EP2411897A2 - Couche fonctionnelle électrique, son procédé de fabrication et son utilisation - Google Patents

Couche fonctionnelle électrique, son procédé de fabrication et son utilisation

Info

Publication number
EP2411897A2
EP2411897A2 EP10712007A EP10712007A EP2411897A2 EP 2411897 A2 EP2411897 A2 EP 2411897A2 EP 10712007 A EP10712007 A EP 10712007A EP 10712007 A EP10712007 A EP 10712007A EP 2411897 A2 EP2411897 A2 EP 2411897A2
Authority
EP
European Patent Office
Prior art keywords
functional layer
conductive
layer according
transparent
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP10712007A
Other languages
German (de)
English (en)
Inventor
Walter Fix
Alexander Knobloch
Andreas Ullmann
Jasmin WÖRLE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PolyIC GmbH and Co KG
Original Assignee
PolyIC GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PolyIC GmbH and Co KG filed Critical PolyIC GmbH and Co KG
Publication of EP2411897A2 publication Critical patent/EP2411897A2/fr
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/047Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using sets of wires, e.g. crossed wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the invention relates to an electrical functional layer, in particular a layered body, and to processes for the production and uses thereof.
  • ITO indium tin oxide
  • resistive touchscreens two opposing conductive layers are contacted by pressure (touch at a particular location) and resistance detection identifies the pressure point. Since these touchscreens are always associated with a stored image (display and / or graphics), a high transparency and for the determination of the pressure point sufficient conductivity is required. So far, these laminates are made of ITO, for example on a plastic film.
  • a disadvantage of the known electrical functional layers of ITO is that the material is very expensive, whereby either the transparency or the electrical conductivity can be optimized.
  • resistive touchscreens with the conventional ITO layers can only realize a "one-touch" function, ie only one x and y coordinate can be detected since the control unit can always process only one signal or one position.
  • Object of the present invention is therefore to provide an electrical functional layer, which has a higher transparency and at the same time a higher electrical conductivity and overcomes the disadvantages of the prior art, as well as manufacturing processes thereto, which are inexpensive and suitable for mass production.
  • the subject matter of the present invention is an electrical functional layer in which conductive, non-transparent webs with a thickness in the range of 2 nm to 5 ⁇ m, forming a pattern parallel to the surface of a transparent carrier, are arranged such that a printed conductor spacing is realized in the pattern, the planar conductivity of the electrical functional layer while ensuring transparency to the human eye guaranteed.
  • the invention provides a process for producing a transparent and electrically conductive functional layer, wherein electrically conductive, non-transparent webs are produced on a transparent substrate by structured application, coating and subsequent structuring, embossing and / or printing.
  • the invention relates to the use of a functional layer according to the invention in a resistive touch screen.
  • the width of the non-transparent conductive paths in the range between 1 .mu.m to 40 .mu.m, preferably between 5-25 microns.
  • an electrically conductive substance is referred to as "conductive.”
  • the conductive paths are always at least electrically conductive tracks.
  • the pattern is segmented on the functional layer, wherein the width of a segment is, for example, in the range of 500 ⁇ m to 15 mm, preferably from 1 mm to 3 mm.
  • the conductor track spacing is in the range of 10 .mu.m to 5 mm, preferably 300 .mu.m to 1 mm. If the track spacing is in these ranges, conspicuous diffraction effects are avoided on the one hand, and on the other hand, the pattern areas are not visible in detail since the subdivision is below the resolution limit of the human and unaided eye.
  • the segment distance is in the range of 10 microns to 2 mm, preferably from 100 microns to 1 mm.
  • the thickness of the conductive paths which would be recognizable on the transparent carrier layer as elevation at sufficiently high resolution in cross section or side view, is in the range of 2 nm-5, preferably in the range of 3 nm to 5 ⁇ m, particularly preferably between 40 nm -1 ⁇ m.
  • the material of the conductive path is, for example, metal, preferably copper or silver. Not all conductive tracks are made of the same material, so patterning may involve the formation of a layer of conductive tracks of a different material than the overlying layer forming a pattern with the lower layer.
  • the pattern of conductive paths is connected by a transparent and usually very thin, possibly even poorly, but for consistently conductive, layer.
  • the pattern of conductive tracks may be embedded in the layer or the layer connects only the conductive tracks electrically conductive such that a continuous and conductive surface results.
  • This layer is made of a transparent, electrically conductive material, for example of indium tin oxide (ITO), another metal oxide, such as zinc oxide, or of an organic based material such as PEDOT (in any dopants), a nanoparticle filled material or other materials, which are transparent and electrically conductive.
  • This layer is preferably very thin, for example, the thickness of the layer in the range of 5 to 500 nm, preferably from 10 to 100 nm.
  • a further embodiment according to the invention is an electrical functional layer with two, preferably opposite, terminal electrodes, in which at least two conductive tracks are arranged parallel to the surface of a transparent carrier and between the terminal electrodes, so that they connect the terminal electrodes to one another by the conductive ones Traces produced pattern has a track distance, which ensures conductivity of the electrical functional layer while transparency to the human eye.
  • the transparent support is preferably but not limited to a transparent film, in particular a flexible film and very preferably a plastic film, for example a film of a polyolefin such as polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polystyrene (PS), Pad (PE) and / or polycarbonate (PC).
  • a polyolefin such as polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polystyrene (PS), Pad (PE) and / or polycarbonate (PC).
  • Flexible carriers have the advantage that they can be printed, for example, in a continuous production process, for example via a roll-to-roll process.
  • the transparent support may also be an electrically conductive
  • Functional layer according to the invention or else another transparent and conductive layer, for example from ITO, another metal oxide such as zinc oxide, or an organic based material such as PEDOT (in any dopants), a nanoparticle filled material, or other materials that are transparent and electrically conductive.
  • another transparent and conductive layer for example from ITO, another metal oxide such as zinc oxide, or an organic based material such as PEDOT (in any dopants), a nanoparticle filled material, or other materials that are transparent and electrically conductive.
  • the conductive tracks may be made of any electrically conductive material or a mixture of multiple materials.
  • the tracks are made of metal, in particular of silver, copper, gold, aluminum, etc. and / or of an alloy or a conductive paste, as well as of any other conductive material, for example an organic compound with mobile charge carriers such as polyaniline, polythiophene and others , Of course, all materials can be doped.
  • the conductive paths may be made of different materials.
  • connection electrodes can likewise be constructed from all materials customary for electrodes. Particular preference is given to connection electrodes made of copper and / or silver.
  • the terminal electrodes and / or the conductive tracks may still be provided with a contact reinforcement, which serves for better signal transmission.
  • a contact reinforcement which serves for better signal transmission.
  • This can for example be made of conductive silver or carbon black.
  • the conductive tracks are preferably applied in high-resolution patterns on the transparent support.
  • the conductive paths are usually not or only semi-transparent, so that the transparency that these structures have on the transparent support to the human eye is achieved by the high-resolution structures and not by a transparency of the conductive material itself.
  • Particular emphasis is placed on avoiding any moire effects that occur, for example, when depositing a display.
  • Moire effect is the optical phenomenon in which non-existent lines appear by superposition of several patterns. It occurs in particular with identical patterns and / or with periodically repeating patterns. In touch-screen applications, the moire effect can occur by superposition of the display pixel matrix with the overlying conductive pattern according to the invention. Therefore, it is preferably avoided to create parallel straight lines in the patterning of the conductive traces.
  • the unwanted moire effect is also counteracted by the fact that, according to an advantageous embodiment, is dispensed with straight lines and wavy and / or jagged lines are selected with, for example, aperiodic or random structure sequence.
  • Preferred embodiments form patterns with, for example:
  • the webs can be produced by printing, embossing, offset, or the like.
  • the structuring can also be produced by printing with a conductive paste containing, for example, metal and / or an alloy and / or carbon in an electrically conductive modification.
  • Organic conductive materials can also be applied by simply printing in appropriate paths.
  • the transparent electrically conductive functional layer is used for producing resistive multi-touch screens, individual single-surface conductive segments having conductive patterns being present on the transparent functional layer, which can be read out individually and / or individually contacted.
  • the segments are characterized by the fact that they can be electrically contacted separately.
  • the individual segments can be designed as desired, for example, they can also be strip-shaped.
  • the division into segments is preferably also continued and / or imaged during the contacting at the connection electrodes, so that here again in multi-touch screens a corresponding division of the connections into segments is made.
  • contact amplifiers are provided in addition to the terminal electrodes, these are also segmented in corresponding multi-touch applications, ie, for example, also strip-shaped, so that activation of a segment is always readable as a single optionally amplified signal.
  • the surface coverage of the transparent carrier with conductive paths can vary within a certain range, for example, with a surface coverage of 20% by the choice of the corresponding thin conductor track and the corresponding structure still be made transparent to the human eye functional layer.
  • the area occupancy is preferably in the range of 3 to 15%, in particular less than 10%.
  • Figures Ia and 1b show uniform patterns of conductive
  • Figures 2a and 2b show uneven patterns
  • FIG. 3 shows the structure of the electrical functional layer in FIG.
  • Cross-section Figure 4 shows an electrical functional layer with several
  • FIG. 5 shows an electrical functional layer
  • FIG. 6 shows an electrical functional layer with connection electrodes in cross section
  • FIG. 7 shows two separated by spacers electrical
  • FIG. 8 shows an exemplary embodiment with segmented conductive regions.
  • FIG. 9 shows a stack of electrical functional layers with segmented conductive regions with different
  • FIG. 10 shows a stack of electrical functional layers with segmented conductive regions with identical grids.
  • FIG. 11 shows a corner of a foil made of an electrical one
  • Figures Ia and Ib show examples of patterns of conductive webs 1 on a transparent support (not visible because transparent!
  • Figures 2a and 2b show examples of patterns such as figure i, but here, in order to avoid Moire, none of the electrically conductive paths is parallel to another.
  • Figure 3 shows a cross-sectional view with the transparent substrate 2, which is a transparent film, as is usual for substrates, but may also be a transparent electrically conductive layer in a corresponding thickness. On top of this is the pattern of conductive webs 1.
  • FIG. 4 shows the same cross-sectional view as FIG. 3, but apart from the conductive tracks 1 and the substrate 2, there is also the transparent, thin additional layer 3, which produces the areal conductivity in conventional substrates, and a further additional layer 4 on the back side of the substrate 2, which is, for example, an anti-reflection layer.
  • FIG. 5 shows how the position of the conductive tracks relative to the terminal electrodes can be selected such that all current paths of the pattern are equally loaded. In this case, in particular, it is avoided that conductive tracks are arranged parallel to the terminal electrodes.
  • FIG. 6 shows the exemplary embodiment according to FIG. 5 in FIG.
  • connection electrodes 6 can still be seen.
  • Figure 7 shows a structure of two electrical functional layers according to the invention, for example, for use as a transparent resistive touch panel, wherein two functional layers 8, as shown for example in Figure 5, so stacked and connected with spacers 7, that under pressure creates a short circuit, the can be evaluated as a signal.
  • the spacers 7 are also called Spacer Dots 7.
  • the two functional layers touch each other and either an electrical contact is created or the resistance changes.
  • the resistance of the contact creates a different voltage at each point.
  • the voltage change can then be used to determine the coordinates x and y.
  • FIG. 8 shows a segmented electrical functional layer 10, in which individual electrically conductive segments 9 are arranged at a certain segment spacing 11 relative to one another on a transparent substrate (not visible, since top view and FIG Substrate transparent! Are arranged.
  • the individual segments 9 each have contact amplifiers 12 to the terminal electrodes (not shown here). As shown, the individual segments are electrically connected separately.
  • the individual electrical functional layers can be produced, for example, on separate substrates.
  • the tops are then joined together and / or laminated.
  • FIG. 9 shows a view similar to FIG. 7, except that one of the two functional layers 8 according to FIG. 5 has been replaced by a segmented functional layer 10 according to FIG.
  • the second electrical functional layer is a functional layer 8 according to FIG. 5, which is not segmented. Again, the spacers 7 can be seen again.
  • FIG. 10 shows a view like FIG. 9, but with both functional layers being segmented.
  • the two functional layers are separated again by spacers 7.
  • By contact amplifier 12 all segments are individually controlled.
  • FIG. 11 shows the same design as FIG. 10, but with only one-sided electrical connection possibility.
  • the ranges given here for the width of the conductive paths, the distance of the conductive paths, the segment width, and the distance of the segments in multi-touch-capable embodiments can also be average values of the entirety.
  • the pattern is chosen so that as far as possible all existing interconnects as evenly as possible when applying a voltage.
  • the conductive tracks are preferably placed so that the conductive paths so cut, that the current flows evenly in both directions from the conductor crossings. This is realized, for example, in the case of a tilted check pattern in which the lines are guided at 45 ° to the connection electrodes at the edges.
  • the transparent functional layer is preferably formed with spacer dots so that it can be used in a touchscreen.
  • both or even only one of the two conductive layers can be replaced by the transparent conductive functional layer according to the invention.
  • a combination with a conventional layer of ITO is possible.
  • the transparent conductive functional layer can be used, for example, in touchscreens.
  • touchscreens There are different technologies for touchscreens, with the area of resistive touchscreens having a large market share.
  • Resistive touchscreens usually comprise two opposing conductive layer bodies (x and y layer), which have hitherto mostly formed of ITO, and which are driven with a constant DC voltage. Between the Schichtkorper are spacers, so-called spacer dots, which ensure a separation of the two layers.
  • the spacer dots generally have a diameter of less than 20 ⁇ m, from 0.1 to 5 ⁇ m, from 0.2 to 2 ⁇ m and in particular from 0.3 to 0.5 ⁇ m.
  • the conventional ITO layers are replaced by the high-resolution structured transparent conductive functional layer described here for the production of touch screens, the remaining assembly and assembly of the touch screens remains unchanged.
  • the first time it is also possible for the first time to obtain resistive touchscreens with a multi-touch function, that is to say that a plurality of x and y positions can be detected and read out at the same time.
  • a layout is selected, which is subdivided into different subsegments, which are each contacted separately and so can be read out individually.
  • the distance between the segments can be chosen differently and is preferably chosen in connection with the grid width of the structure.
  • the present invention is also suitable for uses such as transparent electrodes in solar cells, or generally photoactive cells, in organic light emitting diodes, (eg OLED Lightning), touch screens, heaters in slices (eg windscreen of a car, fog-free mirrors, etc.) ,
  • the invention disclosed herein makes it possible for the first time to produce thin conductive electrical functional layers for use in resistive touch screens, for example in a printing process.
  • the functional layer with an occupancy of 5% and sufficient conductivity, is still 95% transparent to the human eye.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)
  • Electroluminescent Light Sources (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

L'invention concerne une couche fonctionnelle transparente électriquement conductrice, et en particulier un corps stratifié. Selon l'invention, il est possible, pour la première fois, de produire des couches fonctionnelles conductrices minces à utiliser dans des écrans tactiles résistifs, par exemple dans un processus d'effleurement. Par exemple, la couche fonctionnelle apparaît encore à 95% transparente pour l'oeil humain, pour une occupation surfacique des pistes conductrices de 5% et une conductivité suffisante.
EP10712007A 2009-03-27 2010-03-26 Couche fonctionnelle électrique, son procédé de fabrication et son utilisation Ceased EP2411897A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009014757A DE102009014757A1 (de) 2009-03-27 2009-03-27 Elektrische Funktionsschicht, Herstellungsverfahren und Verwendung dazu
PCT/EP2010/001917 WO2010108692A2 (fr) 2009-03-27 2010-03-26 Couche fonctionnelle électrique, son procédé de fabrication et son utilisation

Publications (1)

Publication Number Publication Date
EP2411897A2 true EP2411897A2 (fr) 2012-02-01

Family

ID=42674813

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10712007A Ceased EP2411897A2 (fr) 2009-03-27 2010-03-26 Couche fonctionnelle électrique, son procédé de fabrication et son utilisation

Country Status (13)

Country Link
US (1) US9513758B2 (fr)
EP (1) EP2411897A2 (fr)
JP (1) JP2012522282A (fr)
KR (1) KR20110133050A (fr)
CN (1) CN102365612B (fr)
AU (1) AU2010227843B2 (fr)
BR (1) BRPI1013615A2 (fr)
CA (1) CA2756116C (fr)
DE (1) DE102009014757A1 (fr)
MX (1) MX2011009921A (fr)
RU (1) RU2541873C2 (fr)
WO (1) WO2010108692A2 (fr)
ZA (1) ZA201106693B (fr)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130109090A (ko) * 2010-06-11 2013-10-07 쓰리엠 이노베이티브 프로퍼티즈 컴파니 힘 측정을 갖는 포지셔널 터치 센서
DE102010055845A1 (de) * 2010-12-23 2012-06-28 Polylc Gmbh & Co. Kg Multi-Touch-Sensor und Herstellungsverfahren dazu
DE102010056493A1 (de) 2010-12-30 2012-07-05 Polyic Gmbh & Co. Kg Beheizbarer Spiegel
TWI412990B (zh) 2011-02-11 2013-10-21 Wistron Corp No sense of color resistance of the touch-type touch device
DE102011014748B4 (de) * 2011-03-22 2022-10-27 Polyic Gmbh & Co. Kg Schichtkörper, Herstellungsverfahren und Verwendung dazu
JP2012221120A (ja) * 2011-04-06 2012-11-12 Fujitsu Component Ltd タッチパネル
DE102011108153A1 (de) 2011-07-22 2013-01-24 Polyic Gmbh & Co. Kg Mehrschichtkörper
DE102011108803B4 (de) 2011-07-29 2017-06-29 Polyic Gmbh & Co. Kg Touchsensor mit einer Kunststofffolie, Verwendung der Kunststofffolie und Verfahren zur Herstellung einer multimodalen Eingabevorrichtung
DE102011111506B4 (de) 2011-08-31 2017-05-18 Leonhard Kurz Stiftung & Co. Kg Kunststofffolie und Touchsensor
JP5748647B2 (ja) * 2011-12-22 2015-07-15 富士フイルム株式会社 導電シート及びタッチパネル
CN103984461B (zh) * 2011-12-16 2017-09-15 富士胶片株式会社 导电片以及触摸面板
DE102011122110B4 (de) 2011-12-22 2023-05-25 Polyic Gmbh & Co. Kg Bedienvorrichtung mit Anzeigeeinrichtung und Tastfeldeinrichtung, sowie Mehrschichtkörper zur Bereitstellung einer Tastfeldfunktionalität
DE102012002193B4 (de) * 2012-02-07 2021-07-29 Polyic Gmbh & Co. Kg Kapazitives Sensorelement
CN104160368B (zh) * 2012-03-06 2017-03-08 三菱电机株式会社 触摸屏、触摸面板、显示装置以及电子仪器
DE102012105713A1 (de) 2012-06-28 2014-01-02 Polyic Gmbh & Co. Kg Mehrschichtkörper und Verwendung eines Mehrschichtkörpers
DE102012112112B4 (de) 2012-12-11 2023-10-26 Polyic Gmbh & Co. Kg Mehrschichtkörper
US9552087B2 (en) 2012-06-28 2017-01-24 Polyic Gmbh & Co. Kg Multi-layer body
DE102012219656A1 (de) 2012-10-26 2014-04-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. System zur durchführung einer berührungslosen messung an einer probe und probenträger
US9563324B2 (en) * 2012-11-14 2017-02-07 Sharp Kabushiki Kaisha Touch panel substrate, electronic device, and production method for electronic device
DE102012112414B4 (de) 2012-12-17 2018-01-25 Polyic Gmbh & Co. Kg Schichtelektrode und Verwendung dazu
TWM459451U (zh) * 2012-12-18 2013-08-11 Inv Element Inc 窄邊框之觸控面板結構
EP2950186A4 (fr) * 2013-01-24 2016-09-28 Toppan Printing Co Ltd Panneau tactile, et dispositif d'affichage
US9110528B2 (en) * 2013-02-03 2015-08-18 J Touch Corporation Touch-sensitive display apparatus
CN103426501B (zh) * 2013-02-04 2016-04-13 南昌欧菲光科技有限公司 透明导电膜
DE102013101881A1 (de) * 2013-02-26 2014-08-28 Leonhard Kurz Stiftung & Co. Kg Mehrschichtkörper und Verfahren zum Herstellen eines Mehrschichtkörpers
US10254815B2 (en) * 2013-03-08 2019-04-09 Microchip Technology Incorporated Using capacitive proximity detection with resistive touch screens for wake-up
US9086770B2 (en) * 2013-04-15 2015-07-21 Atmel Corporation Touch sensor with high-density macro-feature design
DE102013104640A1 (de) 2013-05-06 2014-11-06 Polyic Gmbh & Co. Kg Schichtelektrode für Berührungsbildschirm
DE102013104644B4 (de) 2013-05-06 2020-06-04 Polylc Gmbh & Co. Kg Schichtelektrode für Berührungsbildschirme
DE102013105802B4 (de) 2013-06-05 2016-09-15 Polylc Gmbh & Co. Kg Folienkörper, Verfahren zum Hinterspritzen eines Folienkörpers und Hinterspritzwerkzeug dazu
KR102222194B1 (ko) 2013-10-17 2021-03-04 엘지이노텍 주식회사 터치 윈도우 및 이를 포함하는 디스플레이 장치
DE102013112651A1 (de) 2013-11-15 2015-05-21 Polyic Gmbh & Co. Kg Mehrschichtkörper zur Bereitstellung einer transparenten Tastaturfunktionalität
JP5622160B1 (ja) * 2013-12-19 2014-11-12 グンゼ株式会社 面状体及びタッチパネル
KR101512568B1 (ko) * 2013-12-24 2015-04-15 삼성전기주식회사 터치 패널 및 이를 포함하는 터치스크린 장치
DE102014100246A1 (de) 2014-01-10 2015-07-16 Polyic Gmbh & Co. Kg Kapazitives Sensorelement sowie Verfahren zur Herstellung dazu
JP6377007B2 (ja) * 2015-04-20 2018-08-22 富士フイルム株式会社 導電性フィルム、配線、およびタッチパネルセンサ
GB2540560A (en) * 2015-07-21 2017-01-25 Peter Binstead Ronald Touch sensor
DE102015114507A1 (de) 2015-08-31 2017-03-02 Polyic Gmbh & Co. Kg Beheizbarer Schichtkörper, Verfahren zur Aufbringung und beheizbare Scheibe
US9986669B2 (en) * 2015-11-25 2018-05-29 Ppg Industries Ohio, Inc. Transparency including conductive mesh including a closed shape having at least one curved side
US10120514B2 (en) * 2016-06-24 2018-11-06 Stmicroelectronics Asia Pacific Pte Ltd Capacitive touch pressure sensor constructed from flexible substrate
CN108062187A (zh) * 2016-11-07 2018-05-22 京东方科技集团股份有限公司 触控结构及其制作方法和触控装置
DE102017118937A1 (de) 2017-08-18 2019-02-21 Polyic Gmbh & Co. Kg Schichtelektrode für Berührungsbildschirm
JP2019174387A (ja) * 2018-03-29 2019-10-10 ミネベアミツミ株式会社 ひずみゲージ
DE102019104385A1 (de) 2019-02-21 2020-08-27 Polyic Gmbh & Co. Kg Sensorsubstrat mit Elektronik sowie Verwendung dazu
US11327619B2 (en) * 2020-09-22 2022-05-10 Elo Touch Solutions, Inc. Touchscreen device with non-orthogonal electrodes
DE102021115816A1 (de) 2021-06-18 2022-12-22 Polyic Gmbh & Co. Kg Vorrichtung zum Schutz vor elektrostatischen Entladungen bei elektronischen Bauteilen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004192093A (ja) * 2002-12-09 2004-07-08 Micro Gijutsu Kenkyusho:Kk 透明タッチパネル及びその製造方法
DE102006045514A1 (de) * 2006-08-16 2008-02-21 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Transparente Flächenelektrode
EP1947701A2 (fr) * 2005-08-12 2008-07-23 Cambrios Technologies Corporation Conducteurs transparents basés sur des nanofils
WO2008127313A2 (fr) * 2006-11-17 2008-10-23 The Regents Of The University Of California Réseaux de nanofils électriquement conducteurs et optiquement transparents

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6222135A (ja) * 1985-07-23 1987-01-30 Shin Etsu Polymer Co Ltd 透明図形入力タブレツト
JPH0820927B2 (ja) * 1987-04-02 1996-03-04 ブラザー工業株式会社 マトリツクススイツチ回路
FR2618322A1 (fr) 1987-07-23 1989-01-27 Creps Georges Support d'instrument dentaire integrant des moyens simplifies d'entree et de sortie de donnees connectables a un systeme informatique
RU2029353C1 (ru) 1992-07-15 1995-02-20 Владимир Михайлович Киселев Сенсорная панель для ввода информации
JP3408867B2 (ja) * 1994-08-19 2003-05-19 富士通株式会社 入力パネル
JPH10301716A (ja) * 1997-04-28 1998-11-13 Sharp Corp 透明タブレット構造及び透明タブレット入力装置
JPH10312715A (ja) 1997-05-13 1998-11-24 Sumitomo Osaka Cement Co Ltd 透明導電膜およびその製造方法
JP2000207128A (ja) 1999-01-18 2000-07-28 Matsushita Electric Ind Co Ltd 透明タッチパネルおよびそれを用いた電子機器
US6333736B1 (en) * 1999-05-20 2001-12-25 Electrotextiles Company Limited Detector constructed from fabric
US7019734B2 (en) 2002-07-17 2006-03-28 3M Innovative Properties Company Resistive touch sensor having microstructured conductive layer
JP2004145761A (ja) * 2002-10-25 2004-05-20 Kawaguchiko Seimitsu Co Ltd タッチパネル
KR100451773B1 (ko) 2002-11-20 2004-10-08 엘지.필립스 엘시디 주식회사 디지털 저항막 방식의 터치 패널
CN100405630C (zh) * 2003-06-19 2008-07-23 铼宝科技股份有限公司 有机电激发光面板装置
EP2922099B1 (fr) * 2005-08-12 2019-01-02 Cambrios Film Solutions Corporation Conducteurs transparents à base de nanofils
US20070063983A1 (en) * 2005-09-21 2007-03-22 Wintek Corporation Layout of touch panel for a voiding moires
DE102006052029B4 (de) * 2006-09-22 2020-01-09 Osram Oled Gmbh Lichtemittierende Vorrichtung
RU61899U1 (ru) 2006-10-16 2007-03-10 Закрытое акционерное общество Промышленная группа "Метран" Сенсорное устройство ввода информации (варианты)
WO2009038606A2 (fr) * 2007-06-01 2009-03-26 Northwestern University Transistors à nanofils transparents et procédés de fabrication
TW200915165A (en) * 2007-09-17 2009-04-01 Ad Semiconductor Co Ltd Resistive touch screen which can identify multi-touch

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004192093A (ja) * 2002-12-09 2004-07-08 Micro Gijutsu Kenkyusho:Kk 透明タッチパネル及びその製造方法
EP1947701A2 (fr) * 2005-08-12 2008-07-23 Cambrios Technologies Corporation Conducteurs transparents basés sur des nanofils
DE102006045514A1 (de) * 2006-08-16 2008-02-21 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Transparente Flächenelektrode
WO2008127313A2 (fr) * 2006-11-17 2008-10-23 The Regents Of The University Of California Réseaux de nanofils électriquement conducteurs et optiquement transparents

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
K. TVINGSTEDT ET AL: "Electrode Grids for ITO Free Organic Photovoltaic Devices", ADVANCED MATERIALS, vol. 19, no. 19, 5 October 2007 (2007-10-05), pages 2893 - 2897, XP055001127, ISSN: 0935-9648, DOI: 10.1002/adma.200602561 *

Also Published As

Publication number Publication date
CA2756116A1 (fr) 2010-09-30
WO2010108692A2 (fr) 2010-09-30
ZA201106693B (en) 2013-03-27
AU2010227843A1 (en) 2011-10-06
RU2011143369A (ru) 2013-05-10
CN102365612A (zh) 2012-02-29
JP2012522282A (ja) 2012-09-20
US9513758B2 (en) 2016-12-06
AU2010227843A2 (en) 2011-11-24
AU2010227843B2 (en) 2015-07-09
BRPI1013615A2 (pt) 2016-04-19
MX2011009921A (es) 2011-10-06
CA2756116C (fr) 2017-10-17
RU2541873C2 (ru) 2015-02-20
DE102009014757A1 (de) 2010-10-07
US20120193130A1 (en) 2012-08-02
KR20110133050A (ko) 2011-12-09
WO2010108692A3 (fr) 2011-04-28
CN102365612B (zh) 2015-10-07

Similar Documents

Publication Publication Date Title
EP2411897A2 (fr) Couche fonctionnelle électrique, son procédé de fabrication et son utilisation
DE60201745T2 (de) Flexibler kapazitiver berührungssensor
DE102011108803B4 (de) Touchsensor mit einer Kunststofffolie, Verwendung der Kunststofffolie und Verfahren zur Herstellung einer multimodalen Eingabevorrichtung
EP2537065B1 (fr) Vitrage électrochrome doté de cellules connectées en série, ainsi que son procédé de fabrication
DE102011111506B4 (de) Kunststofffolie und Touchsensor
DE102011014748A1 (de) Schichtkörper, Herstellungsverfahren und Verwendung dazu
DE102015120168A1 (de) Zweidimensionale Sensoranordnung
JP6004907B2 (ja) 配線基板およびタッチパネルセンサシート
WO2013013904A1 (fr) Dispositif à pavé tactile à fonctionnement capacitif
DE102013112651A1 (de) Mehrschichtkörper zur Bereitstellung einer transparenten Tastaturfunktionalität
DE102016216930A1 (de) Folie und Vorrichtung zur segmentweisen Abdunkelung einer Fahrzeugscheibe
EP1738614B1 (fr) Element electroluminescent multicolore
EP3520098B1 (fr) Intégration non destructive de composants électroniques
DE202013100016U1 (de) Berührungselektrodengerät
EP2395572A1 (fr) Montage en couche comprenant des composants électrotechniques
DE102017118937A1 (de) Schichtelektrode für Berührungsbildschirm
WO2016131873A1 (fr) Diode électroluminescente organique
WO2007003533A1 (fr) Affichage passif electrochrome et procede de realisation
DE102017100177A1 (de) Verfahren zur Herstellung eines Touchscreensensor-Bedienfeldes, Touchscreensensor und elektrisches Gerät
DE102018200659B4 (de) Mehrfachschichtanordnung für eine flächig ausgestaltete schaltbare Verglasung, Verglasung und Fahrzeug
DE102012105713A1 (de) Mehrschichtkörper und Verwendung eines Mehrschichtkörpers
DE102010055845A1 (de) Multi-Touch-Sensor und Herstellungsverfahren dazu
EP2092570B1 (fr) Structure multicouche
EP2329316A1 (fr) Affichage électrochromique organique à effets optiques
DE102012112414A1 (de) Schichtelektrode und Verwendung dazu

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111025

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130312

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

APBK Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNE

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20220404