EP2365108A2 - Stahldrahtseil zur Verwendung in einem Antriebssystem - Google Patents
Stahldrahtseil zur Verwendung in einem Antriebssystem Download PDFInfo
- Publication number
- EP2365108A2 EP2365108A2 EP11169291A EP11169291A EP2365108A2 EP 2365108 A2 EP2365108 A2 EP 2365108A2 EP 11169291 A EP11169291 A EP 11169291A EP 11169291 A EP11169291 A EP 11169291A EP 2365108 A2 EP2365108 A2 EP 2365108A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- wire rope
- zinc
- magnesium oxide
- metallic wire
- coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 47
- 239000010959 steel Substances 0.000 title claims abstract description 47
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims abstract description 66
- 239000000395 magnesium oxide Substances 0.000 claims abstract description 65
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims abstract description 64
- 238000000576 coating method Methods 0.000 claims abstract description 54
- 239000011248 coating agent Substances 0.000 claims abstract description 47
- 238000005260 corrosion Methods 0.000 claims abstract description 47
- 230000007797 corrosion Effects 0.000 claims abstract description 47
- 239000011701 zinc Substances 0.000 claims abstract description 42
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 41
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 41
- 239000002245 particle Substances 0.000 claims abstract description 22
- 229910001297 Zn alloy Inorganic materials 0.000 claims abstract description 14
- 239000007788 liquid Substances 0.000 claims abstract description 14
- 125000001931 aliphatic group Chemical group 0.000 claims abstract description 5
- 239000002480 mineral oil Substances 0.000 claims abstract description 5
- 235000010446 mineral oil Nutrition 0.000 claims abstract description 4
- 239000003112 inhibitor Substances 0.000 claims description 19
- 239000000203 mixture Substances 0.000 claims description 12
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 8
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 6
- 229910052582 BN Inorganic materials 0.000 claims description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 2
- 229910003460 diamond Inorganic materials 0.000 claims description 2
- 239000010432 diamond Substances 0.000 claims description 2
- 239000010453 quartz Substances 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 2
- 239000000314 lubricant Substances 0.000 abstract description 26
- 230000002829 reductive effect Effects 0.000 abstract description 10
- 238000005498 polishing Methods 0.000 abstract 1
- 238000012360 testing method Methods 0.000 description 14
- 238000000034 method Methods 0.000 description 11
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 7
- 239000007921 spray Substances 0.000 description 7
- 239000010410 layer Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 230000008092 positive effect Effects 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229930040373 Paraformaldehyde Natural products 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 230000002349 favourable effect Effects 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229920006324 polyoxymethylene Polymers 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- -1 greases Substances 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- KFZAUHNPPZCSCR-UHFFFAOYSA-N iron zinc Chemical compound [Fe].[Zn] KFZAUHNPPZCSCR-UHFFFAOYSA-N 0.000 description 2
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 2
- 239000001095 magnesium carbonate Substances 0.000 description 2
- 235000014380 magnesium carbonate Nutrition 0.000 description 2
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 2
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 2
- 239000000347 magnesium hydroxide Substances 0.000 description 2
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 2
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 2
- 239000000391 magnesium silicate Substances 0.000 description 2
- 229910052919 magnesium silicate Inorganic materials 0.000 description 2
- 235000019792 magnesium silicate Nutrition 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000005491 wire drawing Methods 0.000 description 2
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 241000060350 Citronella moorei Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000677 High-carbon steel Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910001122 Mischmetal Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 241000475481 Nebula Species 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- 229910000611 Zinc aluminium Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- HXFVOUUOTHJFPX-UHFFFAOYSA-N alumane;zinc Chemical compound [AlH3].[Zn] HXFVOUUOTHJFPX-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000010349 cathodic reaction Methods 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- MHJAJDCZWVHCPF-UHFFFAOYSA-L dimagnesium phosphate Chemical compound [Mg+2].OP([O-])([O-])=O MHJAJDCZWVHCPF-UHFFFAOYSA-L 0.000 description 1
- 229910000395 dimagnesium phosphate Inorganic materials 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- UOVKYUCEFPSRIJ-UHFFFAOYSA-D hexamagnesium;tetracarbonate;dihydroxide;pentahydrate Chemical compound O.O.O.O.O.[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O UOVKYUCEFPSRIJ-UHFFFAOYSA-D 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229940031958 magnesium carbonate hydroxide Drugs 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 235000012254 magnesium hydroxide Nutrition 0.000 description 1
- 229960000816 magnesium hydroxide Drugs 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- QELJHCBNGDEXLD-UHFFFAOYSA-N nickel zinc Chemical compound [Ni].[Zn] QELJHCBNGDEXLD-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- GZCWPZJOEIAXRU-UHFFFAOYSA-N tin zinc Chemical compound [Zn].[Sn] GZCWPZJOEIAXRU-UHFFFAOYSA-N 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 description 1
- 229910000165 zinc phosphate Inorganic materials 0.000 description 1
- MQWLIFWNJWLDCI-UHFFFAOYSA-L zinc;carbonate;hydrate Chemical compound O.[Zn+2].[O-]C([O-])=O MQWLIFWNJWLDCI-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/321—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/322—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
- C23C28/3225—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/347—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with layers adapted for cutting tools or wear applications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B1/00—Constructional features of ropes or cables
- D07B1/06—Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B1/00—Constructional features of ropes or cables
- D07B1/06—Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
- D07B1/0606—Reinforcing cords for rubber or plastic articles
- D07B1/0666—Reinforcing cords for rubber or plastic articles the wires being characterised by an anti-corrosive or adhesion promoting coating
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2001—Wires or filaments
- D07B2201/201—Wires or filaments characterised by a coating
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2001—Wires or filaments
- D07B2201/201—Wires or filaments characterised by a coating
- D07B2201/2011—Wires or filaments characterised by a coating comprising metals
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2001—Wires or filaments
- D07B2201/201—Wires or filaments characterised by a coating
- D07B2201/2013—Wires or filaments characterised by a coating comprising multiple layers
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2205/00—Rope or cable materials
- D07B2205/30—Inorganic materials
- D07B2205/3021—Metals
- D07B2205/3071—Zinc (Zn)
Definitions
- the invention relates to the field of steel wire ropes more in particular to steel wire ropes that have to withstand corrosive circumstances during operation.
- steel wire ropes can be found in many drive systems such as a window elevator in a car door, or a drive system for a sliding door, or a canvas roof drive, or a garage door opener drive system, or a hoisting rope to name just a few.
- the invention offers a more corrosion resistant kind of rope while maintaining good fatigue properties and improved friction properties.
- Steel wire ropes are in many cases the preferred means to convey force and displacement (i.e. work) over a distance between meters and kilometres at a low cost.
- the ropes can be made very flexible - so that the rope can accommodate small bending pulleys - by using fine wire diameters.
- the strength of the rope can be increased thus enabling the transmittal of higher forces.
- the modulus of elasticity is close to that of steel and the elongation of the cord can be minimised thus eliminating slack out of the drive system.
- the ropes can be designed to withstand the repeated bending, torsion or stretch movements that occur in such drive systems.
- steel wire ropes are reliable because the fatigue limit can be accurately predicted by means of tests that simulate the real live usage of the ropes.
- the steel wire ropes show a favourable friction coefficient with respect to wear pieces, a property that in many cases allows the replacement of bending pulleys with fixed rope guides with considerable cost savings in the drive system as a consequence.
- the corrosion progress is regularly (e.g. every 24 hours) visually monitored and graded into a number of classes ('dots of light brown rust', 'spots of light brown rust', 'dots of dark brown rust', 'spots of dark brown rust' and '5% surface coverage with dark brown rust').
- 'dots of light brown rust', 'spots of light brown rust', 'dots of dark brown rust', 'spots of dark brown rust' and '5% surface coverage with dark brown rust' the number of hours salt spray withstood in this test is until 'spots of dark brown rust' appear on the sample.
- wire ropes must withstand a minimum of 72 hours of salt spray before being accepted in the automobile industry.
- the lubricant is chosen in order to optimise the fatigue life. Estimates for the fatigue life can be obtained through dedicated test procedures that simulate the real life usage of the rope in the drive system. Hence, there are a number of proprietary test benches available to determine this fatigue life. A publicly available test is the MIL-W-83420 standard that was (and is) still widely used to test 'aircraft cable'.
- the inventors have searched for a particularly simple corrosion inhibitor adapted to the specific use of wire ropes in drive systems that is effective, cheap, environmentally friendly and easy to apply: another object of their invention.
- a metallic wire rope is provided that is intended for use in a drive system.
- Such wire ropes have a diameter smaller than 5 mm, although sizes below 3 mm are more preferred while nowadays sizes of 2 mm and 1.5 mm are most popular.
- the inventors believe that the trend towards smaller diameter wire ropes will continue and foresee that 1 mm diameter ropes will become possible in the foreseeable future.
- the metallic wire rope is assembled out of zinc or zinc alloy coated steel wires.
- the steel used to produce these wires is - as high strength is needed - a high carbon steel.
- Such steels have compositions according following lines: a carbon content between 0.35 and 1.15 wt. %, preferably between 0.60 and 1.00 wt.% carbon, a manganese content between 0.30 and 0.70 wt. %, a silicon content between 0.10 and 0.60 wt.%, a maximum sulphur content of 0.05 wt. %, a maximum phosphorus content of 0.05 wt.%.
- Micro-alloying with particular elements such a chromium, nickel, vanadium, boron, cobalt, copper, molybdenum are not excluded for amounts ranging from 0.01 to 0.08 wt.% as this alloying may help to reach higher strength levels.
- the wires are assembled into strands that may or may not be further assembled into wire ropes.
- Typical configurations that are common in the field are 7x7, 7x19, 19+8x7, 19W+8x7, 7x8, 8x7, 8x8 19+9x7, 1 x3+5x7 to name just a few.
- 7x8 designates a rope consisting of 7 strands that each consist of 8 wires.
- a strand consists of a core wire around which 7 outer wires are helically twisted with a certain pitch. Six of said strands are twisted around a central core strand, again with a defined pitch.
- the diameters of the outer wires are by preference chosen such that they easily fit around the core wire.
- the diameter of the core strand can be so chosen as to be adapted to the diameter of the outer strands.
- the strands can be produced layer by layer by twisting wires around intermediate strands leading to an exemplary configuration of a core wire surrounded by six wires again surrounded by twelve wires giving a 1+6+12 configuration that is shortened to a 19 wire strand.
- a special case is where the wire diameters are so chosen as to fit nicely together as in a Warrington configuration (as in the core of the 19W+8x7 construction). All 19 wires are then assembled together with the same pitch.
- strands are compacted prior to cabling or even complete cables are compacted.
- a fibre replaces the core wire. The inventive idea of this application is equally well applicable to all these variations.
- the amount of coating on the wire is expressed in grams of coating per square meter of wire surface. As the coating does not add to the strength of the cord, it must be as thin as possible without jeopardising the corrosion resistance.
- Conventional coating amounts are - the number between brackets refers to the average thickness for a corresponding zinc coating having a density of 7.14 kg/dm 3 - minimum 30 g/m 2 (4.2 ⁇ m).
- lower amounts such as lower than 25 g/m 2 (3.5 ⁇ m), or lower than 20 g/m 2 (2.8 ⁇ m) or even lower as 15 g/m 2 (2.1 ⁇ m) are more preferred for this inventive wire rope.
- hot-dip processes are preferred as they provide a solid coating welded to the steel. Due to the hot dip, an alloy layer will form between the steel and the coating that entails additional protection to the steel. Particularly preferred from the viewpoint of strength and fatigue is the coating as described in EP 1 280 958 B1 .
- a zinc coating with a reduced thickness of below 2 micrometer (14.3 g zinc per m 2 of wire) inclusive the zinc-iron alloy layer is described together with the associated process to coat the wires.
- Such a wire has a reduced thickness of zinc, which is favourable to obtain a higher breaking load of the cord.
- the roughness of the zinc to steel transition layer is much reduced what results in an improved fatigue.
- the coating on itself does not protect sufficiently against corrosion.
- the inventors have found that the reduced corrosion resistance can be compensated by the use of corrosion inhibitor applied by means of a liquid carrier.
- a very simple compound namely magnesium oxide (MgO) was best fitted to this end.
- the magnesium oxide (MgO) must be finely dispersed in the carrier.
- the carrier only serves to distribute the magnesium oxide evenly over the surface of the wire: the particles must come in close contact with the coating of the wire.
- the liquid carrier can remain in place or may evaporate: it has been found that the positive, corrosive inhibitive effects remain.
- the magnesium oxide makes it possible to use thinner zinc coatings, entailing the advantages of higher strength and better fatigue, while maintaining and even improving the corrosion resistance. Mutatis mutandis the magnesium oxide gives more certainty against corrosion when used on wires with the currently used zinc coatings.
- Magnesium oxide (MgO) is a very common product that can be obtained through a number of process routes.
- a first route is through heating of magnesite (magnesium carbonate, a natural mineral deposit) in the presence of oxygen.
- a second route uses brine containing MgCl 2 that is first converted to Mg(OH) 2 for purification through wet precipitation followed by calcination to drive out the water. The latter route is more preferred.
- the resultant magnesium oxide (MgO) can be classified in different grades:
- an aliphatic mineral oil is most preferred. Aliphatic mineral oils are normally used to enhance the fatigue life of the wire rope by reducing the friction between the wires as they are bent over a pulley or a wear piece. As they are to be applied on the wire rope anyhow, they can conveniently be used as a carrier for the magnesium oxide dispersion.
- Other possible liquid carriers are paraphenes and more in particular isoparaphenes that are known to easily evaporate.
- MgO magnesium oxide
- the effect of the corrosion protection of magnesium oxide (MgO) is already apparent when only minute quantities are applied on the zinc or zinc alloy coated surface. Indeed, at a minimum of 100 milligram of MgO per square meter of wire surface, already positive effects on the number of hours survived in the salt spray test can be identified. Compared to the amount of the zinc coating (present in an amount of typically 15 000 to 30 000 mg/m 2 ) this is remarkable. The effects increase linear with the amount of MgO applied on the zinc or zinc alloy coating. An amount of 200 mg /m 2 MgO is therefore more preferred. Higher quantities of 1 000 mg/m 2 or 2 000 mg/m 2 or even 4 000 mg/m 2 MgO still lead to improved results. At present, no levelling off of the positive effects has been detected.
- the magnesium oxide is finely spread over the wire surface in order to obtain a uniform spread of the magnesium oxide flocs. This is best obtained by using a finely ground magnesium oxide with an average particle size of between 1 and 100 micrometer, most preferred being 5 to 75 micrometer.
- the magnesium oxide must be in physical contact with the zinc or zinc coating layer, otherwise the corrosion protection is less effective or non-existent.
- abrasive particles of about the same size (5 to 50 micrometer average particle size) as the magnesium oxide particles into the liquid carrier. The idea was that by adding this abrasive, the surface of the zinc coating is ground thus embedding better the magnesium oxide particles. Much to their surprise they found that adding such an abrasive reduced the wear of polymer guiding pieces in the drive system.
- Such guiding pieces are usually made of hard polymers such as polyoxymethylene (POM) or polyamide (Nylon 6).
- abrasive particles not only activate the zinc coating, but also polish the surface of the wire making it smoother.
- silicon carbide SiC
- Other abrasives quartz, cubic boron nitride, diamond and many others
- Remarkable is also that these abrasive particles do not have a negative influence on the fatigue behaviour of the steel wire rope. It has been found that between 0.1 and 10, preferably between 0.1 and 2 grams of SiC per kilogram of wire rope more than suffices to obtain the positive effects.
- a metallic wire product that comprises at least one zinc or zinc alloy coated steel wire.
- a corrosion inhibitor is embedded in the zinc or zinc alloy coating as a finely dispersed solid.
- this corrosion inhibitor is present in the outer surface of the coating.
- the solid corrosion inhibitor is embossed, pressed into the outer surface of said coating.
- this corrosion inhibitor is magnesium oxide (MgO) .
- a method is disclosed to protect a metallic wire product.
- the method starts from a steel wire of intermediate diameter provided with a zinc or zinc alloy coating.
- the steel and coating compositions are in line with the compositions described in the first aspect of the invention.
- On a wire drawing bench preferably a wet wire drawing bench, the wire is sequentially drawn through progressively smaller dies, a technique common in the art.
- the wire drags a finely dispersed corrosion inhibitor into one of the drawing dies.
- the corrosion inhibitor gets impressed into to the outer surface of the coating by the compressive action of the die on the wire.
- the corrosion inhibitor can be applied on the wire at one die e.g. the entrance (i.e. the largest) die or at the exit (i.e. the smallest) die. Or the inhibitor can be fed to the wire at two or more dies, or at every die of the whole die series.
- the corrosion inhibitor can be provided in a powder form.
- the corrosion inhibitor can be mixed into powder soaps that are common in the art of steel wire dry drawing as solid lubricants.
- a powder mixture can be fed together with the wire into the die by guiding the wire through a soap box at the entrance of the die.
- the corrosion inhibitor can be mixed into a liquid carrier that is dragged by the wire into the die entrance.
- the corrosion inhibitor comes in intimate, electrical contact with the zinc or zinc alloy coating. The corrosion inhibitor therefore should not be isolated from the zinc or zinc alloy coating by drawing soap residues.
- the corrosion inhibitor is magnesium oxide (MgO).
- MgO magnesium oxide
- Preferred is that the magnesium oxide powder has been finely ground so as to pass a 74 micrometer mesh.
- the cord is of the following make: 0.15 + 6 ⁇ 0.14 3.5 s + 12 ⁇ 0.14 8.5 s + 8 ⁇ 0.14 + + 6 ⁇ x ⁇ 0.14 4.8 z 12 S the different bracket levels indicating single operations, the subscripts indicating lay lengths and lay directions.
- the cord has a linear mass of 9.78 g/m and a wire surface of 33.56 m 2 /km of cord. If not indicated to the contrary, the rope wires have obtained a hot dip galvanised, technically pure zinc coating of about 100 g per kg of coated steel wire rope (i.e. 28 g/m 2 or an average thickness of 3.9 ⁇ m).
- the radius of curvature of the POM guiding piece was 15 mm while the rope covers 180° of the piece.
- the wear is evaluated after 5 000 back and forth cycles (i.e. 10 000 passages) in which the same 430 mm of rope glides over the guiding piece. No lubricant is added prior to the testing.
- the inventors want to stress that the invention is equally well applicable to all kinds of configurations of steel wire ropes and that their use is not limited to window elevator systems but to all kinds of drive systems (sliding doors, sliding rooftops, garage doors, curtain drives, brake cables, clutch cable, door latch system, a non-exhaustive list).
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Ropes Or Cables (AREA)
- Lubricants (AREA)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL11169291T PL2365108T3 (pl) | 2005-12-21 | 2006-12-11 | Lina z drutu stalowego do użycia w systemie napędowym |
EP11169291.9A EP2365108B1 (de) | 2005-12-21 | 2006-12-11 | Stahldrahtseil zur Verwendung in einem Antriebssystem |
SI200632280T SI2365108T1 (sl) | 2005-12-21 | 2006-12-11 | Jeklena žična vrv za uporabo v pogonskem sistemu |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05112555 | 2005-12-21 | ||
EP06829620A EP1963543B1 (de) | 2005-12-21 | 2006-12-11 | Stahldrahtseil zur verwendung in einem antriebssystem |
EP11169291.9A EP2365108B1 (de) | 2005-12-21 | 2006-12-11 | Stahldrahtseil zur Verwendung in einem Antriebssystem |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06829620A Division EP1963543B1 (de) | 2005-12-21 | 2006-12-11 | Stahldrahtseil zur verwendung in einem antriebssystem |
EP06829620.1 Division | 2006-12-11 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2365108A2 true EP2365108A2 (de) | 2011-09-14 |
EP2365108A3 EP2365108A3 (de) | 2011-09-21 |
EP2365108B1 EP2365108B1 (de) | 2018-05-23 |
Family
ID=36452476
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06829620A Active EP1963543B1 (de) | 2005-12-21 | 2006-12-11 | Stahldrahtseil zur verwendung in einem antriebssystem |
EP11169291.9A Active EP2365108B1 (de) | 2005-12-21 | 2006-12-11 | Stahldrahtseil zur Verwendung in einem Antriebssystem |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06829620A Active EP1963543B1 (de) | 2005-12-21 | 2006-12-11 | Stahldrahtseil zur verwendung in einem antriebssystem |
Country Status (10)
Country | Link |
---|---|
EP (2) | EP1963543B1 (de) |
KR (1) | KR101404645B1 (de) |
CN (2) | CN101346490B (de) |
AT (1) | ATE523611T1 (de) |
ES (2) | ES2674405T3 (de) |
PL (2) | PL1963543T3 (de) |
PT (2) | PT1963543E (de) |
SI (2) | SI1963543T1 (de) |
TR (1) | TR201809596T4 (de) |
WO (1) | WO2007071340A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102975422A (zh) * | 2012-12-12 | 2013-03-20 | 华勤钢丝绳有限公司 | 一种高强度钢丝、其制备方法以及输送带用超高强度钢丝绳 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI20115246A0 (fi) | 2011-03-11 | 2011-03-11 | Kone Corp | Hissijärjestelmä |
CN103541250B (zh) * | 2013-10-14 | 2016-03-02 | 无锡通用钢绳有限公司 | 一种钢丝绳 |
CN107815784A (zh) * | 2017-10-25 | 2018-03-20 | 江阴市蒋氏汽摩部件有限公司 | 一种耐磨高强度拉索及其制备方法 |
FI20176129A1 (fi) | 2017-12-15 | 2019-06-16 | Kone Corp | Pastavoitelu |
US11066783B2 (en) | 2018-09-17 | 2021-07-20 | Leggett & Platt Canada Co. | Corrosion resistant cable |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19512180A1 (de) | 1992-08-26 | 1996-10-02 | Chrysanthemum Co | Drahtseil |
EP0550005B1 (de) | 1991-12-27 | 1997-03-05 | Nippon Cable System Inc. | Betätigungsseil |
US6106741A (en) | 1994-10-21 | 2000-08-22 | Elisha Technologies Co Llc | Corrosion resistant wire rope product |
WO2003044267A1 (en) | 2001-11-23 | 2003-05-30 | N.V. Bekaert S.A. | Cable and window elevator system using such cable |
EP1280958B1 (de) | 2000-05-08 | 2005-05-04 | N.V. Bekaert S.A. | Verzinktes stahlseil mit verbesserter dauerfestigkeit |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1064973A (en) * | 1964-03-13 | 1967-04-12 | British Ropes Ltd | Improvements in or relating to wires, strands and ropes |
US3740822A (en) * | 1969-02-03 | 1973-06-26 | Robertson Co H H | Method of making protected metal article |
JPS5531176A (en) * | 1978-08-28 | 1980-03-05 | Mishima Kosan Co Ltd | Friction plating method |
JPS63195282A (ja) * | 1987-02-10 | 1988-08-12 | Nippon Steel Corp | 高潤滑性皮膜鋼板 |
JPH03180491A (ja) * | 1989-08-11 | 1991-08-06 | Nippon Piston Ring Co Ltd | 摺動部材 |
JPH04246193A (ja) * | 1991-01-31 | 1992-09-02 | Nippon Parkerizing Co Ltd | 耐熱性および耐食性にすぐれた亜鉛めっき金属材料 |
US5283131A (en) * | 1991-01-31 | 1994-02-01 | Nihon Parkerizing Co., Ltd. | Zinc-plated metallic material |
US5972522A (en) * | 1991-04-10 | 1999-10-26 | Kawasaki Steel Corporation | Corrosion resistant Zn or part-Zn plated steel sheet with MgO coating free of Mg |
JP3416201B2 (ja) * | 1993-06-17 | 2003-06-16 | 日本電信電話株式会社 | ビニル防食線の製造法 |
JPH07108319A (ja) * | 1993-10-12 | 1995-04-25 | Kobe Steel Ltd | 潤滑性及び耐食性にすぐれる冷間鍛造用棒鋼線材の製造方法 |
JPH07164042A (ja) * | 1993-12-15 | 1995-06-27 | Kobe Steel Ltd | 潤滑性及び耐食性にすぐれる冷間鍛造用棒鋼線材の製造方法 |
JP3100861B2 (ja) * | 1995-04-07 | 2000-10-23 | 新日本製鐵株式会社 | 低光沢めっき薄鋼板 |
JP2001131763A (ja) * | 1999-11-09 | 2001-05-15 | Nippon Steel Corp | 有機複合亜鉛系メッキ鋼板 |
BE1014525A3 (fr) * | 2001-12-04 | 2003-12-02 | Ct Rech Metallurgiques Asbl | Procede de revetement de surface metallique. |
JP2004124342A (ja) * | 2002-10-04 | 2004-04-22 | Shuji Tarumoto | インナーワイヤーロープ |
WO2005080624A1 (en) * | 2004-02-13 | 2005-09-01 | Nv Bekaert Sa | Steel wire with metal layer and roughnesses |
-
2006
- 2006-12-11 ES ES11169291.9T patent/ES2674405T3/es active Active
- 2006-12-11 TR TR2018/09596T patent/TR201809596T4/tr unknown
- 2006-12-11 PL PL06829620T patent/PL1963543T3/pl unknown
- 2006-12-11 SI SI200631177T patent/SI1963543T1/sl unknown
- 2006-12-11 SI SI200632280T patent/SI2365108T1/sl unknown
- 2006-12-11 PL PL11169291T patent/PL2365108T3/pl unknown
- 2006-12-11 PT PT06829620T patent/PT1963543E/pt unknown
- 2006-12-11 EP EP06829620A patent/EP1963543B1/de active Active
- 2006-12-11 WO PCT/EP2006/012069 patent/WO2007071340A1/en active Application Filing
- 2006-12-11 CN CN2006800489971A patent/CN101346490B/zh active Active
- 2006-12-11 KR KR1020087014606A patent/KR101404645B1/ko active IP Right Grant
- 2006-12-11 EP EP11169291.9A patent/EP2365108B1/de active Active
- 2006-12-11 CN CN2011100460425A patent/CN102162077B/zh active Active
- 2006-12-11 PT PT111692919T patent/PT2365108T/pt unknown
- 2006-12-11 ES ES06829620T patent/ES2371777T3/es active Active
- 2006-12-11 AT AT06829620T patent/ATE523611T1/de not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0550005B1 (de) | 1991-12-27 | 1997-03-05 | Nippon Cable System Inc. | Betätigungsseil |
DE19512180A1 (de) | 1992-08-26 | 1996-10-02 | Chrysanthemum Co | Drahtseil |
US6106741A (en) | 1994-10-21 | 2000-08-22 | Elisha Technologies Co Llc | Corrosion resistant wire rope product |
EP1280958B1 (de) | 2000-05-08 | 2005-05-04 | N.V. Bekaert S.A. | Verzinktes stahlseil mit verbesserter dauerfestigkeit |
WO2003044267A1 (en) | 2001-11-23 | 2003-05-30 | N.V. Bekaert S.A. | Cable and window elevator system using such cable |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102975422A (zh) * | 2012-12-12 | 2013-03-20 | 华勤钢丝绳有限公司 | 一种高强度钢丝、其制备方法以及输送带用超高强度钢丝绳 |
CN102975422B (zh) * | 2012-12-12 | 2015-04-22 | 华勤钢丝绳有限公司 | 一种高强度钢丝、其制备方法以及输送带用超高强度钢丝绳 |
Also Published As
Publication number | Publication date |
---|---|
PT1963543E (pt) | 2011-12-15 |
EP2365108A3 (de) | 2011-09-21 |
WO2007071340A1 (en) | 2007-06-28 |
EP2365108B1 (de) | 2018-05-23 |
PT2365108T (pt) | 2018-07-05 |
ATE523611T1 (de) | 2011-09-15 |
EP1963543A1 (de) | 2008-09-03 |
KR101404645B1 (ko) | 2014-06-09 |
TR201809596T4 (tr) | 2018-07-23 |
SI2365108T1 (sl) | 2019-02-28 |
CN101346490B (zh) | 2012-05-23 |
ES2371777T3 (es) | 2012-01-10 |
CN102162077B (zh) | 2013-03-13 |
ES2674405T3 (es) | 2018-06-29 |
PL2365108T3 (pl) | 2018-10-31 |
SI1963543T1 (sl) | 2012-06-29 |
PL1963543T3 (pl) | 2012-01-31 |
CN101346490A (zh) | 2009-01-14 |
EP1963543B1 (de) | 2011-09-07 |
CN102162077A (zh) | 2011-08-24 |
KR20080077984A (ko) | 2008-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1963543B1 (de) | Stahldrahtseil zur verwendung in einem antriebssystem | |
CA2914464C (en) | Hot stamp molded body, and method for producing hot stamp molded body | |
KR101928130B1 (ko) | 삼원계 또는 사원계 황동 합금 코팅을 포함하는 연신된 스틸 요소 및 상응하는 방법 | |
EP3733917B1 (de) | STAHLBLECH MIT PLATTIERUNG AUF BASIS VON GESCHMOLZENEM Zn, WELCHES NACH DER BESCHICHTUNG ÜBERLEGENE KORROSIONSBESTÄNDIGKEIT AUFWEIST | |
WO2013117249A1 (en) | Ternary or quaternary alloy coating for steam ageing and cured humidity adhesion elongated steel element comprising a ternary or quaternary brass alloy coating and corresponding method | |
CN102459545A (zh) | 金属绳索、设置有金属绳索的电梯以及润滑剂用于润滑金属绳索的用途 | |
SG190093A1 (en) | Compacted hybrid elevator rope | |
US11136713B2 (en) | Steel wire rope, elevator provided with steel wire rope, lubricant for steel wire rope, and use of lubricant for lubricating the steel wire rope | |
WO2020156967A1 (en) | Steel cord with a brass coating enriched with iron particles | |
JP4704091B2 (ja) | ワイヤロープおよびコントロールケーブル | |
US11078439B2 (en) | Paste type lubrication | |
KR20190103406A (ko) | 도금 강선, 스틸 코드 및 고무-도금 강선 복합체 | |
JP3105506B2 (ja) | コントロールケーブルの導管およびその製法 | |
CA1213815A (en) | Implantation of certain solid lubricants into certain metallic surfaces by mechanical inclusion | |
KR100277192B1 (ko) | 시효접착성이 우수한 고무보강용 스틸 타이어코드 | |
CN115726206B (zh) | 一种高耐腐蚀性和耐磨性钢丝绳及其制备方法 | |
EP4491761A1 (de) | Beschichtetes stahlblech zum heissprägen und wässrige oberflächenbehandlungsflüssigkeit dafür | |
Beeman | Factors affecting the service of large-diameter wire rope | |
CN1132809A (zh) | 钢丝绳 | |
Banerjee | Surface Engineering of Steel Substrate through a Novel Cu-Sn Alloy Coating towards Improving Adhesion at Steel-Rubber Interface | |
Mukheijee | Mine rope‐wires under distress | |
KR20040059237A (ko) | 내플레킹성이 우수한 합금화 용융아연 도금강판과 그제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 1963543 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C23C 30/00 20060101ALI20110818BHEP Ipc: C23C 28/00 20060101AFI20110818BHEP Ipc: C23C 2/26 20060101ALI20110818BHEP |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: VANDENBRANDEN, WOUTER Inventor name: VANBRABANT, JOHAN Inventor name: LEFEBVRE, DOMINIQUE Inventor name: VANCOMPERNOLLE, STIJN Inventor name: BRUYNEEL, PAUL |
|
17P | Request for examination filed |
Effective date: 20120221 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: BEKAERT ADVANCED CORDS AALTER NV |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20180103 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 1963543 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1001588 Country of ref document: AT Kind code of ref document: T Effective date: 20180615 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602006055481 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2674405 Country of ref document: ES Kind code of ref document: T3 Effective date: 20180629 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Ref document number: 2365108 Country of ref document: PT Date of ref document: 20180705 Kind code of ref document: T Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20180628 |
|
REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180523 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180823 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180523 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180523 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180523 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180523 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180523 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180824 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1001588 Country of ref document: AT Kind code of ref document: T Effective date: 20180523 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180523 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180523 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180523 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180523 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602006055481 Country of ref document: DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20181218 Year of fee payment: 13 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20190226 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180523 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181211 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20181231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181211 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181231 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: HU Payment date: 20191220 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20191230 Year of fee payment: 14 Ref country code: FR Payment date: 20191220 Year of fee payment: 14 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180523 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180923 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20191211 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191211 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SK Payment date: 20201211 Year of fee payment: 15 Ref country code: SI Payment date: 20201203 Year of fee payment: 15 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201231 Ref country code: HU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201212 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201211 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: MM4A Ref document number: E 28180 Country of ref document: SK Effective date: 20211211 |
|
REG | Reference to a national code |
Ref country code: SI Ref legal event code: KO00 Effective date: 20220816 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211211 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211212 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230619 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240126 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PT Payment date: 20241128 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20241210 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20241128 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: RO Payment date: 20241204 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20241202 Year of fee payment: 19 |