EP2414583B1 - Verfahren und vorrichtung zur herstellung einer dreilagigen stahllitze - Google Patents

Verfahren und vorrichtung zur herstellung einer dreilagigen stahllitze Download PDF

Info

Publication number
EP2414583B1
EP2414583B1 EP10711226.0A EP10711226A EP2414583B1 EP 2414583 B1 EP2414583 B1 EP 2414583B1 EP 10711226 A EP10711226 A EP 10711226A EP 2414583 B1 EP2414583 B1 EP 2414583B1
Authority
EP
European Patent Office
Prior art keywords
layer
core
wires
rubber
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10711226.0A
Other languages
English (en)
French (fr)
Other versions
EP2414583A1 (de
Inventor
Thibaud Pottier
Jacques Gauthier
Jérémy TOUSSAIN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Compagnie Generale des Etablissements Michelin SCA
Michelin Recherche et Technique SA France
Original Assignee
Michelin Recherche et Technique SA Switzerland
Compagnie Generale des Etablissements Michelin SCA
Michelin Recherche et Technique SA France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Michelin Recherche et Technique SA Switzerland, Compagnie Generale des Etablissements Michelin SCA, Michelin Recherche et Technique SA France filed Critical Michelin Recherche et Technique SA Switzerland
Publication of EP2414583A1 publication Critical patent/EP2414583A1/de
Application granted granted Critical
Publication of EP2414583B1 publication Critical patent/EP2414583B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B5/00Making ropes or cables from special materials or of particular form
    • D07B5/12Making ropes or cables from special materials or of particular form of low twist or low tension by processes comprising setting or straightening treatments
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/062Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the strand configuration
    • D07B1/0633Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the strand configuration having a multiple-layer configuration
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B7/00Details of, or auxiliary devices incorporated in, rope- or cable-making machines; Auxiliary apparatus associated with such machines
    • D07B7/02Machine details; Auxiliary devices
    • D07B7/14Machine details; Auxiliary devices for coating or wrapping ropes, cables, or component strands thereof
    • D07B7/145Coating or filling-up interstices
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2023Strands with core
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2024Strands twisted
    • D07B2201/2025Strands twisted characterised by a value or range of the pitch parameter given
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2024Strands twisted
    • D07B2201/2027Compact winding
    • D07B2201/2028Compact winding having the same lay direction and lay pitch
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2024Strands twisted
    • D07B2201/2029Open winding
    • D07B2201/2031Different twist pitch
    • D07B2201/2032Different twist pitch compared with the core
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2038Strands characterised by the number of wires or filaments
    • D07B2201/204Strands characterised by the number of wires or filaments nine or more wires or filaments respectively forming multiple layers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2046Strands comprising fillers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2052Cores characterised by their structure
    • D07B2201/2059Cores characterised by their structure comprising wires
    • D07B2201/2062Cores characterised by their structure comprising wires comprising fillers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2052Cores characterised by their structure
    • D07B2201/2065Cores characterised by their structure comprising a coating
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2075Fillers
    • D07B2201/2079Fillers characterised by the kind or amount of filling
    • D07B2201/2081Fillers characterised by the kind or amount of filling having maximum filling
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2207/00Rope or cable making machines
    • D07B2207/20Type of machine
    • D07B2207/204Double twist winding
    • D07B2207/205Double twist winding comprising flyer
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2207/00Rope or cable making machines
    • D07B2207/40Machine components
    • D07B2207/4072Means for mechanically reducing serpentining or mechanically killing of rope
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2401/00Aspects related to the problem to be solved or advantage
    • D07B2401/20Aspects related to the problem to be solved or advantage related to ropes or cables
    • D07B2401/202Environmental resistance
    • D07B2401/2025Environmental resistance avoiding corrosion
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2401/00Aspects related to the problem to be solved or advantage
    • D07B2401/20Aspects related to the problem to be solved or advantage related to ropes or cables
    • D07B2401/208Enabling filler penetration
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2501/00Application field
    • D07B2501/20Application field related to ropes or cables
    • D07B2501/2046Tire cords

Definitions

  • the present invention relates to processes and devices for manufacturing three-layer metal cables, in particular of M + N + P construction, which can be used in particular for reinforcing rubber articles such as tires.
  • a radial tire comprises in known manner a tread, two inextensible beads, two flanks connecting the beads to the tread and a belt circumferentially disposed between the carcass reinforcement and the tread.
  • This carcass reinforcement is constituted in known manner by at least one ply (or “layer”) of rubber reinforced by reinforcement elements (“reinforcements”) such as cords or monofilaments, generally of the metal type in the case of pneumatic tires for industrial vehicles carrying heavy loads.
  • steel wires for the reinforcement of the above carcass reinforcements, use is generally made of steel wires ( “steel cords”) called “layers” ( “layered cords”) consisting of a central layer or core and one or more layers of concentric threads arranged around this core.
  • the most used three-layer cables are essentially M + N + P construction cables, formed of a core of M wire (s), M varying from 1 to 4, surrounded by an intermediate layer of N wires, N typically ranging from 3 to 12, itself surrounded by an outer layer of P son, P typically ranging from 8 to 20, the assembly may be optionally shrunk by an outer hoop thread wound helically around the outer layer.
  • M wire s
  • M varying from 1 to 4
  • N typically ranging from 3 to 12
  • P typically ranging from 8 to 20
  • P typically ranging from 8 to 20
  • Such a cable is described in the application JP2007303044 .
  • these layered cables are subjected to considerable stresses during the rolling of the tires, in particular to repeated flexures or variations of curvature inducing at the level of the strands of friction, in particular as a result of the contacts between adjacent layers, and therefore of wear, as well as fatigue; they must therefore have a high resistance to phenomena known as "fatigue-fretting".
  • this material penetrates into all the spaces between the threads constituting the cables. Indeed, if this penetration is insufficient, then empty channels or capillaries are formed, along and inside the cables, and corrosive agents such as water or even oxygen in the air, likely to to enter the tires for example following cuts in their tread, walk along these empty channels into the carcass of the tire.
  • corrosive agents such as water or even oxygen in the air, likely to to enter the tires for example following cuts in their tread, walk along these empty channels into the carcass of the tire.
  • the presence of this moisture plays an important role in causing corrosion and accelerating the degradation processes above (phenomena known as "fatigue-corrosion”), compared to use in a dry atmosphere.
  • one of the essential characteristics is that a sheath consisting of a rubber composition covers at least the intermediate layer consisting of M son, the core (or unit wire) of the cable may itself be covered or not rubber. Thanks to this specific architecture, not only an excellent penetrability by the rubber is obtained, limiting the corrosion problems, but also the fatigue-fretting endurance properties are significantly improved compared to the cables of the prior art. The longevity of the tires and that of their carcass reinforcement are thus very significantly improved.
  • these three-layer cables are obtained in several steps which have the disadvantage of being discontinuous, firstly by producing an intermediate cable 1 + M (in particular 1 + 6), then by sheathing via an extrusion head of this intermediate cable, finally by a final operation of wiring the N (in particular 12) son remaining around the core thus sheathed, for forming the outer layer.
  • an intermediate cable 1 + M in particular 1 + 6
  • an extrusion head of this intermediate cable finally by a final operation of wiring the N (in particular 12) son remaining around the core thus sheathed, for forming the outer layer.
  • N in particular 12
  • This method of the invention makes it possible to manufacture, preferably in line and continuously, a three-layer cable which, compared to the three-layer gummed in situ cables of the prior art, has the significant advantage of having a reduced quantity. filling gum, which guarantees a better compactness, this gum being furthermore evenly distributed to the inside of the cable, inside each of its capillaries, thus conferring on it an improved longitudinal impermeability.
  • any range of values designated by the expression "between a and b" represents the range of values from more than a to less than b (i.e. terminals a and b excluded) while any range of values designated by the term “from a to b” means the range from a to b (i.e., including the strict limits a and b).
  • An essential feature of the above method is to use a twisting step both for assembling the second layer (C2) around the first layer (C1) and for assembling the third layer (C3) around the second layer (C2).
  • the diameter d 0 (or total overall diameter) of the core (C1) is preferably in a range of 0.08 to 0.50 mm, this core may consist of a single wire or several son previously assembled between them by any known means, for example by cabling or more preferably by twisting.
  • the number denoted "M" of yarn (s) of the core is within a range of 1 to 4. More preferably, the core consists of a single unitary wire (M equal to 1) whose diameter d 1 is itself more preferably within a range of 0.08 to 0.50 mm.
  • this core is first sheathed by the filling rubber in the uncrosslinked state, provided by an extrusion screw at an appropriate temperature.
  • the filling rubber can thus be delivered at a fixed point, unique and compact, by means of a single extrusion head.
  • the extrusion head may comprise one or more dies, for example an upstream guide die and a downstream die calibration. It is possible to add continuous measurement and control means of the diameter of the sheathed core, connected to the extruder, as well as means for controlling the centering of the core in the extrusion head.
  • the extrusion temperature of the filling rubber is between 50 ° C and 120 ° C, more preferably between 50 ° C and 100 ° C.
  • the extrusion head thus defines a cladding zone having the shape of a cylinder of revolution whose diameter is preferably between 0.15 mm and 1.2 mm, more preferably between 0.2 and 1.0 mm, and whose length is preferably between 4 and 10 mm.
  • the core of the cable at every point of its periphery, is covered with a minimum thickness of filling compound which is preferably greater than 5 ⁇ m, more preferably greater than 10 ⁇ m, in particular greater than 15 microns, in particular between 15 and 40 microns.
  • the elastomer (or indistinctly "rubber”, both of which are considered synonymous) of the filling rubber is preferably a diene elastomer, that is to say by definition an elastomer derived at least in part (ie a homopolymer or a copolymer) of monomer (s) diene (s) (ie, monomer (s) carrier (s) of two carbon-carbon double bonds, conjugated or not).
  • the diene elastomer is more preferentially selected from the group consisting of polybutadienes (BR), natural rubber (NR), synthetic polyisoprenes (IR), various butadiene copolymers, the various isoprene copolymers, and mixtures
  • Such copolymers are more preferably selected from the group consisting of butadiene-styrene copolymers (SBR), whether the latter are prepared by emulsion polymerization (ESBR) or in solution (SSBR), the isoprene copolymers.
  • SBR butadiene-styrene copolymers
  • BIR isoprene-styrene copolymers
  • SBIR isoprene-butadiene-styrene copolymers
  • a preferred embodiment consists in using an "isoprene" elastomer, that is to say a homopolymer or a copolymer of isoprene, in other words a diene elastomer chosen from the group consisting of natural rubber (NR). , the synthetic polyisoprenes (IR), the various isoprene copolymers and the mixtures of these elastomers.
  • the isoprene elastomer is preferably natural rubber or synthetic polyisoprene of the cis-1,4 type. Among these synthetic polyisoprenes, polyisoprenes having a content (mol%) of cis-1,4 bonds greater than 90%, more preferably still greater than 98%, are preferably used.
  • the isoprene elastomer may also be associated with another diene elastomer such as, for example, an SBR and / or BR elastomer.
  • the filling rubber may contain one or more elastomer (s), especially diene (s), the latter or they may be used (s) in combination with any type of polymer other than elastomer.
  • the filling rubber is preferably of the crosslinkable type, that is to say that it comprises by definition a crosslinking system adapted to allow the crosslinking of the composition during its baking (i.e., its hardening and not its melting); thus, in such a case, this rubber composition can be described as infusible, since it can not be melted by heating at any temperature.
  • the system for crosslinking the rubber sheath is a so-called vulcanization system, that is to say based on sulfur (or a sulfur-donor agent). ) and at least one vulcanization accelerator.
  • the invention also applies to cases where the filling gum is free of sulfur and even of any other crosslinking system, it being understood that it could be sufficient, for its own crosslinking or vulcanization, the crosslinking or vulcanization system already present in the rubber matrix that the cable of the invention is intended to reinforce, and capable of migrating by contact of said surrounding matrix to the filling rubber.
  • the filling rubber may also comprise all or part of the usual additives intended for tire rubber matrices, such as, for example, reinforcing fillers such as carbon black or silica, antioxidants, oils, plasticizers, anti-eversion agents, resins, adhesion promoters such as cobalt salts.
  • reinforcing fillers such as carbon black or silica, antioxidants, oils, plasticizers, anti-eversion agents, resins, adhesion promoters such as cobalt salts.
  • the level of reinforcing filler for example carbon black or a reinforcing inorganic filler such as silica, is preferably greater than 50 phr, for example between 50 and 120 phr.
  • carbon blacks for example, all carbon blacks are suitable, in particular blacks of the HAF, ISAF, SAF type conventionally used in tires (so-called pneumatic grade blacks). Among the latter, there will be mentioned more particularly the carbon blacks of ASTM grade 300, 600 or 700 (for example N326, N330, N347, N375, N683, N772).
  • Suitable reinforcing inorganic fillers are in particular silica (SiO 2 ) type inorganic fillers, in particular precipitated or fumed silica having a BET surface area of less than 450 m 2 / g, preferably from 30 to 400 m 2 / g.
  • the N son of the second layer (C2) are twisted together (direction S or Z) around the core (C1) sheathed for formation in a point said point of assembly of the core strand (C1 + C2), in a manner known per se; the son are delivered by supply means such as coils, a distribution grid, coupled or not to a connecting grain, intended to converge around the core N son in a common point of torsion (or point d 'assembly).
  • the diameter d 2 of the N son is within a range of 0.08 to 0.45 mm and the twisting pitch p 2 is within a range of 5 to 30 mm.
  • the pitch "p" represents the length, measured parallel to the axis of the cable, at the end of which a wire having this pitch performs a complete revolution about said axis of the cable.
  • the tension stress exerted on the core strand is preferably between 10 and 25% of its breaking force.
  • the core strand (C1 + C2) thus formed is in turn sheathed by the filling gum in the green state, brought for example by a second extrusion head carried to an appropriate temperature.
  • this extrusion head may comprise one or more dies, for example an upstream guide die and a downstream die calibration; may also be added means for measuring and continuously monitoring the diameter of the sheathed core strand, connected to the extruder, as well as web centering control means in the extrusion head.
  • the extrusion temperature of the filling rubber is between 50 ° C and 120 ° C, more preferably between 50 ° C and 100 ° C.
  • the extrusion head defines a cladding zone in the form of a cylinder of revolution whose diameter is preferably between 0.4 and 1.2 mm, more preferably between 0.5 and 1.0 mm, and the length is preferably between 4 and 10 mm.
  • the core strand (C1 + C2) thus sheathed, at every point of its periphery, is covered with a minimum thickness of filling compound which is preferably greater than 5 ⁇ m. More preferably greater than 10 ⁇ m, in particular between 15 and 50 ⁇ m.
  • the final assembly is carried out, always by twisting (S or Z direction), P son of the third layer or outer layer (C3) around the core strand (C1 + C2) thus sheathed.
  • the diameter d 3 of P son is in a range of 0.08 to 0.45 mm and the twisting pitch p 3 is greater than or equal to p 2 , in particular in a range of 5 to 30 mm.
  • the P son come to bear in turn on the filling rubber present at the periphery of the core strand, to become embedded in the latter.
  • the filling rubber under the pressure exerted by these P external son, then partially fills the capillaries or cavities left empty by the son, between the second layer (C2) and the outer layer (C3).
  • the cable of the invention is not yet complete: the above capillaries delimited by the N wires of the second layer (C2) and the P wires of the third layer (C3) are not not yet filled with filling rubber sufficiently to obtain a cable having an impermeability to air that is optimal.
  • Torsion balancing is meant here in a known manner the cancellation of the residual torsional torques (or detorsional springback) exerted on each wire of the cable in the twisted state, in its respective layer.
  • Torsion balancing tools are known to those skilled in the art of twisting; they may consist for example of “trainers” and / or “twisters” and / or “twister-trainers” consisting of either pulleys for twisters or small diameter rollers for trainers, pulleys or rollers through which circulates the cable in a single plane or preferably in at least two different planes.
  • the training function provided by the use of a trainer tool, would also have the advantage that the contact of roller of the trainer with the son of the outer layer (C3) will exert additional pressure on the filling rubber further promoting its optimal distribution in the capillaries present between the second layer (C2) and the third layer (C3) of the cable.
  • the method of the invention described above exploits the torsion of the son and the radial pressure exerted on them at the final stage of manufacture of the cable, to radially distribute the filling rubber inside. cable, while perfectly controlling the amount of filling compound provided.
  • the person skilled in the art will in particular be able to adjust the arrangement, the diameter of the pulleys and / or rollers of the torsion balancing means in order to modify the intensity of the radial pressure exerted on the threads.
  • the thickness of filling rubber between two adjacent wires of the cable, whatever they are, is greater than 1 micron, preferably between 1 and 10 microns.
  • This cable can be wound on a receiving reel, for storage, before being processed, for example, through a calendering installation, for preparing a metal-rubber composite fabric that can be used, for example, as a tire carcass reinforcement.
  • the total amount of filling gum delivered by the first and second cladding means previously described is adjusted in a preferred range of between 5 and 40 mg, in particular between 5 and 30 mg per gram of final cable (ie, finished manufacturing, gummed in situ).
  • the amount of filling gum delivered by each of the first and second cladding means may advantageously be adjusted in a preferred range between 2.5 and 20 mg, in particular between 2, 5 and 15 mg per gram of final cable.
  • the following relationship is satisfied (d 1 , d 2 , d 3 , p 2 and p 3 being expressed in mm): 5 ⁇ ⁇ ⁇ d 1 + d 2 ⁇ p 2 ⁇ p 3 ⁇ 10 ⁇ ⁇ ⁇ d 1 + 2 ⁇ d 2 + d 3 .
  • the steps p 2 and p 3 are equal, which simplifies the manufacturing process.
  • the formulation of the filling rubber may be chosen to be identical to the formulation of the rubber matrix that the final cable is intended to reinforce; thus, there is no problem of compatibility between the respective materials of the filling rubber and said rubber matrix.
  • the formulation of the filling compound may be chosen different from the formulation of the rubber matrix that the final cable is intended to reinforce.
  • the formulation of the filling gum may be adjusted by using a relatively high quantity of adhesion promoter, typically for example from 5 to 15 phr of a metal salt such as a salt of cobalt, nickel or a salt of lanthanide such as neodymium (see in particular application WO 2005/113666 ), and advantageously reducing the amount of said promoter (or even removing it completely) in the surrounding rubber matrix.
  • adhesion promoter typically for example from 5 to 15 phr of a metal salt such as a salt of cobalt, nickel or a salt of lanthanide such as neodymium
  • the filling rubber has, in the crosslinked state, a secant modulus in extension E10 (at 10% elongation) which is between 2 and 25 MPa, more preferably between 3 and 20 MPa, in particular included in a range of 3 to 15 MPa.
  • a secant modulus in extension E10 at 10% elongation
  • the third layer (C3) has the preferred characteristic of being a saturated layer, that is to say that, by definition, there is not enough room in this layer to add at least one ( P max +1) th wire of diameter d 3 , P max representing the maximum number of wires rollable in a third layer (C3) around the second layer (C2).
  • This construction has the advantage of limiting the risk of overfilling gum filling at its periphery and offer, for a given diameter of the cable, a higher strength.
  • the number P of son of the third layer can vary to a very large extent according to the particular embodiment of the invention, it being understood that the maximum number of P son will be increased if their diameter d 3 is reduced compared to the diameter d 2 son of the second layer, in order to preferentially keep the outer layer in a saturated state.
  • the core (C1) consists of several wires (ie, M is different from 1)
  • the M wires are preferably assembled together in an assembly pitch which is preferably between 4 and 15 mm, in particular between 5 and 15 mm. and 10 mm.
  • the second layer (C2) has 5 to 7 wires (ie, N varies from 5 to 7).
  • the first layer (C1) comprises a single wire (M equal to 1)
  • the second layer (C2) has 6 wires (N equal to 6)
  • the third layer (C3) comprises 11 or 12 wires (P equal to 11 or 12).
  • the cable of the invention has the preferred constructions 1 + 6 + 11 or 1 + 6 + 12.
  • the cable prepared according to the invention can be of two types, namely of the compact layer type or the type with cylindrical layers.
  • the compactness is such that virtually no distinct layer of wires is visible; as a result, the cross-section of such cables has an outline which is generally polygonal and non-cylindrical, as illustrated for example in figure 2 (compact cable 1 + 6 + 12 gummed in situ) and figure 3 (compact cable 1 + 6 + 12 conventional, that is to say not gummed in situ).
  • the cable manufactured according to the invention can be described as airtight in the fired state: in the air permeability test described in paragraph II-1-B which follows, it is characterized by a average air flow rate less than 2 cm 3 / min, preferably less than or equal to 0.2 cm 3 / min.
  • the method of the invention has the advantage of making possible the complete operation of initial twisting, scrubbing and final twisting in line and in a single step, regardless of the type of cable produced (compact cable as cable with cylindrical layers) , all this at high speed.
  • the above method can be implemented at a speed (running speed of the cable on the twisting-scrub line) greater than 50 m / min, preferably greater than 70 m / min.
  • the method of the invention makes it possible to manufacture cables which may be lacking (or virtually devoid of) filling gum at their periphery.
  • an expression it is meant that no particle of filling compound is visible, with the naked eye, at the periphery of the cable, that is to say that the person skilled in the art does not make any difference at the end of the manufacturing process, with the naked eye and at a distance of three meters or more, between a cable reel according to the invention and a conventional cable reel not gummed in situ.
  • wire rope is meant by definition in the present application a cable formed of son constituted mainly (that is to say for more than 50% in number of these son) or integrally (for 100% son) a metallic material.
  • the core wire (s) (C1), the wires of the second layer (C2) and the wires of the third layer (C3) are preferably made of steel, more preferably carbon steel. But it is of course possible to use other steels, for example a stainless steel, or other alloys.
  • carbon steel its carbon content (% by weight of steel) is preferably between 0.4% and 1.2%, especially between 0.5% and 1.1%; these levels represent a good compromise between the mechanical properties required for the tire and the feasibility of the wires.
  • a carbon content of between 0.5% and 0.6% makes such steels ultimately less expensive because easier to draw.
  • Another advantageous embodiment of the invention may also consist, according to the targeted applications, to use low carbon steels, for example between 0.2% and 0.5%, due in particular to lower cost and greater ease of drawing.
  • a single core wire (C1) delivered by supply means (110) first passes through a cladding zone consisting for example of a first extrusion head (1a).
  • Feeding means (120) then deliver, around the core wire (C1) thus sheathed, N wires (12) through a distribution grid (13) (axisymmetric splitter), coupled or not to an assembly line ( 14), beyond which converge the N (for example six) son of the second layer into an assembly point (15), for forming the core strand (C1 + C2) of construction 1 + N (by example 1 + 6).
  • the distance between the first cladding point (11a) and the convergence point (15) and is for example between 1 and 5 meters.
  • the core strand (C1 + C2) thus formed is in turn sheathed through a second cladding zone (11b) consisting for example of a second extrusion head.
  • the distance between the assembly point (15) and the second sheathing point (11b) is for example between 50 cm and 5 meters.
  • FIG 2 schematically, in section perpendicular to the axis of the cable (assumed rectilinear and at rest), an example of a preferred cable 1 + 6 + 12 gummed in situ, obtainable using the method according to the previously described invention.
  • This type of construction has the consequence that the wires (21, 22) of these second and third layers (C2, C3) form around the core (20) or first layer (C1) two substantially concentric layers which each have a contour (E ) (shown in dashed lines) which is substantially polygonal (more precisely hexagonal) and non-cylindrical as in the case of cables with so-called cylindrical layers.
  • This cable C-1 can be described as cable gummed in situ: each of the capillaries or interstices (empty spaces in the absence of filling rubber) formed by the adjacent wires, taken three by three, of its three layers C1, C2 and C3, is filled, at least in part (continuously or not along the axis of the cable), by the filling rubber such that for any cable length of 2 cm, each capillary comprises at least one rubber stopper .
  • the filling rubber (23) fills each capillary (24) (symbolized by a triangle) formed by the adjacent wires (taken three to three) of the various layers (C1, C2, C3) of the cable, by discarding them very slightly.
  • these capillaries or interstices are naturally formed either by the core wire (20) and the son (21) of the second layer (C2) surrounding it, or by two son (21) of the second layer (C2) and a wire (23) of the third layer (C3) which is immediately adjacent thereto, or else by each wire (21) of the second layer (C2) and the two wires (22) of the third layer (C3) which are immediately adjacent; a total of 24 capillaries or interstices (24) are thus present in this cable 1 + 6 + 12.
  • the filling rubber preferably extends continuously around the second layer (C2) that it covers.
  • the figure 3 recalls the section of a cable 1 + 6 + 12 (noted C-2) conventional (ie, not gummed in situ), also of the compact type.
  • C-2 conventional (ie, not gummed in situ), also of the compact type.
  • the absence of filling rubber makes practically all the son (30, 31, 32) are in contact with each other, which leads to a particularly compact structure, moreover very difficult to penetrate (not to say impenetrable) from the outside by rubber.
  • the characteristic of this type of cable is that the various wires form three to three of the channels or capillaries (34) which for a large number of them remain closed and empty and thus conducive, by "wicking" effect, to the propagation corrosive environments such as water.
  • Fm maximum load in N
  • Rm tensile strength in MPa
  • At total elongation in %
  • the modulus measurements are carried out in tension, unless otherwise indicated according to ASTM D 412 of 1998 (test piece “C"): it is measured in second elongation (ie after one cycle). accommodation) the secant modulus "true” (that is, reduced to the actual section of the specimen) at 10% elongation, denoted E10 and expressed in MPa (normal temperature and humidity conditions according to ASTM D 1349 of 1999).
  • This test makes it possible to determine the longitudinal permeability to the air of the cables tested, by measuring the volume of air passing through a specimen under constant pressure for a given time.
  • the principle of such a test is to demonstrate the effectiveness of the treatment of a cable to make it impermeable to air; it has been described for example in ASTM D2692-98.
  • the test is here carried out either on cables extracted from tires or rubber sheets which they reinforce, thus already coated from the outside by rubber in the fired state, or on raw manufacturing cables, which have been coated and subsequent cooking.
  • the raw cables must be previously embedded, coated from the outside by a so-called coating gum.
  • a series of 10 cables arranged in parallel is placed between two skims (two rectangles of 80 x 200 mm) of a rubber composition in the raw state, each skim having a thickness 3.5 mm; the whole is then locked in a mold, each of the cables being kept under a sufficient tension (for example 2 daN) to ensure its straightness during the establishment in the mold, using clamping modules; then the vulcanization (baking) is carried out for 40 min at a temperature of 140 ° C and a pressure of 15 bar (rectangular piston 80 x 200 mm). After which, the assembly is demolded and cut 10 pieces of cables thus coated, in the form of parallelepipeds of dimensions 7x7x20 mm, for characterization.
  • the test is carried out on 2 cm of cable length, thus coated by its surrounding rubber composition (or coating gum) in the fired state, as follows: air is sent to the cable inlet at a pressure of 1 bar, and the volume of air at the outlet is measured using a flow meter (calibrated for example from 0 to 500 cm 3 / min). During the measurement, the cable sample is locked in a compressed seal (for example a dense foam or rubber seal) in such a way that only the amount of air passing through the cable from one end to the other along its longitudinal axis , is taken into account by the measure; a leakproofness test of the seal is made using a solid rubber specimen, ie without cable.
  • a compressed seal for example a dense foam or rubber seal
  • the measured flow rate is lower as long as the longitudinal imperviousness of the cable is high.
  • measured values equal to or less than 0.2 cm 3 / min are considered to be zero; they correspond to a cable that can be described as airtight along its axis (ie, in its longitudinal direction).
  • the amount of filling compound is measured by difference between the weight of the initial cable (thus erased in situ) and the weight of the cable (and therefore that of its threads) whose filling rubber has been eliminated by a suitable electrolytic treatment.
  • a sample of cable (length 1 m), wound on itself to reduce its bulk, constitutes the cathode of an electrolyzer (connected to the negative terminal of a generator), while the anode (connected to the positive terminal ) consists of a platinum wire.
  • the electrolyte consists of an aqueous solution (demineralized water) comprising 1 mole per liter of sodium carbonate.
  • the sample immersed completely in the electrolyte, is energized for 15 minutes under a current of 300 mA.
  • the cable is then removed from the bath, rinsed thoroughly with water. This treatment allows the rubber to be easily detached from the cable (if this is not the case, we continue the electrolysis for a few minutes).
  • the eraser is carefully removed, for example by simply wiping with an absorbent cloth, while detaching one by one the son of the cable.
  • the threads are rinsed with water again and then immersed in a beaker containing a mixture of demineralized water (50%) and ethanol (50%); the beaker is immersed in an ultrasonic tank for 10 minutes.
  • the yarns thus devoid of any trace of gum are removed from the beaker, dried under a stream of nitrogen or air, and finally weighed.
  • the rate of filling rubber in the cable is calculated and averaged over 10 measurements (10 meters of cable in total).
  • the carbon steel wires are prepared in a known manner, for example starting from machine wires (diameter 5 to 6 mm) which are first cold-rolled, by rolling and / or drawing, to a neighboring intermediate diameter. of 1 mm.
  • the steel used is a known carbon steel (USA AISI 1069 standard) with a carbon content of 0.70%.
  • the intermediate diameter son undergo a degreasing treatment and / or pickling, before further processing.
  • the rate of filling rubber measured according to the method indicated previously in paragraph II-1-C, is equal to about 22 mg per g of cable.
  • This filling rubber is present in each of the 24 capillaries formed by the various son taken three to three, that is to say that it fills all or at least partly each of these capillaries in such a way that it exists at least, on any length of cable of length equal to 2 cm, a rubber stopper in each capillary.
  • the filling gum is a conventional rubber composition for a tire carcass reinforcement for industrial vehicles, having the same formulation as that of the carcass rubber ply that the C-1 cable is intended to reinforce; this composition is based on natural rubber (peptized) and carbon black N330 (55 phr); it also comprises the following usual additives: sulfur (6 phr), sulfenamide accelerator (1 phr), ZnO (9 phr), stearic acid (0.7 phr), antioxidant (1.5 phr), cobalt naphthenate (1 phr) pce); the module E10 of the composition is about 6 MPa. This composition was extruded at a temperature of about 85 ° C through two calibration dies (11a, 11b) of respective diameters 0.250 and 0.580 mm.
  • the C-1 cables thus prepared were subjected to the air permeability test described in paragraph II-1-B, by measuring the volume of air (in cm 3 ) passing through the cables in 1 minute (average of 10 measurements for each cable tested). For each cable C-1 tested and for 100% of the measurements (ie ten test pieces out of ten), a flow rate of zero or less than 0.2 cm 3 / min was measured; in other words, the cables prepared according to the method of the invention can be qualified as airtight along their longitudinal axis; they therefore have an optimal penetration rate by rubber.
  • control gummed in situ cables of the same construction as the C-1 compact cables above, were prepared according to the method described in the application WO 2005/071557 mentioned above, in several discontinuous steps, by sheathing via an extrusion head of the intermediate core strand 1 + 6, then in a second step by wiring the remaining 12 wires around the core thus sheathed, for forming the outer layer .
  • These control cables were then subjected to the air permeability test of paragraph I-2.
  • the method of the invention allows the manufacture of M + N + P construction cables gummed in situ which, thanks to an optimal penetration rate by rubber, on the one hand have a high endurance in carcass reinforcement of pneumatic, on the other hand can be implemented effectively under industrial conditions, in particular without the difficulties associated with overflowing of rubber during their manufacture.

Claims (15)

  1. Verfahren zur Herstellung eines Drahtseils mit drei konzentrischen Lagen (C1, C2, C3) von der Art in-situ-gummiert, d.h. eine Kautschukzusammensetzung im nicht vernetzten Zustand, «Füllgummi» genannt, enthaltend, wobei das Seil eine erste Innenschicht oder Kern (C1) aufweist, um den herum N Drähte mit einem Durchmesser d2 zusammen spiralförmig gemäß einer Steigung p2 in einer zweiten Zwischenschicht (C2) angeordnet sind, wobei N von 3 bis 12 variiert, zweite Schicht, um die P Drähte mit einem Durchmesser d3 in einer dritten Außenschicht (C3) zusammen spiralförmig gemäß einer Steigung p3 angeordnet sind, wobei P von 8 bis 20 variiert, dadurch gekennzeichnet, dass das Verfahren die folgenden Schritte aufweist:
    - einen ersten Schritt des Umhüllens des Kerns (C1) mit dem Füllgummi;
    - einen ersten Montageschritt durch Verzwirnen der N Drähte der zweiten Schicht (C2) um den so umhüllten Kern (C1), zur Bildung eines «Seelenlitze» (C1+C2) genannten Zwischenseils an einem «Montagepunkt» genannten Punkt;
    - hinter dem Montagepunkt, einen zweiten Schritt der Umhüllung der Seelenlitze (C1+C2) mit dem Füllgummi;
    - einen zweiten Montageschritt durch Verzwirnen der P Drähte der dritten Schicht (C3) um die so umhüllte Seelenlitze (C1+C2);
    - einen Schritt des Endausgleichs der Verwindungen des den Füllgummi im nicht vernetzten Zustand enthaltenden Seils.
  2. Verfahren nach Anspruch 1, wobei die Extrusionstemperatur des Füllgummis in jedem Umhüllungsschritt zwischen 50°C und 120°C liegt.
  3. Verfahren nach Anspruch 1 oder 2, wobei die Gesamtmenge von Füllgummi, die während der zwei Umhüllungsschritte geliefert wird, zwischen 5 und 40 mg pro Gramm fertiges Seil liegt.
  4. Verfahren nach einem der Ansprüche 1 bis 3, wobei der Kern und die Seelenlitze nach der Umhüllung je mit einer Mindestdicke von Füllgummi von mehr als 5 µm beschichtet sind.
  5. Verfahren nach einem der Ansprüche 1 bis 4, wobei der Kautschuk des Füllgummis ein Dienelastomer ist.
  6. Verfahren nach Anspruch 5, wobei das Dienelastomer aus der Gruppe ausgewählt wird, die aus den Polybutadienen, dem natürlichen Kautschuk, den synthetischen Polyisoprenen, den Butadien-Copolymeren, den Isopren-Copolymeren und den Mischungen dieser Elastomermaterialien besteht.
  7. Verfahren nach Anspruch 6, wobei das Dienelastomer ein Isoprenelastomer ist, vorzugsweise natürlicher Kautschuk.
  8. Verfahren nach einem der Ansprüche 1 bis 7, wobei die auf die Seelenlitze hinter dem Montagepunkt ausgeübte Spannungsbeanspruchung zwischen 10 und 25% ihrer Bruchkraft liegt.
  9. Verfahren nach einem der Ansprüche 1 bis 8, wobei der Kern (C1) aus M Drähten besteht, wobei M von 1 bis 4 variiert, mit einem Durchmesser d1 in einem Bereich von 0,08 bis 0,50 mm.
  10. Verfahren nach Anspruch 9, wobei M gleich 1 ist.
  11. Verfahren nach einem der Ansprüche 1 bis 10, wobei die Drähte der dritten Schicht (C3) mit der gleichen Steigung und in der gleichen Verwindungsrichtung wie die Drähte der zweiten Schicht (C2) spiralförmig gewickelt werden.
  12. Montagevorrichtung, dadurch gekennzeichnet, dass sie außerdem eine Inline-Gummiervorrichtung bildet, und dass sie zur Durchführung eines Verfahrens nach einem der Ansprüche 1 bis 11 verwendbar ist, wobei die Vorrichtung von vorne nach hinten in der Vorschubrichtung des entstehenden Seils aufweist:
    - Zufuhreinrichtungen der ersten Schicht oder des Kerns (C1) ;
    - erste Umhüllungseinrichtungen des Kerns (C1);
    - Zufuhreinrichtungen der N Drähte der zweiten Schicht (C2) und erste Montageeinrichtungen durch Verzwirnen dieser N Drähte um den umhüllten Kern (C1), an einem Montagepunkt genannten Punkt, zur Bildung eines «Seelenlitze» genannten Zwischenseils (C1+C2);
    - hinter dem Montagepunkt, zweite Umhüllungseinrichtungen der Seelenlitze (C1+C2);
    - am Ausgang der zweiten Umhüllungseinrichtungen, Zufuhreinrichtungen der P Drähte der dritten Schicht (C3) und zweite Montageeinrichtungen durch Verzwirnen dieser P Drähte um die Seelenlitze (C1+C2), zum Einsetzen der dritten Schicht (C3);
    - am Ausgang der zweiten Montageeinrichtungen, Verwindungsausgleicheinrichtungen.
  13. Vorrichtung nach Anspruch 12, die eine ortsfeste Zufuhr und einen drehenden Empfang aufweist.
  14. Vorrichtung nach Anspruch 12 oder 13, wobei die ersten und zweiten Umhüllungseinrichtungen je aus einem einzigen Extrudierkopf bestehen, der mindestens eine Kalibrierdüse aufweist.
  15. Vorrichtung nach einem der Ansprüche 12 bis 14, wobei die Verwindungsausgleicheinrichtungen ein Werkzeug aufweisen, das unter den Richter-, Zwirner- oder Zwirner-Richter-Werkzeugen ausgewählt wird.
EP10711226.0A 2009-03-31 2010-03-29 Verfahren und vorrichtung zur herstellung einer dreilagigen stahllitze Not-in-force EP2414583B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0952020A FR2943691B1 (fr) 2009-03-31 2009-03-31 Procede et dispositif de fabrication d'un cable a trois couches du type gomme in situ
PCT/EP2010/054063 WO2010112445A1 (fr) 2009-03-31 2010-03-29 Procede et dispositif de fabrication d' un cable a trois couches

Publications (2)

Publication Number Publication Date
EP2414583A1 EP2414583A1 (de) 2012-02-08
EP2414583B1 true EP2414583B1 (de) 2015-03-18

Family

ID=40941496

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10711226.0A Not-in-force EP2414583B1 (de) 2009-03-31 2010-03-29 Verfahren und vorrichtung zur herstellung einer dreilagigen stahllitze

Country Status (6)

Country Link
US (1) US8720176B2 (de)
EP (1) EP2414583B1 (de)
JP (1) JP5591909B2 (de)
CN (1) CN102365404B (de)
FR (1) FR2943691B1 (de)
WO (1) WO2010112445A1 (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2938558B1 (fr) * 2008-11-17 2010-12-31 Michelin Soc Tech Procede et dispositif de fabrication d'un cable a trois couches du type gomme in situ.
FR2943690B1 (fr) * 2009-03-31 2011-08-19 Michelin Soc Tech Procede et dispositif de fabrication d'un cable a trois couches du type gomme un situ
FR2946366B1 (fr) * 2009-06-03 2011-12-02 Michelin Soc Tech Cable a trois couches,gomme in situ,pour armature carcasse de pneumatique.
FR2947577B1 (fr) * 2009-07-03 2013-02-22 Michelin Soc Tech Cable metallique a trois couches gomme in situ de construction 3+m+n
FR2947576B1 (fr) * 2009-07-03 2011-08-19 Michelin Soc Tech Cable metallique a trois couches gomme in situ de construction 2+m+n
FR2962454B1 (fr) * 2010-05-20 2012-09-21 Michelin Soc Tech Procede de fabrication d'un cable metallique a trois couches du type gomme in situ
FR2962456B1 (fr) * 2010-05-20 2012-09-21 Michelin Soc Tech Procede de fabrication d'un cable metallique multicouches gomme in situ par un elastomere thermoplastique insature
FR2969037B1 (fr) * 2010-12-21 2014-08-29 Michelin Soc Tech Pneumatique dont l'armature de carcasse est renforcee par une couche d'elements de renforcement dans la zone du bourrelet
FR2969036B1 (fr) * 2010-12-21 2012-12-28 Michelin Soc Tech Pneumatique dont l'armature de carcasse est renforcee par une couche d'elements de renforcement dans la zone du bourrelet
FR2969038B1 (fr) * 2010-12-21 2012-12-28 Michelin Soc Tech Pneumatique dont l'armature de carcasse est renforcee par une couche d'elements de renforcement dans la zone du bourrelet
FR2969035B1 (fr) * 2010-12-21 2014-08-29 Michelin Soc Tech Pneumatique dont l'armature de carcasse est renforcee par une couche d'elements de renforcement dans la zone du bourrelet
FR2997410B1 (fr) * 2012-10-30 2016-01-01 Michelin & Cie Cable gomme in situ comprenant une composition comprenant un copolymere de styrene-butadiene.
FR3022262B1 (fr) 2014-06-12 2016-06-03 Michelin & Cie Cable gomme in situ comprenant une composition de gommage comprenant un inhibiteur de corrosion
FR3022261B1 (fr) 2014-06-12 2016-06-03 Michelin & Cie Cable gomme in situ comprenant une composition de gommage comprenant un inhibiteur de corrosion
FR3022264A1 (fr) 2014-06-12 2015-12-18 Michelin & Cie Produit semi-fini comprenant un cable gomme in situ noye dans une composition de caoutchouc de calandrage
JP5811240B1 (ja) * 2014-06-30 2015-11-11 横浜ゴム株式会社 スチールコードおよびコンベヤベルト
FR3022822B1 (fr) 2014-06-30 2016-10-28 Michelin & Cie Procede et dispositif de fabrication de fil metallique enrobe de caoutchouc
US20170175803A1 (en) * 2015-12-21 2017-06-22 Kongsberg Power Products Systems I, Inc. Cable Of A Remote Control Assembly
KR102653649B1 (ko) * 2017-06-27 2024-04-03 베카에르트 어드밴스드 코드즈 알테 엔브이 폴리머 물품의 보강을 위한 보강 스트랜드

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR812539A (fr) * 1936-10-26 1937-05-12 Michelin & Cie Perfectionnement aux tringles pour bandages pneumatiques
JPH06200491A (ja) * 1992-12-28 1994-07-19 Bridgestone Metarufua Kk スチールコードの矯正方法及びその装置
DE69414912T2 (de) * 1993-06-02 1999-04-22 Bekaert Sa Nv Kompaktes Stahlseil ohne Umhüllungselement
EP0635597A1 (de) * 1993-07-20 1995-01-25 N.V. Bekaert S.A. Stahlseilkonstruktion
US5806296A (en) * 1995-05-26 1998-09-15 Bridgestone Metalpha Corporation Corrosion resistant spiral steel filament and steel cord made therefrom
WO1999031313A1 (en) * 1997-12-15 1999-06-24 N.V. Bekaert S.A. Steel cord with polymer material
US6926962B2 (en) * 2000-05-18 2005-08-09 Asahi Kasei Kabushiki Kaisha Dyed yarn
KR100803644B1 (ko) * 2000-09-11 2008-02-19 요코하마 고무 가부시키가이샤 타이어용 강철 코드 및 래디얼 타이어
UA74229C2 (uk) * 2000-12-01 2005-11-15 Н.В. Бекарт С.А. Сталевий корд для зміцнення гумових шин та/або конвеєрних стрічок
JP2002266266A (ja) * 2001-03-13 2002-09-18 Yokohama Rubber Co Ltd:The エラストマー複合スチールコードの製造方法
DE10213289A1 (de) * 2001-03-30 2002-11-14 Yokohama Rubber Co Ltd Elastomer-und-Stahlkord-Verbundwerkstoff und Prozess zur Herstellung desselben
JP4049627B2 (ja) * 2002-07-02 2008-02-20 トクセン工業株式会社 エラストマー複合スチールコードおよびその製造方法
JP4316904B2 (ja) * 2003-03-14 2009-08-19 不二精工株式会社 ゴム被覆スチールコードの製造装置並びに同コード、同コードを用いたゴムリボン及びそれらを用いたタイヤの製造方法
DE602004013445T2 (de) * 2003-07-17 2009-06-04 N.V. Bekaert S.A. Offenes lagiges stahlseil mit hoher bruchkraft
FR2864556B1 (fr) * 2003-12-24 2006-02-24 Michelin Soc Tech Cable a couches pour armature de carcasse de pneumatique
US20050182884A1 (en) 2004-01-22 2005-08-18 Hofmann Richard G. Multiple address two channel bus structure
FR2869618B1 (fr) 2004-04-30 2008-10-10 Michelin Soc Tech Composition de caoutchouc a adhesion amelioree vis a vis d'un renfort metallique.
JP4940753B2 (ja) * 2006-05-15 2012-05-30 横浜ゴム株式会社 ゴム補強用スチールコード及びそれを用いた空気入りラジアルタイヤの製造方法
JP2008297667A (ja) * 2007-05-31 2008-12-11 Yokohama Rubber Co Ltd:The スチールコード及びその製造方法と空気入りタイヤ
JP2009084711A (ja) * 2007-09-27 2009-04-23 Bridgestone Corp ゴム−スチール複合体コードの製造方法およびそれにより得られるゴム−スチール複合体コード
FR2925923B1 (fr) * 2007-12-28 2009-12-18 Michelin Soc Tech Procede et dispositif de fabrication d'un cable a deux couches du type gomme in situ
FR2925922B1 (fr) * 2007-12-28 2009-12-18 Soc Tech Michelin Cable a couches pour ceinture de pneumatique
FR2938558B1 (fr) * 2008-11-17 2010-12-31 Michelin Soc Tech Procede et dispositif de fabrication d'un cable a trois couches du type gomme in situ.
FR2943690B1 (fr) * 2009-03-31 2011-08-19 Michelin Soc Tech Procede et dispositif de fabrication d'un cable a trois couches du type gomme un situ

Also Published As

Publication number Publication date
FR2943691B1 (fr) 2011-08-19
JP5591909B2 (ja) 2014-09-17
JP2012522144A (ja) 2012-09-20
US20120102909A1 (en) 2012-05-03
US8720176B2 (en) 2014-05-13
CN102365404A (zh) 2012-02-29
EP2414583A1 (de) 2012-02-08
FR2943691A1 (fr) 2010-10-01
WO2010112445A1 (fr) 2010-10-07
CN102365404B (zh) 2015-04-29

Similar Documents

Publication Publication Date Title
EP2366048B1 (de) Verfahren und vorrichtung zur herstellung einer mehrlagigen litze als reifenverstärkung mit während des schlagens eingebrachten füller
EP2414583B1 (de) Verfahren und vorrichtung zur herstellung einer dreilagigen stahllitze
EP2414582B1 (de) Verfahren und vorrichtung zur herstellung einer dreilagigen stahllitze
EP2366046B1 (de) Mehrlagige drahtlitze mit während des schlagens eingebrachtem füller als verstärkung eines reifens
EP2449171B1 (de) Merhlitziges stahlkabel wobei die zweilagigen litzen mit kunststoff wàhrend der produktion versehen werden
EP2449170B1 (de) Mehrlitziges verstärkungskabel, wobei die einzelnen litzen mit rohgummi bei deren schlagen versehen weren
EP2326765B1 (de) In-situ-gummiertes schichtkabel zur karkassenverstärkung von reifen
EP2238289B1 (de) In-situ gummiertes schichtkabel für reifengürtel
FR2946366A1 (fr) Cable a trois couches,gomme in situ,pour armature carcasse de pneumatique.
EP2238288B1 (de) Verfahren und vorrichtung zur herstellung eines kabels mit zwei schichten der in-situ-verbindungstype
WO2011000950A2 (fr) Cable metallique a trois couches gomme in situ de construction 2+m+n
EP2449169A2 (de) In-situ gummiertes dreilagiges stahlseil mit 3+m+n-struktur
FR2959517A1 (fr) Cable metallique multitorons elastique a haute permeabilite.
FR2969181A1 (fr) Cable metallique multitorons a haute permeabilite
FR2950904A1 (fr) Cable metallique multitorons a haute permeabilite.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111031

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MICHELIN RECHERCHE ET TECHNIQUE S.A.

Owner name: COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN

17Q First examination report despatched

Effective date: 20130919

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140930

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150113

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 716662

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010023180

Country of ref document: DE

Effective date: 20150430

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150318

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150618

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 716662

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150318

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150720

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150718

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010023180

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150329

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

26N No opposition filed

Effective date: 20151221

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100329

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150329

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210323

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210319

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602010023180

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221001