EP2362853A1 - Procédé de fabrication d'un méthacrylate de méthyle dérivé de la biomasse - Google Patents
Procédé de fabrication d'un méthacrylate de méthyle dérivé de la biomasseInfo
- Publication number
- EP2362853A1 EP2362853A1 EP09768206A EP09768206A EP2362853A1 EP 2362853 A1 EP2362853 A1 EP 2362853A1 EP 09768206 A EP09768206 A EP 09768206A EP 09768206 A EP09768206 A EP 09768206A EP 2362853 A1 EP2362853 A1 EP 2362853A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- acetone
- methanol
- fraction
- methyl methacrylate
- process according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/15—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
- C07C29/151—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
- C07C29/1516—Multisteps
- C07C29/1518—Multisteps one step being the formation of initial mixture of carbon oxides and hydrogen for synthesis
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C231/00—Preparation of carboxylic acid amides
- C07C231/06—Preparation of carboxylic acid amides from nitriles by transformation of cyano groups into carboxamide groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C233/00—Carboxylic acid amides
- C07C233/01—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
- C07C233/02—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
- C07C233/03—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with carbon atoms of carboxamide groups bound to hydrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C253/00—Preparation of carboxylic acid nitriles
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/18—Preparation of carboxylic acid esters by conversion of a group containing nitrogen into an ester group
- C07C67/20—Preparation of carboxylic acid esters by conversion of a group containing nitrogen into an ester group from amides or lactams
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/30—Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
- C07C67/317—Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups
- C07C67/327—Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups by elimination of functional groups containing oxygen only in singly bound form
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/36—Preparation of carboxylic acid esters by reaction with carbon monoxide or formates
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M145/00—Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
- C10M145/02—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C10M145/10—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate
- C10M145/12—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate monocarboxylic
- C10M145/14—Acrylate; Methacrylate
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/02—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/08—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
- C10M2209/084—Acrylate; Methacrylate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
Definitions
- the present invention relates to a process for producing a methyl methacrylate derived from biomass.
- Methyl methacrylate is the starting material for many polymerization or copolymerization reactions.
- PMMA poly (methyl methacrylate)
- ALTUGLAS ® and PLEXIGLAS ® poly (methyl methacrylate)
- PLEXIGLAS ® poly (methyl methacrylate)
- It is in the form of powders, granules or plates, the powders or granules used to mold various articles, such as articles for the automobile, household and office items, and the plates found use in the signs and displays, in the fields of transportation, building, lighting and sanitary, as noise barriers, for works of art, flat screens, etc.
- Methyl methacrylate is also the starting material for the organic synthesis of higher methacrylates, which, like it, are used in the preparation of acrylic emulsions and acrylic resins, serve as additives for polyvinyl chloride, enter As comonomers in the manufacture of many copolymers such as methyl methacrylate-butadiene-styrene copolymers, serve as additives for lubricants, and have many other applications among which one could mention medical prostheses, flocculants, products of maintenance, etc.
- Acrylic emulsions and resins have applications in the fields of paints, adhesives, paper, textiles, inks, etc.
- Acrylic resins serve also in the manufacture of plates, having the same applications as the PMMA.
- Methyl methacrylate can be obtained in a variety of ways, one of which is to hydrate the acetone cyanohydrin to ⁇ -hydroxyisobutyramide [(H 3 C) (OH) (CH 3 ) C-CO-NH 2 ] which, reacting with methyl formate [HCOOCH 3 ], produces methyl ⁇ -hydroxyisobutyrate [(H 3 C) (OH) (CH 3 ) -COOCH 3 ] and formamide [HCONH 2 ].
- Formamide is recycled after conversion to HCN + H 2 O, HCN reacts with acetone to give acetone cyanohydrin, and methyl ⁇ -hydroxyisobutyrate is dehydrated to methyl methacrylate.
- EP 407 811 illustrates such a process leading to the production of methyl methacrylate with a yield of 90%.
- the raw materials used for these syntheses of methyl methacrylate are mainly of petroleum origin or of synthetic origin, thus containing numerous sources of CO 2 emissions, which consequently contribute to the increase of the greenhouse effect. Given the dwindling global oil reserves, the source of these raw materials will gradually be exhausted.
- Raw materials from biomass are renewable and have a reduced impact on the environment. They do not require all the refining steps, very expensive in energy, petroleum products.
- the production of fossil CO 2 is reduced so that they contribute less to global warming.
- the plant has consumed atmospheric CO 2 at the rate of 44 g of CO 2 per mole of carbon (or for 12 g of carbon). So using a renewable source starts with reduce the amount of atmospheric CO2.
- the vegetable matter has the advantage of being able to be cultivated in large quantity, according to the demand, on most of the terrestrial globe. It therefore appears necessary to have methods of synthesis of methyl methacrylate not dependent on raw material of fossil origin, but rather using biomass as raw material.
- Biomass is the raw material of plant or animal origin naturally produced. This plant material is characterized by the fact that the plant for its growth has consumed atmospheric CO2 while producing oxygen. The animals for their growth consumed this vegetable raw material and thus assimilated carbon derived from atmospheric CO2.
- the purpose of the present invention is therefore to respond to certain concerns of sustainable development.
- the subject of the present invention is therefore a process for the manufacture of methyl methacrylate by reaction of alpha-hydroxyisobutyramide with methyl formate to give methyl alpha-hydroxyisobutyrate and formamide, methyl alpha-hydroxyisobutyrate being dehydrated methyl methacrylate, characterized in that at least a fraction of the methyl formate involved in this reaction and / or at least a fraction of the alpha-hydroxyisobutyramide involved in this reaction has been obtained by reaction or a succession of reactions from the biomass.
- At least one fraction of methyl formate was obtained by carbonylation of methanol using carbon monoxide extracted from a synthesis gas compound essentially carbon monoxide and hydrogen, at least a fraction of the synthesis gas has been obtained by gasification of any material of animal or vegetable origin or from the recovery of waste liquor and bleaching of the manufacture of cellulosic pulps.
- At least one fraction of the methyl formate was obtained by carbonylation of methanol, at least a fraction of the methanol having been obtained by pyrolysis of the wood or by gasification of any material of animal or vegetable origin leading to a synthesis gas consisting essentially of carbon monoxide and hydrogen which is optionally reacted with water by the reaction of gas with water to adjust the ratio H 2 / CO in the proportions appropriate for the synthesis of methanol, or by fermentation at plant crops such as wheat, corn, sugar cane or beet, giving fermentable products and therefore alcohol, at least a fraction of the synthesis gas to prepare the methanol that can also come from the recovery of waste liquor and bleaching of cellulosic pulp manufacturing.
- At least a portion of the alpha-hydroxyisobutyramide has been obtained by hydration of acetone cyanohydrin, at least a portion of the acetone cyanohydrin having been obtained by reaction of acetone with hydrocyanic acid, at least a part thereof which can come from the recycling of formamide, at least one of acetone and hydrocyanic acid having been obtained by a reaction or a succession of reactions from the biomass.
- acetone cyanohydrin having been obtained by reaction of acetone with hydrocyanic acid, at least a part thereof which can come from the recycling of formamide, at least one of acetone and hydrocyanic acid having been obtained by a reaction or a succession of reactions from the biomass.
- the subject of the present invention is also the use of methyl methacrylate manufactured by the process as defined above, as a monomer for the manufacture of poly (methyl methacrylate), as a starting material for the organic synthesis of higher methacrylates, such as product used in the preparation of acrylic emulsions and acrylic resins, as an additive for polyvinyl chloride, as a comonomer in the manufacture of copolymers and as a lubricant additive.
- methanol is obtained by pyrolysis of the wood, by gasification of all materials of animal or vegetable origin, leading to a synthesis gas composed essentially of carbon monoxide and hydrogen which is optionally reacted. with water by the reaction of gas with water to adjust the ratio H 2 / CO in the appropriate proportions to the synthesis of methanol, or by fermentation from crops of plants such as wheat, corn, cane sugar or beet, giving fermentable products and therefore alcohol.
- the materials of animal origin are, by way of non-limiting examples, fish oils and fats, such as cod liver oil, whale oil, sperm whale, dolphin oil, seal oil, sardine oil, herring oil, of squales, oils and fats of cattle, pigs, goats, equines, and poultry, such as tallow, lard, milk fat, bacon, chicken fat, beef, pork, horse, and others.
- fish oils and fats such as cod liver oil, whale oil, sperm whale, dolphin oil, seal oil, sardine oil, herring oil, of squales, oils and fats of cattle, pigs, goats, equines, and poultry, such as tallow, lard, milk fat, bacon, chicken fat, beef, pork, horse, and others.
- Plant-based materials are, by way of non-limiting examples, ligno-cellulosic residues from agriculture, cereal straw fodder, such as wheat straw, straw or maize residues; cereal residues as maize residues; cereal flours, such as wheat flour; cereals such as wheat, barley, sorghum, maize; wood, waste and scrap wood; grains; sugar cane, sugar cane residues; shoots and stems of peas; beetroot, molasses such as beet molasses; Jerusalem artichokes; potatoes, potato tops, potato residues; starch; mixtures of cellulose, hemicellulose and lignin, and the black liquor of stationery, which is a carbon-rich material.
- the synthesis gas for preparing the methanol comes from the recovery of residual liquor and the bleaching of the manufacture of cellulosic pulps.
- Carbon monoxide is obtained by gasification of all materials of animal or vegetable origin, leading to a synthesis gas composed essentially of carbon monoxide and hydrogen, from which carbon monoxide is extracted.
- acetone by aceto-butyl fermentation of C 6 and C 5 sugars, resulting in an acetone-butanol mixture, where appropriate with ethanol, from which acetone was separated for example by distillation, in particular azeotropic distillation or by membrane separation (for example on pervaporation membranes) or separation on silicalite (Journal of the French Petroleum Institute, Vol 36, No. 3, 1981 , pp 339-347, Biotechnology Letters Vol 4, No. 11, pp 759-760 (1982), Advances in Applied Microbiology, Volume 31, 1986, pp 61-92, Ind Prog Microbiol 3 (190) 73-90. Separation, Science and Technology [28 (13 & 14), pp 2167-2178, 1993], Biotechnology Letters, Vol 4, No. 11 , 759-760 (1982)).
- the Ce and C 5 sugars have advantageously been obtained from a material with a high sugar content chosen in particular from the lignocellulosic residues of agriculture and all materials of plant origin, such as cereal straw fodder. , such as wheat straw, straw or maize residues; cereal residues as maize residues; cereal flours, such as wheat flour; cereals such as wheat, barley, sorghum, maize; wood, waste and scrap wood; grains; sugar cane, sugar cane residues; shoots and stems of peas; beetroot, molasses such as molasses beets; Jerusalem artichokes; potatoes, potato tops, potato residues; starch; mixtures of cellulose, hemicellulose and lignin; where appropriate subjected to mechanical treatment, such as shredding, grinding, extrusion, and / or chemical treatment, such as acid or alkaline water vapor treatment, and / or enzymatic hydrolysis treatment to release the C 6 and C 5 sugars.
- mechanical treatment such
- Mechanical and chemical pretreatments aim at decreasing the crystallinity of cellulose by breaking bonds and increasing the contact surface of cellulose with enzymes.
- the hydrolysis step notably allows the saccharification of the starch to transform it into glucose or the transformation of sucrose into glucose.
- aceto-butyl fermentation was conducted using anaerobic bacteria such as Clostridium beijerinckii, such as VPI 5481 (ATCC 25732), 4635, 2697, 4419 (ATCC 11914), Clostridium butylicum, such as VPI 13436 ( NRRLB-592), Clostridium aurantibutyricum, such as VPI 4633 (ATCC 17777), 10789 (NCIB 10659), Clostridium acetobutylicum, such as VPI2673 (McClung 633), 13697 (ATCC 4259), 13698 (NRRL B-527 ⁇ - ATCC824) , 13693 (ATCC8529), 2676 (McClung 635), Clostridium toanum, their mutants or genetically modified organisms (Applied and Environmental Microbiology, Mar. 1983, p 1160-1163, Vol.45, No. 3, Biotechnology Letters Vol 4, N 8 (1982) 477-482).
- acetone by catalytic conversion of palm oil residues on a zirconia or zirconia / alumina catalyst supported on an iron oxide and then separation of the acetone as indicated above, for example by distillation, in particular azeotope distillation, or by membrane separation or separation on silicalite (Applied Catalysis B: Environmental 68 (2006) 154-159).
- hydrocyanic acid by ammoxidation of methane, the methane having been obtained by fermentation in the absence of oxygen of animal and / or vegetable organic matter, such as pig slurry.
- household waste, agro-industrial waste leading to a biogas compound methane and carbon dioxide, the carbon dioxide being removed by washing the biogas with a basic aqueous solution of sodium hydroxide, potassium hydroxide or amine, or by water under pressure, or by absorption into a solvent such as methanol.
- This fermentation also called anaerobic digestion, occurs naturally or spontaneously in landfills containing organic waste, but can be carried out in digesters, for example to treat sewage sludge, industrial or agricultural organic waste, pig manure, garbage.
- the fermented mixture contains animal droppings, which serve as a nitrogen input necessary for the growth of the microorganisms that ferment the biomass into methane.
- animal droppings serve as a nitrogen input necessary for the growth of the microorganisms that ferment the biomass into methane.
- Ammoxidation of methane can be mentioned in which ammonia (where appropriate obtained from the biomass) is reacted with methane in the presence of air and optionally with oxygen on a catalyst composed of platinum-containing rhodium-plated canvases.
- a temperature ranging from 1050 to 1150 ° C.
- the molar ratio CH4 / NH3 ranges from 1.0 to 1.2, the molar ratio (CH4 + NH3) / total is from 1.6 to 1.9; the pressure is usually 1 to 2 bar.
- the methanol may have been obtained as described in the paragraph above titled "Valorisation of the biomass methanol".
- the present invention thus makes it possible to obtain a methyl methacrylate having at least a portion of its carbons of renewable origin.
- a renewable raw material, or bioressourcée is a natural resource, animal or vegetable, whose stock can be reconstituted over a short period on a human scale. In particular, this stock must be renewed as quickly as it is consumed.
- renewable raw materials contain 14 C in the same proportions as atmospheric CO2. All carbon samples from living organisms
- 14 C (representing about 98.892%), 13 C (about 1.108%) and 14 C (traces: l, 2.10 "10%).
- the 14 C / 12 C ratio of living tissues is identical to that of the atmosphere.
- 14 C exists in two main forms: in mineral form, that is to say carbon dioxide (CO2), and in organic form, that is to say carbon incorporated into molecules organic.
- CO2 carbon dioxide
- the 14 C / 12 C ratio is kept constant by the metabolism because the carbon is continuously exchanged with the environment.
- the proportion of 14 C is constant in the atmosphere, it is the same in the body, as long as it is alive, since it absorbs this 14 C as it absorbs 12 C.
- the average ratio of 14 C / 12 C is equal to 1, 2xl ⁇ ⁇ 12 .
- Carbon 14 is derived from the bombardment of atmospheric nitrogen (14), and spontaneously oxidizes with oxygen in the air to give CO2.
- the content of 14 C02 has increased as a result of atmospheric nuclear explosions, and has continued to decrease after stopping these tests.
- 12 C is stable, that is to say that the number of atoms of 12 C in a given sample is constant over time.
- the 14 C it is radioactive (each gram of a living being contains enough 14 C isotopes to give 13.6 decays per minute) and the number of such atoms in a sample decreases over time (t) according to the law:
- - no is the number of 14 C at the origin (on the death of the creature, animal or plant),
- n is the number of 14 C atoms remaining at the end of time t
- the disintegration constant or radioactive constant
- the half-life of 14 C is 5730 years. In 50 000 years the 14 C content is less than 0.2% of the initial content and therefore becomes difficult to detect. Petroleum products, or natural gas or coal therefore do not contain 14 C. Given the half-life (Ti / 2 ) of 14 C, the 14 C content is substantially constant since the extraction of materials.
- the methyl methacrylate obtained according to the invention contains organic carbon derived from renewable raw materials; it is therefore characterized in that it contains 14 C.
- at least 1% by weight of the carbon atoms of said methyl methacrylate is of renewable origin.
- at least 20% of the carbons of said methyl methacrylate are of renewable origin.
- at least 40% of the carbons of said methyl methacrylate are of renewable origin.
- at least 60%, and even more specifically at least 80% of the carbon atoms of said methyl methacrylate are of renewable origin.
- the methyl methacrylate obtained according to the invention contains at least 0.01 ⁇ 10 -10 % by weight, preferably at least 0.2 ⁇ 10 -10 %, of 14 C relative to the total mass of carbon. Even more preferably, said methyl methacrylate contains at least 0.4 ⁇ 10 -10 % of 14 C, more particularly at least 0.7 ⁇ 10 -10 % of 14 C, and even more specifically at least 0.9 ⁇ 10 -10 %. 14 C.
- methyl methacrylate obtained by the process according to the invention contains 0,2xl0 ⁇ 10% when, 2xl ⁇ ⁇ 10% by weight of 14 C on the total weight of carbon.
- the methyl methacrylate obtained according to the invention contains 100% of organic carbon derived from renewable raw materials and therefore l, 2xl ⁇ ⁇ 10 % by mass of 14 C on the total mass of carbon.
- the 14 C content of methyl methacrylate can be measured, for example, according to the following techniques: by liquid scintillation spectrometry: this method consists in counting 'Beta' particles resulting from the decay of 14 C.
- the beta radiation obtained from a known mass sample (number of known carbon atoms) for a certain time. This 'radioactivity' is proportional to the number of 14 C atoms, which can be determined.
- the analysis relates to the CO2 previously produced by combustion of the carbon sample in a suitable absorbent solution, or on benzene after prior conversion of the carbon sample to benzene.
- mass spectrometry the sample is reduced to graphite or gaseous CO2, analyzed in a mass spectrometer. This technique uses an accelerator and a mass spectrometer to separate 14 C ions and 12 C and thus determine the ratio of the two isotopes.
- the methyl methacrylate obtained according to the process according to the invention constitutes a raw material containing mainly methyl methacrylate, in the sense that the product resulting from the process may comprise impurities related to the nature of the reagents used or generated during the course of the process. process, which may be different impurities generated during the implementation of reagents of fossil origin.
- the method according to the invention may therefore further comprise one or more purification steps.
- the methyl methacrylate obtained according to the process according to the invention can be used as it is or optionally after a purification step, as a raw material in all the applications in which it is known to use MAM, in particular as a monomer for the manufacture of poly (methyl methacrylate), as a starting material for the organic synthesis of higher methacrylates, as a product used in the preparation of acrylic emulsions and acrylic resins, as an additive for polyvinyl chloride, as a comonomer in the manufacture of copolymers and as an additive for lubricants.
- MAM monomer for the manufacture of poly (methyl methacrylate)
- a starting material for the organic synthesis of higher methacrylates as a product used in the preparation of acrylic emulsions and acrylic resins
- an additive for polyvinyl chloride as a comonomer in the manufacture of copolymers and as an additive for lubricants.
- the pressure at which carbon monoxide is subsequently used is also relatively low, however the purification treatments leading to pressure losses, it is preferable to operate the gasification of the biomass under pressure.
- an ethanol-water mixture is used, the ethanol being obtained by ethanol fermentation of sugar.
- the reaction is carried out at a pressure of 30 bar and at a temperature of 900 ° C., with a Ni / Alumina catalyst.
- the excess water is condensed as well as the heavy impurities.
- the CO / H 2 mixture is cryogenically separated, passing the mixture through a liquid nitrogen trap to retain the CO.
- the condensed gas is then reheated to separate the CO from other impurities (methane, CO 2 , etc.).
- Example 1 For the synthesis of methanol, the synthesis gas of Example 1 is used. The composition of this gas is adjusted to have an H2 / CO / CO2 ratio of 71/23/6 and the CO2 content is 6%. The total pressure of the gas is
- a commercial catalyst Cu-Zn-Al-O, MegaMax 700 is used.
- the reactor is supplied with the gas mixture at 70 bar with a VVH of 1000Oh -1 , and passes over the catalyst at a temperature of 240 ° C.
- the mixture gases The products are then decompressed at atmospheric pressure and the methanol produced is isolated by distillation.
- the selectivity to methanol is 99% and the methanol yield is 95%.
- Methyl formate is obtained by reaction of methanol and carbon monoxide in a 200 ml autoclave, with sodium methoxide as a catalyst.
- Example 2 In a 200 ml autoclave, 32 g of methanol obtained in Example 2 are placed at a temperature of 80 ° C. with stirring and 60 bar of CO, the CO being obtained as in Example 1, after 3 hours. By maintaining the pressure of CO, a yield of methyl formate of 67% is obtained.
- the fermentation comprises two successive phases, the first leading to the production of acetic and butyl acids and the second to the production of acetone, butanol and ethanol in the following proportions by weight: butanol 68%; acetone 29%; and ethanol 3%.
- the acetone was separated by azeotropic distillation.
- the preceding example is reproduced with 69.5 g of HCN resulting from the ammoxidation of methane from biogas and 149.4 g of acetone previously obtained by fermentation according to Example 4.
- the target reaction temperature is -15 ° C. 0 C (an exothermic peak at -9 0 C is observed for 9 minutes of reaction).
- Free HCN monitoring is performed as in the previous example.
- a mixture comprising 1.20% by weight of free HCN is obtained, ie 0.418 mol / l, which is equivalent to 10.667 mol / l of converted HCN and a degree of conversion to acetone cyanohydrin of 96.23. %.
- purified acetone cyanohydrin is obtained at 99.0 - 99.5%.
- Zeolyst commercial zeolite, reference C8V100, having a lattice parameter of 2.655 nm is used as the catalyst.
- a quartz tube with a diameter of 15 mm and a length of 450 mm 10 g of the granular shaped catalyst approximately 1 mm in diameter are placed.
- the catalyst is heated to 250 0 C, then a 50% by weight solution of methyl alpha-hydroxyisobutyrate in methanol is sent into the reactor after being vaporized, with a flow rate of 10 g / h.
- the products are condensed and analyzed by chromatography, giving a yield of methyl methacrylate of 75%.
- the presence of methanol makes it possible to limit the hydrolysis reactions of the ester.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Procédé de fabrication du méthacrylate de méthyle par réaction de l'alpha-hydroxyisobutyramide avec le formiate de méthyle pour donner de l'alpha-hydroxyisobutyrate de méthyle et du formamide, l'alpha-hydroxyisobutyrate de méthyle étant déshydraté en méthacrylate de méthyle, caractérisé par le fait qu'au moins une fraction du formiate de méthyle mis en jeu dans cette réaction et/ou au moins une fraction de l'alpha-hydroxyisobutyramide mis en jeu dans cette réaction a été obtenue par une réaction ou une succession de réactions à partir de la biomasse.
Description
PROCEDE DE FABRICATION D'UN METHACRYLATE DE METHYLE DERIVE
DE LA BIOMASSE
La présente invention porte sur un procédé de fabrication d'un méthacrylate de méthyle dérivé de la biomasse.
Le méthacrylate de méthyle est le produit de départ de nombreuses réactions de polymérisation ou copolymérisation .
Il est le monomère de fabrication du poly (méthacrylate de méthyle) (PMMA), connu sous les marques ALTUGLAS® et PLEXIGLAS®. Il se présente sous forme de poudres, de granulés ou de plaques, les poudres ou granulés servant au moulage d'articles divers, tels que des articles pour l'automobile, des articles ménagers et de bureau, et les plaques trouvant utilisation dans les enseignes et présentoirs, dans les domaines du transport, du bâtiment, des luminaires et des sanitaires, comme murs anti-bruit, pour œuvres d'art, les écrans plats, etc.
Le méthacrylate de méthyle est également le produit de départ de la synthèse organique de méthacrylates supérieurs, lesquels, comme lui, entrent dans la préparation d'émulsions acryliques et de résines acryliques, servent d'additifs pour le poly (chlorure de vinyle) , entrent comme comonomères dans la fabrication de nombreux copolymères tels que les copolymères méthacrylate de méthyle-butadiène-styrène, servent d'additifs pour lubrifiants, et ont beaucoup d'autres applications parmi lesquelles on pourrait citer les prothèses médicales, les floculants, les produits d'entretien, etc. Les émulsions et résines acryliques trouvent des applications dans les domaines des peintures, des adhésifs, du papier, du textile, des encres, etc. Les résines acryliques servent
également à la fabrication de plaques, ayant les mêmes applications que le PMMA.
Le méthacrylate de méthyle peut être obtenu de diverses manières, l'une de celles-ci consistant à hydrater 1' acétone-cyanhydrine en α-hydroxyisobutyramide [(H3C) (OH) (CH3)C-CO-NH2], lequel, réagissant avec du formiate de méthyle [HCOOCH3], produit l'α- hydroxyisobutyrate de méthyle [ (H3C) (OH) (CH3) -COOCH3] et du formamide [HCONH2] . Le formamide est recyclé après conversion en HCN+H2O, HCN réagissant avec l'acétone pour donner l' acétone-cyanhydrine, et l' α-hydroxyisobutyrate de méthyle est déshydraté en méthacrylate de méthyle.
Le document EP 407 811 illustre un tel procédé conduisant à l'obtention de méthacrylate de méthyle avec un rendement de 90%.
Les matières premières utilisées pour ces synthèses du méthacrylate de méthyle sont principalement d'origine pétrolière ou d'origine synthétique, comportant ainsi de nombreuses sources d'émission de CO2, lesquelles contribuent par conséquent à l'augmentation de l'effet de serre. Etant donné la diminution des réserves pétrolières mondiales, la source de ces matières premières va peu à peu s' épuiser .
Les matières premières issues de la biomasse sont de source renouvelable et ont un impact réduit sur l'environnement. Elles ne nécessitent pas toutes les étapes de raffinage, très coûteuses en énergie, des produits pétroliers. La production de CO2 fossile est réduite de sorte qu'elles contribuent moins au réchauffement climatique. Surtout pour sa croissance, la plante a consommé du CO2 atmosphérique à raison de 44g de CO2 par mole de carbone (ou pour 12 g de carbone) . Donc l'utilisation d'une source renouvelable commence par
diminuer la quantité de CO2 atmosphérique. Les matières végétales présentent l'avantage de pouvoir être cultivées en grande quantité, selon la demande, sur la majeure partie du globe terrestre. II apparaît donc nécessaire de disposer de procédés de synthèse du méthacrylate de méthyle non dépendants de matière première d'origine fossile, mais utilisant plutôt comme matière première la biomasse.
On entend par biomasse la matière première d'origine végétale ou animale produite naturellement. Cette matière végétale se caractérise par le fait que la plante pour sa croissance a consommé du CO2 atmosphérique tout en produisant de l'oxygène. Les animaux pour leur croissance ont de leur côté consommé cette matière première végétale et ont ainsi assimilé le carbone dérivé du CO2 atmosphérique .
Le but de la présente invention est donc de répondre à certaines préoccupations de développement durable . La présente invention a donc pour objet un procédé de fabrication du méthacrylate de méthyle par réaction de l' alpha-hydroxyisobutyramide avec le formiate de méthyle pour donner de l' alpha-hydroxyisobutyrate de méthyle et du formamide, l' alpha-hydroxyisobutyrate de méthyle étant déshydraté en méthacrylate de méthyle, caractérisé par le fait qu'au moins une fraction du formiate de méthyle mis en jeu dans cette réaction et/ou au moins une fraction de l' alpha-hydroxyisobutyramide mis en jeu dans cette réaction a été obtenue par une réaction ou une succession de réactions à partir de la biomasse.
On a obtenu au moins une fraction du formiate de méthyle par carbonylation du méthanol à l'aide de monoxyde de carbone extrait à partir d'un gaz de synthèse composé
essentiellement de monoxyde de carbone et d'hydrogène, au moins une fraction du gaz de synthèse ayant été obtenue par gazéification de toutes matières d'origine animale ou végétale ou provenant de la récupération de liqueur résiduaire et du blanchiment de la fabrication des pâtes cellulosiques .
On a obtenu au moins une fraction du formiate de méthyle par carbonylation du méthanol, au moins une fraction du méthanol ayant été obtenue par pyrolyse du bois ou par gazéification de toutes matières d'origine animale ou végétale conduisant à un gaz de synthèse composé essentiellement de monoxyde de carbone et d'hydrogène que l'on fait éventuellement réagir avec de l'eau par la réaction de gaz à l'eau pour ajuster le ratio H2/CO dans les proportions appropriées à la synthèse du méthanol, ou par fermentation à partir de cultures de plantes comme le blé, le maïs, la canne à sucre ou la betterave, donnant des produits fermentables et donc de l'alcool, au moins une fraction du gaz de synthèse pour préparer le méthanol pouvant également provenir de la récupération de liqueur résiduaire et du blanchiment de la fabrication des pâtes cellulosiques .
On a obtenu au moins une partie de l'alpha- hydroxyisobutyramide par hydratation de l'acétone- cyanhydrine, au moins une partie de l' acétone-cyanhydrine pouvant avoir été obtenue par réaction de l'acétone sur l'acide cyanhydrique, au moins une partie de celui-ci pouvant provenir du recyclage du formamide, au moins l'un parmi l'acétone et l'acide cyanhydrique ayant été obtenu par une réaction ou une succession de réactions à partir de la biomasse. On se reportera aux paragraphes suivants intitulés « Valorisation de la biomasse en acétone » et « Valorisation de la biomasse en acide cyanhydrique » pour
le détail de ces réactions ou successions de réactions à partir de la biomasse.
La présente invention a également pour objet l'utilisation du méthacrylate de méthyle fabriqué par le procédé tel que défini ci-dessus, comme monomère de fabrication du poly (méthacrylate de méthyle), comme produit de départ de la synthèse organique de méthacrylates supérieurs, comme produit entrant dans la préparation d'émulsions acryliques et de résines acryliques, comme additif pour le poly (chlorure de vinyle) , comme comonomère dans la fabrication de copolymères et comme additif pour lubrifiants .
Valorisation de la biomasse en méthanol
Comme indiqué ci-dessus, on obtient le méthanol par pyrolyse du bois, par gazéification de toutes matières d'origine animale ou végétale, conduisant à un gaz de synthèse composé essentiellement de monoxyde de carbone et d'hydrogène que l'on fait éventuellement réagir avec de l'eau par la réaction de gaz à l'eau pour ajuster le ratio H2/CO dans les proportions appropriées à la synthèse du méthanol, ou par fermentation à partir de cultures de plantes comme le blé, le maïs, la canne à sucre ou la betterave, donnant des produits fermentables et donc de 1' alcool .
Les matières d'origine animale sont, à titre d'exemples non limitatifs, les huiles et graisses de poisson, telles que huile de foie de morue, huile de baleine, de cachalot, de dauphin, de phoque, de sardine, de hareng, de squales, les huiles et graisses de bovins, porcins, caprins, équidés, et volailles, telles que suif,
saindoux, graisse de lait, lard, graisses de poulet, de bœuf, de porc, de cheval, et autres.
Les matières d'origine végétale sont, à titre d'exemples non limitatifs, les résidus ligno-cellulosiques de l'agriculture, le fourrage de paille de céréales, comme paille de blé, paille ou résidus d'épis de maïs ; résidus de céréales, comme résidus de maïs ; farines de céréales, comme farine de blé ; céréales telles que le blé, l'orge, le sorgho, le maïs ; bois, déchets et rebuts de bois ; grains ; canne à sucre, résidus de canne à sucre ; sarments et tiges de pois ; betterave, mélasses telles que mélasses de betteraves ; topinambours ; pommes de terre, fanes de pommes de terre, résidus de pommes de terre ; amidon ; mélanges de cellulose, hémicellulose et lignine, et la liqueur noire de papeterie, qui est une matière riche en carbone .
Selon un mode de réalisation particulier de l'invention, le gaz de synthèse pour préparer le méthanol provient de la récupération de liqueur résiduaire et du blanchiment de la fabrication des pâtes cellulosiques. On pourra se référer aux documents EP 666 831 et US 7,294,225 de Chemrec qui décrivent notamment la gazéification de liqueurs résiduaires de la fabrication et de blanchiment de cellulose, et l'obtention de méthanol, ainsi qu'aux pages 92-105 de l'ouvrage Procédés de pétrochimie Caractéristiques techniques et économiques- Tome 1 Editions Technip - le gaz de synthèse et ses dérivés, qui traite de l'obtention du méthanol à partir de gaz de synthèse .
Valorisation de la biomasse en monoxyde de carbone
On obtient le monoxyde de carbone par gazéification de toutes matières d'origine animale ou végétale, conduisant à un gaz de synthèse composé essentiellement de monoxyde de carbone et d'hydrogène, duquel on extrait le monoxyde de carbone.
Valorisation de la biomasse en acétone
• Conformément à un premier mode de réalisation, on a pu obtenir l'acétone par fermentation acéto-butylique de sucres en Ce et C5, conduisant à un mélange acétone-butanol, le cas échéant avec de l'éthanol, à partir duquel l'acétone a été séparée par exemple par distillation, notamment distillation azéotropique ou par séparation membranaire (par exemple sur des membranes de pervaporation) ou séparation sur de la silicalite (Revue de l'Institut Français du Pétrole, Vol 36, n°3, 1981, pp 339-347 ; Biotechnology Letters Vol 4, n°ll, pp 759-760 (1982) ; Advances in Applied Microbiology, Volume 31,1986, pp 61- 92 ; Prog. Ind. Microbiol 3(190) 73-90 ; Séparation, Science and Technology [28 (13 & 14), pp 2167-2178, 1993] ; Biotechnology Letters , Vol 4, N0Il, 759-760 (1982)) .
Les sucres en Ce et en C5 ont avantageusement été obtenus à partir d'une matière à forte teneur en sucres choisie notamment parmi les résidus ligno-cellulosiques de l'agriculture et toutes matières d'origine végétale, tels que fourrage de paille de céréales, comme paille de blé, paille ou résidus d'épis de maïs ; résidus de céréales, comme résidus de maïs ; farines de céréales, comme farine de blé ; céréales telles que le blé, l'orge, le sorgho, le maïs ; bois, déchets et rebuts de bois ; grains ; canne à sucre, résidus de canne à sucre ; sarments et tiges de pois ; betterave, mélasses telles que mélasses de
betteraves ; topinambours ; pommes de terre, fanes de pommes de terre, résidus de pommes de terre ; amidon ; mélanges de cellulose, hémicellulose et lignine ; que l'on a soumis le cas échéant à un traitement mécanique, tel que déchiquetage, broyage, extrusion, et/ou à un traitement chimique, tel que traitement à la vapeur d'eau par voie acide ou basique, et/ou à un traitement d'hydrolyse enzymatique pour libérer les sucres en Ce et C5.
Les prétraitements mécanique et chimique visent à diminuer la cristallinité de la cellulose par rupture de liaisons et à augmenter la surface de contact de la cellulose avec les enzymes.
L'étape d'hydrolyse permet notamment la saccharification de l'amidon pour le transformer en glucose ou la transformation du sucrose en glucose.
En particulier, on a conduit une fermentation acéto-butylique à l'aide de bactéries anaérobies telles que Clostridium beijerinckii , tel que VPI 5481 (ATCC 25732), 4635, 2697, 4419 (ATCC 11914), Clostridium butylicum, tel que VPI 13436 (NRRLB-592), Clostridium aurantibutyricum, tel que VPI 4633 (ATCC 17777), 10789 (NCIB 10659), Clostridium acetobutylicum, tel que VPI2673 (McClung 633), 13697 (ATCC 4259), 13698 (NRRL B -527 <- ATCC824), 13693 (ATCC8529), 2676 (McClung 635), Clostridium toanum, leurs mutants ou organismes génétiquement modifiés (Applied and Environmental Microbiology, Mar. 1983, p 1160-1163, Vol.45, n°3 ; Biotechnology Letters Vol 4, N°8 (1982) 477-482) .
Ces procédés de fermentation sont connus de l'homme du métier qui est à même de choisir les meilleures conditions de travail pour un type de matière végétale donné (Microbiological Reviews, Dec 1986, Vol 50 n°4, p 484-524 ; Bioresource Technology 42 (1992) 205-217 ; Appl Microbiol Biotechnol (1985) 23 : 92-98 ; Energy from
Biomass, W. PaIz, Elsevier, Applied Science, London (1985) p 692-696) .
• Conformément à un second mode de réalisation, on a pu obtenir l'acétone par liquéfaction hydrothermale à 573
K de boues d'épuration pour obtenir une eau noire contenant des hydrocarbures, puis craquage catalytique de ladite eau noire dans une atmosphère de vapeur d'eau sur un catalyseur à base de zircone ou de zircone/alumine supportée sur un oxyde de fer, et ensuite séparation de l'acétone comme indiqué plus haut, à savoir par exemple par distillation, notamment distillation azéotopique, ou par séparation membranaire ou séparation sur de la silicalite (Applied Catalysis B : Environmental 68 (2006) 154-159) .
• Conformément à un troisième mode de réalisation, on a pu obtenir l'acétone par conversion catalytique de résidus d'huile de palme sur un catalyseur à base de zircone ou de zircone/alumine supportée sur un oxyde de fer et ensuite séparation de l'acétone comme indiqué plus haut à savoir par exemple par distillation, notamment distillation azéotopique, ou par séparation membranaire ou séparation sur de la silicalite (Applied Catalysis B : Environmental 68 (2006) 154-159) .
Valorisation de la biomasse en acide cyanhydrique
• Conformément à un premier mode de réalisation, on a pu obtenir l'acide cyanhydrique par ammoxydation du méthane, le méthane ayant été obtenu par fermentation en l'absence d'oxygène de matières organiques animales et/ou végétales, telles que lisier de porc, ordures ménagères, déchets agro-industriels, conduisant à un biogaz composé
essentiellement de méthane et de gaz carbonique, le gaz carbonique ayant été éliminé par lavage du biogaz à l'aide d'une solution aqueuse basique de soude, potasse ou aminé, ou encore par de l'eau sous pression, ou par absorption dans un solvant tel que le méthanol.
Cette fermentation, appelée aussi méthanisation, se produit naturellement ou spontanément dans les décharges contenant des déchets organiques, mais peut être effectuée dans des digesteurs, pour traiter par exemple des boues d'épuration, des déchets organiques industriels ou agricoles, des lisiers de porc, des ordures ménagères.
De préférence, le mélange fermenté contient des déjections animales, qui servent d' intrant azoté nécessaire à la croissance des microorganismes assurant la fermentation de la biomasse en méthane. On pourra se référer aux différentes technologies de méthanisation de l'état de la technique, à l'article « Review of Current Status of Anaerobic Digestion Technology for Treatment of Municipal Solid Waste », Novembre 1998, RISE-AT et aux différents procédés biologiques existants pour le traitement des eaux résiduaires, tels que, par exemple, le procédé Laran® de Linde.
On peut citer une ammoxydation du méthane suivant laquelle on fait réagir de l'ammoniac (le cas échéant obtenu à partir de la biomasse) avec du méthane en présence d'air et éventuellement d'oxygène sur un catalyseur composé de toiles de platine rhodié à une température allant de 1050 à 11500C. Généralement, le rapport molaire CH4/NH3 va de 1,0 à 1,2, le rapport molaire (CH4 + NH3) /02 total va de 1,6 à 1,9 ; la pression est généralement de 1 à 2 bar.
• Conformément à un deuxième mode de réalisation, on a pu obtenir l'acide cyanhydrique par ammoxydation du méthanol, le méthanol pouvant avoir été obtenu comme décrit au paragraphe ci-dessus intitulé « Valorisation de la biomasse en méthanol ».
Le procédé de fabrication de HCN par ammoxydation du méthanol :
CH3OH + NH3 + O2 → HCN + 3 H2O
a été décrit notamment dans les années 1950-1960 dans les brevets GB 718,112 et GB 913,836 de Distillers Company. Il met en oeuvre un catalyseur à base d' oxyde de molybdène à une température allant de 3400C à 4500C, ou un catalyseur à base d'antimoine et d' étain à une température allant de 350°C à 6000C. On pourra se référer à l'article de Walter Sedriks dans Process Economies Reviews PEP' 76-3, Juin 1977. Ce procédé a fait l'objet de différents perfectionnements, notamment au niveau des systèmes catalytiques mis en œuvre ; on peut citer par exemple les systèmes à base d'oxydes mixtes de molybdène-bismuth-fer supportés sur silice (US 3,911,089 de Sumitomo, US 4,511,548 de The Standard OiI Company, JP 2002-097017 de Mitsubishi), les catalyseurs à base de Fe-Sb-O décrits par Nitto Chemical Industry (EP 340 909, EP 404 529, EP 476 579, Science and Technology in Catalysis 1998, pages 335-338, Applied Catalysis A : General 194-195, 2000, 497-505) ou par Mitsubishi (JP 2002-097015, JP 2002-097016, EP 832 877) .
La présente invention permet donc d' obtenir un méthacrylate de méthyle ayant au moins une partie de ses carbones d'origine renouvelable.
Une matière première renouvelable, ou bioressourcée, est une ressource naturelle, animale ou végétale, dont le stock peut se reconstituer sur une période courte à l'échelle humaine. Il faut en particulier que ce stock puisse se renouveler aussi vite qu'il est consommé .
A la différence des matériaux issus de matières fossiles, les matières premières renouvelables contiennent du 14C dans les mêmes proportions que le CO2 atmosphérique. Tous les échantillons de carbone tirés d'organismes vivants
(animaux ou végétaux) sont en fait un mélange de 3 isotopes
: 12C (représentant environ 98,892 %) , 13C (environ 1,108 %) et 14C (traces: l,2.10"10 %) . Le rapport 14C/12C des tissus vivants est identique à celui de l'atmosphère. Dans l'environnement, le 14C existe sous deux formes prépondérantes : sous forme minérale, c'est-à-dire de gaz carbonique (CO2) , et sous forme organique, c'est-à-dire de carbone intégré dans des molécules organiques.
Dans un organisme vivant, le rapport 14C/12C est maintenu constant par le métabolisme car le carbone est continuellement échangé avec l'environnement. La proportion de 14C étant constante dans l'atmosphère, il en est de même dans l'organisme, tant qu'il est vivant, puisqu'il absorbe ce 14C comme il absorbe le 12C. Le rapport moyen de 14C/12C est égal à l,2xlθ~12. Le carbone 14 est issu du bombardement de l'azote atmosphérique (14), et s'oxyde spontanément avec l'oxygène de l'air pour donner le CO2. Dans notre histoire humaine, la teneur en 14Cθ2 a augmenté à la suite des explosions nucléaires atmosphériques, puis n'a cessé de décroître après l'arrêt de ces essais.
Le 12C est stable, c'est-à-dire que le nombre d'atomes de 12C dans un échantillon donné est constant au cours du temps. Le 14C, lui, est radioactif (chaque gramme
de carbone d'un être vivant contient suffisamment d'isotopes 14C pour donner 13,6 désintégrations par minute) et le nombre de tels atomes dans un échantillon décroît au cours du temps (t) selon la loi :
n = no exp (-at) ,
dans laquelle:
- no est le nombre de 14C à l'origine (à la mort de la créature, animal ou plante) ,
- n est le nombre d'atomes 14C restant au bout du temps t,
- a. est la constante de désintégration (ou constante radioactive) ; elle est reliée à la demi-vie. La demi-vie (ou période) est la durée au bout de laquelle un nombre quelconque de noyaux radioactifs ou de particules instables d'une espèce donnée, est réduit de moitié par désintégration ; la demi-vie Ti/2 est reliée à la constante de désintégration a. par la formule a.Ti/2= In 2. La demi-vie du 14C vaut 5730 ans. En 50 000 ans la teneur en 14C est inférieure à 0,2 % de la teneur initiale et devient donc difficilement décelable. Les produits pétroliers, ou le gaz naturel ou encore le charbon ne contiennent donc pas de 14C. Compte tenu de la demi-vie (Ti/2) du 14C, la teneur en 14C est sensiblement constante depuis l'extraction des matières premières renouvelables, jusqu'à la fabrication du méthacrylate de méthyle selon l'invention et même jusqu'à la fin de son utilisation. Le méthacrylate de méthyle obtenu selon l'invention contient du carbone organique issu de matières premières renouvelables ; il est de ce fait caractérisé en ce qu'il contient du 14C.
En particulier, au moins 1% en masse des carbones dudit méthacrylate de méthyle est d'origine renouvelable. De préférence, au moins 20% des carbones dudit méthacrylate de méthyle sont d'origine renouvelable. De façon encore plus préférée, au moins 40% des carbones dudit méthacrylate de méthyle sont d'origine renouvelable. Plus particulièrement, au moins 60%, et même encore plus précisément au moins 80% des carbones dudit méthacrylate de méthyle, sont d'origine renouvelable. Le méthacrylate de méthyle obtenu selon l'invention contient au moins 0,01xl0~10 % en masse, de préférence au moins 0,2xl0~10 % de 14C sur la masse totale de carbone. De façon encore plus préférée, ledit méthacrylate de méthyle contient au moins 0,4xl0~10 % de 14C, plus particulièrement, au moins 0,7xl0~10 % de 14C, et encore plus précisément au moins 0,9xl0~10 % de 14C. Avantageusement, le méthacrylate de méthyle obtenu selon le procédé selon l'invention contient de 0,2xl0~10 % à l,2xlθ~10 % en masse de 14C sur la masse totale de carbone. Dans un mode de réalisation préféré de l'invention, le méthacrylate de méthyle obtenu selon l'invention contient 100% de carbone organique issu de matières premières renouvelables et par conséquent l,2xlθ~10 % en masse de 14C sur la masse totale de carbone. La teneur en 14C du méthacrylate de méthyle peut être mesurée par exemple selon les techniques suivantes : par spectrométrie à scintillation liquide : cette méthode consiste à compter des particules 'Bêta' issues de la désintégration du 14C. On mesure le rayonnement Bêta issu d'un échantillon de masse connue (nombre d'atomes de carbone connu) pendant un certain temps. Cette 'radioactivité' est proportionnelle au nombre d'atomes de 14C, que l'on peut ainsi déterminer. Le 14C
présent dans l'échantillon émet des rayonnements β-, qui, au contact du liquide scintillant (scintillateur) , donnent naissance à des photons . Ces photons ont des énergies différentes (comprises entre 0 et 156 Kev) et forment ce que l'on appelle un spectre de 14C. Selon deux variantes de cette méthode, l'analyse porte soit sur le CO2 préalablement produit par combustion de l'échantillon carboné dans une solution absorbante appropriée, soit sur le benzène après conversion préalable de l'échantillon carboné en benzène. par spectrométrie de masse : l'échantillon est réduit en graphite ou en CO2 gazeux, analysé dans un spectromètre de masse. Cette technique utilise un accélérateur et un spectromètre de masse pour séparer les ions 14C des 12C et donc déterminer le rapport des deux isotopes.
Ces méthodes de mesure de la teneur en 14C des matériaux sont décrites précisément dans les normes ASTM D 6866 (notamment D6866-06) et dans les normes ASTMD 7026 (notamment 7026-04) . Ces méthodes comparent les données mesurées sur l'échantillon analysé avec les données d'un échantillon référence d'origine 100% renouvelable, pour donner un pourcentage relatif de carbone d'origine renouvelable dans l'échantillon. La méthode de mesure préférentiellement utilisée dans le cas du méthacrylate de méthyle est la Spectrométrie de masse décrite dans la norme ASTM D6866-06.
Le méthacrylate de méthyle obtenu selon le procédé selon l'invention constitue une matière première contenant principalement du méthacrylate de méthyle, dans le sens que le produit issu du procédé peut comporter des impuretés liées à la nature des réactifs mis en œuvre ou générées au cours du procédé, qui peuvent être différentes
des impuretés générées lors de la mise en œuvre de réactifs d'origine fossile. Le procédé selon l'invention peut donc comporter en outre une ou plusieurs étapes de purification.
Le méthacrylate de méthyle obtenu selon le procédé selon l'invention peut être utilisé tel quel ou éventuellement après une étape de purification, comme matière première dans toutes les applications dans lesquelles il est connu d'utiliser le MAM, notamment comme monomère de fabrication du poly (méthacrylate de méthyle), comme produit de départ de la synthèse organique de méthacrylates supérieurs, comme produit entrant dans la préparation d'émulsions acryliques et de résines acryliques, comme additif pour le poly (chlorure de vinyle) , comme comonomère dans la fabrication de copolymères et comme additif pour lubrifiants.
Les Exemples suivants illustrent la présente invention sans toutefois en limiter la portée. Dans ces Exemples, les parties et pourcentages sont en poids sauf indication contraire.
Exemple 1 : Fabrication de gaz de synthèse CO/H2 et isolement du monoxyde de carbone
Dans le procédé de synthèse du formiate de méthyle par carbonylation du méthanol, il n'est pas nécessaire de rechercher de hautes puretés du monoxyde de carbone, et notamment il est possible d'avoir de l'azote résiduel car les pressions auxquelles le procédé est mis en œuvre sont relativement faibles. Cependant toute impureté inerte comme l'azote ou l'Argon, qui ne peut pas être consommée par la réaction, contribuera progressivement à une dilution du CO. Bien que l'azote et l'argon ne soient
pas nuisibles chimiquement dans le procédé, il est donc préférable de limiter autant que possible la teneur en ces impuretés .
La pression à laquelle le monoxyde de carbone est utilisé par la suite est aussi relativement peu élevée, néanmoins les traitements de purification conduisant à des pertes de charge, il est préférable d'opérer la gazéification de la biomasse sous pression.
Dans le présent exemple, on utilise un mélange éthanol-eau, l'éthanol étant obtenu par fermentation éthanolique de sucre. On opère à une pression de 30 bars et à une température de 900 0C, avec un catalyseur Ni/Alumine. En sortie de réacteur, l'excès d'eau est condensé ainsi que les impuretés lourdes. Le mélange CO/H2 est séparé par cryogénie, en faisant passer le mélange dans un piège à azote liquide pour retenir le CO. Le gaz condensé est ensuite réchauffé pour séparer le CO des autres impuretés (Méthane, CO2, etc . ) .
Exemple 2 : Fabrication de méthanol à partir du gaz de synthèse
Pour la synthèse de méthanol, le gaz de synthèse de l'Exemple 1 est utilisé. La composition de ce gaz est ajustée pour avoir un ratio H2/CO/CO2 de 71/23/6 et la teneur en CO2 est de 6 %. La pression totale du gaz est de
70 bars.
On utilise un catalyseur commercial Cu-Zn-Al-O, MegaMax 700. Le réacteur est alimenté par le mélange gazeux à 70 bars avec une VVH de 1000Oh"1, et passe sur le catalyseur à une température de 240 0C. Le mélange des gaz
produits est ensuite détendu à pression atmosphérique et le méthanol produit est isolé par distillation.
La sélectivité en méthanol est de 99 % et le rendement en méthanol est de 95 %.
Exemple 3 : Fabrication du formiate de méthyle
Le formiate de méthyle est obtenu par réaction de méthanol et de monoxyde de carbone en autoclave de 200 ml, avec le méthylate de sodium comme catalyseur.
Dans un autoclave de 200 ml, on place 32 g de méthanol obtenu à l'exemple 2, à une température de 80 0C sous agitation et sous 60 bars de CO, le CO étant obtenu comme dans l'exemple 1, après 3 heures de réaction, en maintenant la pression de CO, on obtient un rendement en formiate de méthyle de 67 %.
Exemple 4 : Fabrication de l'acétone à partir de paille de blé par hydrolyse enzymatique suivie d'une fermentation acéto-butylique
On a procédé comme décrit dans la Revue de l'Institut Français du Pétrole, Vol 36, N 3, Mai -Juin 1981, pages 339-347. Dans un déchiqueteur, on a déchiqueté de paille de blé, puis on a broyé la paille déchiquetée dans un broyeur à marteau. On a fait suivre par un traitement à l'acide à une faible concentration à une température de 100°C pendant environ 1 heure. Après neutralisation de l'acide, on a ramené le milieu au pH voisin de 5 qui est requis par l'hydrolyse enzymatique .
On a préparé une solution de cellulase en présence d'éléments nutritifs dans des fermenteurs en série, la culture du microorganisme Trichoderma reesi s' effectuant dans les premiers fermenteurs à partir de paille préalablement broyée, et la cellulose étant produite dans les fermenteurs suivants. A partir du contenu du dernier fermenteur, on a séparé la solution enzymatique recherchée par centrifugation et filtration.
On a conduit une hydrolyse enzymatique de la paille prétraitée ci-dessus par la solution enzymatique ci- dessus dans des réacteurs montés en série.
Après filtration, on a recueilli des solutions de sucres en Ce et C5 . On a séché le filtrat qui contient de la lignine pour servir de combustible. On a conduit une fermentation acéto-butylique des solutions de sucres en Ce et C5 ci-dessus à l'aide du microorganisme Clostridium acetobutylicum dans des conditions aseptiques.
La fermentation comprend deux phases successives, la première conduisant à la production des acides acétique et butylique et la deuxième, à la production d'acétone, butanol et éthanol dans les proportions en poids suivantes : butanol 68 % ; acétone 29 % ; et éthanol 3 %.
On a séparé l'acétone par distillation azéotropique .
Exemple 5 : Synthèse d' acétone cyanhydrine
Pour cette synthèse batch, on utilise un réacteur en verre double enveloppe de 1 litre, équipé d'une agitation mécanique et surmonté d'un réfrigérant. La température est contrôlée via une circulation d'eau glycolée froide dans la double enveloppe (cryostat) .
Dans le réacteur préalablement refroidi (environ
0 0C), on introduit 69,5 g de HCN pur et 149,4 g d'acétone préalablement obtenu par fermentation selon l'Exemple 4
(mélange équimolaire) . Dès que le mélange atteint la température de 00C, on introduit 34 mg du catalyseur diéthylamine (DEA) . La température passe par un maximum de
18°C en 6 minutes environ puis se stabilise rapidement vers
0°C. Des prélèvements manuels sont effectués (environ 1 g) au cours du temps pour suivre la quantité de HCN non réagi. Le dosage de HCN libre est réalisé selon la méthode Charpentier-Volhard basée sur la précipitation des ions cyanures CN" à l'aide d'une solution de nitrate d'argent N/10 en excès et titrage de l'excès de nitrate d'argent par une solution de KSCN N/10 en présence d'un indicateur Fe (SO4) 3 en solution. Après 150 minutes de réaction, on a obtenu un mélange comprenant 1,53 % en poids de HCN libre, soit 0,533 mole/1, ce qui équivaut à 10,855 mole/1 de HCN transformé et un taux de conversion en acétone cyanhydrine de 95,32 %. Le produit brut est neutralisé par ajout d'acide sulfurique en excès (neutralisation du catalyseur basique) puis purifié par distillation sous vide. L'acétone et HCN non convertis sont éliminés en tête (vide progressif de 760 à 30mm Hg et température maximum de 1000C environ) .
Exemple 6 : Synthèse d' acétone cyanhydrine
On reproduit l'exemple précédent avec 69,5 g de HCN issu de l' ammoxydation du méthane provenant de biogaz et 149,4 g d'acétone préalablement obtenu par fermentation selon l'Exemple 4. La température de réaction visée est de - 15 0C (un pic d'exothermie à - 9 0C est observé pour 9 minutes de réaction) . Le suivi de HCN libre
est réalisé comme dans l'exemple précédent. Après 340 minutes de réaction, on obtient un mélange comprenant 1,20 % en poids de HCN libre, soit 0,418 mole/1, ce qui équivaut à 10,667 mole/1 de HCN transformé et un taux de conversion en acétone cyanhydrine de 96,23 %. Après distillation du produit réactionnel selon l'exemple précédent, on obtient de l'acétone cyanhydrine purifiée à 99.0 - 99.5 %.
Exemple 7 : Fabrication de l' α-hydroxyisobutyramide
50 g de Mnθ2 de granulométrie de 0.5 à 0.8 mm sont placés dans un réacteur tubulaire en verre de diamètre intérieur de 15 mm, et de longueur de 450 mm. Le réacteur est chauffé à 60 0C. Une solution contenant 30 % pds de cyanhydrine d'acétone, 10 % pds d'acétone, et 60 % pds d'eau déionisée est alimentée au réacteur avec un débit de 30 g/h. La réaction conduit à un rendement en alpha- hydroxyisobutyramide de 86 %.
Exemple 8 : Fabrication de l' alpha-hydroxyisobutyrate de méthyle
Dans un tube en quartz de 15 mm de diamètre intérieur et de 300 mm de long, on place 50 ml de billes de verre de 1 mm de diamètre environ. On alimente le réacteur avec une solution de alpha-hydroxyisobutyramide obtenu selon l'exemple 7, formiate de méthyle préalablement obtenu selon l'exemple 3, et méthanol de l'exemple 2 (ratios molaires 1 :2 :3) avec un débit de 17 g/hr en chauffant à 50 0C. Simultanément une solution de méthylate de sodium à 28 % dans le méthanol est alimentée dans le réacteur avec un débit de 0.5 g/hr. Les produits sont condensés et analysés
par chromatographie . Un rendement en alpha- hydroxyisobutyrate de méthyle de 49 % est ainsi mesuré.
Exemple 9 : Fabrication du méthacrylate de méthyle
Dans cet exemple, on utilise comme catalyseur une zéolithe commerciale de Zeolyst, référence C8V100, ayant un paramètre de maille de 2,465 nm. Dans un tube en quartz de 15 mm de diamètre intérieur et de 450 mm de long, on place 10 g du catalyseur mis en forme de granulés de 1 mm de diamètre environ. Le catalyseur est chauffé à 250 0C, puis une solution à 50 % pds d' alpha- hydroxyisobutyrate de méthyle dans le méthanol est envoyée dans le réacteur après avoir été vaporisée, avec un débit de 10 g/h. Les produits sont condensés et analysés par chromatographie, donnant un rendement en méthacrylate de méthyle de 75 %. La présence de méthanol permet de limiter les réactions d'hydrolyse de l'ester.
Claims
REVENDICATIONS
1 - Procédé de fabrication du méthacrylate de méthyle par réaction de l' alpha-hydroxyisobutyramide avec le formiate de méthyle pour donner de l'alpha- hydroxyisobutyrate de méthyle et du formamide, l'alpha- hydroxyisobutyrate de méthyle étant déshydraté en méthacrylate de méthyle, caractérisé par le fait qu'au moins une fraction du formiate de méthyle mis en jeu dans cette réaction et/ou au moins une fraction de l' alpha-hydroxyisobutyramide mis en jeu dans cette réaction a été obtenue par une réaction ou une succession de réactions à partir de la biomasse.
2 - Procédé selon la revendication 1, caractérisé par le fait que l'on a obtenu au moins une fraction du formiate de méthyle par carbonylation du méthanol à l'aide de monoxyde de carbone extrait à partir d'un gaz de synthèse composé essentiellement de monoxyde de carbone et d'hydrogène, au moins une fraction du gaz de synthèse ayant été obtenue par gazéification de toutes matières d'origine animale ou végétale ou provenant de la récupération de liqueur résiduaire et du blanchiment de la fabrication des pâtes cellulosiques.
3 - Procédé selon l'une revendications 1 et 2, caractérisé par le fait que l'on a obtenu au moins une fraction du formiate de méthyle par carbonylation du méthanol, au moins une fraction du méthanol ayant été obtenue par pyrolyse du bois ou par gazéification de toutes matières d'origine animale ou végétale conduisant à un gaz de synthèse composé essentiellement de monoxyde de carbone et d'hydrogène, ou encore par fermentation à partir de cultures de plantes comme le blé, le maïs, la canne à sucre
ou la betterave, donnant des produits fermentables et donc de l'alcool, au moins une fraction du gaz de synthèse pour préparer le méthanol pouvant également provenir de la récupération de liqueur résiduaire et du blanchiment de la fabrication des pâtes cellulosiques.
4 - Procédé selon l'une des revendications 1 à 3, caractérisé par le fait que l'on a obtenu au moins une partie de l' alpha-hydroxyisobutyramide par hydratation de l' acétone-cyanhydrine, au moins une partie de l'acétone- cyanhydrine pouvant avoir été obtenue par réaction de l'acétone sur l'acide cyanhydrique, au moins une partie de celui-ci pouvant provenir du recyclage du formamide, au moins l'un parmi l'acétone et l'acide cyanhydrique ayant été obtenu par une réaction ou une succession de réactions à partir de la biomasse.
5 - Procédé selon la revendication 4, caractérisé par le fait que l'on a obtenu l'acétone par fermentation acéto-butylique de sucres en Ce et C5 , conduisant à un mélange acétone-butanol, le cas échéant avec de l'éthanol, à partir duquel l'acétone a été séparée, par exemple par distillation, ou par séparation membranaire ou séparation sur de la silicalite.
6 - Procédé selon la revendication 4, caractérisé par le fait que l'on a obtenu l'acétone par liquéfaction hydrothermale à 573 K de boues d'épuration pour obtenir une eau noire contenant des hydrocarbures, puis craquage catalytique de ladite eau noire dans une atmosphère de vapeur d'eau sur un catalyseur à base de zircone ou de zircone/alumine supportée sur un oxyde de fer, et ensuite séparation de l'acétone, par exemple par distillation, ou par séparation membranaire ou séparation sur de la silicalite .
7 - Procédé selon la revendication 4, caractérisé par le fait que l'on a obtenu l'acétone par conversion catalytique de résidus d'huile de palme sur un catalyseur de zircone ou de zircone/alumine supportée sur un oxyde de fer, et ensuite séparation de l'acétone par exemple par distillation, ou par séparation membranaire ou séparation sur de la silicalite.
8 - Procédé selon la revendication 4, caractérisé par le fait que l'on a obtenu l'acide cyanhydrique par ammoxydation du méthane, le méthane ayant été obtenu par fermentation en l'absence d'oxygène de matières organiques animales et/ou végétales, telles que lisier de porc, ordures ménagères, déchets industriels, conduisant à un biogaz composé essentiellement de méthane et de gaz carbonique, le gaz carbonique ayant été éliminé par lavage du biogaz à l'aide d'une solution aqueuse basique de soude, potasse ou aminé, ou encore par de l'eau sous pression, ou par absorption dans un solvant tel que le méthanol.
9 - Procédé selon la revendication 4, caractérisé par le fait que l'on a obtenu l'acide cyanhydrique par ammoxydation du méthanol, le méthanol ayant été obtenu par pyrolyse du bois ou par gazéification de toutes matières d'origine animale et/ou végétale, conduisant à un gaz de synthèse composé essentiellement de monoxyde de carbone et d'hydrogène, ou par fermentation à partir de cultures de plantes comme le blé, la canne à sucre ou la betterave, donnant des produits fermentables et donc de l'alcool, au moins une fraction du gaz de synthèse pour préparer le méthanol pouvant également provenir de la récupération de liqueur résiduaire et du blanchiment de la fabrication des pâtes cellulosiques.
10 - Utilisation du méthacrylate de méthyle contenant de 0,2xl0"10 % à l,2xlθ"10 % en masse de 14C sur la
masse totale de carbone fabriqué par le procédé tel que défini à l'une des revendications 1 à 9, comme monomère de fabrication du poly (méthacrylate de méthyle) , comme produit de départ de la synthèse organique de méthacrylates supérieurs, comme produit entrant dans la préparation d'émulsions acryliques et de résines acryliques, comme additif pour le poly (chlorure de vinyle) , comme comonomère dans la fabrication de copolymères et comme additif pour lubrifiants .
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0858044A FR2938838B1 (fr) | 2008-11-27 | 2008-11-27 | Procede de fabrication d'un methacrylate de methyle derive de la biomasse |
PCT/FR2009/052200 WO2010061097A1 (fr) | 2008-11-27 | 2009-11-17 | Procédé de fabrication d'un méthacrylate de méthyle dérivé de la biomasse |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2362853A1 true EP2362853A1 (fr) | 2011-09-07 |
Family
ID=40565052
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09768206A Withdrawn EP2362853A1 (fr) | 2008-11-27 | 2009-11-17 | Procédé de fabrication d'un méthacrylate de méthyle dérivé de la biomasse |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP2362853A1 (fr) |
JP (3) | JP2012509927A (fr) |
FR (1) | FR2938838B1 (fr) |
WO (1) | WO2010061097A1 (fr) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012219476A1 (de) | 2012-10-24 | 2014-04-24 | Hilti Aktiengesellschaft | Harzmischung auf Vinylesterurethanharz-Basis und deren Verwendung |
EP3489205A1 (fr) | 2017-11-28 | 2019-05-29 | HILTI Aktiengesellschaft | Dérivés d'isosorbide en tant que produits réactifs dans des résines réactives et dans des chevilles chimiques |
EP4083172A1 (fr) * | 2021-04-30 | 2022-11-02 | Vertoro B.V. | Composition comprenant une huile de pétrole lourde |
FR3141174B1 (fr) * | 2022-10-19 | 2024-09-06 | Arkema France | Procede perfectionne de fabrication d’acrylate de butyle de purete elevee |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2149400A (en) * | 1983-10-06 | 1985-06-12 | Mitsubishi Gas Chemical Co | Preparation of carboxylic acid esters from amides |
EP0407811A2 (fr) | 1989-07-14 | 1991-01-16 | Mitsubishi Gas Chemical Company, Inc. | Procédé de production du méthacrylate de mÀ©thyle |
EP0941984A2 (fr) * | 1998-03-11 | 1999-09-15 | Mitsubishi Gas Chemical Company, Inc. | Procédé de préparation du méthacrylate de méthyle |
WO2005040392A1 (fr) * | 2003-10-24 | 2005-05-06 | Swedish Biofuels Ab | Procede de production d'hydrocarbures et de composes contenant de l'oxygene a partir de la biomasse |
WO2005095320A1 (fr) * | 2004-04-02 | 2005-10-13 | Ciba Specialty Chemicals Water Treatments Limited | Preparation de derives d'acide acrylique a partir d'acides carboxyliques alpha- ou beta-hydroxy |
JP2006111593A (ja) * | 2004-10-15 | 2006-04-27 | National Institute Of Advanced Industrial & Technology | 木材からの工業用原料製造方法 |
US20070161832A1 (en) * | 2005-12-12 | 2007-07-12 | Neste Oil Oyj | Process for producing a hydrocarbon component |
WO2008067627A2 (fr) * | 2006-12-05 | 2008-06-12 | Braskem S.A. | Procédé de fabrication d'une ou plusieurs oléfines, une oléfine et un polymère |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB718112A (en) | 1951-11-06 | 1954-11-10 | Distillers Co Yeast Ltd | Manufacture of hydrogen cyanide |
GB913836A (en) | 1960-06-21 | 1962-12-28 | Distillers Co Yeast Ltd | Improvements in and relating to the synthesis of hydrogen cyanide |
US3911089A (en) | 1972-10-06 | 1975-10-07 | Sumitomo Chemical Co | Process for preparing hydrogen cyanide |
JPS5665690A (en) * | 1979-11-05 | 1981-06-03 | Hitachi Ltd | Control device of anaerobic digestion vessel |
US4511548A (en) | 1981-12-18 | 1985-04-16 | The Standard Oil Company | Ammoxidation of methanol to produce hydrogen cyanide |
WO1984002698A1 (fr) * | 1983-01-03 | 1984-07-19 | Biosystem E Ab | Appareil de production de methane |
JPS62278989A (ja) * | 1986-05-27 | 1987-12-03 | Mitsubishi Heavy Ind Ltd | アセトン及びブタノ−ルの製造方法 |
JPH0764555B2 (ja) | 1988-04-05 | 1995-07-12 | 日東化学工業株式会社 | 青酸製法 |
JP2629266B2 (ja) * | 1988-05-16 | 1997-07-09 | 三菱瓦斯化学株式会社 | メタクリル酸メチルの製造方法 |
JP2950851B2 (ja) | 1989-06-23 | 1999-09-20 | 三菱レイヨン株式会社 | 鉄・アンチモン・リン含有金属酸化物触媒組成物およびその製法 |
JP3371112B2 (ja) | 1990-09-18 | 2003-01-27 | ダイヤニトリックス株式会社 | 鉄・アンチモン含有金属酸化物触媒組成物およびその製法 |
US5239109A (en) * | 1991-12-16 | 1993-08-24 | Mobil Oil Corporation | Formate synthesis |
SE470515B (sv) * | 1992-11-02 | 1994-06-27 | Chemrec Ab | Förfarande för framställning av väteperoxid |
JPH0741767A (ja) * | 1993-07-26 | 1995-02-10 | Osaka Gas Co Ltd | バイオマスの熱分解方法 |
JP3437864B2 (ja) * | 1994-01-21 | 2003-08-18 | 三菱レイヨン株式会社 | 青酸の製造方法 |
EP0832877B1 (fr) | 1996-09-25 | 2001-11-21 | Mitsubishi Rayon Co., Ltd. | Procédé d'ammoxydation dans un réacteur à lit fluidisé |
JPH11319782A (ja) * | 1998-05-22 | 1999-11-24 | Kubota Corp | メタン発酵方法 |
JP3872269B2 (ja) | 2000-09-21 | 2007-01-24 | 三菱レイヨン株式会社 | シアン化水素の製造方法 |
JP3872268B2 (ja) | 2000-09-21 | 2007-01-24 | 三菱レイヨン株式会社 | シアン化水素の製法 |
JP3872270B2 (ja) | 2000-09-21 | 2007-01-24 | 三菱レイヨン株式会社 | シアン化水素の製造法 |
SE0004185D0 (sv) | 2000-11-15 | 2000-11-15 | Nykomb Synergetics B V | New process |
JP2002193858A (ja) * | 2000-12-28 | 2002-07-10 | Mitsubishi Heavy Ind Ltd | バイオマス原料によるメタノール製造方法及びその装置 |
DE10256578A1 (de) * | 2002-12-04 | 2004-06-17 | Basf Ag | Blausäure aus Formamid |
FR2912742B1 (fr) * | 2007-02-16 | 2010-03-05 | Arkema France | Procede de synthese d'acrylonitrile a partir de glycerol |
FR2934264B1 (fr) * | 2008-07-22 | 2012-07-20 | Arkema France | Fabrication d'esters de vinyle a partir de matieres renouvelables, esters de vinyle obtenus et utilisations |
-
2008
- 2008-11-27 FR FR0858044A patent/FR2938838B1/fr not_active Expired - Fee Related
-
2009
- 2009-11-17 EP EP09768206A patent/EP2362853A1/fr not_active Withdrawn
- 2009-11-17 JP JP2011538021A patent/JP2012509927A/ja active Pending
- 2009-11-17 WO PCT/FR2009/052200 patent/WO2010061097A1/fr active Application Filing
-
2015
- 2015-04-28 JP JP2015091156A patent/JP2015134826A/ja active Pending
-
2016
- 2016-11-11 JP JP2016220230A patent/JP2017066149A/ja active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2149400A (en) * | 1983-10-06 | 1985-06-12 | Mitsubishi Gas Chemical Co | Preparation of carboxylic acid esters from amides |
EP0407811A2 (fr) | 1989-07-14 | 1991-01-16 | Mitsubishi Gas Chemical Company, Inc. | Procédé de production du méthacrylate de mÀ©thyle |
EP0941984A2 (fr) * | 1998-03-11 | 1999-09-15 | Mitsubishi Gas Chemical Company, Inc. | Procédé de préparation du méthacrylate de méthyle |
WO2005040392A1 (fr) * | 2003-10-24 | 2005-05-06 | Swedish Biofuels Ab | Procede de production d'hydrocarbures et de composes contenant de l'oxygene a partir de la biomasse |
WO2005095320A1 (fr) * | 2004-04-02 | 2005-10-13 | Ciba Specialty Chemicals Water Treatments Limited | Preparation de derives d'acide acrylique a partir d'acides carboxyliques alpha- ou beta-hydroxy |
JP2006111593A (ja) * | 2004-10-15 | 2006-04-27 | National Institute Of Advanced Industrial & Technology | 木材からの工業用原料製造方法 |
US20070161832A1 (en) * | 2005-12-12 | 2007-07-12 | Neste Oil Oyj | Process for producing a hydrocarbon component |
WO2008067627A2 (fr) * | 2006-12-05 | 2008-06-12 | Braskem S.A. | Procédé de fabrication d'une ou plusieurs oléfines, une oléfine et un polymère |
Non-Patent Citations (6)
Title |
---|
2288 OWENS ET AL: "The Reaction of Acrylates and Methacrylates with Qrganoma gnesium Compounds", 1 January 1961 (1961-01-01), XP055329217, Retrieved from the Internet <URL:http://pubs.acs.org/doi/pdf/10.1021/jo01351a034> [retrieved on 20161214] * |
A. JIMÉNEZ ET AL: "Economic assessment of biomass feedstocks for the chemical industry", THE CHEMICAL ENGINEERING JOURNAL, vol. 37, no. 1, 1 January 1988 (1988-01-01), pages B1 - B15, XP055159132, ISSN: 0300-9467, DOI: 10.1016/0300-9467(88)80011-X * |
JIMÉNEZ A. ET AL: "ECONOMIC ASSESSMENT OF BIOMASS FEEDSTOCKS FOR THE CHEMICAL INDUSTRY", THE CHEMICAL ENGINEERING JOURNAL, vol. 37, no. 1, 1 January 1988 (1988-01-01), pages B1 - B15, XP055159132, DOI: 10.1016/0300-9467(88)80011-X |
NAGAI K ED - GAIGNEAUX ERIC RUIZ PATRICIO: "New developments in the production of methyl methacrylate", APPLIED CATALYSIS A: GENERAL, ELSEVIER SCIENCE, AMSTERDAM, NL, vol. 221, no. 1-2, 30 November 2001 (2001-11-30), pages 367 - 377, XP004326655, ISSN: 0926-860X, DOI: 10.1016/S0926-860X(01)00810-9 * |
NAGAI K: "NEW DEVELOPMENTS IN THE PRODUCTION OF METHYL METHACRYLATE", APPLIED CATALYSIS A: GENERAL, vol. 221, no. 1-2, pages 367 - 377, XP004326655, DOI: 10.1016/S0926-860X(01)00810-9 |
See also references of WO2010061097A1 * |
Also Published As
Publication number | Publication date |
---|---|
WO2010061097A1 (fr) | 2010-06-03 |
JP2015134826A (ja) | 2015-07-27 |
JP2012509927A (ja) | 2012-04-26 |
JP2017066149A (ja) | 2017-04-06 |
FR2938838A1 (fr) | 2010-05-28 |
FR2938838B1 (fr) | 2012-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR2940801A1 (fr) | Procede de fabrication d'un methacrylate de methyle derive de la biomasse | |
WO2010058119A1 (fr) | Procede de fabrication d'un methylacrylate de methyle derive de la biomasse | |
WO2009156648A1 (fr) | Methacrylate de methyle derive de la biomasse, procede de fabrication, utilisations et polymeres correspondants | |
Salakkam et al. | Valorization of microalgal biomass for biohydrogen generation: A review | |
KR101417235B1 (ko) | 최적화된 발효 배지 | |
EP2361239B1 (fr) | Procédé de fabrication de méthylmercaptopropionaldehyde et de methionine à partir de matières premières renouvelables | |
WO2012131627A1 (fr) | Procédé de fermentation pour gérer la production de butanediol | |
EP2271764B1 (fr) | Procédé pour la production enzymatique d'alcool gras et/ou d'acide gras | |
JP2017066149A (ja) | バイオマス由来のメチルメタクリレートの製造方法 | |
EP3090042B1 (fr) | Souches de levures pour la production d'éthanol de première génération | |
EP2986758B1 (fr) | Procédé de production d'hydrocarbures | |
Seengenyoung et al. | Biohydrogen Production from Palm Oil Mill Effluent Pretreated | |
FR2931477A1 (fr) | Acide cyanhydrique derive de matiere premiere renouvable | |
Zagrodnik et al. | Producing Hydrogen in Sequential Dark and Photofermentation from Four Different Distillery Wastewaters. | |
Kyzy et al. | Biotechnological valorization of sugar beet wastes into value-added products | |
Wu et al. | Novel anaerobic fermentation paradigm of producing medium-chain fatty acids from food wastes with self-produced ethanol as electron donor | |
Narayanaswami et al. | Biomethanation of Leucaena leucocephala: a potential biomass substrate | |
Arroussi et al. | VALORIZATION OF DATE WASTE (HMIRA CULTIVAR) FOR THE PRODUCTION OF BIOALCOHOL AND BIOGAS | |
FR2976293A1 (fr) | Procede de synthese de composes hydrocarbones bi-fonctionnels a partir de biomasse | |
EP4172348A1 (fr) | Procede de fermentation ibe optimise pour valoriser l'acetone | |
EA045854B1 (ru) | Газовая ферментация для производства биопластиков на белковой основе | |
Ntoampe et al. | Microbial fuel and chemical production using sweet potatoes | |
Alves et al. | Biological fermentation of syngas | |
Handa et al. | Evaluating the kinetics of production of Ethanol by Saccharomyces Cerevisiae |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20110526 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
TPAC | Observations filed by third parties |
Free format text: ORIGINAL CODE: EPIDOSNTIPA |
|
17Q | First examination report despatched |
Effective date: 20150116 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20170808 |