EP2409005B1 - Procédé et dispositif de lubrification à l'huile de composants rotatifs ou oscillants - Google Patents

Procédé et dispositif de lubrification à l'huile de composants rotatifs ou oscillants Download PDF

Info

Publication number
EP2409005B1
EP2409005B1 EP10713597.2A EP10713597A EP2409005B1 EP 2409005 B1 EP2409005 B1 EP 2409005B1 EP 10713597 A EP10713597 A EP 10713597A EP 2409005 B1 EP2409005 B1 EP 2409005B1
Authority
EP
European Patent Office
Prior art keywords
oil
exhaust gas
valve
heat exchanger
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10713597.2A
Other languages
German (de)
English (en)
Other versions
EP2409005A1 (fr
Inventor
Frank Will
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ino8 Pty Ltd
Original Assignee
Ino8 Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ino8 Pty Ltd filed Critical Ino8 Pty Ltd
Publication of EP2409005A1 publication Critical patent/EP2409005A1/fr
Application granted granted Critical
Publication of EP2409005B1 publication Critical patent/EP2409005B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M5/00Heating, cooling, or controlling temperature of lubricant; Lubrication means facilitating engine starting
    • F01M5/005Controlling temperature of lubricant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M5/00Heating, cooling, or controlling temperature of lubricant; Lubrication means facilitating engine starting
    • F01M5/001Heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M5/00Heating, cooling, or controlling temperature of lubricant; Lubrication means facilitating engine starting
    • F01M5/002Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M5/00Heating, cooling, or controlling temperature of lubricant; Lubrication means facilitating engine starting
    • F01M5/02Conditioning lubricant for aiding engine starting, e.g. heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/02Pressure lubrication using lubricating pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/0004Oilsumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/02Arrangements of lubricant conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/027Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four

Definitions

  • the invention relates to a method for heating a lubrication system of rotating or oscillating components, in particular for an internal combustion engine or a transmission, with at least one ⁇ lsaugrohr, which is arranged in an oil sump and with the oil return bypass bypass line, wherein in the bypass line, a valve is arranged ,
  • the DE 27 53 716 relates to a hot air-emitting heater for powered by an internal combustion engine motor vehicles, acted upon by atmospheric air heat exchanger for heat dissipation of a flowing in a conduit heat transfer medium and also in the line circuit turned on, the exhaust heat of the engine receiving and delivering to the heat carrier heat exchanger.
  • the line circuit for the heat carrier of the heater is at least with the lubricating oil circuit Internal combustion engine in heat-conducting connection.
  • a heat transfer to the lubricating oil in a dry sump is achieved in that heat is discharged through a flowing in a feed line heat transfer to the located in the dry sump tank lubricating oil.
  • the GB 2 381 576 A discloses an exhaust heat recovery apparatus having a heat exchange conduit and a bypass conduit. In the region of the heat exchanger line, a heat exchanger is arranged. At least one valve device is provided in the heat exchanger line and / or the bypass line in order to influence an exhaust gas flow rate in the heat exchanger line. At least the heat exchanger line has a gradient in an exhaust gas flow direction in the installed position.
  • the EP 0 885 758 B1 relates to a method for operating a heat exchanger in the exhaust gas stream of an internal combustion engine for motor vehicles, in which the exhaust gas stream is divisible into a main line and into a bypass line.
  • the heat exchanger is arranged in the bypass line.
  • a backflow can be generated in the main line, which causes a back pressure at the exhaust gas outlet of the internal combustion engine.
  • the warm-up operation is divided into two phases, wherein in the first phase, a higher back pressure than in the second phase is generated.
  • a first valve is disposed in the main conduit between the bypass conduit ports, with a second valve disposed in the bypass conduit downstream of the heat exchanger. In the first phase, both valves are closed, wherein in the second phase, the first valve is closed, but the second valve is open.
  • the EP 0 202 344 describes a tank truck for transporting liquid goods, wherein a medium flowing along the outside of the tank releases heat to the tank contents.
  • the medium is a heat transfer oil and flows through the circuit at least one of the hot exhaust gases of the internal combustion engine of the tank semitrailer traversed Heat exchanger.
  • a catalyst through which the combustion gases flow is arranged in front of the heat exchanger.
  • the DE 199 08 088 A1 relates to an internal combustion engine, in particular a diesel internal combustion engine, for a vehicle, with a passenger compartment heater, an exhaust pipe, a coolant line forming a cooling circuit with a first pump to which the internal combustion engine is connected, and an exhaust gas heat exchanger for transmitting exhaust gas heat to a heater core ,
  • the exhaust gas heat exchanger is effective between the exhaust pipe and a circulation medium line, which forms a circulation circuit to which the heating heat exchanger is connected directly or indirectly.
  • the DE 199 08 088 A1 but also relates to an internal combustion engine, in particular diesel internal combustion engine, wherein the internal combustion engine is connected to a branching off from the coolant line first bypass, in which a first thermostatic valve is arranged, which largely blocks the first bypass until reaching an average coolant temperature and opens above this coolant temperature , In a parallel to the first bypass extending second bypass, a second thermostatic valve is arranged, which largely blocks the second bypass above the average cooling temperature.
  • the DE 100 47 810 A1 relates to a heating circuit with an auxiliary heater for motor vehicles with internal combustion engine, which is part of a separate short-circuit, which is switchable by means of a switching device in the heating circuit.
  • auxiliary heater an exhaust system of the engine of the motor vehicle is used, from which the exhaust heat is transferred into the heating circuit.
  • the exhaust heat supply is at a heat demand of the interior heating below exhaust gas exhaust heat supply by motorisehe Measures liftable.
  • the DE 100 47 810 A1 but also relates to a method for operating a heating circuit with an auxiliary heater for motor vehicles with internal combustion engine, designed as exhaust gas heat exchanger through which the engine exhaust gas and coolant flow. To increase the heating power of the additional heater, the engine operating parameters can be influenced.
  • the EP 1 094 214 A2 relates to a heat recovery system having a circulation line in which a heat transfer medium circulates through an engine cooling unit, and an exhaust gas heat exchanger for utilizing the exhaust gases of an engine and a conduit connecting an outlet side of the circulation line to an outlet of the heat exchanger.
  • the exhaust gas heat exchanger is disposed across the circulation passage at a side upstream of the engine cooling unit.
  • the heat transfer medium introduced into the exhaust gas heat exchanger is controlled to a lower temperature sufficient to lower a temperature of the water vapor contained in the exhaust gas stream from which heat is transferred to the heat transfer medium to lower its dew point.
  • JP 2001 323808 A shows an oil lubrication system, in which from an oil suction pipe, which is arranged in an oil sump of a non-insulated oil tank, by means of an oil pump oil can be introduced into a lubrication system.
  • the oil can be heated by means of an oil line and a heat exchanger through an exhaust system.
  • the heated oil can be stored in a thermally insulated intermediate tank and returned by means of a supply line directly under a suction bell of the oil pump in the oil sump.
  • a bypass line in an oil / exhaust gas heat exchanger wherein the heat exchanger for heating oil for lubrication in a warm-up phase by means of exhaust gas is used.
  • the exhaust flow of the heat exchanger can be passed through a multi-way valve through an exhaust bypass to control further heating of the lubricating oil system.
  • the US 4,393,824 relates to a heating method for lubricating oil, wherein by means of a high-pressure pump and a pressure reducing element, an additional heating of the total amount of lubricating oil can be achieved.
  • JP 2005 299592 A discusses a generic oil lubrication system using heat from an EGR system to increase the viscosity of the lubricating oil.
  • an oil cooler can be bypassed by means of an oil bypass. In any case, all the lubricating oil flows through the oil cooler or bypass and is returned to an oil reservoir. Even the D4 gives no indication of the missing features.
  • a generic oil lubrication system goes out of the JP 60 185011 U ,
  • the JP 60 185011 U concerns a generic type lubrication system.
  • an oil suction pipe is arranged in an oil sump, and has a the oil recirculation umstructure oil bypass line.
  • a valve is disposed in the oil bypass line, whereby the bypass line and / or at least one of the oil return can be connected to the suction line of an oil pump and the pressure line of a lubrication system.
  • the nature of the installation of the oil bypass line is not chosen to be advantageous in order to allow accelerated heating.
  • the JP 58 158 126 U considers an oil lubrication system for a turbocharged internal combustion engine in which an oil bypass line may lube-controlled oil pass through a portion of the turbocharger for faster heating.
  • EP 0 123 620 A1 describes a lubricating system with oil bypass line for an internal combustion engine, wherein when an oil minimum pressure is exceeded, an exhaust valve is opened, so that oil flows through the bypass line and bypasses the oil return.
  • a lubrication system with a cylinder head lubricant collection tank is known in which during a warm-up phase returning lubricating oil from the cylinder head in the cylinder head temporarily remains in the lubricant reservoir tank, heated and delayed concentrated in a suction of the oil pump in the oil sump can be returned.
  • both an overflow return special connection is provided, which causes a return of the amount of oil used for the cylinder head lubrication with filled lubricant collection tank, as well as a switching valve that allows concentrated at reservoir already partially concentrated return.
  • the switching valve can be opened as soon as the lubricant has reached the operating temperature, in the warm-up phase it remains closed, so that returning oil from the cylinder head is returned via the overflow line. Furthermore, an oil pressure filling pipe from the oil pump leads directly to the lubricant collecting tank, and is controlled by another switching valve so that the lubricant collecting tank can also be filled directly.
  • JP S59183017 shows a lubrication system in which in a warm-up phase, the entire oil return can be passed through a manifold directly to the ⁇ lsaugrohr an oil pump to avoid mixing with the oil of the oil sump.
  • the invention has for its object to improve an internal combustion engine or a transmission, in particular automatic transmission of the type mentioned with simple means to the extent that the engine oil is performed faster in the cold start phase or in the warm-up phase to operating temperature, so that both a reduced fuel consumption as well as reduced pollutant emissions are achieved, with overheating of the engine oil is to be avoided.
  • a oil bypass umstructureden oil bypass line is connected to the suction of an oil pump and the pressure line of a lubrication system, wherein the oil bypass line of the internal combustion engine passes through at least one cylinder head, and that falls below a certain limit temperature and exceeding a certain minimum pressure of the lubricating oil in the pressure line the lubricating system, a bypass valve in the oil bypass line is at least partially opened, so that a partial flow of the lubricating oil in a warm-up phase of the lubrication system does not flow through the oil sump until either the minimum pressure or the limit temperature are reached, and that the lubricating oil mass flow through the oil bypass line (23) at least temporarily larger than the lubricating oil mass flow through the oil suction pipe (2).
  • bypass line can pass through a turbocharger.
  • the oil in the lubrication system heats up faster. Furthermore, the pressure loss of the lubrication system to be overcome decreases since the oil flowing back through the oil bypass line does not flow through the oil sump. Since the oil of the bypass line is preferably passed through the cylinder block and / or cylinder head, an increased oil volume flow at low temperatures can be achieved in an at least partial opening of the bypass valve, which can be arranged in or on the cylinder head or cylinder block, so that the oil more waste heat can record.
  • the heating method of the lubricating system according to the invention can be used advantageously both in motor vehicles with automatic transmissions, as well as in motor vehicles with manual transmissions, and serve both for lubrication of the engine as an internal combustion engine and for lubricating the gear unit.
  • hybrid vehicles which include both an internal combustion engine and an electric drive unit
  • the heating method can be used for rapid heating of an electric motor / generator unit, which achieve optimum efficiency only at elevated temperatures, and also lubricate the electromotive moving components. It can be advantageous in these cases Waste heat from the electrical energy storage unit (battery / battery) and / or the inverter heats oil in the bypass line, which in turn heat up the electric motor / generator unit or lubricate this and a downstream transmission improved.
  • an oil bypass line can be arranged, which contains a heat exchanger, through which additional heat is introduced into the transmission oil in the heating phase so as to reduce the friction.
  • the invention can be applied to all types of internal combustion engine driven equipment and vehicles such as cars, trucks, buses, motorcycles, construction machinery, ships, boats, aircraft and mobile and stationary work equipment and devices, power plants such as emergency generators and the like.
  • the invention enables optimum lubrication to reduce friction between the moving parts, thus increasing the longevity of the machine, reducing the noise level, achieving higher efficiency, achieving higher power output, delivering lower exhaust emissions, and costs can be saved.
  • the length of the oil line of the lubrication system from the output of the oil pump to the entry into the oil bypass line at least 80% of the maximum length of the oil line of the lubrication system from the output of the oil pump to the farthest to be lubricated device is.
  • the lubricating oil flowing through the oil bypass line can heat better.
  • the lubricating oil mass flow through the oil bypass line is at least temporarily greater than the lubricating oil mass flow through the oil suction pipe and the oil sump. In this case, the total mass flow flowing through the lubricating system is heated faster than without oil bypass line.
  • the oil bypass line is arranged in the same housing, in which also at least one of the devices to be lubricated are arranged, so that the back-flowing lubricating oil can additionally heat. It is particularly advantageous if one or several of the oil returns are connected directly to the suction line of an oil pump.
  • the oil bypass line consists of a heat insulating material with a thermal conductivity less than 1 W / (m * K) to reduce the heat transfer to the environment during the backflow, especially where the oil bypass line not is guided through the device to be lubricated.
  • At least one of the lubricating oil return flows arranged downstream of the devices to be lubricated is connected to the oil bypass line, one of the lubricating oil return lines connected to the oil bypass line being part of an exhaust gas turbocharger.
  • the lubricating oil flowing through the oil bypass line is heated by a heat exchanger.
  • the heat exchanger for heating the lubricating oil is flowed through by the exhaust gas of an internal combustion engine downstream of a catalyst. At this time, the exhaust gas flowing through the heat exchanger flows upstream through a valve. This valve is closed as soon as a specified limit temperature of the Is exhaust gas is achieved to prevent coking of the lubricating oil in the heat exchanger.
  • flowing through the heat exchanger exhaust flows as exhaust gas recirculation downstream in the sense of the invention through a valve in the intake manifold of an internal combustion engine, wherein the valve is at least partially closed as soon as a predetermined limit temperature of Is exhaust gas is reached or as soon as a predetermined volume flow of the exhaust gas recirculation is achieved.
  • the exhaust gas is cooled by the heat exchanger, which has a further reduction in the combustion temperature result, so that it can be dispensed with the use of an additional cooler for exhaust gas recirculation.
  • a further heat exchanger and a further valve is arranged downstream of the oil pump for cooling, wherein this valve is at least partially opened when a predetermined limit value for the lubricating oil temperature is exceeded or not reached.
  • the heat exchanger is flowed through by a cooling medium, such as ambient air or cooling liquid, in order to cool the lubricating oil.
  • this heat exchanger is flowed through by the exhaust gas of the internal combustion engine in order to heat the lubricating oil and reduce the friction.
  • a further valve is arranged in the lubricating oil line parallel to the heat exchanger and the valve. This valve is at least partially closed when a predetermined limit for the lubricating oil temperature exceeded or fallen short of. It is expedient in this case also if this heat exchanger is arranged in the circuit for cabin heating or in the circuit for heating or cooling of an electric battery.
  • a control unit controls the opening cross section of the various valves, and if sensors for detecting the lubricating oil pressure, the lubricating oil temperature, the exhaust gas temperature, the rotational speed, the load and / or the coolant temperature with the Control unit are connected.
  • the lubrication system, the exhaust pipe and the intake manifold are part of an internal combustion engine.
  • the exhaust gas heat exchanger is designed to be double-flow, so that the transmission oil and the engine oil can be heated simultaneously in parallel and the exhaust gas heat exchanger is connected to the exhaust pipe by a heat-insulating material which has a heat conductivity less than 1 W / (m * K) auf calendart.
  • the sealing of the valves in the exhaust pipe has a particularly important meaning, since a high density on the one hand improves the effectiveness of the heating and on the other hand in the closed position avoids that the oil heats up unintentionally, for example, at high engine loads and speeds. This can then be dispensed with the use of an additional oil cooler.
  • the second sealing surface is arranged on the opposite side of the valve disk, from which the valve stem leads away from the actuator. In the active state, the outermost end of the valve closes the exhaust gas bypass and in the passive state, the inner sealing surface of the plate closes the line to the heat exchanger.
  • Fig. 1 shows an internal combustion engine 30 in a schematic diagram.
  • the internal combustion engine 30 has an exhaust pipe 14, in which a catalyst 10 is arranged.
  • the internal combustion engine 30 is shown as a four-cylinder engine, the four cylinder manifolds open into a common exhaust pipe 14.
  • a heat exchanger 8 is arranged in the exhaust gas line 14 behind the catalytic converter 10, and a turbocharger 24 is arranged in front of the catalytic converter.
  • the internal combustion engine 30 has a lubricating oil system 16.
  • the lubricating oil system has an oil sump 1, an oil receiving line 2, an oil pump 3, devices to be lubricated 31 of a cylinder head 12 and a cylinder block 15 and a turbocharger 24, an oil pan 5, and an oil pressure relief valve 4.
  • the lubricating oil system 16 is also assigned a bypass valve 17.
  • the bypass valve 17 controls the flow of the engine oil through the lubricating oil bypass 23, so that the temperature and the pressure of the engine oil can be set to optimum values.
  • the lubricating oil system 16 has a plurality of oil returns 19.
  • the heat exchanger 8 at least upstream of the exhaust stream, an exhaust valve or exhaust gas recirculation valve 20, 21, 41, advantageously an EGR control valve upstream, which regulates the exhaust gas flow through the heat exchanger 8 and thus indirectly controls the oil temperature.
  • the heat exchanger 8 is integrated in the lubricating oil system 16, so that the oil is heated in a warm-up phase of the internal combustion engine 30 by means of the exhaust heat.
  • an exhaust / oil heat exchanger for heating the oil in the bypass line.
  • an exhaust valve 13 is additionally arranged in the exhaust pipe 14 parallel to the heat exchanger 8, which controls the exhaust gas flow through the heat exchanger 8 bypassing exhaust gas bypass 38.
  • a valve 29 and a heat exchanger 26 with a supply line 27 and a discharge line 28 is arranged for controlling the oil temperature and the oil pressure.
  • a valve 25 for regulating the oil pressure and the oil temperature is further arranged.
  • the heat exchanger 26 can serve as an oil cooler for heating a cabin interior of a vehicle.
  • a control unit 18 For regulating oil pressure and oil temperature, a control unit 18 is connected to the valves 13, 17, 20, 21, 25, 29 and 41, and at least with sensors for detecting the lubricating oil pressure 32, the lubricating oil temperature 33, the exhaust gas temperature 34, the rotational speed 35, the load 36 and the coolant temperature 37 connected.
  • a throttle valve 7 is arranged, which is connected to a turbocharger 24 which opens downstream into an intake manifold 9.
  • the intake manifold is connected to the exhaust gas recirculation exhaust pipe 14 via an exhaust gas recirculation valve 21, which may be configured as an EGR control valve, the connection being located downstream of the heat exchanger 8.
  • the heat exchanger 8 may be an EGR heat exchanger. In this way harmful nitric oxide emissions are reduced
  • the engine oil is heated faster 30 in a warm-up phase of the internal combustion engine.
  • Parallel to the heat exchanger 8 is controlled via the second exhaust valve 13 exhaust bypass 38 is guided so that overheating of the engine oil is avoided in the heat exchanger.
  • the heat exchanger 8 is preferred sufficiently dimensioned in the counterflow principle, so that the engine oil is heated as quickly as possible, the exhaust gas is cooled down as much as possible.
  • Fig. 2 shows an advantageous embodiment of the invention.
  • the exhaust outlet of the heat exchanger 8 is connected only to the intake manifold 9, so that the exhaust valve 13 and the exhaust gas recirculation valve 20 are not required.
  • the heat exchanger has a dual function.
  • the heat exchanger 8 heats up the engine oil during the warm-up phase due to the exhaust gas temperature in order to avoid high combustion temperatures.
  • the heat exchanger 8 acts as a cooler of the exhaust gas recirculation 22 by the exhaust gas recirculated into the intake manifold 9 is cooled by the lubricating oil. This can be dispensed with an additional cooler for exhaust gas recirculation and additional valves to control the exhaust gas flow rate.
  • Fig. 3 shows an embodiment of an oil lubricating device in a cold state, eg shortly after starting a motor vehicle.
  • the main oil flow through the bypass valve 17 is shown in bold.
  • the oil flows from the cylinder head 12 into the turbocharger 24.
  • a bypass line leads to the opened bypass valve 17 through which the oil continues to flow and is combined with the oil return line 19 from the turbocharger.
  • the oil continues to flow through the heat exchanger 8 in which it is heated by the hot exhaust gas.
  • the oil is returned through the oil pan where the return line 23 is connected to the ⁇ lansaugrohr 2, so that the heated oil can be sucked directly further from the oil pump 3.
  • the flow of the exhaust gas through the heat exchanger 8 is also shown in bold.
  • the hot exhaust gas flows from the catalyst 10 into the exhaust pipe 14 and thence through the opened exhaust gas recirculation valve 21 into the heat exchanger 8 where it heats the cold oil the exhaust gas cools down. From there, the cold exhaust gas flows through the exhaust gas recirculation line 22 back into the intake manifold.
  • the oil bypass valve 17 is completely or at least partially closed, so that the oil pressure in the internal combustion engine 30 can rise again.
  • the oil bypass valve 17 is completely or at least partially closed when exceeding a maximum oil temperature, while then the exhaust gas recirculation valve 21 is closed or alternatively the in Fig. 4 shown EGR bypass flap 39, opened.
  • Fig. 4 shows the system in a simplified version in the warm state.
  • the bypass valve 17 is completely or at least partially closed, so that only a very small volume of oil flow through the heat exchanger 8 flows.
  • the majority of the lubricating oil - shown in bold here - then flows through the bearings 31, eg crankshaft main bearings, connecting rod bearings, camshaft bearings, piston injectors, camshaft adjuster, camshaft plunger, etc. either through return lines 19 or directly back into the oil pan 1.
  • the exhaust gas recirculation valve 21 can either be closed or be open. If the exhaust gas recirculation valve 21 is open, it is advantageous if the exhaust gas is guided back into the exhaust gas recirculation line 22 and the intake manifold 9 via a further EGR bypass flap 39.
  • Fig. 5 The exhaust gas flows from an internal combustion engine (not shown) through a catalytic converter 10 into a 3-way valve 41. In the cold state, the exhaust gas flows through a heat exchanger 8 and heats the transmission oil passing through a bypass valve 17 is released. In the warm state, the exhaust gas does not flow through the heat exchanger 8 but through the bypass 38 and the bypass valve 17 is completely or at least partially closed.
  • the volume flow of the oil pump 3 decreases more or less linear, this occurs especially at low oil temperatures.
  • the heat transfer coefficient between oil and cylinder head 12 or cylinder block 15 decreases so that the oil can absorb only a small amount of heat from the cylinder head 12 or cylinder block 15.
  • a pressure relief valve 4 opens. This reduces the oil volume flow flowing through the cylinder head 12 and block 15, so that the mechanical pumping power of the oil pump 3 is reduced. This reduces the heat transfer coefficient between oil and metal of the cylinder block 15 or head 12.
  • An increase in the heat transfer coefficient at low temperatures can be achieved by an embodiment of the invention in that the volume flow through the cylinder block 15 and in particular through the cylinder head 12 is increased at low temperatures. This is achieved by at least partial opening of the (bypass) valve 17, for example as a function of temperature, pressure, engine speed and / or load. Supporting this is also conceivable, the volume flow rate of the oil pump 3 to increase mechanically or by a manual transmission or increase by moving conveyor wheels.
  • the oil contained in the oil passages of an internal combustion engine 30 is only a fraction, usually only 10% of the total volume of oil.
  • the entire oil volume is uniformly heated in known methods.
  • Core idea of the invention is a targeted rapid heating of the lubricating oil located in the oil passages, this being achieved by connecting the oil passage of the cylinder heads 12 by means of a bypass line 23 with the suction side of the oil pump, wherein at the end of the bypass line 23, a negative pressure is applied to the Do not let oil flow back into the sump 1 but back into the oil channel.
  • the generation of a negative pressure at the end of the bypass line 23 can be achieved by direct connection of the bypass line 23 with the suction side of the oil pump 3 and with a direct connection to the oil suction pipe 2.
  • the bypass line 23 can be at least partially integrated in a plastic oil pan with integrated oil suction 2, which leads to improved insulation and less heat loss.
  • the mouth of the bypass line 23 can be positioned in the oil sump 1 in close proximity to the opening of the ⁇ lsaugrohres 2, so that the opening of the bypass line end in the direction of the opening of the ⁇ lansaugrohres 2 shows and forms an angle of 0 to 45 °, which is also facilitates installation and the option of retrofitting later.
  • additional active heat sources may be introduced into the bypass line 23, eg electrical heating rods or heating elements, preferably, one or more PTC heating rods, EGR oil cooler (exhaust gas recirculation cooler), full flow oil cooler or the like may be arranged to quickly heat the oil in the oil passages in the warm-up phase.
  • EGR oil cooler exhaust gas recirculation cooler
  • a motor control in the warm-up phase at least a small part of the heat exchanger 8 to control the heating of the oil in the bypass line 23, and after some time shut off the oil flow through the bypass line 23 to prevent coking in the exhaust gas heat exchanger 8
  • Control variables for the control can be the higher the required oil pressure as a function of speed and load, and the desired oil temperature as a lower priority.
  • the use of thermal insulation of the bypass line 23 and / or the EGR bypass (exhaust gas recirculation) upstream of the valve 17 by using a ceramic tube is advantageously conceivable to limit the temperature of the exhaust gas heat exchanger 8 and the exhaust gas recirculation valve 21 when the exhaust gas recirculation valve 21 is closed.
  • an oil pan with line in front of the oil suction 2 in an oil pan, not shown, of the oil sump 1 are integrated to absorb the oil that exits from the bearings in the head and crankshaft while it is also warmed up, and feed directly to the oil pump, without the oil sump heat.
  • the valve 17 may in this case also be integrated in the oil sump after merging the bypass line 23 and the line of the oil sump, wherein a check valve must be present in the line of the oil sump, so that the oil does not flow from the bypass line 23 back into the oil sump can.
  • a combination of oil pan with spray nozzles which are arranged in the connecting rod for cooling the piston to increase the flow rate of the oil flow, wherein the spray nozzles are not turned off in the cold start.
  • the exhaust gas flow for heating the oil in the bypass line 23 can in principle be diverted as desired from the normal exhaust gas flow.
  • the exhaust gas before a turbocharger by means of a conventional EGR valve exhaust gas recirculation valve
  • the high mass flow of the exhaust gas can be achieved in a small size and independent of the EGR calibration.
  • a warm-up of the oil can be achieved without affecting the combustion temperature and thus also the exhaust gas.
  • the EGR cooler assembly has a vertical gas guide with an angle up to 40 degrees to the vertical, so that condensation water can be discharged into an exhaust.
  • an additional flap in the main exhaust gas flow can produce a pressure difference and thus conduct an increased volume flow through the heat exchanger 8.
  • the invention is not limited to the illustrated embodiments. It is conceivable that the heat exchanger 26 is connected to the exhaust pipe 14 in order to effect a faster heating of the lubricating oil.
  • the arrangement of the valves may vary, the valves may be arranged upstream and downstream of the various heat exchangers and vice versa.
  • the invention may be used to lubricate engine parts, transmission parts or other moving components of a vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)

Claims (16)

  1. Procédé pour chauffer un système de lubrification (16) de composants en rotation ou oscillant, pour un moteur à combustion (30) avec au moins un tuyau d'admission d'huile (2), qui est disposé dans un carter d'huile (1) et avec une conduite de dérivation d'huile (23) dérivant les retours d'huile (19), sachant qu'une soupape (17) est disposée dans la conduite de dérivation d'huile (23), sachant que la conduite de dérivation (23) est reliée à la conduite d'admission d'une pompe à huile (3) et que la longueur de la conduite d'huile du système de lubrification (16) de la sortie de la pompe à huile (3) à l'entrée dans la conduite de dérivation d'huile (23) s'élève de préférence à au moins 80 % de la longueur maximale de la conduite d'huile du système de lubrification (16) de la sortie de la pompe à huile (3) au dispositif (31) à lubrifier le plus éloigné,
    caractérisé en ce
    que la conduite de dérivation (23) traverse au moins une culasse (12) et que la soupape de dérivation (17) est ouverte au moins partiellement en cas de dépassement vers le bas d'une température limite définie et en cas de dépassement vers le haut d'une pression minimale définie de l'huile de lubrification dans la conduite de refoulement du système de lubrification (16) de sorte qu'au moins un flux partiel de l'huile de lubrification ne traverse pas le carter d'huile (1) pendant une phase de chauffe du système de lubrification (16) jusqu'à ce que soit la pression minimale soit la température limite soit atteinte et que le flux massique d'huile de lubrification à travers la conduite de dérivation d'huile (23) soit au moins temporairement supérieur au flux massique d'huile de lubrification à travers le tuyau d'admission d'huile (2).
  2. Procédé selon la revendication 1,
    caractérisé en ce
    que la conduite de dérivation (23) traverse un turbocompresseur (24).
  3. Procédé selon la revendication 1 ou 2,
    caractérisé en ce
    que la soupape de dérivation (17) est fermée dès qu'un régime prédéfini ou une vitesse ou un couple ou une force des composants à lubrifier dépasse vers le haut une valeur limite prédéfinie et/ou qu'en dessous d'un régime prédéfini ou une vitesse ou un couple ou une force, la capacité de refoulement de la pompe à huile (3) est augmentée notamment dans la phase de chauffe pour générer une hausse du débit volumétrique de pompe à l'intérieur de la conduite d'huile.
  4. Procédé selon une des revendications précédentes,
    caractérisé en ce
    que de l'huile de lubrification traversant la conduite de dérivation d'huile (23) et/ou au moins un des retours d'huile (19) est réchauffée par un échangeur thermique (8).
  5. Procédé selon la revendication 4,
    caractérisé en ce
    que l'échangeur thermique (8) pour réchauffer l'huile de lubrification est traversé par les gaz d'échappement d'un moteur à combustion (30) et que les gaz d'échappement traversant l'échangeur thermique (8) traversent, en amont, une soupape de gaz d'échappement/soupape de recyclage des gaz d'échappement (20, 21, 41) et que la soupape de gaz d'échappement/soupape de recyclage des gaz d'échappement (20, 21, 41) est fermée dès qu'une température limite prédéfinie des gaz d'échappement ou de l'huile de lubrification est atteinte et/ou qu'au moins une partie des gaz d'échappement est conduite dans ou à travers un réservoir d'huile (5) ou dans la conduite de dérivation (23) par le biais d'une soupape pilotable, directement au-dessus ou avoisinant le carter d'huile (1), pour augmenter le transfert de chaleur.
  6. Procédé selon la revendication 4 ou 5,
    caractérisé en ce
    que les gaz d'échappement traversant l'échangeur thermique (8) traversent une soupape de recyclage des gaz d'échappement (21) et sont, en tant que retour de gaz d'échappement (22), reliés en aval au collecteur d'admission (9) d'un moteur à combustion (30), et que la soupape de recyclage des gaz d'échappement (21) est fermée au moins partiellement dès qu'une température limite prédéfinie des gaz d'échappement est atteinte ou qu'un débit volumétrique prédéfini du retour des gaz d'échappement est atteint.
  7. Procédé selon une des revendications 4 à 6,
    caractérisé en ce
    que les gaz d'échappement s'écoulant parallèlement à l'échangeur thermique (8) du moteur à combustion (30) traversent une soupape de gaz d'échappement (13) et que la seconde soupape de gaz d'échappement (13) est fermée temporairement au moins partiellement pour augmenter le flux des gaz d'échappement et, par conséquent, également le transfert de chaleur dans l'échangeur thermique (8).
  8. Procédé selon une des revendications précédentes,
    caractérisé en ce
    qu'un échangeur thermique (26) et une soupape (29) sont disposés après la pompe à huile (3) en aval pour le refroidissement et que la soupape (29) est ouverte au moins partiellement si une valeur limite prédéfinie pour la température de l'huile de lubrification est dépassée vers le haut ou vers le bas ou qu'une valeur limite prédéfinie pour la température d'entrée du liquide de refroidissement (27) ou pour la température de sortie du liquide de refroidissement (28) est dépassée vers le bas, sachant qu'une soupape (25) est disposée de préférence dans la conduite d'huile de lubrification parallèlement à l'échangeur thermique (26) et à la soupape (29) et que la soupape (25) est fermée au moins partiellement si une valeur limite prédéfinie pour la température d'huile de lubrification est dépassée vers le haut ou vers le bas.
  9. Dispositif pour chauffer un système de lubrification (16) de composants en rotation ou oscillant, pour un moteur à combustion (30) pour exécuter un procédé selon une des revendications 1 à 8 avec au moins un tuyau d'admission d'huile (2), qui est disposé dans un carter d'huile (1) et avec une conduite de dérivation d'huile (23) dérivant le retour d'huile (19), sachant qu'une soupape de dérivation (17) est disposée dans la conduite de dérivation d'huile (23) et que la conduite de dérivation (23) est reliée à la conduite d'admission d'une pompe à huile (3) et à la conduite de refoulement d'un système de lubrification (16),
    caractérisé en ce
    que la conduite de dérivation d'huile (23) traverse au moins une culasse (12) et qu'au moins un capteur est prévu pour détecter la pression d'huile de lubrification (32) et la température d'huile de lubrification (33),
    de sorte qu'au moins un flux partiel de l'huile de lubrification ne traverse pas le carter d'huile (1) au moins pendant une phase de chauffe du système de lubrification (16) jusqu'à ce que soit une pression d'huile limite soit une température d'huile limite soit atteinte et que le flux massique de l'huile de lubrification à travers la conduite de dérivation d'huile (23) est supérieur au moins temporairement au flux massique de l'huile de lubrification à travers le tuyau d'admission d'huile (2).
  10. Procédé selon la revendication 9,
    caractérisé en ce
    que la conduite de dérivation d'huile traverse un turbocompresseur (24).
  11. Procédé selon la revendication 9 ou 10,
    caractérisé en ce
    que la longueur de la conduite d'huile du système de lubrification (16) de la sortie de la pompe à huile (3) à l'entrée de la conduite de dérivation d'huile (23) s'élève à au moins 80 % de la longueur maximale de la conduite d'huile du système de lubrification (16) de la sortie de la pompe à huile (3) au dispositif (31) à lubrifier le plus éloigné.
  12. Dispositif selon une des revendications 9 à 11,
    caractérisé en ce
    que la conduite de dérivation (23) et/ou au moins un des retours d'huile (19) sont reliés à un échangeur thermique (8) et que l'échangeur thermique (8) pour chauffer l'huile de lubrification est disposé en aval après le catalyseur (10) dans le système des gaz d'échappement d'un moteur à combustion (30) et qu'est disposée en amont de l'échangeur thermique (8) une soupape des gaz d'échappement/de recyclage des gaz d'échappement (20, 41) qui modifie le débit selon au moins la température de l'huile ou la température des gaz d'échappement, sachant qu'une soupape de recyclage des gaz d'échappement (21) est disposée de préférence en aval de l'échangeur thermique (8) et que la première soupape de recyclage des gaz d'échappement (21) est reliée, en aval, au collecteur d'admission (9) d'un moteur à combustion.
  13. Dispositif selon la revendication 12,
    caractérisé en ce
    que parallèlement à l'échangeur thermique (8), une soupape des gaz d'échappement (13) est disposée dans une conduite de dérivation des gaz d'échappement (38) contournant l'échangeur thermique (8) pour augmenter au moins temporairement le flux de gaz d'échappement et donc aussi le transfert de chaleur dans l'échangeur thermique (8).
  14. Dispositif selon une des revendications 12 ou 13,
    caractérisé en ce
    que l'échangeur thermique (8) est disposé à l'intérieur d'une conduite de gaz d'échappement (14) et qu'il est relié à la conduite de gaz d'échappement (14) par le biais d'un matériau thermo-isolant qui présente un coefficient de conductibilité thermique inférieur à 1 W/(m*K) et que l'échangeur thermique (8) est constitué de deux éléments et relié au système de lubrification d'un moteur à combustion (30) et/ou au système de lubrification d'une boîte de vitesses et que le moteur à combustion (30) aussi bien que la boîte de vitesses font partie d'un véhicule automobile.
  15. Dispositif selon une des revendications 9 à 14,
    caractérisé en ce
    que la conduite de dérivation d'huile (23) est disposée dans le même boîtier (15) dans lequel au moins un des dispositifs (31) à lubrifier est, lui aussi, disposé, sachant qu'une autre partie de la conduite de dérivation d'huile (23) est intégrée en un seul élément dans le réservoir d'huile (5), sachant que de préférence l'extrémité de la conduite de dérivation d'huile (23) est disposée à proximité immédiate de l'orifice de la conduite d'admission d'huile (2) et pointe en direction de l'orifice de la conduite d'admission d'huile (2), sachant que notamment les deux extrémités constituent l'une par rapport à l'autre un angle de 0° à 45°.
  16. Dispositif selon une des revendications 9 à 15,
    caractérisé en ce
    qu'au moins une des conduites de liquide de refroidissement (27) et (28) est reliée à un échangeur thermique (26) pour chauffer la cabine et/ou un échangeur thermique d'une installation de chauffe et de refroidissement de batterie.
EP10713597.2A 2009-03-19 2010-03-19 Procédé et dispositif de lubrification à l'huile de composants rotatifs ou oscillants Not-in-force EP2409005B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200910013943 DE102009013943A1 (de) 2009-03-19 2009-03-19 Ölschmiersystem
PCT/EP2010/053643 WO2010106179A1 (fr) 2009-03-19 2010-03-19 Procédé et dispositif de lubrification à l'huile de composants rotatifs ou oscillants

Publications (2)

Publication Number Publication Date
EP2409005A1 EP2409005A1 (fr) 2012-01-25
EP2409005B1 true EP2409005B1 (fr) 2018-08-15

Family

ID=42269705

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10713597.2A Not-in-force EP2409005B1 (fr) 2009-03-19 2010-03-19 Procédé et dispositif de lubrification à l'huile de composants rotatifs ou oscillants

Country Status (7)

Country Link
US (1) US8978613B2 (fr)
EP (1) EP2409005B1 (fr)
JP (1) JP5656970B2 (fr)
CN (1) CN102356217B (fr)
AU (1) AU2010224799B2 (fr)
DE (1) DE102009013943A1 (fr)
WO (1) WO2010106179A1 (fr)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010055133A1 (de) * 2010-12-18 2012-06-21 GM Global Technology Operations LLC Antriebsaggregat für ein Kraftfahrzeug
DE102011053176A1 (de) * 2011-08-31 2013-02-28 Ino8 Pty Ltd Verfahren und Vorrichtung zur Leckagedetektion eines Fahrzeug-Schmiersystems
DE102011084597A1 (de) * 2011-10-17 2013-04-18 Ford Global Technologies, Llc Brennkraftmaschine mit Ölkreislauf und Verfahren zur Herstellung einer derartigen Brennkraftmaschine
DE102011084632B4 (de) * 2011-10-17 2015-03-05 Ford Global Technologies, Llc Verfahren zum Erwärmen einer Brennkraftmaschine und Brennkraftmaschine zur Durchführung eines derartigen Verfahrens
DE102012025436A1 (de) * 2012-12-21 2014-06-26 Deutz Ag Verbrennungskraftmaschine
DE102013101844A1 (de) 2013-02-25 2014-08-28 Ino8 Pty Ltd Wärmeisoliertes Schmiersystem und Schmierverfahren für rotierende und oszillierende Bauteile
DE102013205561A1 (de) 2013-03-28 2014-10-02 Bayerische Motoren Werke Aktiengesellschaft Luft gekühlte Brennkraftmaschine
US9732662B2 (en) * 2013-06-14 2017-08-15 GM Global Technology Operations LLC Coolant control systems and methods for transmission temperature regulation
AT514919B1 (de) * 2014-06-25 2015-05-15 Avl List Gmbh Verfahren zum betreiben eines automatikgetriebes oder eines doppelkupplungsgetriebes
CN104197180A (zh) * 2014-08-05 2014-12-10 蔡宏磊 一种润滑回油的温度控制装置
US9957881B2 (en) 2014-08-06 2018-05-01 Denso International America, Inc. Charge air cooling system and charge air cooler for the same
JP6187415B2 (ja) * 2014-08-22 2017-08-30 トヨタ自動車株式会社 潤滑制御装置
DE102014220816B4 (de) 2014-10-14 2019-06-13 Continental Automotive Gmbh Vorrichtung zum Erwärmen eines Schmiermittels einer Brennkraftmaschine
WO2016164106A1 (fr) * 2015-04-07 2016-10-13 Illinois Tool Works Inc. Ensemble carter d'huile
US20170241308A1 (en) * 2016-02-24 2017-08-24 Ford Global Technologies, Llc Oil maintenance strategy for electrified vehicles
JP6277216B2 (ja) * 2016-03-17 2018-02-07 本田技研工業株式会社 車両用動力伝達装置の油圧システム
RU169048U1 (ru) * 2016-06-21 2017-03-02 Акционерное Общество "Улан-Удэнский Авиационный Завод" Устройство предпускового подогрева масла маршевого двигателя и агрегатов трансмиссии вертолета
DE102016113394B3 (de) * 2016-07-20 2017-10-19 Ino8 Pty Ltd Wärmemanagementsystem und -verfahren einer variablen Zylinderkühlung eines Verbrennungsmotors
FR3057610B1 (fr) * 2016-10-18 2019-11-22 Novares France Carter d'huile
US10428705B2 (en) * 2017-05-15 2019-10-01 Polaris Industries Inc. Engine
US10550754B2 (en) 2017-05-15 2020-02-04 Polaris Industries Inc. Engine
DE102017215767A1 (de) * 2017-09-07 2019-03-07 Siemens Aktiengesellschaft Regelsystem zur Einstellung der Lageröltemperatur zwecks Minimierung der Rotorschwingungen
EP3732356B1 (fr) * 2017-12-29 2023-08-23 Volvo Truck Corporation Circuit de fluide et procédé de commande d'un flux de fluide fourni à au moins un équipement
USD904227S1 (en) 2018-10-26 2020-12-08 Polaris Industries Inc. Headlight of a three-wheeled vehicle
CN111608761B (zh) * 2020-06-02 2022-06-07 四川省天域航通科技有限公司 一种大型货运无人机润油系统
CA3199584A1 (fr) * 2020-11-23 2022-05-27 Adriano MAGHERINI Systeme de gaz d'echappement pour une motocyclette
US11415029B1 (en) 2021-02-12 2022-08-16 Ford Global Technologies, Llc Engine oil dilution control in automotive vehicles
FR3125556B1 (fr) * 2021-07-26 2024-03-29 Novares France Carter d'huile comprenant un dispositif de chauffage d'huile

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58158126U (ja) * 1982-04-15 1983-10-21 トヨタ自動車株式会社 タ−ボチヤ−ジヤ付エンジンの潤滑経路
JPS59183017A (ja) * 1983-07-29 1984-10-18 Aisan Ind Co Ltd 自動車用エンジンの潤滑油供給装置
EP0123620A1 (fr) * 1983-04-22 1984-10-31 Regie Nationale Des Usines Renault Dispositif pour la mise en température rapide et la régulation thermique de l'huile de lubrification d'un moteur à combustion interne
DE102007020807A1 (de) * 2007-05-04 2008-11-13 Audi Ag Schmiermittelkreislauf einer Brennkraftmaschine, entsprechende Brennkraftmaschine und Verfahren zum Betreiben eines Schmiermittelkreislaufs

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2753716A1 (de) 1977-12-02 1979-06-07 Daimler Benz Ag Warmluft abgebende heizvorrichtung fuer durch eine brennkraftmaschine angetriebene kraftfahrzeuge
US4249491A (en) * 1979-09-04 1981-02-10 Kim Hotstart Manufacturing Co., Inc. Multiple liquid heating and circulating system
FR2492327A1 (fr) * 1980-10-18 1982-04-23 Kloeckner Humboldt Deutz Ag Installation de chauffage notamment pour une cabine de service, une cabine de vehicule ou analogue
JPS58158126A (ja) 1982-03-16 1983-09-20 滝沢ハム株式会社 肉加工食品の製造方法
DE3411358C2 (de) 1984-03-28 1986-12-18 Gerhard 4200 Oberhausen Richter Vorrichtung zur Wärmeentziehung aus den Auspuffgasen eines Verbrennungsmotors
JPS60185011U (ja) * 1984-05-18 1985-12-07 マツダ株式会社 過給機付エンジンのオイルパン構造
JP2620319B2 (ja) 1988-07-18 1997-06-11 住友電気工業株式会社 セラミックスの成形方法
DE19725674A1 (de) 1997-06-18 1998-12-24 Bayerische Motoren Werke Ag Verfahren zum Betrieb eines Wärmetauschers im Abgasstrom einer Brennkraftmaschine für Kraftfahrzeuge
DE19908088A1 (de) 1999-02-25 2000-08-31 Volkswagen Ag Brennkraftmaschine, insbesondere Diesel-Brennkraftmaschine, für ein Fahrzeug mit einer Fahrgastraum-Heizvorrichtung
JP3767785B2 (ja) 1999-10-22 2006-04-19 本田技研工業株式会社 エンジンの排熱回収装置
JP2001323808A (ja) 2000-05-17 2001-11-22 Toyota Motor Corp 内燃機関の潤滑装置
EP1172626A3 (fr) * 2000-07-14 2003-11-26 Joma-Polytec Kunststofftechnik GmbH Utilisation d'un échangeur de chaleur
DE10047810B4 (de) 2000-09-27 2016-01-21 Volkswagen Ag Vorrichtung und Verfahren zum Betreiben eines Heizungskreislaufes für Kraftfahrzeuge
DE10153383A1 (de) 2001-10-30 2003-05-22 Visteon Global Tech Inc Abgaswärmerückgewinnungsvorrichtung
JP2005226474A (ja) * 2004-02-10 2005-08-25 Aisin Takaoka Ltd エンジンの熱交換システム
US7047913B2 (en) * 2004-02-13 2006-05-23 Deere & Company Cooling system for a vehicle
JP2005299592A (ja) 2004-04-15 2005-10-27 Toyota Motor Corp 内燃機関の潤滑装置
DE102004031365A1 (de) * 2004-06-29 2006-01-26 Ford Global Technologies, LLC, Dearborn Abgaswärme-Rückgewinnung
CN2773318Y (zh) * 2005-01-07 2006-04-19 广汉油气装备开发有限公司 润滑油加热器
CN2789420Y (zh) * 2005-04-13 2006-06-21 刘传鹏 封闭燃烧式发动机预热器
FR2896531B1 (fr) * 2006-01-26 2008-04-18 Peugeot Citroen Automobiles Sa Dispositif permettant d'accelerer la montee en temperature d'huile de lubrification d'un moteur a combustion interne a turbocompresseur a gaz d'echappement
GB2460207A (en) * 2007-04-10 2009-11-25 Cummins Turbo Tech Ltd Turbocharged internal combustion engine
DE102007033679B4 (de) * 2007-07-19 2009-07-09 Mtu Friedrichshafen Gmbh Abgasleitung einer Brennkraftmaschine
DE102007037352A1 (de) * 2007-08-08 2009-02-12 Robert Bosch Gmbh Verfahren zum Betreiben einer Antriebsvorrichtung sowie Antriebsvorrichtung
GB0721262D0 (en) * 2007-10-30 2007-12-05 Ford Global Tech Llc A method for heating the oil of an engine
US7866157B2 (en) * 2008-05-12 2011-01-11 Cummins Inc. Waste heat recovery system with constant power output

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58158126U (ja) * 1982-04-15 1983-10-21 トヨタ自動車株式会社 タ−ボチヤ−ジヤ付エンジンの潤滑経路
EP0123620A1 (fr) * 1983-04-22 1984-10-31 Regie Nationale Des Usines Renault Dispositif pour la mise en température rapide et la régulation thermique de l'huile de lubrification d'un moteur à combustion interne
JPS59183017A (ja) * 1983-07-29 1984-10-18 Aisan Ind Co Ltd 自動車用エンジンの潤滑油供給装置
DE102007020807A1 (de) * 2007-05-04 2008-11-13 Audi Ag Schmiermittelkreislauf einer Brennkraftmaschine, entsprechende Brennkraftmaschine und Verfahren zum Betreiben eines Schmiermittelkreislaufs

Also Published As

Publication number Publication date
CN102356217B (zh) 2013-12-25
DE102009013943A1 (de) 2010-09-23
AU2010224799A1 (en) 2011-09-29
EP2409005A1 (fr) 2012-01-25
CN102356217A (zh) 2012-02-15
WO2010106179A1 (fr) 2010-09-23
JP5656970B2 (ja) 2015-01-21
US8978613B2 (en) 2015-03-17
US20120006622A1 (en) 2012-01-12
JP2012520965A (ja) 2012-09-10
AU2010224799B2 (en) 2014-10-02

Similar Documents

Publication Publication Date Title
EP2409005B1 (fr) Procédé et dispositif de lubrification à l'huile de composants rotatifs ou oscillants
EP2751397B1 (fr) Procédé et dispositif de détection de fuites dans un système de lubrification de véhicule
DE102013211700B3 (de) Fahrzeugheizsystem sowie Verfahren zum Heizen des Innenraums eines Fahrzeugs mit einem Fahrzeugheizsystem
EP2392794B1 (fr) Turbosoufflante refroidie séparément pour le maintien d'une stratégie sans écoulement d'une enveloppe de réfrigérant à bloc cylindre
DE102010027816B4 (de) Brennkraftmaschine mit Ölkreislauf und Verfahren zur Erwärmung des Motoröls einer derartigen Brennkraftmaschine
DE102010060319B4 (de) Kühlsystem
DE102012210320B3 (de) Flüssigkeitsgekühlte Brennkraftmaschine mit Nachlaufkühlung und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
DE202017007617U1 (de) Wärmemanagementsystem eines Verbrennungsmotors
DE102010002082A1 (de) Separat gekühlter Abgassammler zur Aufrechterhaltung einer No-Flow Strategie des Zylinderblockkühlmittelmantels
DE102010005824A1 (de) Flüssigkeitskühlsystem eines durch einen Turbolader aufgeladenen Verbrennungsmotors und Verfahren zur Kühlung eines Turbinengehäuses eines Turboladers
DE102008042660A1 (de) Flüssigkeitsgekühlte Brennkraftmaschine mit Ölkühler und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
DE102011002562B4 (de) Aufgeladene flüssigkeitsgekühlte Brennkraftmaschine
DE102018104105A1 (de) Brennkraftmaschine und Kraftfahrzeug
DE10234087A1 (de) Verfahren zum Betrieb eines Kühl- und Heizkreislaufs eines Kraftfahrzeugs sowie Kühl- und Heizkreislauf für ein Kraftfahrzeug
DE102017209484A1 (de) Kühlvorrichtung, Kraftfahrzeug und Verfahren zum Betreiben einer Kühlvorrichtung
DE102017208034B4 (de) Flüssigkeitsgekühlte Brennkraftmaschine mit Entlüftung
DE102013211156A1 (de) Flüssigkeitsgekühlte Brennkraftmaschine mit Nebenkreislauf
DE102008031122B4 (de) Anordnung zum Aufheizen eines Kraftfahrzeuggetriebes
EP2783086B1 (fr) Procédé pour le fonctionnement d'un moteur à combustion interne
DE102014209031B4 (de) Kraftfahrzeug mit einer einen Wärmespeicher aufweisenden Temperiervorrichtung
DE102013211701A1 (de) Fahrzeugheizsystem sowie Verfahren zum Heizen des Innenraums eines Fahrzeugs mit einem Fahrzeugheizsystem
DE202011001417U1 (de) Aufgeladene flüssigkeitsgekühlte Brennkraftmaschine
DE102012018795A1 (de) Ölversorgungssystem für eine Brennkraftmaschine
DE102008004133A1 (de) Heizvorrichtung sowie ein Kraftfahrzeug mit einer solchen Heizvorrichtung und mit einer Brennkraftmaschine
DE102022100177A1 (de) Motorsystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111019

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20120802

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180223

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: AT

Ref legal event code: REF

Ref document number: 1030016

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010015266

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180815

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181116

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181115

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181115

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010015266

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010015266

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190319

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190319

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190319

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181215

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1030016

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815