.analog.com).
  • a corresponding electronic circuit determines biaxial in the X and Y direction, the static acceleration.
  • the respective angular position of the measuring head 12 and thus also angular position changes can be determined either by evaluating the output signal for only one measuring direction, for example via an arcsine relationship or via evaluation of both measuring directions via an arctangent relationship.
  • the angular position and thus angular position changes of the measuring head 12 are not determined by a defined by the measuring device 2 or the grinding reference affect changes in the kinematics, resulting for example from wear of components of the linkage 18, the measuring or Evaluation accuracy not. Likewise, it does not affect the evaluation when a component of the grinding machine 4, on which the Measuring device 2 according to the invention is arranged, moved during the grinding process.
  • Reference for the angle measurement is thus according to the invention in the illustrated embodiment exclusively the gravitational field of the earth. If the machine bed of the grinding machine 4 moves during the grinding process, for example because of an elastic bearing, then corresponding movements can be measured via a second angle sensor. During the evaluation, the angle measured by the angle sensor 55 can be corrected correspondingly by simple subtraction.
  • Fig. 2B shows the measuring head 12 in a position between the rest position and the measuring position.
  • Fig. 2C shows Angular position of the lever arm 34 runs on a stop 56, wherein upon emergence of the lever arm 34 on the stop 56, a control signal is transmitted to the control means, due to which the hydraulic cylinder 48 is stopped.
  • Fig. 2C shows the measuring head 12 in a search position in which it is not yet in contact with the crank pin 10.
  • Fig. 2D shows the measuring head 12 in its measuring position in which it is in contact with the crank pin 10.
  • Fig. 2E corresponds to Fig. 2C , wherein the measuring head 12 is shown in its search position with respect to a crank pin 10 'of larger diameter.
  • Fig. 3 shows the measuring device 2 in the search position of the measuring head 12, which also in Fig. 2C is shown.
  • Fig. 1 With Fig. 3 results in the lever 54 by means of the lever assembly 42 during extension of the piston rod 50 of the hydraulic cylinder 48 in Fig. 1 given away in the counterclockwise direction until the in Fig. 3 shown angular position of the lever 54 is reached. How out Fig.
  • the roller 56 is spaced in the circumferential direction of the first axis of rotation 16 to the first link member 20, so that the first linkage member 20 and thus the entire linkage 14 under the action of the weight of the measuring head 12 including the holding arm 34 and the the spring 44 can exert pressure force exerted freely.
  • the measuring position cf. Fig. 2D
  • the measuring head 12 abuts on the crank pin 10, wherein the measuring head traces orbital rotation of the crank pin 10 about the crankshaft during the grinding process.
  • the base body 18 of the measuring device 2 is fixedly connected to a holder of the grinding wheel 8, so that the measuring device. 2 translational movements of the grinding wheel 8 in the radial direction of the axis of rotation 6 follows.
  • the measuring probe 36 receives measured values, by means of which the roundness and / or the diameter of the crank pin can be assessed in the evaluation computer 36 downstream from the evaluation computer. For example, if a certain degree of diameter is reached, the grinding wheel 8 is disengaged from the crankpin 10.
  • the control device controls the hydraulic cylinder 48 such that its piston rod 50 in Fig. 3 moved to the left.
  • the lever 54 by means of the lever assembly 42 in Fig. 3 pivoted clockwise.
  • the roller 56 is spaced in the circumferential direction of the first pivot axis 16 to the first link member 20, the measuring head 12 initially remains in the measuring position. If the roller 56 in a further pivoting of the lever 54 in Fig.
  • the measuring head moves in the circumferential direction of the crank pin 10 with an angular stroke, which is approximately -7 ° and + 5 °, ie a total of 12 ° in the illustrated embodiment.
  • FIGS. 2A to 2E show a structurally slightly modified variant of the embodiment according to Fig. 1 and Fig. 3 However, with respect to the basic principle according to the invention with the embodiment according to Fig. 1 and Fig. 3 matches.
  • the orbital rotations of the crankpin 10 about the axis of rotation of the crankshaft are detected by means of a rotary slide sensor 57 which is associated with the axis of rotation of the crankshaft.
  • Fig. 4 the evaluation device is shown schematically and designated by the reference numeral 58.
  • the probe 36 is in Fig. 4 also shown schematically.
  • the angular position of the measuring head 12 changes relative to the crank pin 10, wherein the associated angular position changes are detected via the angular position sensor 53, the output signals of the evaluation device 58 are supplied.
  • the output signals of the rotary slide sensor 57 which is associated with the axis of rotation of the crankshaft, are likewise supplied to the evaluation device 58, as in FIG Fig. 4 shown.
  • the evaluation device 58 corrects the assignment of the time-equidistantly recorded measured values of the measuring probe 60 in such a way that these measured values are assigned to the circumferential points of the crank pin 10 in the correct position.
  • the accuracy of the correction is no longer dependent on the extent to which the predetermined by the linkage 18 kinematics of the measuring head 12 during the measurement corresponds to an assumed kinematics.
  • a deviation of the actual kinematics of the assumed kinematics, for example due to wear of components of the linkage 18, this correction and thus the measurement accuracy does not affect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
EP11005887.2A 2010-08-23 2011-07-19 Dispositif de mesure Withdrawn EP2422927A3 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010035147.4A DE102010035147B4 (de) 2010-08-23 2010-08-23 Meßvorrichtung

Publications (2)

Publication Number Publication Date
EP2422927A2 true EP2422927A2 (fr) 2012-02-29
EP2422927A3 EP2422927A3 (fr) 2017-08-02

Family

ID=44650789

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11005887.2A Withdrawn EP2422927A3 (fr) 2010-08-23 2011-07-19 Dispositif de mesure

Country Status (3)

Country Link
US (1) US9393663B2 (fr)
EP (1) EP2422927A3 (fr)
DE (1) DE102010035147B4 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITBO20130498A1 (it) * 2013-09-16 2015-03-17 Marposs Spa Apparecchiatura per il controllo di dimensioni diametrali di perni
ITBO20130629A1 (it) * 2013-11-19 2015-05-20 Marposs Spa Apparecchiatura per il controllo di dimensioni diametrali di perni
WO2015036851A3 (fr) * 2013-09-16 2015-07-16 Marposs Societa' Per Azioni Appareil de vérification des dimensions diamétrales de tourillons

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009032353A1 (de) * 2009-07-08 2011-09-08 Hommel-Etamic Gmbh Verfahren zur Ermittlung der Form eines Werkstücks
DE102010035147B4 (de) 2010-08-23 2016-07-28 Jenoptik Industrial Metrology Germany Gmbh Meßvorrichtung
US20130115034A1 (en) * 2011-11-08 2013-05-09 Caterpillar Inc. Pin position sensor mounting assembly
EP2617522B1 (fr) * 2012-01-23 2014-01-15 Supfina Grieshaber GmbH & Co. KG Dispositif de traitement précis d'une surface périphérique de pièce usinée agencée de manière excentrique par rapport à un axe de pièce usinée
DE102012018580B4 (de) * 2012-09-20 2015-06-11 Jenoptik Industrial Metrology Germany Gmbh Messvorrichtung und Messverfahren zur Inprozess-Messung an Prüflingen während eines Bearbeitungsvorganges an einer Bearbeitungsmaschine, insbesondere einer Schleifmaschine
DE102014113553B3 (de) * 2014-09-19 2015-09-17 Jenoptik Industrial Metrology Germany Gmbh Kurbellagerflanken-Messvorrichtung
DE102015115718B4 (de) * 2015-09-17 2018-10-11 Jenoptik Industrial Metrology Germany Gmbh Rundheits- und/oder Dimensions-Messvorrichtung
DE102016107135A1 (de) 2016-04-18 2017-10-19 Jenoptik Industrial Metrology Germany Gmbh Messanordnung
US10254099B1 (en) 2016-06-01 2019-04-09 Gagemaker, Lp In-process diameter measurement gage
DE102016122695A1 (de) 2016-07-20 2018-01-25 Jenoptik Industrial Metrology Germany Gmbh Oberflächenmessvorrichtung
DE102017106741B4 (de) 2017-03-29 2019-11-14 Jenoptik Industrial Metrology Germany Gmbh Oberflächenmessgerät
DE102018103420A1 (de) * 2018-02-15 2019-08-22 Jenoptik Industrial Metrology Germany Gmbh Messgerät zur Oberflächen- oder Konturmessung
DE102019105059A1 (de) 2018-12-19 2020-06-25 Jenoptik Industrial Metrology Germany Gmbh Verfahren zum Betreiben eines Oberflächenmessgeräts
DE102020108182A1 (de) 2019-05-07 2020-11-12 Jenoptik Industrial Metrology Germany Gmbh Oberflächenmessgerät
US12048983B2 (en) * 2021-10-27 2024-07-30 Fives Landis Corp. Grinding machine centering gauge

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0859689A1 (fr) 1995-10-03 1998-08-26 Marposs Societa' Per Azioni Appareil destine a verifier le diametre de tourillons animes d'un mouvement orbital
EP1370391A1 (fr) 2001-03-02 2003-12-17 Marposs Societa Per Azioni Appareil con u pour verifier les caracteristiques dimensionnelles et geometriques de broches
EP1063052B1 (fr) 1999-06-25 2004-11-10 Toyoda Koki Kabushiki Kaisha Dispositif pour mesurer les défauts dimensionnels d'un cylindre excentré en utilisant le mouvement d'un appareil de mesure maintenu au contact d'un tel cylindre excentré

Family Cites Families (149)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE88446C (fr) 1896-02-19 1896-09-03
US1425283A (en) 1921-04-02 1922-08-08 Frederick J Pratt Grinding gauge
DE347056C (de) 1921-04-18 1922-01-13 Skf Svenska Kullagerfab Ab Vorrichtung zum Pruefen des Fortschrittes der Arbeit bei Schleifmaschinen
US1815049A (en) 1927-07-08 1931-07-21 Norton Co Work size mechanism for grinding machines
US1941456A (en) 1928-08-23 1934-01-02 Charles E Wisner Grinding gauge
US1892005A (en) 1930-12-15 1932-12-27 Int Harvester Co Gauge
US2003334A (en) 1931-07-25 1935-06-04 Norton Co Caliper controlled grinding machine
US2001447A (en) 1932-03-12 1935-05-14 Landis Tool Co Automatic control mechanism
BE458323A (fr) 1944-04-22
FR1005430A (fr) 1947-07-18 1952-04-10 Gendron Freres Ets Dispositif d'auto-calibrage pour machine-outil et en particulier pour rectifieuses en plongée
US2789354A (en) 1949-01-21 1957-04-23 Optical Gaging Prod Inc Profile contour machine
US2909873A (en) 1957-04-29 1959-10-27 James C Fisk Gauge support
US2949708A (en) 1959-06-24 1960-08-23 Cincinnati Milling Machine Co Gage head for in-process gaging in machine tool
US3157971A (en) 1963-02-07 1964-11-24 Landis Tool Co Size control device adaptable to different diameters
US3321869A (en) 1964-07-13 1967-05-30 Farrel Corp Machine tool
NL6410508A (fr) 1964-09-09 1966-03-10
US3274693A (en) 1965-02-04 1966-09-27 Bendix Corp Method and apparatus for roundness measurement
US3386178A (en) 1965-08-11 1968-06-04 Philip S. Arnold Grinding gage
US3352022A (en) 1965-10-11 1967-11-14 James C Fisk Upright grinding gauge
CH451548A (de) 1966-06-01 1968-05-15 Volpi Ag Panorama-Objektiv für Aufnahme- oder Projektionszwecke
JPS5124892B1 (fr) 1969-04-26 1976-07-27
US3603044A (en) 1969-06-10 1971-09-07 Litton Industries Inc Gauge mechanism for grinding machines
US3648377A (en) 1969-06-25 1972-03-14 Bendix Corp Sling roundness gage
US3663190A (en) 1970-04-22 1972-05-16 James C Fisk Gauge support
DE2134848A1 (de) 1970-07-22 1972-03-23 Pluritec Italia Snc Vorrichtung zur Messung verschiedener Durchmesser
US3694970A (en) 1970-09-18 1972-10-03 Litton Industries Inc Offset size adjustment circuit for grinding machines
JPS519587B1 (fr) 1970-12-03 1976-03-27
GB1320480A (en) 1971-06-03 1973-06-13 Toyoda Machine Works Ltd Grinding machine
US3802087A (en) 1971-07-19 1974-04-09 Inductosyn Corp Measuring apparatus
US3863352A (en) 1973-06-14 1975-02-04 American Gage & Mach Gaging apparatus with flow control mechanism
US3987552A (en) 1974-07-01 1976-10-26 Inductosyn Corporation Measuring apparatus
JPS5824223B2 (ja) 1976-06-30 1983-05-19 豊田工機株式会社 クランクピンの位置決め方法および装置
US4141149A (en) 1976-09-30 1979-02-27 Gravure Research Institute, Inc. Portable comparator gage for measuring the relative deviation in the diameter of cylinders
US4106241A (en) 1976-10-28 1978-08-15 Fisk James C Grinding gauge support
US4175462A (en) 1977-06-17 1979-11-27 Simon Jonathan C System for selection and phase control of humbucking coils in guitar pickups
JPS556825Y2 (fr) 1977-08-16 1980-02-15
JPS55120976U (fr) 1979-02-21 1980-08-27
IT1120335B (it) 1979-04-05 1986-03-19 Finike Italiana Marposs Apparecchiatura per il controllo di dimensioni lineari di alberi
JPS5841042Y2 (ja) 1979-04-13 1983-09-16 豊田工機株式会社 心押台
US4394683A (en) 1980-06-26 1983-07-19 Diffracto Ltd. New photodetector array based optical measurement systems
GB2086778B (en) 1980-10-28 1984-02-22 Landis Lund Ltd Method and apparatus for indexing of a crankshaft
IT1135893B (it) 1980-12-23 1986-08-27 Finike Italiana Marposs Dispositivo di misura per il controllo dimensionale di un pezzo meccanico
DE3121609A1 (de) 1981-05-30 1982-12-23 Naxos-Union Schleifmittel- Und Schleifmaschinenfabrik, 6000 Frankfurt Schleifmaschine fuer hublager
DE3123489A1 (de) 1981-06-13 1982-12-30 Dr. Johannes Heidenhain Gmbh, 8225 Traunreut Verfahren zur messung der rundheitsabweichungen von rotationskoerpern und einrichtungen zur durchfuehrung des verfahrens
US4429464A (en) 1982-01-29 1984-02-07 Burrus Brice M Roundness calibration standard
US4414748A (en) 1982-02-16 1983-11-15 The Unites States Of America As Represented By The Department Of Energy Ball mounting fixture for a roundness gage
CH647189A5 (fr) 1982-06-03 1985-01-15 Meseltron Sa Dispositif de manipulation d'une piece cylindrique ou spherique.
US4480412A (en) 1982-09-03 1984-11-06 Litton Industrial Products, Inc. In-process grinding gage
DE3232904A1 (de) 1982-09-04 1984-03-08 Robert Bosch Gmbh, 7000 Stuttgart Sonde zum automatischen pruefen von oberflaechen
JPS5993844U (ja) 1982-12-16 1984-06-26 豊田工機株式会社 クランクピン割出精度確認装置
HU192125B (en) 1983-02-08 1987-05-28 Budapesti Mueszaki Egyetem Block of forming image for centre theory projection adn reproduction of spaces
JPS59125001U (ja) 1983-02-14 1984-08-23 三洋電機株式会社 充電式灯器
US4524546A (en) 1983-06-06 1985-06-25 Armco Inc Roll profile gauge
IT1183093B (it) 1984-01-13 1987-10-05 Schaudt Maschinenbau Gmbh Testa di misurazione per rettificatrici
DE8425377U1 (de) 1984-07-03 1986-04-17 Schaudt Maschinenbau Gmbh, 7000 Stuttgart Schleifmaschine zum meßgesteuerten Gewindeschleifen
US4637144A (en) 1984-07-03 1987-01-20 Schaudt Maschinenbau Gmbh Apparatus for monitoring the diameters of crankpins during treatment in grinding machines
IT1180539B (it) 1984-10-15 1987-09-23 Finike Italiana Marposs Testa per il controllo di dimensioni pezzi meccanici
DE3511564A1 (de) 1985-03-29 1986-10-02 Hommelwerke GmbH, 7730 Villingen-Schwenningen Einrichtung zur messung der kreisformabweichung exzentrischer lagerflaechen, insbesondere von pleuellagern
US4679331A (en) 1985-08-26 1987-07-14 Ppg Industries, Inc. Apparatus and method for determining contour characteristics of a contoured article
GB8603060D0 (en) 1986-02-07 1986-03-12 Rank Taylor Hobson Ltd Usefulness of in situ roundness measurement
IT1191690B (it) 1986-03-20 1988-03-23 Giustina International Spa Apparato di misura indipendente per macchine rettificatrici per cilindri e simili con organi di controllo strutturale e superficiale
GB8625702D0 (en) 1986-10-28 1986-12-03 Armstrong D A Profile gauging
US4819195A (en) 1987-01-20 1989-04-04 The Warner & Swasey Company Method for calibrating a coordinate measuring machine and the like and system therefor
IT1213718B (it) 1987-11-09 1989-12-29 Marposs Spa Apparecchio per il controllo di caratteristiche di pezzi a simmetria di rotazioni
IT1213698B (it) 1987-10-09 1989-12-29 Marposs Spa Apparecchio a grande campo per il controllo di dimensioni lineari di pezzi
GB2211940B (en) 1987-11-04 1991-07-10 Moore Dr David Measuring the roundness of object
GB8728016D0 (en) 1987-11-30 1988-01-06 Grosvenor R I Methods and apparatus for measuring transverse dimensions of workpieces
US4949469A (en) 1988-07-01 1990-08-21 Albion Devices, Inc. Temperature-compensated quantitative dimensional measurement device with rapid temperature sensing and compensation
IT1225040B (it) 1988-08-11 1990-11-02 Marposs Spa Apparecchio per il controllo di caratteristiche di pezzi
DE3828181A1 (de) 1988-08-19 1990-03-08 Voith Gmbh J M Messvorrichtung, insbesondere zur messung der durchmesser von walzen bei walzenschleifmaschinen
FR2636877B1 (fr) 1988-09-27 1994-07-01 Procedes Machines Speciales Machine pour l'usinage par abrasif de portees cylindriques sur des pieces, notamment pour l'usinage par toilage des tourillons et manetons sur des vilebrequins
DE3841439A1 (de) 1988-12-09 1990-06-13 Pietzsch Automatisierungstech Vorrichtung zum gleichzeitigen vermessen hintereinanderliegender zylinderbohrungen
DE3900106C2 (de) 1989-01-04 1994-01-05 Bbc Pat Mestechnik Gmbh Verfahren und Vorrichtung zum Vermessen der Form von Zylinderbohrungen in Werkstücken
US5095663A (en) 1989-02-07 1992-03-17 Industrial Metal Products Corporation Size control shoe for microfinishing machine
AT393029B (de) 1989-03-29 1991-07-25 Rsf Elektronik Gmbh Inkrementales laengenmesssystem
US5088207A (en) 1989-12-13 1992-02-18 Betsill Harry E True end-to-end electronic saddle micrometer
US5097602A (en) 1990-07-09 1992-03-24 Westinghouse Electric Corp. Apparatus and method for automated inspection of a surface contour on a workpiece
FR2665526A1 (fr) 1990-08-02 1992-02-07 Meseltron Sa Dispositif pour la mesure de diametres de pieces cylindriques en cours d'usinage.
DE4025522A1 (de) * 1990-08-11 1992-02-13 Wolter Doll Dieter Verfahren und vorrichtung zur erkennung von bearbeitungsfehlern, insbesondere von schleifmaschinen
US5136527A (en) 1990-10-05 1992-08-04 Precision Devices, Inc. Surface finish measuring device and method for gear teeth
DE4031931A1 (de) 1990-10-06 1992-04-09 Perthen Feinpruef Gmbh Induktiver laengenmesstaster
DK16791D0 (da) 1991-01-30 1991-01-30 Leif Groenskov Fremgangsmaade og middel til maaling af et profil
US5099585A (en) 1991-02-19 1992-03-31 Control Gaging, Inc. In-process machine gage
US5337485A (en) 1992-01-28 1994-08-16 Chien An Y Roundness error and crown electronic measuring system
AU665048B2 (en) 1992-02-14 1995-12-14 Toyota Jidosha Kabushiki Kaisha Apparatus and method for feedback-adjusting working condition for improving dimensional accuracy of processed workpieces
JP3246961B2 (ja) 1992-11-05 2002-01-15 株式会社小松製作所 クランクシャフトミラーの制御装置
IT1266221B1 (it) 1993-01-21 1996-12-27 Marposs Spa Apparecchiatura per il controllo geometrico di pezzi a simmetria di rotazione
US5914593A (en) 1993-06-21 1999-06-22 Micro Strain Company, Inc. Temperature gradient compensation circuit
DE4320845C1 (de) 1993-06-23 1994-10-27 Fraunhofer Ges Forschung Anordnung zur Messung von Streulicht in Bohrungen von Werkstücken oder in Rohren
US5473474A (en) 1993-07-16 1995-12-05 National Research Council Of Canada Panoramic lens
US5419056A (en) 1993-07-29 1995-05-30 Thomas E. Breitenstein Centerless gaging apparatus for checking the concentricity and straightness of shank-type tools and the like
DE4412682C2 (de) 1994-04-13 1998-09-03 Doerries Scharmann Ag I K Vorrichtung zum Vermessen exzentrisch umlaufender Werkstücke
DE4416493A1 (de) 1994-05-10 1995-11-16 Bosch Gmbh Robert Oberflächenprüfvorrichtung
DE4419656C2 (de) 1994-06-06 1996-05-15 Naxos Union Schleifmittel Einrichtung zur Durchmesser- und/oder Rundheitsmessung beim exzentrischen Rundschleifen
DE4420137A1 (de) 1994-06-09 1995-12-14 Zeiss Messgeraetebau Gmbh Meßgerät zur Überprüfung der Abmessungen von zylindrischen Werkstücken
US5479096A (en) 1994-08-08 1995-12-26 Lucas Industries, Inc. Analog sensing system with digital temperature and measurement gain and offset correction
US5551906A (en) 1994-11-23 1996-09-03 Voith Sulzer Paper Technology North America Inc. Caliper assembly for grinder
GB9509294D0 (en) 1995-05-06 1995-06-28 Western Atlas Uk Ltd Improvements relating to guaging the diameter of cylindrical workpiece sections
AU7219996A (en) 1995-10-06 1997-04-30 Sagem Sa Device for measuring or checking an orbitally mobile cylindrical part during machining thereof
GB9612383D0 (en) 1995-12-07 1996-08-14 Rank Taylor Hobson Ltd Surface form measurement
DE19602470A1 (de) 1996-01-24 1997-07-31 Siemens Ag Bestimmung und Optimierung der Arbeitsgenauigkeit einer Werkzeugmaschine oder eines Roboters oder dergleichen
US6062948A (en) 1996-04-19 2000-05-16 Schmitt Measurement Systems, Inc. Apparatus and method for gauging a workpiece
GB9608352D0 (en) 1996-04-23 1996-06-26 Western Atlas Uk Ltd Workpiece grinding method and apparatus
JPH09323257A (ja) 1996-05-31 1997-12-16 Toshiba Mach Co Ltd ロール研削盤におけるロール径計測方法およびロール径計測装置
US5902925A (en) 1996-07-01 1999-05-11 Integrated Sensor Solutions System and method for high accuracy calibration of a sensor for offset and sensitivity variation with temperature
US5919081A (en) 1996-09-04 1999-07-06 Unova Ip Corporation Method and apparatus for computer numerically controlled pin grinder gauge
JPH10118974A (ja) 1996-10-14 1998-05-12 M Alpha Giken:Kk 多関節ロボットにおけるハンドの回転位置検出装置
KR19980053785U (ko) 1996-12-31 1998-10-07 추호석 공작기계의 공구 보정장치
DE19712622C5 (de) 1997-03-26 2010-07-15 Dr. Johannes Heidenhain Gmbh Anordnung und Verfahren zur automatischen Korrektur fehlerbehafteter Abtastsignale inkrementaler Positionsmeßeinrichtungen
EP0878704B1 (fr) 1997-05-13 2005-11-09 Gretag-Macbeth AG Dispositif de mesure de réflexion
DE19740141C1 (de) 1997-09-12 1999-04-29 Daimler Chrysler Ag Verfahren zur Ermittlung einer Drallstruktur in der Oberflächenrauheit eines feinbearbeiteten Wellenzapfens
GB2329472B (en) 1997-09-23 2002-03-27 Unova Uk Ltd Improvements in and relating to workpiece gauging
DE69900785T2 (de) 1998-03-13 2002-08-14 Marposs S.P.A., Bentivoglio Messkopf,apparat und verfahren zum kontrollieren der linearen dimensionen von einem mechanischen stück
KR100264247B1 (ko) 1998-03-28 2000-08-16 김영삼 공작기계의 열변형오차 측정 및 보정시스템
IT1298976B1 (it) 1998-03-31 2000-02-07 Balance Systems Spa Apparato di misura di pezzi in lavorazione, particolarmente per macchine rettificatrici
US6321171B1 (en) 1998-04-03 2001-11-20 Tektronix, Inc. Electronic measurement instrument probe accessory offset, gain, and linearity correction method
US6029363A (en) 1998-04-03 2000-02-29 Mitutoyo Corporation Self-calibrating position transducer system and method
US6116269A (en) 1998-07-07 2000-09-12 Fasco Controls Corporation Solenoid pressure transducer
US6159074A (en) 1999-01-07 2000-12-12 Kube; Samuel C. Caliper assembly for a grinding machine
WO2000050841A1 (fr) 1999-02-22 2000-08-31 Obschestvo S Ogranichennoi Otvetstvennostiju 'tekhnomash' Procede et dispositif permettant de mesurer les inclinaisons de la forme geometrique d'une piece cylindrique, lunette de correction et variantes
NO312567B2 (no) * 1999-05-27 2002-05-27 Halfwave As Fremgangsmate ved maling av materialtykkelsesfordeling
US6304827B1 (en) 1999-09-16 2001-10-16 Sensonor Asa Sensor calibration
DE19952592C1 (de) * 1999-11-02 2001-05-10 Hommelwerke Gmbh Taster zur Abtastung des Verlaufs einer Oberfläche eines Werkstücks
ITBO20000012A1 (it) 2000-01-18 2001-07-18 Marposs Spa Apparecchiatura per il controllo del diametro di perni .
DE10006372A1 (de) 2000-02-12 2001-08-16 Hauni Maschinenbau Ag Verfahren und Vorrichtung zum fortlaufenden Verdichten eines bewegten Stromes aus Filtermaterial
IT1321211B1 (it) * 2000-03-06 2003-12-31 Marposs Spa Apparecchiatura e metodo per il controllo di perni .
IT1321212B1 (it) * 2000-03-06 2003-12-31 Marposs Spa Apparecchiatura per il controllo del diametro di perni .
DE10018107A1 (de) * 2000-04-12 2001-10-25 Helios Mestechnik Gmbh & Co Kg Vorrichtung und Verfahren zum dreidimensionalen Vermessen von Objekten
JP4051872B2 (ja) 2000-09-29 2008-02-27 株式会社ジェイテクト 加工部の測定方法及び加工方法
US20020066179A1 (en) 2000-12-01 2002-06-06 Hall Hendley W. System and method for metalization of deep vias
JP2002307268A (ja) 2001-04-19 2002-10-23 Toyoda Mach Works Ltd 測定装置を用いた工作物の偏心円筒部の加工方法及び加工装置
ITBO20010268A1 (it) * 2001-05-07 2002-11-07 Marposs Spa Apparecchiatura per il controllo del diametro di porzioni eccentrichedi un pezzo meccanico durante la lavorazione su una rettificatrice
US6487787B1 (en) 2001-08-03 2002-12-03 Mitutoyo Corporation System and method for determination of error parameters for performing self-calibration and other functions without an external position reference in a transducer
JP3377995B1 (ja) 2001-11-29 2003-02-17 株式会社立山アールアンドディ パノラマ撮像レンズ
US6560890B1 (en) 2002-02-21 2003-05-13 General Electric Company Fixture for locating and clamping a part for laser drilling
ITBO20020369A1 (it) 2002-06-12 2003-12-12 Marposs Spa Apparecchiatura per il controllo di caratteristiche dimensionali e geometriche di perni
US6859756B2 (en) 2002-09-06 2005-02-22 Red X Holdings Llc Diagnostic method for manufacturing processes
DE20214856U1 (de) 2002-09-26 2003-01-02 BBi Brunnen- und Bohrlochinspektion GmbH, 39245 Gommern Bohrlochsonde zur optischen Erfassung der inneren Wandung von Bohrlöchern und Schächten
DE102005045374A1 (de) * 2005-09-22 2007-04-05 Siemens Ag Messvorrichtung mit einem Messkopf zur Positionsbestimmung eines Primärteils auf einem Sekundärteil und Verfahren zur Positionsbestimmung eines Primärteils auf einem Sekundärteil mit einem Messkopf
ITBO20060118A1 (it) 2006-02-16 2007-08-17 Marposs Spa Comparatore per il controllo di dimensioni radiali di pezzi meccanici.
DE102007031358B4 (de) 2007-07-05 2023-03-16 Jenoptik Industrial Metrology Germany Gmbh Vorrichtung zur Abbildung der Innenfläche eines zylindrischen Hohlraums
DE102008016228A1 (de) 2008-03-27 2009-10-08 Hollinger Maschinen Gmbh Eckenverputzmaschine sowie Verfahren zum Bearbeiten von Ecken eines verschweißten Profilrahmens
DE102009019459B4 (de) 2009-05-04 2012-02-02 Hommel-Etamic Gmbh Vorrichtung zur Abbildung der Innenfläche eines Hohlraumes in einem Werkstück
DE102009032353A1 (de) 2009-07-08 2011-09-08 Hommel-Etamic Gmbh Verfahren zur Ermittlung der Form eines Werkstücks
DE102009042252B4 (de) 2009-09-22 2014-03-06 Jenoptik Industrial Metrology Germany Gmbh Meßvorrichtung
DE102010013069B4 (de) 2010-03-26 2012-12-06 Hommel-Etamic Gmbh Meßvorrichtung
DE102010018820B3 (de) 2010-04-29 2011-10-13 Hommel-Etamic Gmbh Verfahren zur Ermittlung einer Drallstruktur
DE102010035147B4 (de) 2010-08-23 2016-07-28 Jenoptik Industrial Metrology Germany Gmbh Meßvorrichtung
US8508743B2 (en) 2011-03-04 2013-08-13 Hommel-Etamic Gmbh Crankshaft testing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0859689A1 (fr) 1995-10-03 1998-08-26 Marposs Societa' Per Azioni Appareil destine a verifier le diametre de tourillons animes d'un mouvement orbital
EP1063052B1 (fr) 1999-06-25 2004-11-10 Toyoda Koki Kabushiki Kaisha Dispositif pour mesurer les défauts dimensionnels d'un cylindre excentré en utilisant le mouvement d'un appareil de mesure maintenu au contact d'un tel cylindre excentré
EP1370391A1 (fr) 2001-03-02 2003-12-17 Marposs Societa Per Azioni Appareil con u pour verifier les caracteristiques dimensionnelles et geometriques de broches

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITBO20130498A1 (it) * 2013-09-16 2015-03-17 Marposs Spa Apparecchiatura per il controllo di dimensioni diametrali di perni
WO2015036851A3 (fr) * 2013-09-16 2015-07-16 Marposs Societa' Per Azioni Appareil de vérification des dimensions diamétrales de tourillons
CN105555477A (zh) * 2013-09-16 2016-05-04 马波斯S.P.A.公司 用于检查销的直径尺寸的设备
KR20160058871A (ko) * 2013-09-16 2016-05-25 마포스 쏘시에타 페르 아지오니 핀들의 직경 크기들을 검측하는 장치
US9878418B2 (en) 2013-09-16 2018-01-30 Marposs Societa' Per Azioni Apparatus for checking diametral dimensions of pins
CN105555477B (zh) * 2013-09-16 2018-05-18 马波斯S.P.A.公司 用于检查销的直径尺寸的设备
ITBO20130629A1 (it) * 2013-11-19 2015-05-20 Marposs Spa Apparecchiatura per il controllo di dimensioni diametrali di perni

Also Published As

Publication number Publication date
DE102010035147A1 (de) 2012-02-23
US20120043961A1 (en) 2012-02-23
US9393663B2 (en) 2016-07-19
DE102010035147B4 (de) 2016-07-28
EP2422927A3 (fr) 2017-08-02

Similar Documents

Publication Publication Date Title
DE102010035147B4 (de) Meßvorrichtung
EP3049758B1 (fr) Réduction d'erreurs d'un dispositif de rotation qui est utilisée lors de la détermination de coordonnées d'une pièce ou lors de l'usinage d'une pièce
EP2711132B1 (fr) Dispositif de mesure
EP2283311B1 (fr) Procédé de mesure pour une machine de mesure de coordonnées à bras articulé
EP2486369B1 (fr) Appareil de mesure de coordonnées comprenant des capteurs de changement de position
EP2093537B1 (fr) Système et procédé pour déterminer l'alignement de deux pièces de machine rotatives
EP2199732B1 (fr) Dispositif doté d'un capteur de rugosité
EP2156921B1 (fr) Dispositif de réduction d'oscillations d'une broche d'outil
EP2834595A1 (fr) Procédé et dispositif de réduction des erreurs d'un vireur lors de la détermination de coordonnées d'une pièce ou lors de l'usinage d'une pièce
DE10102171B4 (de) Verfahren zur Längsrichtungslinearitätskompensierung und Verfahren zur Rotationsgenauigkeitskompensierung eines Messgeräts
WO2010121713A1 (fr) Engin de chantier mobile équipé d'un dispositif de régulation de position d'un bras de travail et procédé pour réguler la position d'un bras de travail d'un engin de chantier mobile
DE3740070A1 (de) Dreh-schwenk-einrichtung fuer tastkoepfe von koordinatenmessgeraeten
DE102015115718B4 (de) Rundheits- und/oder Dimensions-Messvorrichtung
EP2824420B1 (fr) Dispositif de détermination de position à l'aide d'une unité de mesure à inertie
DE102011011065B4 (de) Verfahren und Vorrichtung zur hochpräzisen Vermessung von Oberflächen
DE202014101900U1 (de) Manipulator zur räumlichen Orientierung eines Miniatur-Rauheitsmessgeräts
DE102018005304A1 (de) Werkzeugmaschine und Nullpunkt-Korrekturverfahren
EP3265756B1 (fr) Système permettant de déterminer une erreur de mouvement d'un dispositif de rotation
EP3421931A1 (fr) Appareil de mesure de coordonnées destiné à la mesure de coordonnées des pièces à usiner et procédé de mesure de coordonnées sur les pièces à usiner dans un appareil de mesure de coordonnées
EP1391684B1 (fr) Machine de mesure de coordonnées et méthode de correction d'erreur
DE202013102045U1 (de) Oberflächenmikrostrukturmessgerät mit variablem Meßsystem
EP1528354B1 (fr) Procédé et dispositif pour la mesure d'un objet à l'aide d'une machine de mesure de coordonnées
DE102015208803B3 (de) Dreheinheit für ein Koordinatenmessgerät
DE4419909B4 (de) Vorrichtung zur Kontrolle der geometrischen und dynamischen Genauigkeit eines NC-gesteuerten Arbeitskopfes
DE102015201582A1 (de) Ermittlung und Korrektur eines Fehlers einer Drehvorrichtung für ein Koordinatenmessgerät

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: JENOPTIK INDUSTRIAL METROLOGY GERMANY GMBH

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: B24B 5/42 20060101AFI20170626BHEP

Ipc: B24B 49/04 20060101ALI20170626BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180203