EP2418389B1 - Flügelrad für einen ventilator - Google Patents

Flügelrad für einen ventilator Download PDF

Info

Publication number
EP2418389B1
EP2418389B1 EP11006483.9A EP11006483A EP2418389B1 EP 2418389 B1 EP2418389 B1 EP 2418389B1 EP 11006483 A EP11006483 A EP 11006483A EP 2418389 B1 EP2418389 B1 EP 2418389B1
Authority
EP
European Patent Office
Prior art keywords
fan blade
impeller
flow element
edge
fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11006483.9A
Other languages
English (en)
French (fr)
Other versions
EP2418389A3 (de
EP2418389A2 (de
Inventor
Michael Stephan
Ralf Neumeier
Volker Kress
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ziehl Abegg SE
Original Assignee
Ziehl Abegg SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ziehl Abegg SE filed Critical Ziehl Abegg SE
Priority to SI201132093T priority Critical patent/SI2418389T1/sl
Publication of EP2418389A2 publication Critical patent/EP2418389A2/de
Publication of EP2418389A3 publication Critical patent/EP2418389A3/de
Application granted granted Critical
Publication of EP2418389B1 publication Critical patent/EP2418389B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/161Sealings between pressure and suction sides especially adapted for elastic fluid pumps
    • F04D29/164Sealings between pressure and suction sides especially adapted for elastic fluid pumps of an axial flow wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/666Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by means of rotor construction or layout, e.g. unequal distribution of blades or vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/304Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the trailing edge of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/307Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the tip of a rotor blade

Definitions

  • the invention relates to an impeller for a fan according to the preamble of claim 1.
  • Fans and impellers are known ( DE 20 2004 005 548 U1 ), in which fan blades protrude from the hub of the impeller wheel, which are designed to be wound and are provided with a flow element on the radially outer edge.
  • the fan blades have approximately the cross-sectional shape of an airplane wing.
  • the flow elements on the outer edge of these fan blades have a similar course.
  • the outer edge of the flow elements runs approximately parallel to the top and bottom of the cross-section of the associated fan blades.
  • the axial height of the flow elements decreases to almost zero.
  • Such a design is intended to at least reduce noise development during operation of the impeller or the fan.
  • the flow elements provide increased resistance to the leakage flow that travels around the radially outer edge of the fan blades from the pressure side to the suction side.
  • a compressor blade for a compressor ( EP 1 624 192 A1 ), to arrange a sealing lip on the radially outer edge of the compressor blade, extending radially outward from the compressor blade.
  • the sealing lip is narrower than the blade profile and extends from a leading edge to a trailing edge of the compressor blade.
  • the sealing lip has a constant radial and axial height and thickness over its length.
  • the invention is based on the object of designing the impeller of the generic type in such a way that, with a simple structural design, very little noise is achieved during operation.
  • the impeller according to the invention is characterized in that the axial height of the flow element has a maximum in the area of the front and rear edges of the fan blades.
  • the height of the airfoil decreases towards the center of the fan blade. Due to this design of the flow element, there is an excellent noise reduction when using the impeller and an optimal, unhindered flow of air from the pressure side to the suction side, which promotes the noise reduction.
  • the ratio of the axial height of the flow element to the axial thickness of the fan blade decreases from the maximum towards the center of the fan blade.
  • the height of the flow element can decrease to 0 in the area between the leading and the trailing edge of the fan blade.
  • the fan has a housing 1 with a cylindrical casing 2 which encloses a conveying duct 3 .
  • a conveying duct 3 In the conveying channel 3 there is an impeller 4, the hub 5 of which is rotatably mounted in a known manner.
  • the impeller 4 is rotatably driven counterclockwise in the direction of arrow 6 by means of a drive 4a.
  • fan blades 7 protrude from the hub 5 and extend close to the jacket 2 .
  • the air flows like 6 shows, between the radially outer edge of the fan blades 7 and the inside of the jacket 2 from the pressure side 9 essentially without interference to the suction side 8 of the impeller 4.
  • the fan blades 7 are unevenly distributed over the circumference of the hub 5 .
  • the impeller 4 can also be designed in such a way that the fan blades 7 are distributed uniformly over the circumference of the hub 5 .
  • the fan blades 7 each have a front edge 10 in the direction of rotation 6 and a rear edge 11 at the rear in the direction of rotation 6.
  • the front edge 10 is crescent-shaped as seen in the axial direction of the impeller 4, i.e. it has a concave profile.
  • the leading edge 10 extends from the hub 5 to the outer edge 12 which extends in the circumferential direction of the impeller 4 .
  • the outer edge 12 has the radial distance 13 ( 6 ) from the housing shell 2. This distance is like this chosen so that the loss flow is as low as possible and a low noise level occurs.
  • Such a design of the fan blades 7 results in a reduction in noise during operation of the fan and an improvement in the tearing behavior.
  • the trailing edge 11 of the fan blade 7 is convex over at least part of its length.
  • the convex progression can be provided from the hub 5 to the outer edge 12 of the fan blade.
  • this convex course can only be provided in the region of the rear edge 11 adjoining the outer edge 12 .
  • the trailing edge 11 is provided with teeth 15 over part of its length, each tapering towards its free end.
  • the teeth 15 can have the same outline shape.
  • the teeth 15 are designed in such a way that their ends, which advantageously taper to a point, project up to a convex envelope line 16 ( 4 and 7 ).
  • This envelope line 16 can advantageously form a continuation of the non-toothed area of the trailing edge 11 .
  • the teeth 15 can also have different outline shapes and/or different lengths along the trailing edge 11 . By selecting the design of the teeth 15 appropriately, the noise development of the fan can be optimally adapted to the respective application.
  • the fan blades 7 are designed as twisted blades.
  • each fan blade 7 is in the embodiment according to Figures 1 to 6 provided with a flow element 17, which advantageously extends over the entire length of the outer edge 12 between the front edge 10 and the rear edge 11.
  • the flow elements extend on the outer edge 12 to the suction side 8 of the fan blade 7.
  • the flow element 17 it is also possible for the flow element 17 to extend both to the suction side 8 and to the pressure side 9. It is also possible for the flow element 17 to protrude only in the direction of the pressure side 9 .
  • the flow elements 17 are advantageously designed in one piece with the fan blades 7, but in principle they can also be components that are separate from the fan blades and are attached to the fan blades in a suitable manner.
  • the flow element 17 has its greatest height h in the region of the front and rear edges 10, 11 of the fan blade 7, measured in the axial direction 18 of the blade wheel 4 ( figure 5 ).
  • the flow element 17 and the profile of the associated fan blade 7 are shown at the level of the flow element 17 .
  • the axial height h of the flow element 17 decreases from the front edge 10 or the rear edge 11 until the flow element 17 has a height of 0 or approximately 0 in the region between the two edges 10, 11. This area can be half the width of the fan blade 7 .
  • the fan blade 7 has the axial thickness d in the area of the flow element 17 . In the rest of the area, the fan blade 7 can have different axial thicknesses.
  • the axial height h of the flow element 17 and the axial thickness d of the fan blade 7 are coordinated in such a way that the ratio h/d decreases from the front edge 10 and the rear edge 11, as shown by the dashed line 19 in figure 5 shows. In the area in which the axial height h des Flow element 17 is almost 0, this ratio h / d is lowest.
  • the flow element 17 can also be designed in such a way that its minimum axial height is not half the width of the fan blade 7 . It is essential that the given ratio h/d decreases from the leading edge 10 or the trailing edge 11 . Such a design of the fan blade with flow element results in excellent noise reduction when using the fan.
  • the fan blade 7 has an aircraft wing profile shape. In the area of the front edge 10 the fan blade 7 is rounded off, while in the area of the rear edge 11 it tapers to a point. In the area between the two edges 10, 11, the fan blade 7 can also have an approximately constant cross-sectional thickness.
  • the fan blade 7 has a large inlet area 20 ( 6 ) at the transition from fan blade 7 to flow element 17, preferably with a large radius 27. This makes an excellent contribution to low-noise operation of the fan.
  • the flow element 17 is designed such that its axial extent increases very sharply starting from the front edge 10 of the fan blade 7 over a very short area until the flow element has its greatest axial height h at a small distance from the front edge 10 .
  • the axial height h of the flow element 17 increases greatly from the trailing edge 11 of the fan blade 7 over a very short area until the flow element has its greatest axial height h in this area at a small distance from the trailing edge 10, which is in the direction of the center of the fan blade 7 decreases. Due to this design, the flow element 17 has a completely different course than the fan blade 7 in the area of the flow element 17.
  • FIGS. 7 to 11 show a twisted fan blade 7 which, instead of the flow element 17 in the radially outer area, has such a design that it has the same effect as a fan blade with a flow element, despite the lack of a flow element 17. This is achieved through a special design of the fan blade, which is described in more detail below.
  • the fan blade 7 has the profile sections 24.1 to 24.7 at equal intervals over its radial length, which have a similar cross-sectional configuration.
  • the fan blade 7 has an aircraft wing profile shape, in which the fan blade 7 is rounded off in the area of the front edge 10 and tapered in the area of the rear edge 11 .
  • the outer edge 12 of the fan blade 7 pointing towards the housing casing 2 is shaped in such a way that the radially outer profile section of the fan blade is shifted towards the suction side 8 .
  • different profile sections 21, 21.1 to 21.7 are given over the length of the fan blade.
  • the profile sections are cylindrical sections through the fan blade 7.
  • the profile sections 21.1 to 21.7 are provided at equal intervals in the radial direction of the fan blade 7.
  • the profile section 21.7 ( 7 ) is provided on the hub 5 of the impeller 4. It can be seen that all profile sections 21 to 21.7 have a similar cross-sectional shape, in the exemplary embodiment an aircraft wing profile shape. Starting from the inside profile section 21.7 and viewed in the radial direction of the fan blade 7, the profile sections are arranged offset.
  • this offset of the profile sections is continued up to the cylindrical envelope surface 22 of the impeller 4 in the usual way. Then the radially outermost profile section in the enveloping surface 22 would assume the position shown in 8 is indicated by the dashed line 21.1. In the present embodiment, however, this radially outermost profile section 21 is offset toward the suction side 8 in such a way that the profile section 21 has a relatively large offset in relation to the adjacent profile section 21.2. The offset between this radially outermost profile section 21 and the adjacent profile section 21.2 is greater than the offset between the profile section 21.2 and the profile section 21.3 adjacent to it. Due to this clear offset between the outermost profile section 21 and the adjacent profile section 21.1, a radially outer end region 20 ( 9 ), which has a significantly greater pitch than the remaining part of the fan blade in which the profile sections 21.2 to 21.7 are located.
  • the profile sections are placed in such a way that the distance between the profile sections is greater than the width 25 ( 9 ) of the radially outer end region 20 formed by the offset of the outermost profile section 21. Since the offset between the radially outermost profile section 21 and the adjacent profile section 21.2 is larger, preferably significantly larger, than the offset between the profile section 21.2 and 21.3, the radially outer end region has 20 has a greater slope than the rest of the fan blade 7, through which the profile sections are placed 21.1 to 21.7.
  • the radial end region 20 ( 9 ) produces an effect corresponding to the flow element 17 of the previous embodiment, which is achieved solely by the displacement of the profile section.
  • the profile sections 21 to 21.7 have a similar cross-sectional configuration.
  • the radially outer profile section 21 can have a different profile section shape than the remaining profile sections 21.2 to 21.6.
  • the profile section is displaced towards the suction side 8 .
  • the displacement can also be provided towards the pressure side 9 .
  • the fan blade 7 is formed in the same way as in the previous embodiment.
  • the optimal gap flow 24 is supported by the fact that the flow gap 26 ( 6 ) between the flow element 17 or the end region 20 and the housing jacket 2 from the pressure side 9 in the direction of the suction side 8 tapers.
  • the flow gap 26 is designed in the form of a nozzle, which contributes to the unhindered flow of air through the flow gap 26 to reduce noise.

Description

  • Die Erfindung betrifft ein Flügelrad für einen Ventilator nach dem Oberbegriff des Anspruches 1.
  • Es sind Ventilatoren und Flügelräder bekannt ( DE 20 2004 005 548 U1 ), bei denen von der Nabe des Flügelrades Lüfterflügel abstehen, die gewunden ausgebildet und am radial äußeren Rand mit einem Strömungselement versehen sind. Die Lüfterflügel haben etwa die Querschnittsform einer Flugzeug-Tragfläche. Die Strömungselemente am äußeren Rand dieser Lüfterflügel haben einen analogen Verlauf. Dadurch verläuft der Außenrand der Strömungselemente in etwa parallel zur Querschnittsober- und -unterseite der zugehörigen Lüfterflügel. Im Bereich der Vorder- und Hinterkante der Lüfterflügel nimmt die axiale Höhe der Strömungselemente bis nahezu 0 ab. Durch eine solche Gestaltung soll eine Geräuschentwicklung beim Betrieb des Flügelrades bzw. des Ventilators zumindest verringert werden. Die Strömungselemente bieten einen erhöhten Widerstand für die Verlustströmung, die um den radial äußeren Rand der Lüfterflügel von der Druckseite zur Saugseite verläuft.
  • Es ist weiter ein Flügelrad bekannt ( US-A-5 215 441 , JP 2006 312912 A , US 2009/0208333 A1 , US 2010/0104461 A1 ), dessen Lüfterflügel am radial äu-ßeren Rand mit einem abstehenden Strömungselement versehen sind, das sich von der Hinterkante des Lüfterflügels aus über einen Teil der Länge des radial äußeren Randes erstreckt.
  • Es ist bei einer Verdichterschaufel für einen Verdichter bekannt ( EP 1 624 192 A1 ), am radial äußeren Rand der Verdichterschaufel eine Dichtlippe anzuordnen, die sich von der Verdichterschaufel aus radial nach außen erstreckt. Die Dichtlippe ist schmaler als das Schaufelprofil und erstreckt sich von einer Anströmkante zu einer Abströmkante der Verdichterschaufel. Über ihre Länge hat die Dichtlippe konstante radiale und axiale Höhe bzw. Dicke.
  • Der Erfindung liegt die Aufgabe zugrunde, das gattungsgemäße Flügelrad so auszubilden, dass bei einfacher konstruktiver Gestaltung eine hohe Geräuscharmut im Betrieb erreicht wird.
  • Diese Aufgabe wird beim gattungsgemäßen Flügelrad erfindungsgemäß mit den kennzeichnenden Merkmalen des Anspruches 1 gelöst.
  • Das erfindungsgemäße Flügelrad zeichnet sich dadurch aus, dass die axiale Höhe des Strömungselementes im Bereich der Vorder- und der Hinterkante der Lüfterflügel ein Maximum aufweist. Die Höhe des Strömungselementes nimmt in Richtung auf die Mitte des Lüfterflügels ab. Aufgrund dieser Ausgestaltung des Strömungselementes ergibt sich eine hervorragende Geräuschreduzierung beim Einsatz des Flügelrades sowie ein optimaler behinderungsfreier Durchfluss der Luft von der Druck- zur Saugseite, wodurch die Geräuschverringerung begünstigt wird.
  • Bei einer vorteilhaften Ausbildung nimmt das Verhältnis der axialen Höhe des Strömungselementes zur axialen Dicke des Lüfterflügels vom Maximum aus in Richtung auf die Mitte des Lüfterflügels ab. Die Höhe des Strömungselementes kann bis auf 0 im Bereich zwischen Vorder- und der Hinterkante des Lüfterflügels abnehmen.
  • Weitere Merkmale der Erfindung ergeben sich aus den weiteren Ansprüchen, der Beschreibung und den Zeichnungen.
  • Die Erfindung wird anhand mehrerer in den Zeichnungen dargestellter Ausführungsformen näher erläutert. Es zeigen
  • Fig. 1
    in perspektivischer Darstellung einen Teil eines Ventilators mit einem erfindungsgemäßen Flügelrad,
    Fig. 2
    in vergrößerter Darstellung einen Teil des Ventilators gemäß Fig. 1,
    Fig. 3
    in perspektivischer Darstellung den radial äußeren Bereich eines Lüfterflügels des erfindungsgemäßen Flügelrades,
    Fig. 4
    eine Draufsicht auf den Lüfterflügel gemäß Fig. 3,
    Fig. 5
    in einem Diagramm den Querschnittsverlauf des Lüfterflügels sowie eines am radial äußeren Ende des Lüfterflügels vorgesehenen Strömungselementes sowie das Verhältnis der in Achsrichtung des Ventilators gemessenen Höhe des Strömungselementes zur Dicke des Flügels,
    Fig. 6
    im Schnitt den Strömungsverlauf an einem Lüfterflügel des erfindungsgemäßen Flügelrades,
    Fig. 7
    in perspektivischer Darstellung eine zweite Ausführungsform eines nicht zur Erfindung gehörenden Lüfterflügels mit mehreren Schnitten,
    Fig. 8
    die Flügelschnitte gemäß Fig. 7 mit einer zylindrischen Hüllfläche des Flügelrades zur Erläuterung der Verschiebung des radial äußeren Flügelschnittes,
    Fig. 9
    in perspektivischer Darstellung die Vorder- und die Hinterkante und den durch die Verschiebung des äußeren Flügelschnittes gebildeten Endbereich des Lüfterflügels gemäß Fig. 7,
    Fig. 10
    in perspektivischer Darstellung den Lüfterflügel gemäß Fig. 3,
    Fig. 11
    mehrere Schnitte durch den Lüfterflügel gemäß Fig. 10.
  • Der Ventilator hat ein Gehäuse 1 mit einem zylindrischen Mantel 2, der einen Förderkanal 3 umschließt. Im Förderkanal 3 befindet sich ein Flügelrad 4, dessen Nabe 5 in bekannter Weise drehbar gelagert ist. Das Flügelrad 4 wird in Pfeilrichtung 6 im Gegenuhrzeigersinn mittels eines Antriebes 4a drehbar angetrieben.
  • Von der Nabe 5 stehen beispielhaft sechs Lüfterflügel 7 ab, die sich bis nahe an den Mantel 2 erstrecken. Die Luft strömt, wie Fig. 6 zeigt, zwischen dem radial äußeren Rand der Lüfterflügel 7 und der Innenseite des Mantels 2 von der Druckseite 9 im Wesentlichen störungsfrei zur Saugseite 8 des Flügelrades 4.
  • Damit beim Betrieb des Ventilators die Geräuschentwicklung in einem für das menschliche Ohr angenehmen Frequenzspektrum liegt, ist es vorteilhaft, wenn die Lüfterflügel 7 über den Umfang der Nabe 5 ungleichmäßig verteilt sind.
  • Selbstverständlich kann das Flügelrad 4 auch so ausgebildet sein, dass die Lüfterflügel 7 gleichmäßig verteilt über den Umfang der Nabe 5 vorgesehen sind.
  • Die Lüfterflügel 7 haben jeweils eine in Drehrichtung 6 vorn liegende Vorderkante 10 sowie eine in Drehrichtung 6 hinten liegende Hinterkante 11. Die Vorderkante 10 ist, in Achsrichtung des Flügelrades 4 gesehen, sichelförmig ausgebildet, das heißt, sie hat einen konkaven Verlauf. Die Vorderkante 10 erstreckt sich von der Nabe 5 aus bis zum Außenrand 12, der sich in Umfangsrichtung des Flügelrades 4 erstreckt. Der Außenrand 12 hat den radialen Abstand 13 (Fig. 6) vom Gehäusemantel 2. Dieser Abstand ist so gewählt, dass die Verlustströmung möglichst gering ist und eine geringe Geräuschentwicklung auftritt.
  • Vorteilhaft liegt der Bereich 14 (Fig. 2), an dem die Vorderkante 10 den Außenrand 12 schneidet, in Drehrichtung 6 des Lüfterrades 4 weiter vorn als der Anschlussbereich der Vorderkante 10 an den Nabenmantel. Wird eine Radiale durch die Achse des Flügelrades 4 und durch diesen Eckbereich 14 gezogen, dann liegt, in Achsrichtung gesehen, der Anschlussbereich der Vorderkante 10 an den Nabenmantel in Drehrichtung hinter dieser Radialen. Durch eine solche Gestaltung der Lüfterflügel 7 ergibt sich eine Geräuschverringerung beim Betrieb des Ventilators und eine Verbesserung des Abrissverhaltens.
  • Die Hinterkante 11 des Lüfterflügels 7 verläuft zumindest über einen Teil ihrer Länge konvex. Der konvexe Verlauf kann von der Nabe 5 bis zum Außenrand 12 des Lüfterflügels vorgesehen sein. Es ist aber auch möglich, den konvexen Verlauf nur über eine Teillänge der Hinterkante 11 des Lüfterflügels 7 vorzusehen. So kann beispielsweise dieser konvexe Verlauf nur in dem an den Außenrand 12 anschließenden Bereich der Hinterkante 11 vorgesehen sein.
  • Beim dargestellten Ausführungsbeispiel ist die Hinterkante 11 über einen Teil ihrer Länge mit Zähnen 15 versehen, die sich jeweils in Richtung auf ihr freies Ende verjüngen. Die Zähne 15 können gleiche Umrissform haben. Bei einer bevorzugten Ausführungsform sind die Zähne 15 so ausgebildet, dass ihre Enden, die vorteilhaft spitz zulaufen, bis zu einer konvex verlaufenden Hülllinie 16 ragen (Fig. 4 und 7). Diese Hülllinie 16 kann vorteilhaft eine Fortsetzung des nichtgezahnten Bereichs der Hinterkante 11 bilden.
  • Die Zähne 15 können längs der Hinterkante 11 auch unterschiedliche Umrissformen und/oder unterschiedliche Länge haben. Durch entsprechende Wahl der Gestaltung der Zähne 15 lässt sich die Geräuschentwicklung des Ventilators an den jeweiligen Einsatzfall optimal anpassen.
  • Die Lüfterflügel 7 sind als gewundene Flügel ausgebildet.
  • Am radial äußeren Rand 12 ist jeder Lüfterflügel 7 beim Ausführungsbeispiel nach den Fig. 1 bis 6 mit einem Strömungselement 17 versehen, das sich vorteilhaft über die gesamte Länge des Außenrandes 12 zwischen der Vorderkante 10 und der Hinterkante 11 erstreckt. Die Strömungselemente erstrecken sich am Außenrand 12 zur Saugseite 8 des Lüfterflügels 7. Es ist aber auch möglich, dass das Strömungselement 17 sich sowohl auf die Saugseite 8 als auch auf die Druckseite 9 erstreckt. Ebenso ist es möglich, dass das Strömungselement 17 lediglich in Richtung auf die Druckseite 9 ragt.
  • Die Strömungselemente 17 sind vorteilhaft einstückig mit den Lüfterflügeln 7 ausgebildet, können aber grundsätzlich auch vom Lüfterflügel getrennte Bauteile sein, die an den Lüfterflügeln in geeigneter Weise befestigt sind.
  • Das Strömungselement 17 hat im Bereich der Vorder- und der Hinterkante 10, 11 des Lüfterflügels 7 jeweils seine größte Höhe h, in Achsrichtung 18 des Flügelrades 4 gemessen (Fig. 5). In Fig. 5 ist das Strömungselement 17 sowie das Profil des zugehörigen Lüfterflügels 7 in Höhe des Strömungselementes 17 dargestellt. Die axiale Höhe h des Strömungselementes 17 nimmt von der Vorderkante 10 bzw. der Hinterkante 11 aus jeweils ab, bis das Strömungselement 17 im Bereich zwischen den beiden Kanten 10, 11 die Höhe 0 oder annähernd 0 hat. Dieser Bereich kann in halber Breite des Lüfterflügels 7 liegen. Der Lüfterflügel 7 hat im Bereich des Strömungselementes 17 die axiale Dicke d. Im übrigen Bereich kann der Lüfterflügel 7 unterschiedliche axiale Dicke haben.
  • Die axiale Höhe h des Strömungselementes 17 sowie die axiale Dicke d des Lüfterflügels 7 sind so aufeinander abgestimmt, dass das Verhältnis h/d von der Vorderkante 10 sowie der Hinterkante 11 aus abnimmt, wie die gestrichelte Linie 19 in Fig. 5 zeigt. In dem Bereich, in dem die axiale Höhe h des Strömungselementes 17 nahezu 0 beträgt, ist dieses Verhältnis h/d am geringsten.
  • Je nach Anwendungsfall kann das Strömungselement 17 auch so gestaltet sein, dass seine minimale axiale Höhe nicht in halber Breite des Lüfterflügels 7 liegt. Wesentlich ist, dass das angegebene Verhältnis h/d von der Vorderkante 10 bzw. der Hinterkante 11 aus abnimmt. Durch eine solche Gestaltung des Lüfterflügels mit Strömungselement ergibt sich eine hervorragende Geräuschreduzierung beim Einsatz des Ventilators.
  • Wie sich aus Fig. 5 ergibt, hat der Lüfterflügel 7 eine Flugzeugtragflächen-Profilform. Im Bereich der Vorderkante 10 ist der Lüfterflügel 7 abgerundet, während er im Bereich der Hinterkante 11 etwa spitz ausläuft. Im Bereich zwischen den beiden Kanten 10, 11 kann der Lüfterflügel 7 auch etwa konstante Querschnittsdicke aufweisen.
  • Bei der bevorzugten einteiligen Ausbildung von Lüfterflügel 7 und Strömungselement 17 weist der Lüfterflügel 7 an der Druckseite 9 einen großen Einlaufbereich 20 (Fig. 6) am Übergang vom Lüfterflügel 7 zum Strömungselement 17 auf, vorzugsweise mit einem großen Radius 27. Dies trägt zu einer geräuscharmen Betriebsweise des Ventilators hervorragend bei.
  • Das Strömungselement 17 ist so ausgebildet, dass seine axiale Erstreckung von der Vorderkante 10 des Lüfterflügels 7 ausgehend über einen sehr kurzen Bereich sehr stark zunimmt, bis das Strömungselement mit geringem Abstand von der Vorderkante 10 seine größte axiale Höhe h aufweist. Ähnlich nimmt die axiale Höhe h des Strömungselementes 17 von der Hinterkante 11 des Lüfterflügels 7 aus über einen sehr kurzen Bereich sehr stark zu, bis das Strömungselement mit geringem Abstand von der Hinterkante 10 in diesem Bereich seine größte axiale Höhe h aufweist, die in Richtung auf die Mitte des Lüfterflügels 7 abnimmt. Aufgrund dieser Ausbildung hat das Strömungselement 17 einen völlig anderen Verlauf als der Lüfterflügel 7 im Bereich des Strömungselementes 17.
  • Die Fig. 7 bis 11 zeigen einen gewundenen Lüfterflügel 7, der anstelle des Strömungselementes 17 im radial äußeren Bereich eine solche Gestaltung hat, dass er trotz fehlendem Strömungselement 17 die gleiche Wirkung wie ein Lüfterflügel mit Strömungselement zeigt. Erreicht wird dies durch eine besondere Gestaltung des Lüfterflügels, die im Folgenden näher beschrieben wird.
  • Wie die Fig. 7 und 8 zeigen, hat der Lüfterflügel 7 über seine radiale Länge in gleichen Abständen die Profilschnitte 24.1 bis 24.7, die eine ähnliche Querschnittsausbildung haben. Wie bei der vorigen Ausführungsform hat der Lüfterflügel 7 eine Flugzeugtragflächen-Profilform, bei der der Lüfterflügel 7 im Bereich der Vorderkante 10 abgerundet und im Bereich der Hinterkante 11 etwa spitz auslaufend ausgebildet ist.
  • Der zum Gehäusemantel 2 weisende Außenrand 12 des Lüfterflügels 7 ist so geformt, dass der radial äußere Profilschnitt des Lüfterflügels zur Saugseite 8 hin verschoben ist. In Fig. 7 sind über die Länge des Lüfterflügels 7 verschiedene Profilschnitte 21, 21.1 bis 21.7 angegeben. Die Profilschnitte sind Zylinderschnitte durch den Lüfterflügel 7. Die Profilschnitte 21.1 bis 21.7 sind in gleichen Abständen in Radialrichtung des Lüfterflügels 7 vorgesehen. Der Profilschnitt 21.7 (Fig. 7) ist an der Nabe 5 des Flügelrades 4 vorgesehen. Erkennbar ist, dass sämtliche Profilschnitte 21 bis 21.7 eine ähnliche Querschnittsform haben, im Ausführungsbeispiel eine Flugzeugtragflächen-Profilform. Die Profilschnitte sind, ausgehend vom innenseitigen Profilschnitt 21.7 und in Radialrichtung des Lüfterflügels 7 gesehen, versetzt angeordnet.
  • In Fig. 8 ist der Fall dargestellt, dass dieser Versatz der Profilschnitte bis zur zylindrischen Hüllfläche 22 des Flügelrades 4 in üblicher Weise weitergeführt ist. Dann würde der radial äußerste Profilschnitt in der Hüllfläche 22 die Position einnehmen, die in Fig. 8 durch die gestrichelte Linie 21.1 angedeutet ist. Bei der vorliegenden Ausführungsform jedoch ist dieser radial äußerste Profilschnitt 21 zur Saugseite 8 hin so versetzt angeordnet, dass der Profilschnitt 21 einen relativ großen Versatz in Bezug auf den benachbarten Profilschnitt 21.2 aufweist. Der Versatz zwischen diesem radial äußersten Profilschnitt 21 und dem benachbarten Profilschnitt 21.2 ist größer als der Versatz zwischen dem Profilschnitt 21.2 und dem ihm benachbarten Profilschnitt 21.3. Aufgrund dieses deutlichen Versatzes zwischen dem äußersten Profilschnitt 21 und dem benachbarten Profilschnitt 21.1 ergibt sich ein radial äußerer Endbereich 20 (Fig. 9), der eine wesentlich größere Steigung hat als der übrige Teil des Lüfterflügels, in dem sich die Profilschnitte 21.2 bis 21.7 befinden.
  • Die Profilschnitte sind so gelegt, dass der Abstand der Profilschnitte voneinander größer ist als die Breite 25 (Fig. 9) des durch den Versatz des äußersten Profilabschnittes 21 gebildeten radial äußeren Endbereichs 20. Da der Versatz zwischen dem radial äußersten Profilschnitt 21 und dem benachbarten Profilschnitt 21.2 größer, vorzugsweise wesentlich größer ist als der Versatz zwischen dem Profilschnitt 21.2 und 21.3, hat der radial äußere Endbereich 20 eine größere Steigung als der übrige Teil des Lüfterflügels 7, durch den die Profilschnitte 21.1 bis 21.7 gelegt sind.
  • Grundsätzlich ist es ausreichend, wenn nur der äußerste Profilschnitt 21 zur Saugseite 8 hin gegenüber dem (den) benachbarten Profilschnitt(en) verschoben ist.
  • Der aufgrund des Versatzes des (der) Profilschnitt(e) entstehende radiale Endbereich 20 (Fig. 9) erzeugt eine dem Strömungselement 17 der vorigen Ausführungsform entsprechende Wirkung, die allein durch die Profilschnitt-Verschiebung erreicht wird.
  • Im Ausführungsbeispiel haben die Profilschnitte 21 bis 21.7 ähnliche Querschnittsausbildung. Der radial äußere Profilschnitt 21 kann eine andere Profilschnittform als die restlichen Profilschnitte 21.2 bis 21.6 aufweisen. Somit kann durch Beeinflussung der Lage der jeweiligen Profilschnitte relativ zueinander der Lüfterflügel 7 optimal an den geforderten Einsatzfall im Hinblick auf Wirkungsgrad und/oder Geräuscharmut optimiert werden.
  • Im beschriebenen und dargestellten Ausführungsbeispiel erfolgt die Verschiebung des Profilschnittes zur Saugseite 8 hin. Die Verschiebung kann aber auch zur Druckseite 9 hin vorgesehen sein.
  • Im Übrigen ist der Lüfterflügel 7 gleich ausgebildet wie bei der vorigen Ausführungsform.
  • Um eine möglichst behinderungsfreie Spaltströmung 24 im Bereich zwischen dem Strömungselement 17 bzw. dem Endbereich 20 und der Innenseite des Gehäusemantels 2 zu erreichen, haben das Strömungselement 17 bzw. der Endbereich 20, in Achsrichtung des Flügelrades 4 gesehen (Fig. 4), einen großen Krümmungsradius 27.
  • Die optimale Spaltströmung 24 wird dadurch unterstützt, dass sich der Strömungsspalt 26 (Fig. 6) zwischen dem Strömungselement 17 bzw. dem Endbereich 20 und dem Gehäusemantel 2 von der Druckseite 9 aus in Richtung auf die Saugseite 8 verjüngt. Der Strömungsspalt 26 ist düsenförmig gestaltet, was zur behinderungsfreien Durchströmung der Luft zur Geräuschreduzierung durch den Strömungsspalt 26 beiträgt.
  • Die anhand der Fig. 7 bis 11 beschriebene Verschiebung der Profilschnitte des Lüfterflügels 7 erfolgt im dargestellten Ausführungsbeispiel translatorisch und rotatorisch. In Fig. 11 sind die verschiedenen Profilschnitte in die Zeichenebene projiziert dargestellt. Aus Fig. 11 ergibt sich, dass diese Profilschnitte nicht nur translatorisch, sondern auch rotatorisch gegeneinander versetzt sind. Erkennbar ist, dass die radial innen liegenden Profilschnitte 21.7 bis 21.5 steiler verlaufen als die radial außen liegenden Profilschnitte 21 bis 21.4. Aus Fig. 11 ergibt sich weiter, dass durch diese Verlagerung des Profilschnittes über die radiale Länge des Lüfterflügels 7 die Form dieses Lüfterflügels durch den Konstrukteur sehr einfach festgelegt und an den Einsatzfall angepasst werden kann.

Claims (9)

  1. Flügelrad für einen Ventilator, mit einer Nabe (5), von der Lüfterflügel (7) abstehen, die am radial äußeren Rand (12) mit wenigstens einem abstehenden Strömungselement (17) versehen sind,
    dadurch gekennzeichnet, dass die axiale Höhe (h) des über die gesamte Länge des Außenrandes (12) zwischen der Vorderkante (10) und der Hinterkante (11) des Lüfterflügels (7) sich erstreckenden Strömungselementes (17) im Bereich der Vorderkante (10) und der Hinterkante (11) des Lüfterflügels (7) ein Maximum hat, und dass die axiale Höhe (h) von den Maxima aus in Richtung auf die Mitte des Lüfterflügels (7) abnimmt.
  2. Flügelrad nach Anspruch 1,
    dadurch gekennzeichnet, dass das Strömungselement (17) zusammen mit der das Flügelrad (4) umgebenden Wandung (2) einen düsenförmigen Strömungsspalt (26) bildet, der die Druckseite (9) mit der Saugseite (8) des Flügelrades (4) verbindet und durch den die Luft im Wesentlichen behinderungsfrei strömt.
  3. Flügelrad nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass das Strömungselement (17) bzw. der radiale Außenrand (12) des Lüfterflügels (7) an der Druckseite (9) einen Einlaufbereich (20) aufweist.
  4. Flügelrad, insbesondere nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, dass das Verhältnis der axialen Höhe (h) des Strömungselementes (17) zur axialen Dicke des Lüfterflügels (7) im Bereich des Strömungselementes (17) von der Vorderkante (10) und/oder der Hinterkante (11) des Lüfterflügels (7) aus abnimmt.
  5. Flügelrad nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, dass die Vorderkante (10) des Lüfterflügels (7) über ihre Länge zumindest teilweise konkav ausgebildet ist.
  6. Flügelrad nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet, dass die Hinterkante (11) des Lüfterflügels (7) über ihre Länge zumindest teilweise konvex ausgebildet ist.
  7. Flügelrad nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet, dass die Hinterkante (11) des Lüfterflügels (7) zumindest über einen Teil ihrer Länge mit Zähnen (15) versehen ist.
  8. Flügelrad nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet, dass der Übergangsbereich (14) zwischen der Vorderkante (10) und dem radial äußeren Rand (12) des Lüfterflügels (7) in Drehrichtung (6) gegenüber dem Übergangsbereich zwischen der Vorderkante (10) und der Nabe (5) vorsteht.
  9. Flügelrad nach einem der Ansprüche 1 bis 8,
    dadurch gekennzeichnet, dass der Lüfterflügel (7) gewunden, vorteilhaft gewölbt ausgebildet ist.
EP11006483.9A 2010-08-13 2011-08-08 Flügelrad für einen ventilator Active EP2418389B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI201132093T SI2418389T1 (sl) 2010-08-13 2011-08-08 Propeler za ventilator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010034604A DE102010034604A1 (de) 2010-08-13 2010-08-13 Flügelrad für einen Ventilator

Publications (3)

Publication Number Publication Date
EP2418389A2 EP2418389A2 (de) 2012-02-15
EP2418389A3 EP2418389A3 (de) 2013-01-23
EP2418389B1 true EP2418389B1 (de) 2023-07-05

Family

ID=44677300

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11006483.9A Active EP2418389B1 (de) 2010-08-13 2011-08-08 Flügelrad für einen ventilator

Country Status (8)

Country Link
US (1) US8915717B2 (de)
EP (1) EP2418389B1 (de)
CN (1) CN102374193B (de)
BR (1) BRPI1103977B1 (de)
DE (1) DE102010034604A1 (de)
ES (1) ES2955590T3 (de)
RU (1) RU2584633C2 (de)
SI (1) SI2418389T1 (de)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102588338B (zh) * 2012-03-01 2015-11-18 Tcl空调器(中山)有限公司 轴流风扇
CN102588339B (zh) * 2012-03-01 2016-02-03 Tcl空调器(中山)有限公司 风扇结构及轴流风扇
DE102012004617A1 (de) * 2012-03-06 2013-09-12 Ziehl-Abegg Ag Axialventilator
DE102012019795A1 (de) * 2012-10-05 2014-04-10 Ziehl-Abegg Ag Ventilatoreinheit
JP5862541B2 (ja) * 2012-10-29 2016-02-16 株式会社デンソー 低騒音送風機
CA152890S (en) * 2013-09-12 2014-05-20 Ventec Canada Inc Fan
CN104655054B (zh) * 2013-11-20 2017-09-29 格力电器(合肥)有限公司 一种贯流风叶错位角测量方法及其测量装置
DE102014102311A1 (de) 2014-02-21 2015-08-27 Ebm-Papst St. Georgen Gmbh & Co. Kg Lüfter mit einem mit Laufschaufeln versehenen Laufrad
WO2016040999A1 (en) * 2014-09-15 2016-03-24 Weir Minerals Australia Ltd Slurry pump impeller
JP6409666B2 (ja) * 2014-09-18 2018-10-24 株式会社デンソー 送風機
CN104389818A (zh) * 2014-11-05 2015-03-04 广东佳科风机股份有限公司 一种减喘振低噪音风机
CN104389817A (zh) * 2014-11-05 2015-03-04 广东佳科风机股份有限公司 一种可调节叶片角度的减喘振低噪音风机叶轮
DE102015216579A1 (de) 2015-08-31 2017-03-02 Ziehl-Abegg Se Lüfterrad, Lüfter und System mit mindestens einem Lüfter
US20170198793A1 (en) * 2016-01-07 2017-07-13 Caterpillar Inc. Torque converters and methods for assembling the same
CN109312759B (zh) * 2016-07-01 2020-07-17 三菱电机株式会社 螺旋桨风扇
AU2017206193B2 (en) * 2016-09-02 2023-07-27 Fujitsu General Limited Axial fan and outdoor unit
US20180258947A1 (en) * 2017-03-10 2018-09-13 Nidec Corporation Axial fan
CN106939900A (zh) * 2017-04-10 2017-07-11 温州职业技术学院 一种紊流低噪风机叶轮
DE102017212231A1 (de) 2017-07-18 2019-01-24 Ziehl-Abegg Se Flügel für das Laufrad eines Ventilators, Laufrad sowie Axialventilator, Diagonalventilator oder Radialventilator
CN107489646B (zh) * 2017-08-02 2024-01-12 奥克斯空调股份有限公司 锯齿型降噪轴流风叶
FR3071559A1 (fr) * 2017-09-27 2019-03-29 Emile Droche Rotor pour dispositif de recuperation de l'energie hydraulique de la houle
USD901669S1 (en) 2017-09-29 2020-11-10 Carrier Corporation Contoured fan blade
DE102017221096A1 (de) 2017-11-24 2019-05-29 Ziehl-Abegg Se Verfahren und Bewertungseinheit zum Ermitteln der Restlebensdauer eines Kondensators sowie System
CN108087330A (zh) * 2017-11-27 2018-05-29 珠海格力电器股份有限公司 叶片结构及具有其的空调器
CN108167224A (zh) * 2017-12-27 2018-06-15 泛仕达机电股份有限公司 一种设置多层降噪结构的叶片及包括该叶片的风扇
DE102018114534B4 (de) * 2018-06-18 2020-10-08 Ie Assets Gmbh & Co. Kg In nur einer Drehrichtung angetriebenes Lüfterrad
EP3882470A4 (de) * 2018-11-22 2022-02-23 GD Midea Air-Conditioning Equipment Co., Ltd. Axialgebläse-laufrad und hiermit versehene klimaanlage
KR20200068887A (ko) * 2018-12-06 2020-06-16 엘지전자 주식회사 터보팬 및 이를 포함하는 공기조화기
US11255348B2 (en) 2019-03-14 2022-02-22 Regal Beloit America, Inc. Blower assembly and methods of assembling the same
US11187083B2 (en) 2019-05-07 2021-11-30 Carrier Corporation HVAC fan
USD980965S1 (en) 2019-05-07 2023-03-14 Carrier Corporation Leading edge of a fan blade
CN111577656B (zh) * 2020-04-14 2021-11-05 约克广州空调冷冻设备有限公司 叶片及使用其的轴流叶轮
JP7093042B1 (ja) * 2021-01-21 2022-06-29 ダイキン工業株式会社 プロペラファン、及び空気調和機
CN114738319B (zh) * 2022-04-20 2023-11-14 浙江尚扬通风设备有限公司 低噪声轴流风机及其使用方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2269287A (en) * 1939-11-29 1942-01-06 Wilmer S Roberts Fan
US5215441A (en) * 1991-11-07 1993-06-01 Carrier Corporation Air conditioner with condensate slinging fan
FR2728028A1 (fr) * 1994-12-07 1996-06-14 Sardou Max Dispositif pour transformer l'energie mecanique d'un moteur en une mise sous pression d'un gaz
WO1996033345A1 (en) * 1995-04-19 1996-10-24 Valeo Thermique Moteur Axial flow fan
EP1624192A1 (de) * 2004-08-06 2006-02-08 Siemens Aktiengesellschaft Verdichterschaufel für einen Verdichter und Verdichter
US20090208333A1 (en) * 2007-10-10 2009-08-20 Smith J Carey Ceiling Fan System with Brushless Motor
US20100104461A1 (en) * 2008-10-29 2010-04-29 Smith J Carey Multi-Part Modular Airfoil Section and Method of Attachment Between Parts

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2023111A (en) * 1934-07-31 1935-12-03 Westinghouse Electric & Mfg Co Silent fan
JPS5115210A (en) * 1974-07-02 1976-02-06 Rotoron Inc Zatsuongenshono fuan
US4063852A (en) * 1976-01-28 1977-12-20 Torin Corporation Axial flow impeller with improved blade shape
DE3017226A1 (de) 1979-05-12 1980-11-20 Papst Motoren Kg Ventilatorlaufrad
JPS59185898A (ja) * 1983-04-08 1984-10-22 Aisin Seiki Co Ltd フアンブレ−ド
US4930990A (en) * 1989-09-15 1990-06-05 Siemens-Bendix Automotive Electronics Limited Quiet clutch fan blade
US5181830A (en) * 1991-11-21 1993-01-26 Chou Rudy S Blade for axial flow fan
JP3448136B2 (ja) * 1994-11-08 2003-09-16 三菱重工業株式会社 プロペラファン
US6024537A (en) 1997-07-29 2000-02-15 Valeo Engine Cooling, Inc. Axial flow fan
RU2124654C1 (ru) * 1998-02-06 1999-01-10 Открытое акционерное общество Московский вентиляторный завод Рабочее колесо осевого вентилятора
JP3039521B2 (ja) * 1998-07-02 2000-05-08 ダイキン工業株式会社 送風機用羽根車
CN2437887Y (zh) * 2000-07-10 2001-07-04 安徽天大(集团)股份有限公司工程塑料厂 具有卷边叶片的轴流通风机
KR100382914B1 (ko) * 2000-07-27 2003-05-09 엘지전자 주식회사 축류팬
US6517315B2 (en) * 2001-05-29 2003-02-11 Hewlett-Packard Company Enhanced performance fan with the use of winglets
TW585227U (en) * 2001-12-31 2004-04-21 Asia Vital Components Co Ltd Improved structure for fan blade
US6994523B2 (en) * 2002-02-28 2006-02-07 Daikin Industries Ltd. Air blower apparatus having blades with outer peripheral bends
DE102004017727A1 (de) 2003-04-19 2004-11-04 Ebm-Papst St. Georgen Gmbh & Co. Kg Lüfter
JP2006312912A (ja) * 2005-05-09 2006-11-16 Kobe Steel Ltd 軸流ファン
WO2008042251A2 (en) * 2006-09-29 2008-04-10 Pax Streamline, Inc. Axial flow fan
RU2354854C1 (ru) * 2007-12-20 2009-05-10 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" Рабочее колесо высокооборотного осевого вентилятора или компрессора
CN101247252A (zh) 2008-03-10 2008-08-20 华为技术有限公司 一种组播快速重路由的方法、装置和系统
CN201212489Y (zh) * 2008-03-12 2009-03-25 韩玮 一种降低能耗和噪音的轴流风扇
CN201241864Y (zh) * 2008-08-15 2009-05-20 新昌县科贸实业有限公司 用于风机的风叶轮

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2269287A (en) * 1939-11-29 1942-01-06 Wilmer S Roberts Fan
US5215441A (en) * 1991-11-07 1993-06-01 Carrier Corporation Air conditioner with condensate slinging fan
FR2728028A1 (fr) * 1994-12-07 1996-06-14 Sardou Max Dispositif pour transformer l'energie mecanique d'un moteur en une mise sous pression d'un gaz
WO1996033345A1 (en) * 1995-04-19 1996-10-24 Valeo Thermique Moteur Axial flow fan
EP1624192A1 (de) * 2004-08-06 2006-02-08 Siemens Aktiengesellschaft Verdichterschaufel für einen Verdichter und Verdichter
US20090208333A1 (en) * 2007-10-10 2009-08-20 Smith J Carey Ceiling Fan System with Brushless Motor
US20100104461A1 (en) * 2008-10-29 2010-04-29 Smith J Carey Multi-Part Modular Airfoil Section and Method of Attachment Between Parts

Also Published As

Publication number Publication date
EP2418389A3 (de) 2013-01-23
RU2584633C2 (ru) 2016-05-20
BRPI1103977B1 (pt) 2020-09-15
CN102374193B (zh) 2016-08-03
ES2955590T3 (es) 2023-12-04
RU2011133880A (ru) 2013-02-20
SI2418389T1 (sl) 2023-10-30
US20120207606A1 (en) 2012-08-16
BRPI1103977A2 (pt) 2014-05-06
CN102374193A (zh) 2012-03-14
DE102010034604A1 (de) 2012-02-16
US8915717B2 (en) 2014-12-23
EP2418389A2 (de) 2012-02-15

Similar Documents

Publication Publication Date Title
EP2418389B1 (de) Flügelrad für einen ventilator
DE19929978B4 (de) Lüfter mit Axialschaufeln
EP2466150B1 (de) Verfahren zur Herstellung eines Flügelrades für einen Ventilator
EP2802780B1 (de) Axial- oder diagonallüfter mit stolperkante auf der laufschaufel-saugseite
EP2646695B1 (de) Axiallüfter
DE102010046870B4 (de) Seitenkanalgebläse, insbesondere Sekundärluftgebläse für eine Verbrennungskraftmaschine
EP2196679A2 (de) Radialgebläserad
WO2004094835A1 (de) Lüfter
EP2886874A1 (de) Radial-Laufrad für einen Trommellüfter und Lüftereinheit mit einem derartigen Radial-Laufrad
WO2017093245A1 (de) Lüfterrad für einen axiallüfter
DE102011005139B4 (de) Strömungsleiteinrichtung für eine Pumpe und Pumpe
DE102009006652A1 (de) Seitenkanalgebläse, insbesondere Sekundärluftgebläse für eine Verbrennungskraftmaschine
WO2016110373A1 (de) Seitenkanalgebläse für eine verbrennungskraftmaschine
DE102011108763A1 (de) Seitenkanalgebläse
EP1914402B1 (de) Axialgebläse und Verfahren zur Verhinderung einer Rezirkulationsströmung
DE3844158A1 (de) Kaskadenpumpenmechanismus
EP3114354B1 (de) Lüfterrad eines axiallüfters
EP3368774B1 (de) Ventilatorrad und ventilator
EP2963243A1 (de) Strömungsmaschine mit laufschaufeln mit in richtung der hinterkante abgesenkter schaufelspitze
DE202009014212U1 (de) Luftleitelement für einen Axialventilator
DE3906852C2 (de)
EP1887195A2 (de) Kühlvorrichtung für ein Kraftfahrzeug
EP3355452B1 (de) Rotoraufbau mit axialabdeckung
DE102006039007A1 (de) Luftführungsanordnung zum Kühlen eines Verbrennungsmotors
DE4020742A1 (de) Laufrad fuer einen ventilator

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F04D 29/38 20060101AFI20121219BHEP

Ipc: F04D 29/66 20060101ALI20121219BHEP

17P Request for examination filed

Effective date: 20130723

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ZIEHL-ABEGG SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ZIEHL-ABEGG SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171127

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230127

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1585086

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011017431

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230815

Year of fee payment: 13

Ref country code: ES

Payment date: 20230920

Year of fee payment: 13

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230705

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20230817

Year of fee payment: 13

Ref country code: FR

Payment date: 20230828

Year of fee payment: 13

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2955590

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20231204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231106

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231005

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231105

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231006

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230927

Year of fee payment: 13

Ref country code: DE

Payment date: 20231027

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230808