EP2374937A2 - Baumaschine zum Bearbeiten einer Fahrbahnoberfläche - Google Patents

Baumaschine zum Bearbeiten einer Fahrbahnoberfläche Download PDF

Info

Publication number
EP2374937A2
EP2374937A2 EP11002999A EP11002999A EP2374937A2 EP 2374937 A2 EP2374937 A2 EP 2374937A2 EP 11002999 A EP11002999 A EP 11002999A EP 11002999 A EP11002999 A EP 11002999A EP 2374937 A2 EP2374937 A2 EP 2374937A2
Authority
EP
European Patent Office
Prior art keywords
drive
housing
gear
construction machine
side plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11002999A
Other languages
English (en)
French (fr)
Other versions
EP2374937A3 (de
EP2374937B1 (de
Inventor
Peter Stein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bomag GmbH and Co OHG
Original Assignee
Bomag GmbH and Co OHG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bomag GmbH and Co OHG filed Critical Bomag GmbH and Co OHG
Publication of EP2374937A2 publication Critical patent/EP2374937A2/de
Publication of EP2374937A3 publication Critical patent/EP2374937A3/de
Application granted granted Critical
Publication of EP2374937B1 publication Critical patent/EP2374937B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
    • E01C23/06Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road
    • E01C23/08Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road for roughening or patterning; for removing the surface down to a predetermined depth high spots or material bonded to the surface, e.g. markings; for maintaining earth roads, clay courts or like surfaces by means of surface working tools, e.g. scarifiers, levelling blades
    • E01C23/085Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road for roughening or patterning; for removing the surface down to a predetermined depth high spots or material bonded to the surface, e.g. markings; for maintaining earth roads, clay courts or like surfaces by means of surface working tools, e.g. scarifiers, levelling blades using power-driven tools, e.g. vibratory tools
    • E01C23/088Rotary tools, e.g. milling drums

Definitions

  • the invention relates to a construction machine for processing a road surface, in particular a road milling machine, with a height-adjustable side plate.
  • a generic construction machine for processing a road surface such as a road milling machine or cold planer, usually has a machine frame with at least one front wheel and two rear wheels, which can be used as an alternative to the wheels and caterpillar nacelles. At least the rear wheels are also often designed height adjustable via lifting columns, so that, for example, the construction machine can be lowered towards the road surface.
  • the construction machine further comprises a substantially horizontally rotatably mounted on the machine frame milling drum (or alternatively with respect to the machine frame höhnver ause milling drum, if height adjustment of the rear wheels is not provided), wherein the axis of rotation of the milling drum transversely to the longitudinal extent of the machine frame or transversely to the working direction of the construction machine lies in the horizontal plane.
  • a drive device with a drive and a drive gear
  • the drive gear is formed in such a way that it transmits a driving force generated by the drive to the milling drum.
  • the drive gear is at least partially disposed in a housing to protect it, for example, from penetrating dirt, etc.
  • the construction machine further comprises a milling roller box open towards the road surface.
  • the milling drum is arranged, wherein the Fräswalzenkasten surrounds the milling drum at least partially to the sides, forwards and upwards.
  • the Fräswalzenkasten essentially prevents milled soil material is uncontrolled distributed in the working mode of the construction machine to the construction machine, but rather controlled in the Fräswalzenkasten, for example, for subsequent removal (for example, via a connected to the Fräswalzenkasten conveyor belt) collected becomes.
  • the drive is arranged outside the milling drum box.
  • the drive gear is designed in such a way that it is guided through a side wall of the milling drum box facing an end face of the milling drum to the milling drum.
  • the drive gear can alone supply the drive force required for driving the milling drum or, alternatively, also perceive further drive functions, for example for locomotion of the construction machine.
  • the construction machine further comprises a relative to the Fräswalzenkasten height-adjustable side plate, which is arranged on the side of the milling drum, on which the drive gear is guided through the side wall of the Fräswalzenkastens.
  • This page is also referred to below as the drive side of the Fräswalzenkastens.
  • the side shield has the task of sealing the milling drum box to the side in dependence on the milling depth.
  • the sealing of the Fräswalzenkastens with the height-adjustable side plate is so far particularly important to minimize the amount of loose milling material that remains after the milling process on the milling track, or to allow as complete as possible removal of milling material from the Fräswalzenkasten out.
  • a height-adjustable side plate is usually arranged on the opposite side of the Fräswalzenkasten a drive side, which seals the Fräswalzeninnenraum opposite side to the drive side.
  • side plate arranged on the drive side of the Fräswalzenkasten side plate, unless expressly referred to the opposite side plate reference. Both side shields can be individually height adjustable or synchronously performed.
  • a first approach to this problem is to build the side shield on the drive side around the over the side wall of the drive side of the Fräswalzenkastens projecting parts of the drive gear or the drive.
  • the lying on the drive side side plate is provided for example with a notch in the vertical direction.
  • a disadvantage of this solution is that no satisfactory sealing results can be obtained especially in the down-driven state of the side shield, since the side plate can be formed only very narrow due to the notch in its vertical height and therefore milled material exits through the side plate from the Fräswalzenraum out. This disadvantage occurs more and more, the deeper the milling drum dips into the milling bed or the deeper the side shield is moved down.
  • the side plate can be formed horizontally bulged.
  • the object of the invention to provide a construction machine for processing a road surface, in particular road milling, which allows a particularly effective sealing of the drive side of a Fräswalzenkastens with a side plate over a large adjustment range, the side plate at the same time as robust as possible construction should have.
  • a core idea of the invention is that a vertically stepped trained drive gear, the lower part is arranged substantially in the Fräswalzenkasten and the upper part substantially outside of the Fräswalzenkastens is equipped with a 9.schieldinvölbung in the housing of the drive gear, in which the side plate in the vertical direction coming from below is movable into it. At the same time the side plate is formed unchangeable in its surface, so that the present solution is inexpensive to manufacture and particularly reliable in practical use.
  • the drive gear is thus inventively a vertical height offset, specifically sloping down from the drive side of the drive gear to the output side of the drive gear, provided.
  • the drive shaft connected to the drive is in other words above the output shaft of the drive gear connected to the milling drum.
  • the stepped design of the drive gear and the special positioning of the lower and the upper part relative to the Fräswalzenkasten it is possible to arrange the substantial part of protruding from the Fräswalzenkasten drive gear in the vertical direction above the axis of rotation of the milling drum, so that the required space outside the Fräswalzenkastens along the axis of rotation of the milling drum is significantly reduced or, depending on the embodiment, outside the milling drum box no space for a portion of the drive gear and / or the drive at the height of the rotation axis of the milling drum is more needed.
  • the lying outside the Fräswalzenkastens part of the drive means can thus be arranged at least substantially in the vertical direction above the axis of rotation of the milling drum.
  • the maximum travel of the side plate in the vertical direction can be significantly increased in this way.
  • the offset is made as large as possible by the gear stage or the distance between the axis of rotation of the lower and upper gear member to simultaneously form the massive surface of the side plate in the vertical direction as large as possible.
  • the side plate can also be formed unchangeable in its vertical width, ie in its distance between the upper edge and the lower edge of the side plate, over a larger area in its surface. It can thus be used a much larger and solid trained side plate, so that overall optimal sealing results over the entire vertical adjustment of the, ideally one-piece, side shield are obtained.
  • the side plate In its surface, the side plate is unchangeable, for example, if it is solid and / or in one piece. It goes without saying that even several items to be in the area unchangeable side shield can be assembled. It is essential then that the individual elements combine to form a substantially closed sealing surface and that the individual elements in the assembled state have a fixed relative position to each other, which is maintained even with a height adjustment of the side plate.
  • the drive gear in the lower part has an output axis and in the upper part to the output axis parallel and functionally coupled to the driven thing drive axle.
  • the drive gear is thus initially constructed in two parts with respect to the transmission axis.
  • the drive axle is also offset parallel to the output shaft in such a way that the drive axle lies in the vertical direction above the output shaft.
  • Essential for the invention is now first that the drive is not, as usual in the prior art, also arranged in the rotation axis of the milling drum coaxial positioning, but offset in the vertical direction upwards.
  • this also includes those embodiments in which, in addition to the vertical offset, there is also a horizontal offset or an oblique offset as a whole.
  • a parallel offset of the two axes is thus present when the longitudinal axes of the drive axle and the output shaft are offset with a vertical component parallel to each other and not crossed, at an angle, etc.
  • a parallel misalignment is also not present when the two axes coaxial lie to each other.
  • the output axis is typically coaxial with the axis of rotation of the milling drum and is ideally articulated via corresponding connection options on the milling drum.
  • the drive axle is, in particular indirectly, functionally connected to the drive, specifically the motor shaft of an engine.
  • the housing of the drive gear is accordingly also stepped in the vertical direction and surrounds or shields the drive axle and the output shaft, in particular in the region of the coupling of the drive axle to the output shaft, to the outside.
  • the case can fulfill several functions. On the one hand, it is of course initially used for mechanical protection of the drive and the output shaft and in particular their coupling region.
  • the housing may be partially integrated into the side wall on the drive side of the milling drum box so that it performs a sealing function to the outside together with the side wall and the side plate. This succeeds particularly effective when the housing is guided at the level of a housing stage through the side wall.
  • the housing stage is usually in the area in which the offset drive shaft is coupled to the lower vertical output shaft in the vertical direction.
  • the coupling area is thus substantially in the plane of the side wall.
  • This has the advantage that the output axis, if at all, minimally outwardly projecting and the drive axis minimally in the Fräswalzeninnenraum. It is thus possible to use the milling drum interior particularly efficiently and, on the other hand, to achieve a particularly tight seal with the height-adjustable side shield over a large adjustment range.
  • the housing can assume a fastening function and be used for positioning the drive gear, in particular with respect to the milling drum box and the milling drum.
  • an arrangement of the drive has proven in the manner that its drive shaft or motor shaft is arranged in the machine longitudinal direction.
  • the engine is thus not transverse to the direction of travel of the construction machine, but with the axis of rotation of the motor shaft in the direction of travel.
  • a suitable connecting gear in particular a bevel gear, especially a single or multi-stage bevel gear available.
  • To the upper gear part close to the drive thus further gear elements.
  • This makes it possible, on the one hand, to transmit the drive power of the drive arranged with its motor shaft in the direction of travel to the milling drum with its rotational axis lying transversely to the direction of travel.
  • a significant axial offset of this gear train can be achieved in front of the milling drum between the upper and lower gear part, whereby ultimately a comparatively large and closed in the surface side plate can be used.
  • the direct power transmission between the angle gear and the motor shaft or drive shaft of the drive can be done by a direct functional coupling.
  • a V-belt transmission for transmitting power from the motor shaft to the angle gear is preferably present.
  • the following gear constellation is thus present from the engine to the milling drum: Motor - motor shaft - clutch - V-belt transmission - bevel gear - drive gear with axial offset between the upper and lower gear part - milling drum.
  • the concrete drive of the milling drum or the power transmission from the lower gear part to the milling drum can be done via other transmission elements, such as a planetary gear.
  • the side plate is arranged on the milling drum box in such a way that it can be moved in the vertical direction over the front end of the output shaft facing away from the milling drum, preferably guided directly on the milling drum box.
  • the side plate is thus performed without sealing directly on the Fräswalzenkasten. Due to the possibility of moving the side plate in the vertical direction beyond the front end of the output shaft facing away from the milling drum, the side plate will only be much later of the output shaft or of the output axis surrounding and over the Fräswalzenkasten outwardly projecting part of the housing on the continuation of his Lifting movement prevented.
  • the side plate can cut without hindrance the longitudinal axis of the output shaft and be moved into the above-lying Soschieldinwölbung into it.
  • Essential is thus a stepped in relation to the vertical direction training of the drive gear, which is achieved by a height offset of the drive axle relative to the output shaft.
  • This allows the side plate while maintaining the maximum vertical travel to a significantly greater extent in its vertical width massively executed, which has a reliable sealing of the Fräswalzenkastens on the drive side of the Fräswalzenkastens over a much wider height adjustment of the side shield result.
  • This is made possible by the integrated in the drive gear stage between the drive axle and the output shaft or the resulting stage in the housing of the drive gear.
  • the grading is optimally designed in such a way that the side plate can be displaced vertically in the vertical direction on the output axis or in the longitudinal axis of the output axis cutting manner.
  • the soschildeinwölbung in the housing of the drive gear in which the side plate is coming from below slidable, so that the side plate in its Vertellieri is blocked much later or only in a significantly higher position in the vertical direction from the housing of the drive gear. This also allows a total of a vertically larger formation of the side plate and a much improved handling of the side plate in working mode.
  • the drive of the construction machine can be concrete, for example, an internal combustion engine.
  • This can drive a corresponding hydraulic pump, which in turn are used to drive the drive axle and ultimately the milling drum.
  • a generator may be provided to generate power for driving electric motors for the milling drum.
  • the internal combustion engine is used directly for driving the milling drum.
  • a power train based thereon with the elements engine - clutch - V-belt unit - Angular gear - upper and lower drive gear - milling in just this order has already been given above.
  • upper drive gear and “lower drive gear” specifically refer to the part of the gear stage and are part of a total transmission, which includes, for example, depending on the embodiment, the elements bevel gear, V-belt transmission, etc., with ,
  • the drive can also serve for driving the at least one front wheel and / or the rear wheels and / or the pivoting in and out of a pivotable rear wheel at the same time.
  • the drive axle and the output shaft are functionally coupled together in a coupling region.
  • This means that a driving force generated by the drive is transmitted via the drive axle to the output shaft (and thus ultimately to the milling drum).
  • the coupling region is preferably comparatively narrow in its width in the direction of the longitudinal axis of the drive or driven axis.
  • a corresponding toothed gear is present, wherein the one arranged on the drive shaft, preferably at the front end facing the milling drum gear arranged in a arranged on the output shaft gear, which preferably on the milling drum remote from the front end of the Output shaft is positioned, engages.
  • Both gears lie in this embodiment in a vertical plane and have a comparatively small horizontal width or a relatively narrow coupling region.
  • a functional coupling may also be located in a chain drive or a toothed belt transmission, which are also preferably arranged with their respective connecting elements to the drive axle and the output shaft on the front side on the respective axes.
  • the drive axis and the output axis are furthermore preferably arranged in such a way that they overlap in the vertical direction in the region of their mutually facing front ends. This is the case, for example, when a gearwheel is arranged on the output shaft and on the drive axle, with the two gearwheels meshing with one another. This can be obtained in terms of the width in the direction of the longitudinal axes of the drive and the output axis particularly narrow coupling regions, which also allow efficient power transmission.
  • the drive axle is located in the vertical direction above the output shaft.
  • the longitudinal axis of the drive shaft in a vertical plane which is orthogonal to the drive and output axis, with respect to their offset relative to the longitudinal axis of the output shaft has at least one vertical component.
  • skew offset is also possible with respect to this plane, where a vertical offset component is combined with a horizontal or lateral offset component. It is ideal, however, if the drive and the output shaft are arranged in this vertical plane lying on a vertical line or one above the other.
  • the maximum height offset can be achieved in the drive gear, which allows a particularly high variability in terms of possible cutting depths.
  • the housing has the Sschieldinwölbung, in which the side plate during startup at the Fräswalzenkasten is movable into.
  • the housing of the drive gear is thus curved inward or vaulted inwards.
  • the soschildein vaulting is thus characterized essentially in that it extends in the vertical direction upwards or at least partially not vaulted or in the radial direction (with respect to the drive axis and the output axis) projecting portions of the housing adjacent and adjusts the side plate at startup in it can be.
  • the The isschieldinwölbung is thus directed towards the housing interior recess in the housing of the drive gear.
  • the housing is also formed closed in the region of the side plate concavity, so that the housing has a closed outer surface over the side plate concavity. Dirt can thus not penetrate in the region of the Soschildeinwölbung in the housing interior.
  • the soschieldinwölbung can therefore be obtained for example by bending the lying in the region of the soschildeinvollopung housing parts.
  • the side shield concavity itself may also be a separate part of the housing, which in the manufacturing process is connected to the parts of the housing adjacent to the side shield concavity.
  • the housing is formed in one piece in the region of the soschildeinwölbung.
  • the The isschieldinwölbung is dimensioned so that the side plate can be at least partially, in particular with its upper edge region lying in the vertical direction, moved into the Soschildeinwölbung inside.
  • the Soschieldin vaulting can thus accommodate part of the side plate.
  • the housing and the side shield protruding into the side shield concavity thus overlap in the direction of the longitudinal axis of the output shaft in this case.
  • the overlap is at least two-sided and comprises the area of the housing located in front of and behind the side shield in the longitudinal direction of the output shaft.
  • the housing thus engages with its soschildeinwölbung at least the upper outer edge of the side plate at least two sides, in particular in the longitudinal direction of the output shaft.
  • the task of the soschildeinwölbung is that the side plate can be moved so to speak "into the housing" or on the running parallel to the drive axis lower part of the housing, without the need for an opening in the housing is required.
  • the side plate in the vertical direction or in the direction of over the side plate from the Fräswalzenkasten passing out housing of the drive gear can be adjusted to a higher maximum value and at the same time the protective function of the housing for the drive gear is maintained, as it also in the soschildeinwölbung is formed closed.
  • the side plate can thus be made massive, much higher and uninterrupted, so that with this arrangement in the end result optimal sealing results over the entire range of different cutting depths can be achieved.
  • the two sides of the soschildeinwölbung thus determined as follows: In the direction of the output axis or to the side of the lower part of the Soschildeinvölbung either adjacent to a radially further protruding and often at least partially parallel or linear to the longitudinal axis extending portion of the housing and preferably directly to the caused by the gear stage in the housing at; on the other side, the soschieldinwölbung adjacent to a in the radial direction to the longitudinal axis of the drive axis projecting and often at least partially parallel or linear to the longitudinal axis extending housing portion.
  • the side shield concavity directly adjoins the lower part of the housing or the part of the housing lying further down in the vertical direction and surrounding the output axis, the side shield can be passed very close, ideally directly at the lower part of the housing with a vertical adjustment movement or The side plate can be guided over the area of the gear unit of the drive gear sheathed by the housing.
  • the basic design of this part of the construction machine as can be moved by the possible direct guidance of the side plate in the vertical direction at the bottom of the housing, the side plate, for example, seal-free, large area and just on Fräswalzenkasten along.
  • All alternative embodiments of the Soschildeinwölbung invention is common that they relate to a housing interior vaulted area, which is formed in such a way that the side plate can be retracted during startup in the Soschildein vaults.
  • the actual design of the Soschildein vaults may vary.
  • the side shield concavity extends only vertically in the interior of the housing from below, so that the side shield with its upper region moves into the side shield concavity during startup.
  • the side shield concavity it is also possible for the side shield concavity to be formed in a manner revolving around the housing, for example in the manner of a constriction.
  • the side shield buckle thus extends in this embodiment with respect to the axial direction of the drive and the output axis around the housing.
  • the soschildeinvolvement for example, be arranged annularly on the housing. Such a design of the Soschildeinvolvement may be particularly for reasons of stability advantage.
  • the longitudinal axis of this ring is then parallel or coaxial with the longitudinal axis of the drive axle and / or output shaft.
  • the profile of the soschildein vaults may also vary.
  • a profile is the profile of the side shield concavity in a section through the side plate concavity, wherein the sectional plane lies in the plane which is spanned by the vertical axis and the longitudinal axis of the drive axle or the output shaft.
  • Essential for the profile of the Soschildeinwölbung is first that it is suitable for receiving the Soschildeinvolvement facing upper edge of the side plate.
  • the profile of the Soschildeinvolvement can thus be formed, for example, rounded.
  • a rounded profile is comparatively easy to manufacture and at the same time very stable.
  • the profile of the side shield concavity may be adapted to the side shield protruding into the side shield concavity or to its profile. This can be achieved in the area of the 9.schieldin vaulting a tight conclusion and, to a certain extent, a side shield guide.
  • the profile of the side shield bulge may also be formed at right angles.
  • the drive axle is formed Hergliedrig with at least two coupled Achsgliedern.
  • the axle member of the drive axle which is functionally coupled to the output shaft, is offset in parallel in the vertical direction in the vertical direction with respect to the output shaft.
  • at least one further force transmission member then joins the drive axle towards the drive. It is ideal if the at least two axle links of the drive axle are arranged offset in parallel to each other in the vertical direction with respect to their longitudinal axes, for example in the form of a spur gear, so that the multiple steps are obtained in the drive gear and achievable with the stepped drive gear height difference between the coupling the milling drum and the coupling to the drive can be increased.
  • Such a design makes it possible, for example, in the manner described above to form an angle of the part of the gear unit adjoining the upper gear part to the drive motor, and in this way to obtain even more favorable spatial arrangement conditions.
  • the front end of the drive axle facing the milling drum is guided from the outside through the side wall of the milling drum case.
  • the drive axle ends with its end facing the milling drum towards the end thus at least flush with the inside of the Fräswalzenkastens or even exists in a limited extent in the interior of the Fräswalzenkastens.
  • the output axis closes outwards to a maximum extent with the outer surface of the milling drum box.
  • the side shield In addition to the space additionally created in the vertical direction with the side shield concavity, it is possible to provide the side shield with a notch in the upper edge region in the vertical direction, which is ideally also adapted to the contour of the side shield concavity of the housing. By means of the notch can thus be obtained a cutout in the edge region of the side plate, can be taken with the in the adjustment of the side plate projecting portions of the housing during startup of the side plate. Overall, the side plate can be adjusted in this embodiment relative to the housing even further in the vertical direction upwards.
  • the side plate is additionally preferably solid at the same time and free of openings, at least over a large vertical area. This is particularly well possible in the present case due to the Soschildein vaults.
  • An essential element of the cold milling machine 1 is a machine frame 2, on which a front wheel pair 3 (only the front right front wheel is in Fig. 1 visible) and a rear wheel pair 4 (only the right rear wheel is in Fig. 1 visible) are arranged.
  • the rear wheels 4 are each articulated via a lifting column on the machine frame and vertically adjustable along the arrow direction c. This allows a lowering of the machine in the rear area, which can be used for example to regulate the milling depth.
  • the cold planer 1 which is located on the side of the machine frame 3 rear wheel 4, on which the in Fig.
  • an operator workstation 5 is furthermore arranged, comprising an operator console, not further specified, a seat and further components for guiding the machine.
  • an internal combustion engine 8 is provided, which supplies a corresponding hydraulic system with drive energy
  • a milling drum (in Fig. 1 not visible) arranged, which is at least partially surrounded by a Fräswalzenkasten 6 to the sides, forwards and upwards, of the in Fig. 1 in particular the outside or on the null side lying side wall 7 is visible.
  • a side plate 9 On the side wall 7 of the Fräswalzenkastens 6 also a side plate 9 is arranged, which is vertically adjustable in the vertical direction.
  • a scraper 10 arranged close to the ground is present, which delimits an outlet opening 11 towards the bottom, via which milling material can be transported out of the milling drum box 6.
  • a suitable Conveyor be arranged on the machine frame 2, which is not shown in the figures.
  • FIG. 1 On the opposite side of the milling drum box is another side plate (in Fig. 1 not visible) present, which on the drive side, ie on the side on which the drive gear is led out of the Fräswalzenkasten 6, is arranged.
  • This side plate is also adjustable in height along the arrow b and is formed in the Figures 2 and 3 explained in more detail.
  • the Figures 2 and 3 are perspective oblique views from the viewing direction d in Fig. 1 on the back of the machine with the Fräswalzenkasten 6.
  • the side plate located on the zero side 9 and a part of the Fräswalzenkasten 6 to the zero side limiting side wall and the scraper 10 are in the Figures 2 and 3 not shown for clarity.
  • the milling drum 13 is mounted with its horizontal axis transversely to the working direction a in the Fräswalzenkasten 6 and has on its outer surface a number of chisel tools for surface treatment (in the Figures 2 and 3 the bit holders 14 are shown without the corresponding bit inserts).
  • the milling drum 13 rotates in the direction of arrow d about the axis of rotation 28.
  • Die Figures 2 and 3 Spatially separated from the milling drum 6 and the "Fräswalzenkompartiment" a "drive compartment" is provided in which, inter alia, parts of a drive gear for connection to the drive are housed. The two compartments are arranged side by side along the axis of rotation 28 of the milling drum 13.
  • a side wall 15 laterally to the adjacent drive compartment.
  • side plate 16 On the side wall 15 which is also adjustable in the direction of arrow b side plate 16 is arranged, which is in Fig. 2 in his maximum superscript and in Fig. 3 is in its maximum lowered position.
  • two hydraulically driven cylinder-piston units 17 are provided, which are also used to determine the side plate 16 in its respective position by means of a non-illustrated suitable valve control.
  • Fig. 3 illustrates that the side plate 16 with its vertically upwardly facing portion in a soschieldbulbung 35 of the housing 24 of the drive gear is movable into.
  • the soschildeinwölbung 35 is formed by the housing 24 of the drive gear and allows the side plate 16 immersed with its upper edge quasi in the housing 24 in the raised state.
  • the side plate 16 can be formed wider in the vertical direction, which ultimately better clearance results can be obtained in the interior of the Fräswalzenkastens.
  • the construction of the side shield concavity 35 will be described in more detail below.
  • a slot guide 18 in the side wall 15 of the Fräswalzenkastens 6 is present, in which a perpendicular to the interior of the Fräswalzenkastens 6 projecting collecting sheet is guided, which is fixedly connected to the side plate 16.
  • a Umgriffelement 19 is disposed on the side wall 15, which surrounds the rear vertical longitudinal edge of the side plate 16 partially and in this way forms a vertical guide for the side plate 16.
  • Umgriffelement present which is the side plate 16 is arranged on the opposite side and the front vertical longitudinal edge of the side plate 16 engages, so that the side plate 16 is guided at both vertical longitudinal edges in each case by a Umgriffelement in the vertical direction.
  • the Umgriffelement 19 also acts as Verstellbegrenzung in the form of a stop, against the present on the side plate 16 projecting stop lugs at maximum increase (the lower stop lug 22 beats from below against the Umgriffelement 19 according to Fig. 2 on) or maximum lowering (the upper stop lug 21 strikes from above against the Umgriffelement according to Fig. 3 on) and thus prevents the side plate from further shifting beyond these two maximum positions.
  • the milling drum 13 is set in rotation in the direction of arrow d about its longitudinal axis 28.
  • the required drive power is provided by the drive 8, an internal combustion engine, not shown.
  • a drive gear 23 is provided for transmitting the driving force, comprising a housing 24, a drive axle 25 and an output shaft 26.
  • To initiate the driving force in the drive gear is followed by a clutch, a V-belt unit and an angle gear to the engine (not visible, closer to Fig. 6 removable).
  • the drive gear 23 is thus part of a total transmission, which is arranged between the drive element and the milling rotor.
  • the drive axle 25 is arranged higher in relation to the output shaft 26 or offset upwards, as is the case in particular in FIG Fig. 4 is further clarified.
  • Fig. 4 illustrates first that the housing 24 has a vertically upper part B and a vertically lower part A, which partially overlap in their mutually facing area.
  • the upper part B is substantially the drive shaft 25 and the lower part A substantially the output shaft 26 housed in the housing 24. Due to the height offset of the lower part A relative to the upper part B, the vertically stepped housing 24 is obtained.
  • the longitudinal axis 27 of the drive axle 25 is arranged in the housing 24 by the offset e in a vertical direction over the longitudinal axis 28 of the output shaft 26.
  • the longitudinal axis 28 of the output shaft 26 is also coaxial with the axis of rotation of the milling drum 13 and is connected to this with its end face 29 via unspecified connection elements.
  • the output shaft 26 is functionally coupled to the drive shaft 25 located higher in the vertical direction.
  • the region in which the functional coupling takes place is referred to as coupling region 30.
  • This coupling region 30 is according to Fig. 4 approximately in the center of the housing 24 with respect to the longitudinal axes 27 and 28.
  • the horizontal width of the coupling region along the longitudinal axes 27 and 28 is in Fig. 4 indicated with the curly bracket.
  • a gear is arranged on the drive shaft 25, which engages for driving force transmission in a arranged on the output shaft 26 gear, as in Fig. 5 is illustrated in more detail.
  • the drive shaft 25 and the output shaft 26 thus overlap in the vertical direction in the region of their mutually facing front ends and form a spur gear.
  • the drive axle 25 is connected via further elements which are not shown in detail, and which may in particular also comprise a further gear step angularly offset by 90 ° in the horizontal plane, as in FIG Fig. 6 indicated, finally connected to the drive.
  • the output shaft is concretely coupled via a not-shown planetary gear functionally to the cylinder of the milling drum.
  • the drive gear 23 with the housing 24 thus has a vertically stepped construction with a housing stage 33, in which the area surrounding the drive axis 25 is formed higher in the vertical direction than the area surrounding the output axis.
  • Fig. 5 gives the inventive design of the housing 24 with the Soschildeinvolvement and its relative arrangement to the side plate in a schematic enlarged detail again.
  • the Fig. 5 shown cut-out portion of the housing 24 is in Fig. 4 indicated by the bracket I.
  • Fig. 4 is in Fig. 5
  • the Fräswalzenkasten 15 and the side plate 16 indicated to further illustrate the interaction of these elements with the Soschildein vaults 35.
  • the drive gear 23 is passed through the side wall 15 in such a way that the coupling portion 30 is located substantially in the plane of the side wall 15 and within the area overlapped by the milling rotor, as with respect to the side wall 15 in FIG Fig. 4 is indicated by the dashed line.
  • the desired height offset of the drive shaft 25 relative to the output shaft 26 thus takes place substantially directly in the region of the side wall 16 of the milling drum 6, or, if the gear stage is inside the milling rotor, in the region on the side wall 16.
  • the dimensioning of the isschieldinwölbung 35 may vary in terms of vertical height VH and axial width AB (width in the direction or parallel to the longitudinal axis of the drive shaft 25 and the output shaft 26). In the present embodiment, its width AB is substantially greater than the thickness D of the side plate 16.
  • the height HV of the Soschildeinwölbung is structurally limited in the vertical direction upwards by the position of the drive shaft 25.
  • the height of the housing stage is determined by the maximum extent of the housing 24 in the radial direction to the drive axle 25 and the output shaft 24 in the vertical direction downwards and is in Fig. 5 marked by GS.
  • the side shield concavity 35 further has a rounded profile in the vertically upper direction.
  • the isschieldinvolbung is further formed to the lower part B of the housing 24 substantially from the front side wall of the housing 24 of the lower part B, which terminates almost flush with the outer side wall 15 of the Fräswalzenkastens 6.
  • the side shield vault in the FIGS. 2 to 4 is formed in the form of a constriction, which surrounds the housing 24 annular and is traversed by the drive shaft 25.
  • the housing has in the region of the concavity 25 thus almost the shape of a single-walled hyperboloid, wherein the two sides are not specifically formed concretely.
  • Fig. 5 is the concavity 35, however, not the drive shaft 25 circumferentially formed, but only in the lower vertical direction of the housing in such a way that the side plate 16 in this Soschildeinwölbung 35 is movable.
  • the substantially cylinder-like housing 24 in this area thus has a wedge-like cutout coming from below.
  • the transition region of the soschildeinvölbung 35 is not rounded in this embodiment in the longitudinal direction of the drive axle 25 further, as in the FIGS. 2 to 4 but almost at right angles.
  • a gear transmission comprises a toothed wheel 36 arranged on the drive axle 25 and a toothed wheel 37 arranged on the output shaft 24 and arranged on the mutually facing front ends of the drive axle 25 and the output axle 24 and in a common direction vertical transmission plane lying in each other to engage in power transmission.
  • the housing 24 is inserted together with the drive gear in the manner in the side wall 15 of the Fräswalzenkastens 6, that the coupling portion 30 between the drive shaft 25 and the output shaft 24 is located substantially in the interior of the Fräswalzenkastens 6. This allows the guide of the side plate 16 directly to the side wall 15th
  • a notch 32 with a semicircular contour is also present in the side plate 16.
  • the contour of the notch 32 is adapted to the abutment region of the side plate 16 on the housing 24.
  • the side plate 16 can be additionally raised by the vertical offset f, so that the Alterverstell Scheme the side plate 16 is further increased in the vertical direction.
  • Fig. 6 finally clarifies the structure of the entire gear train from the drive motor 50 to the milling drum 13th
  • Fig. 6 is a plan view of the construction machine 1.
  • the drive motor 50 drives a motor shaft 51, which lies with its longitudinal axis or its axis of rotation in the working direction a of the construction machine 1.
  • the motor shaft 51 drives a V-belt pulley 52, which together with a V-belt 53 and another V-belt pulley 54 is part of a V-belt transmission, which transmits the drive power of the drive motor 50 to a subsequent to the V-belt transmission bevel gear.
  • the angular gear comprises two bevel gears 55 and 56, over which ultimately a deflection of the lying with its axis of rotation in the longitudinal direction or working direction a rotational movement in a rotational movement with transverse to the direction of rotation axis.
  • the deflection is thus concretely 90 °.
  • the upper gear part 25 connects and the milling drum 13 down the gear train is in the in Fig. 5 as indicated.
  • the height offset between upper 25 and lower 26 gear part is off Fig. 6 not removable, since this is a top view.
  • the lower gear part 26 is shown in dashed lines and the upper gear part 25 in a solid line.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • General Details Of Gearings (AREA)
  • Road Repair (AREA)

Abstract

Baumaschine zum Bearbeiten einer Fahrbahnoberfläche, insbesondere Straßenfräse, umfassend eine horizontal rotierbare Fräswalze, eine Antriebseinrichtung mit einem Antrieb und einem Antriebsgetriebe, wobei das Antriebsgetriebe in der Weise ausgebildet ist, dass es eine Antriebskraft vom Antrieb auf die Fräswalze überträgt, einen Fräswalzenkasten wobei der Antrieb außerhalb des Fräswalzenkastens angeordnet ist und das Antriebsgetriebe durch eine der Stirnseite der Fräswalze zugewandte Seitenwand des Fräswalzenkastens zur Fräswalze geführt ist und ein relativ zum Fräswalzenkasten höhenverstellbares Seitenschild, das auf der Seite des Fräswalzenkastens angeordnet ist, auf der das Antriebsgetriebe durch die Seitenwand des Fräswalzenkastens hindurch geführt ist.

Description

  • Die Erfindung betrifft eine Baumaschine zum Bearbeiten einer Fahrbahnoberfläche, insbesondere eine Straßenfräse, mit einem höhenverstellbaren Seitenschild.
  • Eine gattungsgemäße Baumaschine zum Bearbeiten einer Fahrbahnoberfläche, beispielsweise eine Straßenfräse bzw. Kaltfräse, weist üblicherweise einen Maschinenrahmen mit wenigstens einem Vorderrad und zwei Hinterrädern auf, wobei alternativ zu den Rädern auch Raupengondeln verwendet werden können. Zumindest die Hinterräder sind ferner häufig über Hubsäulen höhenverstellbar ausgebildet, so dass dadurch beispielsweise die Baumaschine zur Fahrbahnoberfläche hin abgesenkt werden kann. Die Baumaschine umfasst weiter eine im Wesentlichen horizontal rotierbar am Maschinenrahmen gelagerte Fräswalze (oder alternativ eine gegenüber dem Maschinenrahmen höhnverstellbare Fräswalze, wenn eine Höhenverstellung der Hinterräder nicht vorgesehen ist), wobei die Rotationsachse der Fräswalze quer zur Längserstreckung des Maschinenrahmens bzw. quer zur Arbeitsrichtung der Baumaschine in der Horizontalebene liegt. Darüber hinaus ist eine Antriebseinrichtung mit einem Antrieb und einem Antriebsgetriebe vorhanden, wobei das Antriebsgetriebe in der Weise ausgebildet ist, dass es eine vom Antrieb erzeugte Antriebskraft auf die Fräswalze überträgt. Das Antriebsgetriebe ist zumindest teilweise in einem Gehäuse angeordnet, um es beispielsweise vor eindringendem Schmutz etc. zu schützen. Die Baumaschine umfasst ferner einen zur Fahrbahnoberfläche hin offen ausgebildeten Fräswalzenkasten. In dem Fräswalzenkasten ist die Fräswalze angeordnet, wobei der Fräswalzenkasten die Fräswalze zumindest teilweise zu den Seiten, nach vorne und nach oben hin umgibt. Der Fräswalzenkasten verhindert im Wesentlichen, dass abgefrästes Bodengut im Arbeitsbetrieb der Baumaschine unkontrolliert um die Baumaschine herum verteilt wird, sondern vielmehr kontrolliert im Fräswalzenkasten, beispielsweise zum anschließenden Abtransport (beispielsweise über ein an den Fräswalzenkasten angeschlossenes Förderband), gesammelt wird. Der Antrieb ist außerhalb des Fräswalzenkastens angeordnet. Um die vom Antrieb erzeugte Antriebskraft auf die Fräswalze übertragen zu können, ist das Antriebsgetriebe in der Weise ausgebildet, dass es durch eine einer Stirnseite der Fräswalze zugewandte Seitenwand des Fräswalzenkastens hindurch zur Fräswalze geführt ist. Über das Antriebsgetriebe ist somit eine funktionale Verbindung zwischen dem außerhalb des Fräswalzenkastens liegenden Antrieb und der innerhalb des Fräswalzenkastens liegenden Fräswalze hergestellt. Der Antrieb kann ferner allein die für den Antrieb der Fräswalze benötigte Antriebskraft liefern oder alternativ auch zusätzlich weitere Antriebsfunktionen, beispielsweise zur Fortbewegung der Baumaschine, wahrnehmen.
  • Die Baumaschine umfasst ferner ein relativ zum Fräswalzenkasten höhenverstellbares Seitenschild, das auf der Seite der Fräswalze angeordnet ist, auf der das Antriebsgetriebe durch die Seitenwand des Fräswalzenkastens hindurch geführt ist. Diese Seite wird nachfolgend auch als Antriebsseite des Fräswalzenkastens bezeichnet. Das Seitenschild hat die Aufgabe, den Fräswalzenkasten zur Seite hin in Abhängigkeit von der Frästiefe abzudichten. Das Abdichten des Fräswalzenkastens mit dem höhenverstellbaren Seitenschild ist insofern besonders wichtig, um die Menge losen Fräsmaterials, das nach dem Fräsvorgang auf der Frässpur liegen bleibt, zu minimieren bzw. einen möglichst vollständigen Abtransport von Fräsmaterial aus dem Fräswalzenkasten heraus zu ermöglichen. Das nach dem Fräsprozess auf der Frässpur verbleibende Fräsmaterial muss ansonsten mühsam in einem zusätzlichen Arbeitsprozess durch Handarbeit gesammelt und von der Frässpur entfernt werden, was zeit- und personalintensiv ist. Selbstverständlich ist üblicherweise auch auf der der Antriebsseite gegenüberliegenden Seite des Fräswalzenkastens ein höhenverstellbares Seitenschild angeordnet, das den Fräswalzeninnenraum zur Antriebsseite gegenüberliegenden Seite hin abdichtet. Nachfolgend wird jedoch mit "Seitenschild" das auf der Antriebsseite des Fräswalzenkasten angeordnete Seitenschild bezeichnet, sofern nicht ausdrücklich auf das gegenüberliegende Seitenschild Bezug genommen wird. Beide Seitenschilde können einzeln höhenverstellbar ausgebildet sein oder synchron geführt sein.
  • Auf der Antriebsseite außerhalb des Fräswalzenkastens ist üblicherweise ein erhöhter Bauraum für den Antrieb und/oder Teile des Antriebsgetriebes der Antriebseinrichtung erforderlich. Die Hindurchführung des Antriebsgetriebes durch die Seitenwand des Fräswalzenkastens führt zudem dazu, dass in der Regel auf Seiten des Antriebsgetriebes ein nur vergleichsweise schmales Seitenschild verwendet werden kann, da der maximale Verschubweg in Vertikalrichtung durch das aus dem Fräswalzenkasten herausgeführte Antriebsgetriebe begrenzt ist. Die Schaffung einer dichten Seitenschildabdichtung auf der Antriebsseite des Fräswalzenkastens ist daher aufgrund des auf Höhe der Rotationsachse der Fräswalze liegenden Antriebsstranges bzw. Antriebs problematisch. Ein erster Lösungsansatz dieses Problems liegt darin, das Seitenschild auf der Antriebsseite um die über die Seitenwand der Antriebsseite des Fräswalzenkastens vorstehenden Teile des Antriebsgetriebes bzw. des Antriebs herumzubauen. Dazu ist das auf der Antriebsseite liegende Seitenschild beispielsweise mit einer Einkerbung in Vertikalrichtung versehen. Nachteilig an dieser Lösung ist jedoch, dass insbesondere im herab gefahrenen Zustand des Seitenschildes keine befriedigenden Abdichtergebnisse erhalten werden können, da das Seitenschild aufgrund der Einkerbung in seiner vertikalen Höhe nur sehr schmal ausgebildet werden kann und daher Fräsgut durch das Seitenschild aus dem Fräswalzenraum heraus austritt. Dieser Nachteil tritt immer stärker auf, je tiefer die Fräswalze in das Fräsbett eintaucht beziehungsweise je tiefer das Seitenschild nach unten verstellt ist. Alternativ kann das Seitenschild horizontal ausgebuchtet ausgebildet sein. Bei der ausgebuchten Variante neigt das Seitenschild allerdings dazu, sich auf der Straßenoberfläche zu verhaken, was insbesondere Beschädigungen des Seitenschildes zur Folge haben kann. Eine weiteres alternatives Abdichtungsprinzip ist beispielsweise aus der DE 10 2008 020 263 A1 bekannt, die die Verwendung mehrerer gestapelt angeordneter und in Vertikalrichtung zueinander verschiebbarer Lamellen vorschlägt, die in ihrer Gesamtheit das Seitenschild bilden. Diese Konstruktion ist allerdings aufwendig, ausfallanfällig und kostenintensiv.
  • Ausgehend von dieser Situation ist es die Aufgabe der Erfindung, eine Baumaschine zum Bearbeiten einer Fahrbahnoberfläche, insbesondere Straßenfräse, anzugeben, die eine besonders effektive Abdichtung der Antriebsseite eines Fräswalzenkastens mit einem Seitenschild über einen großen Verstellbereich hinweg ermöglicht, wobei das Seitenschild gleichzeitig einen möglichst robusten Aufbau aufweisen soll.
  • Die Lösung der Aufgabe gelingt mit einer Baumaschine gemäß dem unabhängigen Anspruch. Bevorzugte Weiterbildungen sind in den abhängigen Ansprüchen angegeben.
  • Ein Kerngedanke der Erfindung liegt darin, dass ein in Vertikalrichtung gestuft ausgebildetes Antriebsgetriebe, dessen unterer Teil im Wesentlichen im Fräswalzenkasten und dessen oberer Teil im Wesentlichen außerhalb des Fräswalzenkastens angeordnet ist, mit einer Seitenschildeinwölbung im Gehäuse des Antriebsgetriebes ausgestattet wird, in die das Seitenschild in Vertikalrichtung von unten kommend hinein verfahrbar ist. Gleichzeitig ist das Seitenschild in seiner Fläche unveränderbar ausgebildet, so dass die vorliegende Lösung preiswert in der Herstellung und besonders zuverlässig im praktischen Einsatz ist.
  • Im Antriebsgetriebe ist somit erfindungsgemäß ein vertikaler Höhenversatz, konkret von der Antriebsseite des Antriebsgetriebes zur Abtriebsseite des Antriebsgetriebes hin abfallend, vorgesehen. In Vertikalrichtung liegt die mit dem Antrieb verbundene Antriebsachse mit anderen Worten oberhalb der mit der Fräswalze verbundenen Abtriebsachse des Antriebsgetriebes. Durch die gestufte Ausbildung des Antriebsgetriebes und der speziellen Positionierung des unteren und des oberen Teils im Verhältnis zum Fräswalzenkasten ist es möglich, den Wesentlichen Teil des aus dem Fräswalzenkasten herausragenden Antriebsgetriebes in Vertikalrichtung oberhalb der Rotationsachse der Fräswalze anzuordnen, so dass der benötigte Bauraum außerhalb des Fräswalzenkastens entlang der Rotationsachse der Fräswalze erheblich reduziert ist bzw., je nach Ausführungsform, außerhalb des Fräswalzenkastens gar kein Bauraum für einen Teil des Antriebsgetriebes und/oder des Antriebs auf Höhe der Rotationsachse der Fräswalze mehr benötigt wird. Der außerhalb des Fräswalzenkastens liegende Teil der Antriebseinrichtung kann somit zumindest zu wesentlichen Teilen in Vertikalrichtung oberhalb der Rotationsachse der Fräswalze angeordnet werden. Damit kann das Seitenschild die Rotationsachse der Fräswalze außerhalb des Fräswalzenkastens, beispielsweise beim Hochfahren, zumindest teilweise schneiden und wird nicht mehr oder zumindest erst wesentlich später von auf der Antriebsseite über die Seitenwand des Fräswalzenkastens auf Höhe der Rotationsachse der Fräswalze vorstehenden Teilen des Antriebsgehäuses an einer Fortsetzung der Anhebebewegung gehindert. Insgesamt kann auf diese Weise der maximale Stellweg des Seitenschildes in Vertikalrichtung erheblich vergrößert werden. Konkret wird der Versatz durch die Getriebestufe beziehungsweise der Abstand zwischen der Rotationsachse des unteren und des oberen Getriebeteils möglichst groß ausgebildet, um gleichzeitig die massive Fläche des Seitenschildes in Vertikalrichtung so groß wie möglich auszubilden. "Möglichst groß" ist dabei so zu verstehen, dass der an dieser Stelle verfügbare Bauraum zur Unterbringung der Getriebestufe an der Baumaschine möglichst maximal ausgenutzt wird. Dieser Bauraum ist in Vertikalrichtung häufig durch den Maschinenrahmen, Teile des Fahrerstandes, etc., begrenzt. Insbesondere für solche Ausführungsformen, bei denen die Getriebestufe an sich im Fräswalzeninneren liegt, ist der maximale Versatz durch den Fräswalzendurchmesser begrenzt. Das Seitenschild kann zudem auch in seiner vertikalen Breite, also in seinem Abstand zwischen der Oberkante und der Unterkante des Seitenschildes, über einen größeren Bereich in seiner Fläche unveränderbar ausgebildet werden. Es kann somit ein wesentlich größeres und massiv ausgebildetes Seitenschild verwendet werden, so dass insgesamt optimale Abdichtergebnisse über den gesamten vertikalen Verstellbereich des, idealerweise einteiligen, Seitenschildes erhalten werden. In seiner Fläche unveränderbar ist das Seitenschild beispielsweise dann, wenn es massiv und/oder einstückig ausgebildet ist. Es versteht sich von selbst, dass auch mehrere Einzelteile zum in der Fläche unveränderbaren Seitenschild zusammengesetzt werden können. Wesentlich ist dann, dass sich die einzelnen Elemente zu einer im Wesentlichen geschlossenen Abdichtfläche zusammenfügen und dass die einzelnen Elemente im montierten Zustand eine feststehende Relativposition zueinander haben, die auch bei einer Höhenverstellung des Seitenschildes beibehalten wird.
  • Eine in Vertikalrichtung gestufte Ausbildung des Antriebsgetriebes kann konkret in der Weise realisiert werden, dass das Antriebsgetriebe im unteren Teil eine Abtriebsachse und im oberen Teil eine zur Abtriebsachse parallel verlaufende und funktional an die Abtriebsache gekoppelte Antriebsachse aufweist. Das Antriebsgetriebe ist somit zunächst bezüglich der Getriebeachse zweigliedrig aufgebaut. Die Antriebsachse ist darüber hinaus gegenüber der Abtriebsachse derart parallel versetzt, dass die Antriebsachse in Vertikalrichtung oberhalb der Abtriebsachse liegt. Wesentlich für die Erfindung ist nun zunächst, dass der Antrieb nicht, wie bisher im Stand der Technik üblich, ebenfalls in zur Rotationsachse der Fräswalze koaxialer Positionierung angeordnet ist, sondern in Vertikalrichtung nach oben versetzt. Dies umfasst selbstverständlich auch solche Ausführungsformen, bei denen zusätzlich zum vertikalen Versatz auch ein horizontaler Versatz bzw. insgesamt ein schräger Versatz vorliegt. Ein paralleler Versatz der beiden Achsen liegt somit dann vor, wenn die Längsachsen der Antriebsachse und der Abtriebsachse mit einer Vertikalkomponente zueinander parallel versetzt liegen und nicht gekreuzt, in einem Winkel, etc. Ein paralleler Achsversatz liegt auch dann nicht vor, wenn die beiden Achsen koaxial zueinander liegen. Die Abtriebsachse verläuft typischerweise koaxial zur Rotationsachse der Fräswalze und ist idealerweise über entsprechende Anschlussmöglichkeiten an der Fräswalze angelenkt. Die Antriebsachse ist dagegen, insbesondere mittelbar, mit dem Antrieb, konkret der Motorwelle eines Motors, funktional verbunden. Das Gehäuse des Antriebsgetriebes ist dementsprechend ebenfalls in Vertikalrichtung gestuft ausgebildet und umgibt bzw. schirmt die Antriebsachse und die Abtriebsachse, insbesondere in dem Bereich der Ankopplung der Antriebsachse an die Abtriebsachse, nach außen hin ab. Dabei kann das Gehäuse mehrere Funktionen erfüllen. Einerseits dient es selbstverständlich zunächst zum mechanischen Schutz der Antriebs- und der Abtriebsachse und insbesondere deren Kopplungsbereich. Andererseits kann das Gehäuse teilweise jedoch derart in die Seitenwand auf der Antriebsseite des Fräswalzenkastens integriert sein, dass es zusammen mit der Seitenwand und dem Seitenschild eine Abdichtfunktion nach außen hin erfüllt. Dies gelingt dann besonders effektiv, wenn das Gehäuse auf Höhe einer Gehäusestufe durch die Seitenwand geführt ist. Die Gehäusestufe liegt üblicherweise in dem Bereich, in dem die höhenversetzte Antriebsachse an die in Vertikalrichtung tiefer liegende Abtriebsachse angekoppelt ist. Ist das Gehäuse auf Höhe dieser Getriebe- bzw. Gehäusestufe durch die Seitenwand hindurchgeführt, liegt der Kopplungsbereich somit im Wesentlichen in der Ebene der Seitenwand. Dies hat den Vorteil, dass die Abtriebsachse, wenn überhaupt, minimal nach außen und die Antriebsachse minimal in den Fräswalzeninnenraum vorsteht. Es ist somit möglich, den Fräswalzeninnenraum besonders effizient zu nutzen und andererseits eine besonders dichte Abdichtung mit dem höhenverstellbaren Seitenschild über einen großen Verstellbereich hinweg zu erreichen. Darüber hinaus kann das Gehäuse eine Befestigungsfunktion übernehmen und zur Positionierung des Antriebsgetriebes, insbesondere gegenüber dem Fräswalzenkasten und der Fräswalze, herangezogen werden.
  • Häufig ist ferner eine kompakte Bauform der Baumaschine wünschenswert. Hierzu hat sich eine Anordnung des Antriebs in der Weise bewährt, dass seine Antriebswelle beziehungsweise Motorwelle in Maschinenlängsrichtung angeordnet ist. Der Motor liegt somit nicht quer zur Fahrtrichtung der Baumaschine, sondern mit der Rotationsachse der Motorwelle in Fahrtrichtung. Zur funktionalen Anbindung des oberen Getriebeteiles an den Antrieb beziehungsweise an die Motorwelle ist ein geeignetes Verbindungsgetriebe, insbesondere ein Winkelgetriebe, speziell ein ein- oder mehrstufiges Kegelradgetriebe, vorhanden. An den oberen Getriebeteil schließen sich zum Antrieb hin somit weitere Getriebeelemente an. Damit gelingt es einerseits, die Antriebsleistung des mit seiner Motorwelle in Fahrtrichtung angeordneten Antriebs auf die Fräswalze mit ihrer quer zur Fahrtrichtung liegenden Rotationsachse zu übertragen. Gleichzeitig kann ein erheblicher Achsversatz dieses Getriebestranges vor der Fräswalze zwischen oberem und unterem Getriebeteil erreicht werden, wodurch letztendlich ein vergleichsweise großes und in der Fläche geschlossenes Seitenschild einsetzbar ist.
  • Die unmittelbare Kraftübertragung zwischen dem Winkelgetriebe und der Motorwelle beziehungsweise Antriebswelle des Antriebs kann durch eine direkte funktionale Ankopplung erfolgen. Bevorzugt ist allerdings ein Keilriemengetriebe zur Kraftübertragung von der Motorwelle auf das Winkelgetriebe vorhanden. Bei dieser Ausführungsform liegt vom Motor zur Fräswalze somit folgende Getriebekonstellation vor: Motor - Motorwelle - Kupplung - Keilriemengetriebe - Winkelgetriebe - Antriebsgetriebe mit Achsversatz zwischen oberem und unterem Getriebeteil - Fräswalze. Der konkrete Antrieb der Fräswalze beziehungsweise die Kraftübertragung vom unteren Getriebeteil auf die Fräswalze kann über weitere Getriebeelemente, wie beispielsweise ein Planetengetriebe, erfolgen.
  • Idealerweise ist das Seitenschild in der Weise am Fräswalzenkasten angeordnet, dass es in Vertikalrichtung über das der Fräswalze abgewandte stirnseitige Ende der Abtriebsachse, am Besten unmittelbar am Fräswalzenkasten geführt, verfahrbar ist. Unmittelbar am Fräskasten bedeutet dabei insbesondere, dass keine zusätzlichen Abdichtmittel zwischen dem Fräswalzenkasten und dem Seitenschild vorhanden sind, das Seitenschild somit abdichtungsfrei direkt am Fräswalzenkasten geführt ist. Durch die Möglichkeit, das Seitenschild in Vertikalrichtung über das der Fräswalze abgewandte stirnseitige Ende der Abtriebsachse zu verfahren, wird das Seitenschild erst wesentlich später von der Abtriebsachse bzw. von dem die Abtriebsachse umgebenden und über den Fräswalzenkasten nach außen vorstehenden Teil des Gehäuses an der Fortsetzung seiner Hubbewegung gehindert. Das Seitenschild kann mit anderen Worten hinderungsfrei die Längsachse der Abtriebsachse schneiden und bis in die oberhalb liegende Seitenschildeinwölbung hinein verfahren werden. Wesentlich ist somit eine in Bezug auf die Vertikalrichtung gestufte Ausbildung des Antriebsgetriebes, die durch einen Höhenversatz der Antriebsachse gegenüber der Abtriebsachse erreicht wird. Dadurch kann das Seitenschild unter Beibehaltung des maximalen vertikalen Stellweges in einem erheblich größeren Umfang in seiner vertikalen Breite massiv ausgeführt werden, was eine zuverlässige Abdichtung des Fräswalzenkastens auf der Antriebsseite des Fräswalzenkastens über einen wesentlich breiteren Höhenverstellbereich des Seitenschildes zur Folge hat. Ermöglicht wird dies durch die im Antriebsgetriebe integrierte Stufe zwischen der Antriebsachse und der Abtriebsachse bzw. der daraus resultierenden Stufe im Gehäuse des Antriebsgetriebes. Die Stufung ist optimalerweise in der Weise ausgebildet, dass das Seitenschild in Vertikalrichtung an der Abtriebachse vorbei bzw. in die Längsachse der Abtriebachse schneidender Weise verschoben werden kann.
  • Um die Höhenverstellbarkeit des Seitenschildes am Fräswalzenkasten gegenüber dem Antriebsgetriebe noch weiter zu verbessern, ist zudem als ein weiterer wesentlicher Aspekt der Erfindung die Seitenschildeinwölbung im Gehäuse des Antriebgetriebes vorgesehen, in die das Seitenschild von unten kommend hinein verschiebbar ist, so dass das Seitenschild in seiner Vertellbewegung erst wesentlich später bzw. erst in einer in Vertikalrichtung wesentlich höher liegenden Stellung vom Gehäuse des Antriebsgetriebes blockiert wird. Dies ermöglicht ebenfalls insgesamt eine in Vertikalrichtung größere Ausbildung des Seitenschildes und eine wesentlich verbesserte Handhabung des Seitenschildes im Arbeitsbetrieb.
  • Der Antrieb der Baumaschine kann konkret beispielsweise ein Verbrennungsmotor sein. Dieser kann eine entsprechende Hydraulikpumpe antreiben, die wiederum zum Antrieb der Antriebsachse und letztendlich der Fräswalze herangezogen werden. Alternativ zu der Hydraulikpumpe kann auch ein Generator vorhanden sein, um Strom zum Antrieb von Elektromotoren für die Fräswalze zu erzeugen. Bevorzugt wird der Verbrennungsmotor jedoch direkt zum Antrieb der Fräswalze verwendet. Ein darauf basierender Kraftstrang mit den Elementen Motor - Kupplung - Keilriemeneinheit - Winkelgetriebe - oberes und unteres Antriebsgetriebe - Fräswalze in eben dieser Reihenfolge ist vorstehend bereits angegeben worden. Vorsorglich wird an dieser Stelle festgehalten, dass die Begriffe "oberes Antriebsgetriebe" und "unteres Antriebsgetriebe" speziell den Teil der Getriebestufe bezeichnen und Teil eines Gesamtgetriebes sind, das beispielsweise auch, je nach Ausführungsform, die Elemente Winkelgetriebe, Keilriemengetriebe, etc., mit umfasst. Selbstverständlich kann der Antrieb gleichzeitig auch zum Antreiben des mindestens einen Vorderrads und/oder der Hinterräder und/oder der Ein- und Ausschwenkbewegung eines schwenkbaren Hinterrads dienen.
  • Die Antriebsachse und die Abtriebsachse sind funktional in einem Ankopplungsbereich miteinander gekoppelt. Dies bedeutet, dass eine vom Antrieb erzeugte Antriebskraft über die Antriebsachse auf die Abtriebsachse (und damit letztendlich auf die Fräswalze) übertragen wird. Der Ankopplungsbereich ist in seiner Breite in Richtung der Längsachse der Antriebs- bzw. Abtriebsachse vorzugsweise vergleichsweise schmal ausgebildet. Zur funktionalen Kopplung kann es beispielsweise vorgesehen sein, dass ein entsprechendes Zahnradgetriebe vorhanden ist, wobei das eine auf der Antriebsachse, vorzugsweise am zur Fräswalze zeigenden stirnseitigen Ende, angeordnete Zahnrad in ein auf der Abtriebsachse angeordnetes Zahnrad, welches vorzugsweise am der Fräswalze abgewandten stirnseitigen Ende der Abtriebsachse positioniert ist, eingreift. Beide Zahnräder liegen bei dieser Ausführungsform in einer vertikalen Ebene und weisen eine vergleichsweise geringe horizontale Breite bzw. einen vergleichsweise schmalen Ankopplungsbereich auf. Alternativ kann eine funktionale Kopplung beispielsweise insbesondere auch in einem Kettengetriebe oder einem Zahnriemengetriebe liegen, die ebenfalls mit ihren entsprechenden Verbindungselementen zur Antriebsachse und zur Abtriebsachse vorzugsweise stirnseitig auf den entsprechenden Achsen angeordnet sind. Im Ankopplungsbereich sind die Antriebsachse und die Abtriebsachse ferner bevorzugt in der Weise angeordnet, dass sie sich in Vertikalrichtung im Bereich ihrer einander zugewandten stirnseitigen Enden überlappen. Dies ist beispielsweise dann der Fall, wenn an der Abtriebachse und an der Antriebsachse jeweils ein Zahnrad angeordnet ist, wobei die beiden Zahnräder ineinander eingreifen. Damit können in Bezug auf die Breite in Richtung der Längsachsen der Antriebs- und der Abtriebsachse besonders schmale Ankopplungsbereiche erhalten werden, die gleichzeitig eine effiziente Kraftübertragung ermöglichen.
  • Für den Versatz bzw. zum Erhalt des gestuften Getriebes ist es zunächst wesentlich, dass die Antriebsachse in Vertikalrichtung oberhalb der Abtriebsachse liegt. Oberhalb bedeutet erst einmal lediglich, dass die Längsachse der Antriebsachse in einer vertikalen Ebene, die orthogonal zur Antriebs- und Abtriebsachse verläuft, bezüglich ihres Versatzes relativ zur Längsachse der Abtriebsachse zumindest eine Vertikalkomponente aufweist. So ist beispielsweise auch ein Schrägversatz in Bezug auf diese Ebene möglich, bei dem eine vertikale Versatzkomponente mit einer horizontalen bzw. seitlichen Versatzkomponente kombiniert ist. Ideal ist es allerdings, wenn die Antriebs- und die Abtriebsachse in dieser Vertikalebene auf einer vertikalen Linie liegend bzw. übereinanderliegend angeordnet sind. Damit kann im Antriebsgetriebe der maximale Höhenversatz erreicht werden, was eine besonders hohe Variabilität hinsichtlich der möglichen Frästiefen ermöglicht.
  • Wie vorstehend bereits erwähnt, liegt ein weiterer wesentlicher Aspekt der Erfindung darin, dass das Gehäuse die Seitenschildeinwölbung aufweist, in die das Seitenschild beim Hochfahren am Fräswalzenkasten hinein verfahrbar ist. In diesem Bereich ist das Gehäuse des Antriebsgetriebes somit nach innen gewölbt bzw. eingewölbt. Dies hat den Vorteil, dass der Stellweg des Seitenschildes in Vertikalrichtung noch weiter nach oben, nämlich in die Seitenschildeinwölbung hinein, verlängert werden kann. Die Seitenschildeinwölbung ist somit im Wesentlichen dadurch gekennzeichnet, dass sie sich in Vertikalrichtung nach oben erstreckt bzw. zumindest teilweise an nicht eingewölbte bzw. in Radialrichtung (bezüglich der Antriebsachse und der Abtriebsachse) vorstehende Bereiche des Gehäuses angrenzt und das Seitenschild beim Hochfahren in sie hinein verstellt werden kann. Die Seitenschildeinwölbung ist somit eine zum Gehäuseinneren gerichtete Vertiefung im Gehäuse des Antriebsgetriebes. Das Gehäuse ist allerdings auch im Bereich der Seitenschildeinwölbung geschlossen ausgebildet, so dass das Gehäuse über die Seitenschildeinwölbung hinweg eine geschlossene Außenoberfläche aufweist. Schmutz kann somit auch nicht im Bereich der Seitenschildeinwölbung in das Gehäuseinnere eindringen. Die Seitenschildeinwölbung kann demnach beispielsweise durch Umbiegung der im Bereich der Seitenschildeinwölbung liegenden Gehäuseteile erhalten werden. Alternativ kann die Seitenschildeinwölbung an sich auch ein separater Teil des Gehäuses sein, der im Fertigungsprozess mit den an die Seitenschildeinwölbung angrenzenden Teilen des Gehäuses verbunden wird. Bevorzugt ist das Gehäuse im Bereich der Seitenschildeinwölbung einsteilig ausgebildet.
  • Die Seitenschildeinwölbung ist so dimensioniert, dass das Seitenschild zumindest teilweise, insbesondere mit seinem in Vertikalrichtung oben liegenden Randbereich, in die Seitenschildeinwölbung hinein verfahren werden kann. Die Seitenschildeinwölbung kann somit einen Teil des Seitenschildes aufnehmen. In Richtung der Längsachse der Abtriebsachse überlappen sich in diesem Fall im hochgestellten Zustand des Seitenschildes somit das Gehäuse und das in die Seitenschildeinwölbung hinein ragende Seitenschild. Die Überlappung ist konkret wenigstens zweiseitig und umfasst den in Längsrichtung der Abtriebsachse vor und hinter dem Seitenschild liegenden Bereich des Gehäuses. Das Gehäuse umgreift somit mit seiner Seitenschildeinwölbung zumindest die obere Außenkante des Seitenschildes wenigstens zu zwei Seiten, insbesondere in Längsrichtung der Abtriebsachse. Die Aufgabe der Seitenschildeinwölbung liegt darin, dass das Seitenschild sozusagen "in das Gehäuse hinein" bzw. über den parallel zur Antriebsachse verlaufenden unteren Teil des Gehäuses verfahren werden kann, ohne dass dazu eine Durchbrechung im Gehäuse erforderlich ist. Damit kann das Seitenschild in Vertikalrichtung bzw. in Richtung des über dem Seitenschild aus dem Fräswalzenkasten heraus tretenden Gehäuses des Antriebsgetriebes bis zu einem höher liegenden Maximalwert verstellt werden und gleichzeitig bleibt die Schutzfunktion des Gehäuses für das Antriebsgetriebe aufrecht erhalten, da es auch im Bereich der Seitenschildeinwölbung geschlossen ausgebildet ist. Wie nachstehend noch näher ausgeführt werden wird, kann das Seitenschild damit massiv, wesentlich höher und unterbrechungsfrei ausgebildet werden, so dass mit dieser Anordnung im Endergebnis optimale Abdichtungsergebnisse über den gesamten Bereich verschiedener Frästiefen erreicht werden. Ideal ist es dabei, wenn die Seitenschildeinwölbung im oberen Teil des Gehäuses angeordnet ist (in Vertikalrichtung nach unten geöffnet) und wenn das Seitenschild über das der Fräswalze abgewandte stirnseitige Ende der Abtriebsachse bis in die Seitenschildeinwölbung hinein verfahrbar ist.
  • Vorzugsweise grenzt die Seitenschildeinwölbung in Axialrichtung der Antriebsachse unmittelbar an die Gehäusestufe, insbesondere den unteren Teil des Gehäuses, an. Bei dieser Ausführungsform geht das Gehäuse in Axialrichtung der Antriebsachse und der parallel liegenden Abtriebsachse zur einen Seite in den radial vorstehenden oberen Teil des Gehäuses über und weist zu seiner anderen Seite die Getriebestufe auf in der Weise, dass der untere Teil des Gehäuses in Axialrichtung direkt an die andere Seite der Seitenschildeinwölbung angrenzt. In Axialrichtung der Antriebachse bzw. der parallel liegenden Abtriebsachse bestimmen sich die beiden Seiten der Seitenschildeinwölbung somit wie folgt: In Richtung der Abtriebsachse bzw. zur Seite des unteren Teils hin grenzt die Seitenschildeinwölbung entweder an einen in Radialrichtung weiter vorstehenden und häufig zumindest teilweise parallel bzw. linear zur Längsachse verlaufenden Bereich des Gehäuses und bevorzugt unmittelbar an die durch die Getriebestufe hervorgerufene Stufe im Gehäuse an; zur anderen Seite grenzt die Seitenschildeinwölbung an einen in Radialrichtung zur Längsachse der Antriebsachse vorstehenden und häufig zumindest teilweise parallel bzw. linear zur Längsachse verlaufenden Gehäusebereich an. Grenzt die Seitenschildeinwölbung unmittelbar an den unteren Teil des Gehäuses bzw. den die in Vertikalrichtung weiter unten liegenden und die Abtriebsachse umgebenden Teil des Gehäuses an, kann das Seitenschild sehr nah, idealerweise unmittelbar am unteren Teil des Gehäuses bei einer vertikalen Verstellbewegung vorbei geführt werden bzw. das Seitenschild kann flächig an der vom Gehäuse ummantelten Getriebestufe des Antriebsgetriebes vorbei geführt werden. Damit kann die grundsätzliche Konstruktion dieses Teils der Baumaschine vereinfacht werden, da durch die mögliche unmittelbare Führung des Seitenschildes in Vertikalrichtung am unteren Teil des Gehäuses das Seitenschild beispielsweise abdichtungsfrei, großflächig und eben am Fräswalzenkasten entlang verfahren werden kann.
  • Allen Ausführungsalternativen der erfindungsgemäßen Seitenschildeinwölbung ist gemeinsam, dass sie einen zum Gehäuseinneren eingewölbten Bereich betreffen, der in der Weise ausgebildet ist, dass das Seitenschild beim Hochfahren in die Seitenschildeinwölbung eingefahren werden kann. Die konkrete Ausführung der Seitenschildeinwölbung kann allerdings variieren. So ist es beispielsweise möglich, dass sich die Seitenschildeinwölbung lediglich in Vertikalrichtung von unten ins Gehäuseinnere erstreckt, so dass das Seitenschild beim Hochfahren mit seinem oberen Bereich in die Seitenschildeinwölbung hinein fährt. Alternativ ist es jedoch auch möglich, dass die Seitenschildeinwölbung in einer das Gehäuse umlaufenden Weise, beispielsweise in der Art einer Einschnürung, ausgebildet ist. Die Seitenschildeinwölbung erstreckt sich bei dieser Ausführungsform somit in Bezug auf die Axialrichtung der Antriebs- und die Abtriebsachse um das Gehäuse herum. Dazu kann die Seitenschildeinwölbung beispielsweise ringförmig am Gehäuse angeordnet sein. Eine solche Ausführung der Seitenschildeinwölbung kann insbesondere aus Stabilitätsgründen von Vorteil sein. Die Längsachse dieses Ringes liegt dann parallel oder koaxial zur Längsachse der Antriebsachse und/oder Abtriebsachse.
  • Auch das Profil der Seitenschildeinwölbung kann variieren. Mit Profil wird der Verlauf der Seitenschildeinwölbung bei einem Schnitt durch die Seitenschildeinwölbung bezeichnet, wobei die Schnittebene in der Ebene liegt, die von der Vertikalachse und der Längsachse der Antriebsachse bzw. der Abtriebsachse aufgespannt wird. Wesentlich für das Profil der Seitenschildeinwölbung ist zunächst, dass es zur Aufnahme der der Seitenschildeinwölbung zugewandten Oberkante des Seitenschildes geeignet ist. Das Profil der Seitenschildeinwölbung kann somit beispielsweise gerundet ausgebildet sein. Ein gerundetes Profil ist vergleichsweise einfach herzustellen und gleichzeitig besonders stabil. Es ist allerdings auch möglich, dass Profil der Seitenschildeinwölbung an das in die Seitenschildeinwölbung hineinragende Seitenschild bzw. an dessen Profil anzupassen. Damit kann im Bereich der Seitenschildeinwölbung ein dichter Abschluss und bis zu einem gewissen Grad auch eine Seitenschildführung erreicht werden. In dieser Ausführungsform kann das Profil der Seitenschildeinwölbung beispielsweise auch rechtwinklig ausgebildet sein.
  • Bevorzugt ist die Antriebsachse mehrgliedrig mit wenigstens zwei gekoppelten Achsgliedern ausgebildet. Bei der Verwendung einer mehrgliedrigen Antriebsachse ist darauf zu achten, dass das funktional mit der Abtriebsachse gekoppelte Achsglied der Antriebsachse bezüglich der Abtriebsachse in Vertikalrichtung in der vorstehend beschriebenen Weise parallel versetzt ist. Bei dieser Ausführungsform schließt sich somit an die Antriebachse noch wenigstens ein weiteres Kraftübertragungsglied hin zum Antrieb an. Ideal ist es, wenn auch die wenigstens zwei Achsglieder der Antriebsachse zueinander in Vertikalrichtung bezüglich ihrer Längsachsen parallel versetzt angeordnet sind, beispielsweise in Form eines Stirnradgetriebes, sodass das mehrere Stufen im Antriebsgetriebe erhalten werden und der mit dem gestuft ausgebildeten Antriebsgetriebe erreichbare Höhenunterschied zwischen der Ankopplung an die Fräswalze und der Ankopplung an den Antrieb noch gesteigert werden kann. Alternativ oder ergänzend ist es auch möglich, wenigstens zwei Glieder der Antriebsachse bezüglich ihrer Längsachsen gewinkelt, insbesondere senkrecht, zueinander auszubilden, beispielsweise in Form eines Winkelgetriebes, speziell eines Kegelradgetriebes. Eine solche Ausbildung ermöglicht es beispielsweise, in der vorstehend beschriebenen Weise einen Teil des sich an den oberen Getriebeteil zum Antriebsmotor hin anschließenden Getriebes gewinkelt auszubilden und auf diese Weise noch günstigere räumliche Anordnungsverhältnisse zu erhalten.
  • Hinsichtlich der konkreten Positionierung der Antriebsachse und der Abtriebsachse bzw. insbesondere des Bereichs, in dem die Antriebsachse funktional an die Abtriebsachse gekoppelt ist es bevorzugt, wenn das der Fräswalze zugewandte stirnseitige Ende der Antriebsachse von außen kommend durch die Seitenwand des Fräswalzenkastens ins Innere hindurchgeführt ist. Bei dieser Ausführungsform endet die Antriebsachse mit ihrem zur Fräswalze hin zugewandten stirnseitigen Ende somit wenigstens bündig mit der Innenseite des Fräswalzenkastens oder steht gar in begrenzten Ausmaß in den Innenraum des Fräswalzenkastens vor. Die Abtriebachse schließt dagegen nach außen maximal mit der Außenoberfläche des Fräswalzenkastens ab. Dies ermöglicht es, den Bereich der Ankopplung der Antriebsachse an die Abtriebsachse im Bereich der Seitenwand unterzubringen, um gleichzeitig wenig Platz im Innenraum des Fräswalzenkastens zu verbrauchen und den Ankopplungsbereich nahezu überstandsfrei zur Außenseite des Fräswalzenkastenbereiches zu halten, um eine unmittelbare Führung des Seitenschildes in Vertikalrichtung an der Außenseite des Fräswalzenkastens zu ermöglichen.
  • Ideale Abdichtergebnisse werden mit der erfindungsgemäßen Anordnung selbstverständlich dann erhalten, wenn das Seitenschild geschlossen und im Wesentlichen als durchgehende Fläche ausgebildet ist. Die Ausbildung als durchgehende Fläche ist insofern vorteilhaft, als dass dann unabhängig von der Höhenverstellung des Seitenschildes keine Gefahr besteht, dass Fräsgut aus dem Innenraum des Fräswalzenkastens durch im Seitenschild bisher häufig vorhandene Durchbrechungen nach außen hin austritt. Die erfindungsgemäße Seitenschildeinwölbung ermöglicht es nun, dass das Seitenschild im wesentlich eben und unterbrechungsfrei und gleichzeitig wesentlich größer (insbesondere in Vertikalrichtung) als bisher im Stand der Technik ausgebildet werden kann, da in Vertikalrichtung nach oben durch die Seitenschildeinwölbung mehr Raum nach oben geschaffen wird.
  • Ergänzend zu dem mit der Seitenschildeinwölbung zusätzlich in Vertikalrichtung nach oben geschaffenem Raum besteht die Möglichkeit, das Seitenschild im in Vertikalrichtung oberen Randbereich mit einer Einkerbung zu versehen, die idealerweise zudem an die Kontur der Seitenschildeinwölbung des Gehäuses angepasst ist. Mittels der Einkerbung kann somit eine Freischneidung im Randbereich des Seitenschildes erhalten werden, mit der in den Verstellweg des Seitenschildes hineinragende Bereiche des Gehäuses beim Hochfahren des Seitenschildes aufgenommen werden können. Insgesamt kann das Seitenschild bei dieser Ausführungsform gegenüber dem Gehäuse noch weiter in Vertikalrichtung nach oben verstellt werden.
  • Besonders günstig ist es, wenn die Führung des Seitenschildes unmittelbar am Fräswalzenkasten bzw. am Gehäuse und ohne zusätzliche Abdichtelemente zwischen dem Seitenschild und dem Fräswalzenkasten erfolgt. Durch diese abdichtungsfreie Ausführungsform kann die Montage und Wartung einer Seitenschildanordnung wesentlich vereinfacht werden. Die Seitenschildeinwölbung ermöglicht eine derartige unmittelbare Führung am Fräswalzenkasten, da aufgrund der Seitenschildeinwölbung auf zusätzliche Abdichtelemente verzichtet werden kann. Das Seitenschild ist dazu zusätzlich bevorzugt gleichzeitig flächig massiv und durchbrechungsfrei, zumindest über einen großen vertikalen Bereich ausgebildet. Dies ist vorliegend aufgrund der Seitenschildeinwölbung besonders gut möglich.
  • Die Erfindung wird anhand des in den Figuren dargestellten Ausführungsbeispiels weiter erläutert. Es zeigen schematisch:
  • Fig. 1
    eine Baumaschine in perspektivischer Ansicht von schräg hinten;
    Fig. 2
    eine perspektivische Schrägansicht von hinten auf die Antriebsseite des Fräswalzenkastens mit hochgefahrenem Seitenschild;
    Fig. 3
    eine perspektivische Schrägansicht von hinten auf die Antriebsseite des Fräswalzenkastens gemäß Fig. 2 mit heruntergefahrenem Seitenschild;
    Fig. 4
    eine Seitenansicht auf das in einem Gehäuse angeordnete Antriebsgetriebe aus den Figuren 1 bis 3;
    Fig. 5
    ein Ausschnitt einer schematischen Schnittansicht durch das in die Baumaschine eingebaute Antriebsgetriebe; und
    Fig. 6
    eine Draufsicht auf den schematischen Aufbau des Antriebsgetriebes.
  • Sich wiederholende Bauteile sind in den Figuren mit gleichen Bezugszeichen angegeben.
  • Bei der in Fig. 1 dargestellten Baumaschine handelt es sich konkret um eine Kaltfräse 1. Ein wesentliches Element der Kaltfräse 1 ist ein Maschinenrahmen 2, an dem ein Vorderradpaar 3 (lediglich das vordere rechte Vorderrad ist in Fig. 1 sichtbar) und ein Hinterradpaar 4 (lediglich das rechte Hinterrad ist in Fig. 1 sichtbar) angeordnet sind. Die Hinterräder 4 sind jeweils über eine Hubsäule am Maschinenrahmen angelenkt und in Vertikalrichtung entlang Pfeilrichtung c höhenverstellbar ausgebildet. Dies ermöglicht ein Absenken der Maschine im hinteren Bereich, was beispielsweise zur Regulation der Frästiefe genutzt werden kann. Um ein kantennahes Fräsen mit der Kaltfräse 1 zu ermöglichen, ist das auf der Seite des Maschinenrahmens 3 liegende Hinterrad 4, auf der die in Fig. 1 nicht sichtbare Fräswalze nahezu bündig mit dem Maschinenrahmen abschließt (nachstehend auch Nullseite genannt), von einer über den Maschinenrahmen 2 vorstehenden Ausschwenkposition (gemäß Fig. 1) in eine Einschwenkposition schwenkbar ausgebildet, in der das Hinterrad 4 gegenüber dem Maschinenrahmen 2 bzw. der Stirnseite der Fräswalze auf der Nullseite überstandsfrei ist. Dazu ist eine entsprechende Schwenkmechanik an der Kaltfräse 1 vorhanden. Im hinteren Bereich der Kaltfräse ist ferner ein Bedienarbeitsplatz 5 angeordnet, umfassend eine nicht näher bezeichnete Bedienkonsole, einen Sitz und weitere Komponenten zur Führung der Maschine. Zum Antrieb der Maschinenfunktionen, insbesondere der Vorderräder 3 und der Hinterräder 4, sowie des Schwenkmechanismus und der Rotationsbewegung der Fräswalze ist ein Verbrennungsmotor 8 vorhanden, der ein entsprechende Hydrauliksystem mit Antriebsenergie versorgt
  • Unterhalb des Bedienarbeitsplatzes ist eine Fräswalze (in Fig. 1 nicht sichtbar) angeordnet, die zu den Seiten, nach vorn und nach oben hin zumindest teilweise von einem Fräswalzenkasten 6 umgeben ist, von dem in Fig. 1 insbesondere die außen bzw. auf der Nullseite liegende Seitenwand 7 sichtbar ist. An der Seitenwand 7 des Fräswalzenkastens 6 ist ferner ein Seitenschild 9 angeordnet, welches in Vertikalrichtung höhenverstellbar ist. Nach hinten ist ein bodennah angeordneter Abstreifer 10 vorhanden, der zum Boden hin eine Auslassöffnung 11 abgrenzt, über die Fräsmaterial aus dem Fräswalzenkasten 6 heraus transportiert werden kann. Dazu kann beispielsweise eine geeignete Fördereinrichtung am Maschinenrahmen 2 angeordnet werden, die in den Figuren nicht dargestellt ist. Auf der gegenüberliegenden Seite des Fräswalzenkastens ist ein weiteres Seitenschild (in Fig. 1 nicht sichtbar) vorhanden, welches auf der Antriebsseite, also auf der Seite, auf der das Antriebsgetriebe aus dem Fräswalzenkasten 6 herausgeführt ist, angeordnet ist. Dieses Seitenschild ist ebenfalls höhenverstellbar entlang Pfeilrichtung b ausgebildet und wird in den Figuren 2 und 3 näher erläutert. Die Figuren 2 und 3 sind perspektivische Schrägansichten aus der Blickrichtung d in Fig. 1 auf die Rückseite der Maschine mit dem Fräswalzenkasten 6. Das auf der Nullseite befindliche Seitenschild 9 sowie ein Teil der den Fräswalzenkasten 6 zur Nullseite hin begrenzenden Seitenwandung sowie der Abstreifer 10 sind in den Figuren 2 und 3 aus Übersichtlichkeitsgründen nicht dargestellt.
  • Gemäß der Figuren 2 und 3 ist die Fräswalze 13 mit ihrer Horizontalachse quer zur Arbeitsrichtung a im Fräswalzenkasten 6 gelagert und weist auf ihrer Außenoberfläche eine Reihe von Meißelwerkzeugen zur Oberflächenbearbeitung auf (in den Figuren 2 und 3 sind die Meißelhalter 14 ohne die entsprechenden Meißeleinsätze dargestellt). Im Arbeitsbetrieb rotiert die Fräswalze 13 in Pfeilrichtung d um die Rotationsachse 28. Die Figuren 2 und 3 verdeutlichen den kompartimentierten Aufbau des hinteren untere Arbeitsbereiches der Fräswalze 1. Räumlich getrennt vom Fräswalzenkasten 6 beziehungsweise vom "Fräswalzenkompartiment" ist ein "Antriebskompartiment" vorgesehen, in dem unter anderem Teile eines Antriebsgetriebes zur Verbindung mit dem Antrieb untergebracht sind. Die beiden Kompartimente sind entlang der Rotationsachse 28 der Fräswalze 13 nebeneinander liegend angeordnet.
  • Auf der der Außenseite zum Maschinenrahmen gegenüberliegenden Innenseite des Fräswalzenkastens 6 ist der Fräswalzenkasten 6 durch eine Seitenwand 15 seitlich zum benachbarten Antriebskompartiment begrenzt. An der Seitenwand 15 ist das ebenfalls in Pfeilrichtung b höhenverstellbare Seitenschild 16 angeordnet, welches sich in Fig. 2 in seiner maximal hochgestellten und in Fig. 3 in seiner maximal abgesenkten Position befindet. Zur Höhenverstellung des Seitenschildes 16 relativ zur gegenüber dem Maschinenrahmen feststehenden Seitenwand 15 sind zwei hydraulisch angetriebene Zylinder-Kolbeneinheiten 17 vorhanden, die mit Hilfe einer nicht näher dargestellten geeigneten Ventilsteuerung auch gleichzeitig zur Feststellung des Seitenschildes 16 in seiner jeweiligen Position herangezogen werden. Selbstverständlich ist mit dieser Ventilsteuerung eine Feststellung des Seitenschildes 16 auch in Zwischenpositionen zwischen den beiden in den Figuren 2 und 3 gezeigten Positionen des Seitenschildes 16 möglich. Insbesondere Fig. 3 verdeutlicht, dass das Seitenschild 16 mit seinem in Vertikalrichtung nach oben weisenden Bereich in eine Seitenschildeinwölbung 35 des Gehäuses 24 des Antriebsgetriebes hinein verfahrbar ist. Die Seitenschildeinwölbung 35 wird vom Gehäuse 24 des Antriebsgetriebes gebildet und ermöglicht es, dass das Seitenschild 16 im hochgefahrenen Zustand mit seinem oberen Rand quasi in das Gehäuse 24 eintaucht. Damit kann das Seitenschild 16 in Vertikalrichtung breiter ausgebildet werden, womit letztendlich bessere Räumergebnisse im Inneren des Fräswalzenkastens erhalten werden können. Der Aufbau der Seitenschildeinwölbung 35 wird nachstehend noch detaillierter beschrieben werden.
  • Zur Führung des Seitenschildes 16 ist einerseits eine Langlochführung 18 in der Seitenwand 15 des Fräswalzenkastens 6 vorhanden, in der ein senkrecht zum Innenraum des Fräswalzenkastens 6 abstehendes Sammelblech geführt ist, das fest mit dem Seitenschild 16 verbunden ist. Ferner ist ein Umgriffelement 19 an der Seitenwand 15 angeordnet, welches die hintere vertikale Längskante des Seitenschilds 16 teilweise umgreift und auf diese Weise eine Vertikalführung für das Seitenschild 16 bildet. Es ist ferner ein weiteres in den Figuren 2 und 3 nicht sichtbares Umgriffelement vorhanden, welches das Seitenschild 16 auf der gegenüberliegenden Seite angeordndet ist und die vordere vertikale Längskante des Seitenschildes 16 umgreift, so dass das Seitenschild 16 an beiden vertikalen Längskanten jeweils durch ein Umgriffelement in Vertikalrichtung geführt ist. Das Umgriffelement 19 fungiert ferner als Verstellbegrenzung in Form eines Anschlags, gegen das am Seitenschild 16 vorhandene vorstehende Anschlagnasen bei maximaler Anhebung (die untere Anschlagnase 22 schlägt von unten gegen das Umgriffelement 19 gemäß Fig. 2 an) bzw. maximalem Absenken (die obere Anschlagnase 21 schlägt von oben gegen das Umgriffelement gemäß Fig. 3 an) anschlagen und damit das Seitenschild an einer Weiterverschiebung über diese beiden Maximalstellungen hinaus hindert.
  • Im Arbeitsbetrieb der Kaltfräse 1 wird die Fräswalze 13 in Rotation in Pfeilrichtung d um ihre Längsachse 28 versetzt. Die benötigte Antriebsleistung wird dazu von dem Antrieb 8, einem nicht näher dargestellten Verbrennungsmotor zur Verfügung gestellt. Zwischen diesem Antrieb und der Fräswalze 13 ist zur Übertragung der Antriebskraft ein Antriebsgetriebe 23 vorhanden, umfassend ein Gehäuse 24, eine Antriebsachse 25 und eine Abtriebsachse 26. Zur Einleitung der Antriebskraft in das Antriebsgetriebe schließt sich an den Verbrennungsmotor eine Kupplung, eine Keilriemeneinheit und ein Winkelgetriebe an (jeweils nicht sichtbar; näher aus Fig. 6 entnehmbar). Das Antriebsgetriebe 23 ist somit Teil eines Gesamtgetriebes, welches zwischen dem Antriebselement und dem Fräsrotor angeordnet ist. In Vertikalrichtung (y-Richtung) ist die Antriebsachse 25 gegenüber der Abtriebsachse 26 höherliegend bzw. nach oben versetzt angeordnet, wie es beispielsweise insbesondere in Fig. 4 weiter verdeutlicht ist.
  • Fig. 4 veranschaulicht zunächst, dass das Gehäuse 24 einen in Vertikalrichtung oberen Teil B und einen in Vertikalrichtung unteren Teil A aufweist, die sich in ihrem einander zugewandten Bereich teilweise überschneiden. Im oberen Teil B ist im Wesentlichen die Antriebachse 25 und im unteren Teil A im Wesentlichen die Abtriebsachse 26 im Gehäuse 24 untergebracht. Durch den Höhenversatz des unteren Teils A relativ zum oberen Teil B wird das in Vertikalrichtung gestufte Gehäuse 24 erhalten.
  • Die Längsachse 27 der Antriebsachse 25 ist um den Versatz e in Vertikalrichtung über der Längsachse 28 der Abtriebsachse 26 im Gehäuse 24 angeordnet. Die Längsachse 28 der Abtriebsachse 26 liegt ferner koaxial zur Rotationsachse der Fräswalze 13 und ist mit dieser mit ihrer Stirnseite 29 über nicht näher bezeichnete Verbindungselemente verbunden. An ihrer gegenüberliegenden Stirnseite (im Gehäuse 24) ist die Abtriebsachse 26 funktional an die in Vertikalrichtung höherliegende Antriebsachse 25 angekoppelt. Der Bereich, in dem die funktionale Ankopplung erfolgt, wird als Ankopplungsbereich 30 bezeichnet. Dieser Ankopplungsbereich 30 liegt gemäß Fig. 4 ungefähr mittig des Gehäuses 24 bezüglich der Längsachsen 27 und 28. Die horizontale Breite des Ankopplungsbereiches entlang der Längsachsen 27 und 28 ist in Fig. 4 mit der geschwungenen Klammer angegeben.
  • Konkret ist an der Antriebsachse 25 ein Zahnrad angeordnet, welches zur Antriebskraftübertragung in ein an der Abtriebsachse 26 angeordnetes Zahnrad eingreift, wie es in Fig. 5 näher veranschaulicht ist. Im Ankopplungsbereich 30 überlappen sich die Antriebsachse 25 und die Abtriebsachse 26 somit in Vertikalrichtung im Bereich ihrer einander zugewandten stirnseitigen Enden und bilden ein Stirnradgetriebe. An ihrer dem Ankopplungsbereich 30 gegenüberliegenden Stirnseite 31 ist die Antriebsachse 25 über weitere nicht näher dargestellte Elemente, die insbesondere auch noch eine weitere um 90° in der Horizontalebene winkelversetzte Getriebestufe umfassen kann, wie in Fig. 6 angegeben, letztendlich am Antrieb angeschlossen. Die Abtriebsachse ist konkret über ein nicht näher dargestelltes Planetengetriebe funktional an den Zylinder der Fräswalze angekoppelt. Insgesamt weist das Antriebsgetriebe 23 mit dem Gehäuse 24 somit einen in Vertikalrichtung gestuften Aufbau mit einer Gehäusestufe 33 auf, bei dem der die Antriebsachse 25 umgebende Bereich gegenüber dem die Abtriebsachse umgebenden Bereich in Vertikalrichtung höherliegend ausgebildet ist.
  • Die Auswirkung der gestuften Ausbildung des Antriebsgetriebes 23 und der Aufbau und Effekt der Seitenschildeinwölbung 35 auf die Höhenverstellbarkeit des Seitenschildes 16 auf der Antriebsseite des Fräswalzenkastens 6 ist in einer Zusammenschau der Figuren 2 und 3 sowie insbesondere in Fig. 5 näher veranschaulicht. Fig. 5 lehnt sich bis auf nachstehend noch weiter angegebene Details an die in den vorhergehenden Figuren dargelegte Ausführungsform an. Fig. 5 gibt die erfindungsgemäße Ausbildung des Gehäuses 24 mit der Seitenschildeinwölbung sowie dessen relative Anordnung zum Seitenschild in einer schematisierten Ausschnittsvergrößerung wieder. Die Fig. 5 ausgeschnitten dargestellte Bereich des Gehäuses 24 ist in Fig. 4 mit der Klammer I angegeben. Im Unterschied zu Fig. 4 ist in Fig. 5 ferner der Fräswalzenkasten 15 und das Seitenschild 16 angedeutet, um das Zusammenwirken dieser Elemente mit der Seitenschildeinwölbung 35 noch weiter zu veranschaulichen.
  • Das Antriebsgetriebe 23 ist in der Weise durch die Seitenwand 15 hindurchgeführt, dass der Ankopplungsbereich 30 im Wesentlichen in der Ebene der Seitenwand 15 und innerhalb des vom Fräsrotor überlappten Bereiches liegt, wie es bezüglich der Seitenwand 15 in Fig. 4 durch die gestrichelte Linie angedeutet ist. Der gewünschte Höhenversatz der Antriebsachse 25 relativ zur Abtriebsachse 26 erfolgt somit im Wesentlichen unmittelbar im Bereich der Seitenwand 16 des Fräswalzenkastens 6, oder, sofern die Getriebestufe im Inneren des Fräsrotors liegt, im Bereich an der Seitenwand 16. Dadurch ist es möglich, die Antriebsachse 25 gegenüber der Rotationsachse der Fräswalze 13 (entspricht der Längsachse 28 der Abtriebsachse) höherliegend aus dem Fräswalzenkasten herauszuführen, sodass das Seitenschild 16 bei einer Anhebung über die Längsachse 28 der Abtriebsachse 26 hinweggeschoben werden kann und nicht von Elementen der Abtriebsachse 26 an einer Vertikalverstellung nach oben gehindert wird. Das Seitenschild 16 kann vielmehr soweit hoch gefahren werden, dass es die Längsachse 28 der Abtriebsachse 26 schneidet. Das Seitenschild 16 ist vielmehr erst dann an einer Fortsetzung der Anhebebewegung gehindert, wenn es an den in Vertikalrichtung höherliegenden Teil des Gehäuses 24 anschlägt, indem die hoch versetzte Antriebsachse 25 untergebracht ist. Durch die Seitenschildeinwölbung 35 ist dieser in den Verstellweg des Seitenschildes 16 hineinragende Teil des Gehäuses 24 in Vertikalrichtung weiter nach oben versetzt, wie es sich insbesondere auch aus Fig. 5 weiter ergibt. Damit kann das Seitenschild bezüglich seiner vertikalen Erstreckung erheblich breiter durchgängig bzw. geschlossen nach oben ausgebildet werden, womit insbesondere eine effizientere Seitenabdichtung bei abgesenktem Seitenschild auf der Abdichtseite gelingt.
  • Die Dimensionierung der Seitenschildeinwölbung 35 kann hinsichtlich vertikaler Höhe VH und axialer Breite AB (Breite in Richtung bzw. parallel der Längsachse der Antriebsachse 25 bzw. der Abtriebsachse 26) variieren. Im vorliegenden Ausführungsbeispiel ist ihre Breite AB wesentlich größer als die Dicke D des Seitenschildes 16. Die Höhe HV der Seitenschildeinwölbung wird konstruktionsbedingt in Vertikalrichtung nach oben durch die Lage der Antriebsachse 25 begrenzt. Die Figuren 4 und 5 verdeutlichen ferner, dass beim vorliegenden Ausführungsbeispiel die Seitenschildeinwölbung 35 in Axialrichtung der Abtriebsachse 24 unmittelbar an die Stufe des Gehäuses 24 zwischen dem oberen Teil B und dem unteren Teil A angrenzt, so dass die Vertikalwand der Gehäusestufe die zur Abtriebsachse 24 gewandte Seitenwand der Seitenschildeinwölbung 35 bildet. Die Höhe der Gehäusestufe bestimmt sich durch die maximale Ausdehnung des Gehäuses 24 in Radialrichtung zur Antriebsachse 25 bzw. zur Abtriebachse 24 in Vertikalrichtung nach unten und ist in Fig. 5 durch GS gekennzeichnet. Die Seitenschildeinwölbung 35 hat ferner ein gerundetes Profil im in Vertikalrichtung oberen Bereich. Die Seitenschildeinwölbung wird ferner zum unteren Teil B des Gehäuses 24 hin im Wesentlichen von der stirnseitigen Seitenwand des Gehäuses 24 des unteren Teils B gebildet, die nahezu bündig mit der äußeren Seitenwand 15 des Fräswalzenkastens 6 abschließt.
  • Unterschiede in der Seitenschildeinwölbung gemäß der Figuren 2 bis 4 und der Fig. 5 liegen im Wesentlichen im jeweiligen Profil der Seitenschildeinwölbung 35 und ihrer dreidimensionalen Ausbildung. Die Seitenschildeinwölbung in den Figuren 2 bis 4 ist in Form eine Einschnürung ausgebildet, die das Gehäuse 24 ringförmig umläuft und von der Antriebachse 25 durchlaufen wird. Das Gehäuse hat im Bereich der Einwölbung 25 somit nahezu die Form eines einschaligen Hyperboloids, wobei die beiden Seiten konkret nicht gleichartig ausgebildet sind. In Fig. 5 ist die Einwölbung 35 dagegen nicht die Antriebachse 25 umlaufend ausgebildet, sondern lediglich im in Vertikalrichtung unteren Bereich des Gehäuses in der Weise, dass das Seitenschild 16 in diese Seitenschildeinwölbung 35 verfahrbar ist. Das in diesem Bereich somit im Wesentlichen zylinderartige Gehäuse 24 weist somit eine von unten kommende keilartige Freischneidung auf. Der Übergangsbereich der Seitenschildeinwölbung 35 ist bei dieser Ausführungsform in Längsrichtung der Antriebsachse 25 ferner nicht gerundet, wie in den Figuren 2 bis 4, sondern nahezu rechtwinklig.
  • Aus der schematischen Schnittansicht der Fig. 5 ist ferner ersichtlich, dass die Antriebsachse 25 und die Abtriebsachse 24 funktional über ein Zahnradgetriebe miteinander verbunden sind. Dieses Zahnradgetriebe umfasst ein auf der Antriebsachse 25 angeordnetes Zahnrad 36 und ein auf der Abtriebsachse 24 angeordnetes Zahnrad 37, die auf den einander zugewandten stirnseitigen Enden der Antriebsachse 25 bzw. der Abtriebsachse 24 angeordnet sind und in einer gemeinsamen vertikalen Getriebeebene liegend ineinander zu Kraftübertragung eingreifen. Das Gehäuse 24 ist zusammen mit dem Antriebsgetriebe in der Weise in die Seitenwand 15 des Fräswalzenkastens 6 eingelassen, dass der Ankopplungsbereich 30 zwischen der Antriebsachse 25 und der Abtriebsachse 24 im Wesentlichen im Inneren des Fräswalzenkastens 6 liegt. Dies ermöglicht die Führung des Seitenschildes 16 unmittelbar an der Seitenwand 15.
  • Um den maximalen Verstellweg des Seitenschildes 16 noch zu vergrößern, ist im Seitenschild 16 ferner eine Auskerbung 32 mit einer halbrunden Kontur vorhanden. Die Kontur der Auskerbung 32 ist an den Anschlagbereich des Seitenschildes 16 am Gehäuse 24 angepasst. Damit kann das Seitenschild 16 zusätzlich um den Höhenversatz f angehoben werden, sodass der Gesamtverstellbereich des Seitenschildes 16 in Vertikalrichtung noch gesteigert ist.
  • Fig. 6 schließlich verdeutlicht den Aufbau des gesamten Getriebestrangs vom Antriebsmotor 50 bis hin zur Fräswalze 13. Fig. 6 ist dabei eine Draufsicht auf die Baumaschine 1. Der Antriebsmotor 50 treibt eine Motorwelle 51 an, die mit ihrer Längsachse bzw. deren Rotationsachse in Arbeitsrichtung a der Baumaschine 1 liegt. Die Motorwelle 51 treibt eine Keilriemenscheibe 52 an, die zusammen mit einem Keilriemen 53 und einer weiteren Keilriemenscheibe 54 Teil eines Keilriemengetriebes ist, welches die Antriebsleistung des Antriebmotors 50 auf ein sich an das Keilriemengetriebe anschließendes Winkelgetriebe überträgt. Das Winkelgetriebe umfasst zwei Kegelzahnräder 55 und 56, über die letztendlich eine Umlenkung der mit ihrer Rotationsachse in Längsrichtung bzw. Arbeitsrichtung a liegenden Rotationsbewegung in eine Rotationsbewegung mit quer zur Arbeitsrichtung liegender Rotationsachse erfolgt. Die Umlenkung beträgt konkret somit 90 °. An das abtriebsseitige Kegelrad 56 schließt sich schließlich der obere Getriebeteil 25 an und zur Fräswalze 13 hin setzt sich der Getriebestrang in der in Fig. 5 angegebenen Weise weiter fort. Der Höhenversatz zwischen oberem 25 und unterem 26 Getriebeteil ist aus Fig. 6 nicht entnehmbar, da es sich dort um eine Draufsicht handelt. Zur Unterscheidung des oberen Getriebeteils 25 vom unteren Getriebeteil 26 ist der untere Getriebeteil 26 gestrichelt dargestellt und der obere Getriebeteil 25 in durchgezogener Linie. Fig. 6 verdeutlicht ferner, dass die zylindrische Fräswalze bei der in Fig. 6 dargestellten Ausführungsform das durch die Zahnräder 36 und 37 gebildete Stirnradgetriebe in Axialrichtung der Rotationsachse überlappt. Das Stirnradgetriebe ist bei dieser Ausführungsform mit anderen Worten innerhalb des Fräsrotors 13 angeordnet.

Claims (15)

  1. Baumaschine (1) zum Bearbeiten einer Fahrbahnoberfläche, insbesondere Straßenfräse (1), umfassend
    - eine horizontal rotierbare und in einem Fräswalzenkasten (6) angeordnete Fräswalze (13),
    - eine Antriebseinrichtung mit einem außerhalb des Fräswalzenkastens (6) angeordneten Antrieb, dessen Antriebswelle in Maschinenlängsrichtung liegt, und einem Antriebsgetriebe (23), das in der Weise ausgebildet ist, dass es eine Antriebskraft vom Antrieb auf die Fräswalze (13) überträgt, das in Vertikalrichtung gestuft mit einer Getriebestufe ausgebildet ist, die einen unteren Getriebeteil (A) und einen oberen Getriebeteil (B) aufweist, wobei der Versatz möglichst groß ist, und das von außen durch eine Seitenwand (15) des Fräswalzenkastens (6) zur Fräswalze (13) hindurch geführt ist,
    - im unteren Getriebeteil (A) eine Abtriebsachse (26) und im oberen Getriebeteil (B) eine zur Abtriebsachse (26) parallel verlaufende und funktional an die Abtriebsachse (26) gekoppelte Antriebsachse (25), wobei der untere Getriebeteil (A) im Wesentlichen im Fräswalzenkasten (6) und der obere Getriebeteil (B) im Wesentlichen außerhalb des Fräswalzenkastens (6) angeordnet ist, und wobei sich an den oberen Getriebeteil (B) ein Winkelgetriebe zur funktionalen Verbindung mit der Antriebswelle des Antriebs anschließt,
    - ein relativ zum Fräswalzenkasten (6) höhenverstellbares Seitenschild (16), das in der Fläche unveränderbar ausgebildet ist, und
    - ein das Antriebsgetriebe (23) zumindest im Bereich der Getriebestufe nach außen abschirmendes Gehäuse mit einer Gehäusestufe, umfassend einen in Vertikalrichtung oberen und einen unteren Bereich, wobei das Gehäuse im oberen Bereich der Gehäusestufe eine Seitenschildeinwölbung (35) aufweist, in die das Seitenschild beim Hochfahren hinein verfahrbar ist.
  2. Baumaschine (1) gemäß Anspruch 1,
    dadurch gekennzeichnet,
    dass ein Keilriemengetriebe zwischen der Antriebswelle und dem Winkelgetriebe angeordnet ist.
  3. Baumaschine (1) gemäß einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Seitenschildeinwölbung (35) in Axialrichtung der Antriebsachse (25) unmittelbar an die Gehäusestufe angrenzt.
  4. Baumaschine (1) gemäß einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Seitenschildeinwölbung (35) das Gehäuse umlaufend ausgebildet ist.
  5. Baumaschine (1) gemäß einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Seitenschildeinwölbung (35) ringförmig ausgebildet ist.
  6. Baumaschine (1) gemäß Anspruch 5,
    dadurch gekennzeichnet,
    dass die ringförmige Seitenschildeinwölbung (35) ein gerundetes Profil aufweist.
  7. Baumaschine gemäß einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Antriebsachse (25) mehrgliedrig mit wenigstens zwei funktional gekoppelten Achsgliedern ausgebildet ist.
  8. Baumaschine gemäß Anspruch 7,
    dadurch gekennzeichnet,
    dass die wenigstens zwei Achsglieder der Antriebsachse (25) bezüglich ihrer Längsachsen senkrecht zueinander liegen.
  9. Baumaschine (1) gemäß einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass das der Fräswalze (13) zugewandte stirnseitige Ende der Antriebsachse (25) durch die Seitenwand (15) des Fräswalzenkastens (6) hindurch geführt ist.
  10. Baumaschine (1) gemäß einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass zur Ankopplung der Antriebsachse (25) an die Abtriebsachse (26) ein Zahnradgetriebe vorhanden ist, wobei ein Zahnrad (36) auf der Antriebsachse (25) und ein Zahnrad (37) auf der Abtriebsachse (24) jeweils stirnseitig angeordnet sind.
  11. Baumaschine (1) gemäß einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass das Gehäuse (24) auf Höhe einer Gehäusestufe (33) im gestuften Bereich des Antriebsgetriebes durch die Seitenwand (15) geführt ist.
  12. Baumaschine (1) gemäß einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass das Seitenschild (16) im in Vertikalrichtung oberen Randbereich eine Anschlagkante (32) aufweist, deren Kontur zumindest teilweise komplementär zur Kontur der Seitenschildeinwölbung des Gehäuses (24) ist.
  13. Baumaschine (1) gemäß Anspruch 12,
    dadurch gekennzeichnet,
    dass die Anschlagkante eine Einkerbung aufweist.
  14. Baumaschine (1) gemäß einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Führung des Seitenschildes in der Weise ausgebildet ist, dass es unmittelbar am Gehäuse entlang geführt ist.
  15. Baumaschine gemäß einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Seitenschildeinwölbung in der Weise ausgebildet ist, dass das Seitenschild im hochgestellten Zustand die Längsachse des unteren Getriebeteils schneidet.
EP11002999.8A 2010-04-10 2011-04-08 Baumaschine zum Bearbeiten einer Fahrbahnoberfläche Active EP2374937B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201010014529 DE102010014529A1 (de) 2010-04-10 2010-04-10 Baumaschine zum Bearbeiten einer Fahrbahnoberfläche

Publications (3)

Publication Number Publication Date
EP2374937A2 true EP2374937A2 (de) 2011-10-12
EP2374937A3 EP2374937A3 (de) 2015-07-15
EP2374937B1 EP2374937B1 (de) 2016-05-11

Family

ID=44341912

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11002999.8A Active EP2374937B1 (de) 2010-04-10 2011-04-08 Baumaschine zum Bearbeiten einer Fahrbahnoberfläche

Country Status (2)

Country Link
EP (1) EP2374937B1 (de)
DE (1) DE102010014529A1 (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2695994A1 (de) * 2012-08-06 2014-02-12 Wirtgen GmbH Selbstfahrende Baumaschine
US20140333117A1 (en) * 2013-05-10 2014-11-13 Wirtgen Gmbh Road Milling Machine, In Particular Small Milling Machine, For Working Road Surfaces
CN105714665A (zh) * 2016-03-15 2016-06-29 湖南三一路面机械有限公司 铣刨机
US9422677B2 (en) 2012-06-25 2016-08-23 Wirtgen Gmbh Self-propelled construction machine
DE102016002294A1 (de) 2016-02-25 2017-08-31 Bomag Gmbh Bodenfräsmaschine, Verfahren zum Steuern einer Sicherheitsabschalteinrichtung einer Fräswalze einer Bodenfräsmaschine und Steuereinheit
US20170254032A1 (en) * 2016-03-03 2017-09-07 Caterpillar Paving Products Inc. Cold Planer Rear Door and Sliding Plates Sealing Design
CN107165034A (zh) * 2017-07-18 2017-09-15 湖南煜欣轨道装备科技工程有限公司 一种铣刨机
US9995009B2 (en) 2014-12-04 2018-06-12 Wirtgen Gmbh Self-propelled construction machine and method for operating a self-propelled construction machine
CN108277729A (zh) * 2017-01-06 2018-07-13 台州市建设工程机械厂 一种小型路面铣刨机的铣刨座
US10113275B2 (en) 2015-11-12 2018-10-30 Wirtgen Gmbh Self-propelled ground milling machine and method for working on a traffic surface
EP3945160A1 (de) * 2020-07-31 2022-02-02 Wirtgen GmbH Baumaschinen zum bearbeiten einer fahrbahnoberfläche

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011114709A1 (de) 2011-09-30 2013-04-04 Bomag Gmbh Abgasführung für eine Baumaschine, insbesondere für eine Straßenfräse
DE102014001921B4 (de) 2013-02-22 2024-08-22 Bomag Gmbh Fräswalze mit einer, insbesondere austauschbaren, Materialleiteinrichtung
DE102013005594A1 (de) 2013-04-03 2014-10-09 Bomag Gmbh Bodenfräsmaschine und Verfahren zum Austauschen der Fräswalze einer Bodenfräsmaschine
DE102013009816A1 (de) 2013-06-11 2014-12-11 Bomag Gmbh Bodenfräsmaschine, insbesondere Straßenkaltfräse
DE102013010866A1 (de) 2013-06-28 2014-12-31 Bomag Gmbh Bodenfräsmaschine mit einer Sensoreinrichtung zur berührungslosen Bestimmung von Verschleiß an Meißeleinrichtungen und Verfahren zur berührungslosen Bestimmung von Verschleiß an Meißeleinrichtungen einer Bodenfräsmaschine
DE102015002712A1 (de) 2014-03-10 2015-09-10 Bomag Gmbh Rundschaftmeißelanordnung, Sicherungsring für eine Rundschaftmeißelanordnung, Set mit einer Spannhülse und einem Sicherungsring und Verfahren zum Sichern eines Rundschaftmeißels in einem Meißelhalter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008020263A1 (de) 2008-04-22 2009-10-29 Dynapac Gmbh Straßenfräse

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4325580A (en) * 1979-05-07 1982-04-20 Cmi Corporation Roadway planing apparatus
DE3428090C1 (de) * 1984-07-30 1986-01-30 Reinhard 5461 Windhagen Wirtgen Antriebsvorrichtung für eine mechanisch angetriebene Fräswalze einer Straßenfräsmaschine
DE19504495A1 (de) * 1995-02-12 1996-08-22 Wirtgen Gmbh Maschine zur Erneuerung von Fahrbahnen
DE10232489A1 (de) * 2002-07-09 2004-01-29 Wirtgen Gmbh Selbstfahrende Straßenfräsmaschine
WO2010003436A1 (en) * 2008-07-09 2010-01-14 Marini S.P.A. Road milling machine with replaceable milling drum for different cutting widths

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008020263A1 (de) 2008-04-22 2009-10-29 Dynapac Gmbh Straßenfräse

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9422677B2 (en) 2012-06-25 2016-08-23 Wirtgen Gmbh Self-propelled construction machine
US9016798B2 (en) 2012-08-06 2015-04-28 Wirtgen Gmbh Self-propelled construction machine
EP2695994A1 (de) * 2012-08-06 2014-02-12 Wirtgen GmbH Selbstfahrende Baumaschine
US20140333117A1 (en) * 2013-05-10 2014-11-13 Wirtgen Gmbh Road Milling Machine, In Particular Small Milling Machine, For Working Road Surfaces
US9249545B2 (en) * 2013-05-10 2016-02-02 Wirtgen Gmbh Road milling machine, in particular small milling machine, for working road surfaces
US9995009B2 (en) 2014-12-04 2018-06-12 Wirtgen Gmbh Self-propelled construction machine and method for operating a self-propelled construction machine
US10626563B2 (en) 2014-12-04 2020-04-21 Wirtgen Gmbh Self-propelled construction machine and method for operating a self-propelled construction machine
US11286627B2 (en) 2015-11-12 2022-03-29 Wirtgen Gmbh Self-propelled ground milling machine and method for working on a traffic surface
US10655285B2 (en) 2015-11-12 2020-05-19 Wirtgen Gmbh Self-propelled ground milling machine and method for working on a traffic surface
US10113275B2 (en) 2015-11-12 2018-10-30 Wirtgen Gmbh Self-propelled ground milling machine and method for working on a traffic surface
DE102016002294A1 (de) 2016-02-25 2017-08-31 Bomag Gmbh Bodenfräsmaschine, Verfahren zum Steuern einer Sicherheitsabschalteinrichtung einer Fräswalze einer Bodenfräsmaschine und Steuereinheit
DE102016002294B4 (de) 2016-02-25 2024-03-07 Bomag Gmbh Bodenfräsmaschine, Verfahren zum Steuern einer Sicherheitsabschalteinrichtung einer Fräswalze einer Bodenfräsmaschine und Steuereinheit
US10094078B2 (en) * 2016-03-03 2018-10-09 Caterpillar Paving Products Inc. Cold planer rear door and sliding plates sealing design
US20170254032A1 (en) * 2016-03-03 2017-09-07 Caterpillar Paving Products Inc. Cold Planer Rear Door and Sliding Plates Sealing Design
CN105714665A (zh) * 2016-03-15 2016-06-29 湖南三一路面机械有限公司 铣刨机
CN105714665B (zh) * 2016-03-15 2018-04-17 湖南三一路面机械有限公司 铣刨机
CN108277729A (zh) * 2017-01-06 2018-07-13 台州市建设工程机械厂 一种小型路面铣刨机的铣刨座
CN107165034A (zh) * 2017-07-18 2017-09-15 湖南煜欣轨道装备科技工程有限公司 一种铣刨机
EP3945160A1 (de) * 2020-07-31 2022-02-02 Wirtgen GmbH Baumaschinen zum bearbeiten einer fahrbahnoberfläche
US11499277B2 (en) 2020-07-31 2022-11-15 Wirtgen Gmbh Construction machines
US11761156B2 (en) 2020-07-31 2023-09-19 Wirtgen Gmbh Construction machines

Also Published As

Publication number Publication date
EP2374937A3 (de) 2015-07-15
DE102010014529A1 (de) 2011-10-13
EP2374937B1 (de) 2016-05-11

Similar Documents

Publication Publication Date Title
EP2374937B1 (de) Baumaschine zum Bearbeiten einer Fahrbahnoberfläche
EP2378002B1 (de) Fräsvorrichtung zum Erstellen vertikal verlaufender Schlitze im Boden
DE3751321T2 (de) Kreiselmäher.
DE102013002639B4 (de) Bodenfräsmaschine, insbesondere Straßenfräse und Verfahren zur Bewegung eines Sicherheitsbügels einer solchen Bodenfräsmaschine
DE102010050831A1 (de) Rotorhaube für eine Fräsvorrichtung
EP2339072B1 (de) Heckfräse für Pistenraupe
DE68907339T2 (de) Verfahren für den Schildvortrieb mit wählbarem Querschnitt und Maschine dafür.
EP3872261B1 (de) Bodenbearbeitungsmaschine und tragstruktur mit formschluss zwischen rotierender arbeitsbaugruppe und dessen drehlager
DE102013020679A1 (de) Rotorschwenkarm für eine Bodenfräsmaschine, Bodenfräsmaschine mit einem solchen Rotorschwenkarm
EP2911492B1 (de) Fahrbares und/oder an ein trägerfahrzeug anbaubares bodenbearbeitungsgerät
DE102013015873A1 (de) Abstreifvorrichtung für eine Bodenfräsmaschine sowie Bodenfräsmaschine mit einer solchen Abstreifvorrichtung
EP2801666B1 (de) Strassenfräsmaschine, insbesondere Kleinfräse, zum Bearbeiten von Strassenoberflächen
DE102011118791B4 (de) Förderband zur Verwendung in einer Fräsvorrichtung und Fräsvorrichtung mit einem solchen Förderband
DE10050397C1 (de) Fräsbrecher
DE102013004234B4 (de) Bodenfräsmaschine, insbesondere Straßenfräse, mit einer Vorrichtung zur Arretierung der Fräskastentür in einer Wartungsposition
EP2028319B1 (de) Fräsvorrichtung zur Bodenbearbeitung
DE102011051088B4 (de) Scharniergelenk zur Anwendung in Armen mit bis zu 180 Grad Zusammenfaltung der linearen Verbindungen zu Parallelführungen mittels eines oder mehrerer Gelenke
DE102014014704B4 (de) Bodenfräsmaschine und Verfahren zum Verschwenken einer Fahreinrichtung einer Bodenfräsmaschine
DE102014100612A1 (de) Rotorvorrichtung
EP3335846B1 (de) Werkzeugmaschine zur kantenbearbeitung eines werkstücks
EP1722186B1 (de) Minenfräse für ein Minenräumfahrzeug
DE19650617A1 (de) Landwirtschaftliches Fahrzeug für die Fütterung von Tieren mit Silage
DE202012004683U1 (de) Landmaschine
DE102016001688A1 (de) Fräswalzenkasten mit einer Seitenabdichtung und Bodenfräsmaschine, insbesondere Stabilisierer oder Recycler, mit einer Fräswalzenabdichtung
EP3725147B1 (de) Mähmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: E01C 23/088 20060101AFI20150605BHEP

17P Request for examination filed

Effective date: 20150722

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151218

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 798786

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011009677

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160811

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160812

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011009677

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170408

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170408

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170408

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 798786

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160911

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011009677

Country of ref document: DE

Representative=s name: ZIMMERMANN & PARTNER PATENTANWAELTE MBB, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240418

Year of fee payment: 14