EP2358927B2 - Verfahren zum reinigen von galvanischen bädern zur abscheidung von metallen - Google Patents
Verfahren zum reinigen von galvanischen bädern zur abscheidung von metallen Download PDFInfo
- Publication number
- EP2358927B2 EP2358927B2 EP09771297.0A EP09771297A EP2358927B2 EP 2358927 B2 EP2358927 B2 EP 2358927B2 EP 09771297 A EP09771297 A EP 09771297A EP 2358927 B2 EP2358927 B2 EP 2358927B2
- Authority
- EP
- European Patent Office
- Prior art keywords
- zinc
- electrolyte
- process according
- cyanide
- abovementioned
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 57
- 230000008569 process Effects 0.000 title claims description 54
- 239000002184 metal Substances 0.000 title claims description 12
- 229910052751 metal Inorganic materials 0.000 title claims description 12
- 150000002739 metals Chemical class 0.000 title description 6
- 238000004140 cleaning Methods 0.000 title description 5
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 claims description 65
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 48
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 45
- 150000002500 ions Chemical class 0.000 claims description 41
- 230000008929 regeneration Effects 0.000 claims description 38
- 238000011069 regeneration method Methods 0.000 claims description 38
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 36
- 239000011701 zinc Substances 0.000 claims description 26
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 24
- 229910052725 zinc Inorganic materials 0.000 claims description 24
- QELJHCBNGDEXLD-UHFFFAOYSA-N nickel zinc Chemical compound [Ni].[Zn] QELJHCBNGDEXLD-UHFFFAOYSA-N 0.000 claims description 23
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 23
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 21
- 239000008139 complexing agent Substances 0.000 claims description 20
- 150000002825 nitriles Chemical class 0.000 claims description 19
- 229910001297 Zn alloy Inorganic materials 0.000 claims description 18
- 239000011780 sodium chloride Substances 0.000 claims description 18
- 239000003456 ion exchange resin Substances 0.000 claims description 15
- 229920003303 ion-exchange polymer Polymers 0.000 claims description 15
- 229910052759 nickel Inorganic materials 0.000 claims description 11
- 150000001412 amines Chemical class 0.000 claims description 10
- 238000000926 separation method Methods 0.000 claims description 9
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims description 8
- 238000007747 plating Methods 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 4
- 229910000990 Ni alloy Inorganic materials 0.000 claims description 3
- 239000006259 organic additive Substances 0.000 claims description 3
- 239000003957 anion exchange resin Substances 0.000 claims description 2
- 125000000524 functional group Chemical group 0.000 claims description 2
- 239000000758 substrate Substances 0.000 claims description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims 3
- 238000000151 deposition Methods 0.000 claims 2
- 150000003839 salts Chemical class 0.000 claims 2
- 230000003750 conditioning effect Effects 0.000 claims 1
- 230000008021 deposition Effects 0.000 claims 1
- 229910052742 iron Inorganic materials 0.000 claims 1
- 239000010410 layer Substances 0.000 claims 1
- 239000002346 layers by function Substances 0.000 claims 1
- 230000001502 supplementing effect Effects 0.000 claims 1
- 239000004094 surface-active agent Substances 0.000 claims 1
- 229910052718 tin Inorganic materials 0.000 claims 1
- 150000003751 zinc Chemical class 0.000 claims 1
- 239000003792 electrolyte Substances 0.000 description 86
- 239000000523 sample Substances 0.000 description 57
- 239000011347 resin Substances 0.000 description 51
- 229920005989 resin Polymers 0.000 description 51
- 239000000243 solution Substances 0.000 description 27
- 238000012360 testing method Methods 0.000 description 24
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 14
- 238000009826 distribution Methods 0.000 description 14
- 239000000203 mixture Substances 0.000 description 14
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 12
- 238000007710 freezing Methods 0.000 description 11
- 230000008014 freezing Effects 0.000 description 11
- 238000005342 ion exchange Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 239000000470 constituent Substances 0.000 description 9
- 238000000354 decomposition reaction Methods 0.000 description 9
- -1 nitrile compound Chemical class 0.000 description 9
- 230000009467 reduction Effects 0.000 description 9
- 229910052938 sodium sulfate Inorganic materials 0.000 description 7
- 239000007788 liquid Substances 0.000 description 6
- 238000011068 loading method Methods 0.000 description 6
- 239000000654 additive Substances 0.000 description 5
- 150000001450 anions Chemical class 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 235000011152 sodium sulphate Nutrition 0.000 description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- LELOWRISYMNNSU-UHFFFAOYSA-N hydrogen cyanide Chemical compound N#C LELOWRISYMNNSU-UHFFFAOYSA-N 0.000 description 4
- 230000002452 interceptive effect Effects 0.000 description 4
- 238000001465 metallisation Methods 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 229920001429 chelating resin Polymers 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- 238000009713 electroplating Methods 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 230000009183 running Effects 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- 239000007832 Na2SO4 Substances 0.000 description 2
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229920002873 Polyethylenimine Polymers 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000003480 eluent Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 150000002527 isonitriles Chemical class 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 229910001453 nickel ion Inorganic materials 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- 238000009681 x-ray fluorescence measurement Methods 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical group Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000005282 brightening Methods 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hcl hcl Chemical compound Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- RRIWRJBSCGCBID-UHFFFAOYSA-L nickel sulfate hexahydrate Chemical compound O.O.O.O.O.O.[Ni+2].[O-]S([O-])(=O)=O RRIWRJBSCGCBID-UHFFFAOYSA-L 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000013074 reference sample Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000001117 sulphuric acid Substances 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/56—Electroplating: Baths therefor from solutions of alloys
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D21/00—Processes for servicing or operating cells for electrolytic coating
- C25D21/16—Regeneration of process solutions
- C25D21/22—Regeneration of process solutions by ion-exchange
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/56—Electroplating: Baths therefor from solutions of alloys
- C25D3/565—Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of zinc
Definitions
- the invention concerns a process for cleaning galvanic baths to plate metals, in particular alkaline zinc-nickel alloy baths, using ion exchangers in order to prolong the lifetime of electrolytes and remove any undesirable decomposition products.
- Zinc-nickel coatings are used in all applications that require high quality surface protection when subject to corrosion,
- the conventional field of application is the automobile manufacture for components that are used in the engine bay, on braking systems and in the landing gear bay.
- alkaline zinc-nickel electrolytes have been used more recently as published in US 4,889,602 , and US 6,755,960 which for example have the following electrolyte composition:
- Table 1 Electrolyte deposit of a zinc-nickel electrolyte Zinc oxide ZnO 11.3 g/l Nickel sulphate hexahydrate NiSC 4 *6H 2 O 4.1 g/l Sodium hydroxide NaOH 120 g/l Polyethyleneamine (complexing agent) eg. (C 2 H 5 N) n 5.1 g/l
- the amines in the electrolyte act as complexing agents for the nickel ions.
- Complexing agents are constituents of numerous galvanic and chemical processes which are used in the separation of metals.
- the zinc-nickel electrolyte is usually driven by insoluble nickel anodes.
- the zinc content is kept constant by adding a suitable zinc ion source and the nickel content is kept constant by adding a source of nickel ions.
- the colour of the zinc-nickel electrolyte however changes from blue-purple to brown after a certain time of operation.
- nitriles (so-called organically bonded cyanide which can contain nitriles as well as isonitriles) and cyanide ions are formed in the zinc-nickel electrolytes through anodic oxidation from the amine-containing complexing agents.
- the problem of cyanide pollution requires the continuous replacement of the electrolytes and a special waste water treatment which in turn significantly affects the operating costs of the electrolyte.
- the top phase is dark brown. This phase causes considerable problems when the work pieces are coated, for instance the uneven distribution of the coating thickness or blistering.
- the continuous removal or skimming of this second brown phase is therefore absolutely essential.
- the activated carbon cleaning process is a common process that is used in electroplating to remove organic impurities in nickel electrolytes.
- the quantities of activated carbon used are determined in preliminary tests. The quantities most frequently used for activated carbon cleaning are 2 - 5 g/l.
- the activated carbon is added at a temperature of between 50 - 60°C. Once added, the electrolyte is stirred intensively. After approximately half an hour, the absorbable substances are absorbed by the activated carbon and are filtered out.
- the disadvantage of this process is that all organic constituents are thereby removed from the electrolytes. For zinc-nickel electrolytes this would mean that not only the decomposition products, but also all other organic constituents such as for example brighteners and complexing agents, are removed.
- the publication EP 1 344 850 A1 features a device to reduce the build-up of cyanide by separating the anode from the alkaline electrolyte using an ion exchanger membrane. This separation prevents a reaction of the amines on the nickel anodes and therefore also any undesirable side-reactions. The occurring side-reactions, problems of disposal, formation of a second phase and the adverse impact on the quality of the plated zinc-nickel layer, are thereby also avoided. It is therefore no longer necessary to replace the bath and spend lots of time and money on skimming the second phase which has formed.
- the zinc-nickel electrolyte acts as a catholyte.
- the medium in the anode compartment which is separated using the aforementioned ion exchanger membrane is known as the anolyte whereby in this case either sulphuric acid or phosphoric acid can be used.
- the disadvantage of this process is the use of a costly and high-maintenance ion exchanger membrane, which can also not be used for all common metallization baths.
- the aim of this invention is to selectively remove the cyanide and nitriles that have formed during the metallization process, from the electrolytes.
- ion exchange resins which are able to bind cyanide ions, it was possible to remove not only the cyanide ions but also the nitriles from the bath.
- the use of ion exchange resins for this specific purpose is unknown in prior art.
- a nitrile compound is formed during the operation.
- the disadvantage of the decomposition product is that as the lifetime of the electrolyte is extended or as the decomposition product increases, an oily and waxy second phase is formed.
- the formation of the decomposition product is responsible for the loss of expensive complexing agents and the formation of highly toxic cyanide.
- R-CN nitriles
- R-NC isonitriles
- the efficiency is the percentage part of the total current introduced to plate a defined amount of metal.
- the current density is usually increased, which however in turn accelerates the decomposition rate of the complexing agent to the nitrile (R-CN) and cyanide.
- Tests have shown that the second phase contains large quantities of cyanide, metal and sodium carbonate (Na 2 CO 3 ). It can therefore be assumed that these decomposition products are influenced by the nitrile or that they exist together as the concentration continues to increase and form a second phase. From a procedural point of view, it is difficult to separate the second phase since the liquid in the bath is constantly moving.
- the cyanide and organically bonded cyanide is to be removed using an ion exchange resin.
- Ion exchange resins are used to remove toxic substances or interfering anions or cations from waste water.
- the advantage of this process is that it does not require a precipitation or chemical destruction since the interfering substances can be removed from the waste water without being changed.
- Ion exchange resins are high-molecular organic substances.
- the rigid and insoluble frame has easily interchangeable counterions on it. These are easily movable and interchangeable counterions, usually hydrogen ions or hydroxyl ions.
- the regeneration of galvanic process baths is therefore a suitable process to extend the lifetime of electrolytes by removing interfering cations or anions.
- the batch operation is a process for the ion exchange.
- the ion exchanger resins come into contact with the electrolyte solution in a receptacle.
- the process is finished as soon as there is an exchange equilibrium between the counterions from the exchanger and similarly charged ions from the electrolyte solution. If additional ions have to be removed from the electrolyte using the ion exchanger resins, then new resins have to be added. The resins are filtered out once the equilibrium is established.
- the column process is the process most commonly used in the laboratory.
- the ion exchanger resin is packed into a column. All necessary operations are then performed in the pack which has been created.
- Two different work techniques are distinguished, namely working with a decreasing and increasing liquid layer. With the decreasing liquid layer, the electrolyte flows through the column from the top down and with the increasing liquid layer from the bottom up. Filling the column is a straightforward operation.
- the resin in its current form is first of all transferred to a beaker containing distilled water to swell the resins. This operation is necessary to prevent the column from shattering and to avoid the column from being to densely packed as the resins swell. Two hours is usually sufficient for the resins to swell.
- the exchanger pack is transformed to its original state (non-loaded state). If the ion that was exchanged during the ion exchange is to be recovered again, it is removed hy the ion exchanger by eluting with a suitable liquid.
- the process solution flows through the ion exchanger resins, whereby the cyanides are taken up on the anchor groups through interactions and the hydroxide anions are released on the electrolytes.
- nitrile compounds can also be removed in this way.
- Each ion exchanger resin that is capable of binding cyanide ions can be used within the framework of the present invention.
- Suitable ion exchange resins to bind cyanide ions are for example described in Ludwig Hartinger: Handbuch der Abwasser- und Recyclingtechnik, 2nd ed. 1991 on pages 352 - 361 . According to paragraph 5.2.3.3.4 and Table 5-1 anions like cyanide can be exchanged utilizing strongly alkaline anion exchange resins.
- Such resins comprise resins made from polyacrylamide possessing quarternary ammonium groups.
- Such resin material is commercially available and for example described in Table 13 (page 89) of: Robert Kunin, Ion Exchange Resins, reprint 1985.
- Quarternary strong base resins suitable comprise Amberlite IRA-400 (Rohm & Haas Co.), Amberlite IRA-401 (Rohm & Haas Co.), Amberlite IRA-410 (Rohm & Haas Co.), Dowex 1 (Nalcite SBR) (Dow Chemical Co.), Dowex 2 (Nalcite SAR) (Dow Chemical Co.).
- All such resins are also capable of binding nitriles.
- a device used to carry out the process according to the present invention comprises a receptacle (1) to take a zinc or zinc alloy bath, a connected pump system (2), which is connected to the ion exchanger device (4) to take the zinc or zinc alloy bath, which has an ion exchanger (5) and a collection device (7) for the zinc or zinc alloy bath conveyed through the ion exchanger resin (5), which can be identical to the receptacle (1).
- Figure 1 shows the column process with an increased liquid layer according to one embodiment of the present invention.
- a glass, ceramic or plastic frit, or a spray register or spray pole or sieve (6) through which the process solution can flow evenly through the ion exchanger resin (5).
- the ion exchanger resin (5) is embedded in the column.
- a glass, ceramic or plastic frit or a sieve (3) At the top end of the column, there is a glass, ceramic or plastic frit or a sieve (3). This is to prevent the resins from moving upwards and to ensure that only the process solution gets through.
- the collection receptacle (1) which is used for the galvanic bath for the separation of metals, is the contaminated process solution which is conveyed through the column using a hose pump (2).
- the device used for the metallization process comprises, as shown in figures 1 and 3 , a receptacle (1) to take a zinc or zinc alloy bath, a connected pump system (2), which is connected to the ion exchanger device (4) to take the zinc or zinc alloy bath, which contains ion exchanger resin (5) and a collection device (7) for the zinc or zinc alloy bath passing through the ion exchanger resin (5), which can be identical to receptacle (1).
- the ion exchanger resin (5) in the ion exchanger device (4) can be on a spray register, spray pole or sieve.
- the receptacle (1) is generally equivalent to the galvanic zinc or zinc alloy bath and consists of at least an anode, a cathode (the substrate to be coated) and a voltage source.
- a freezing device (8) between the receptacle (1) and the ion exchanger device (4) to cool the solution and separate a sodium carbonate solid.
- the freezing device (8) includes a cooling unit (9) to cool the solution to a temperature that is preferably below 10°C, more preferably between 2 - 5°C and an outlet (10) to separate the crystallised sodium carbonate.
- the regeneration tests were examined using three different concentrations of sodium chloride (6, 12 and 18 % by weight, Tables 2 - 7). The regeneration operation was realised at a linear speed of 5 m/h. One litre of sodium chloride solution was used for the regeneration and conveyed through the ion exchanger pack. Four portions of sample fractions having a volume of 250 ml each were taken and the content of different electrolyte parameters was analysed, compared and assessed. Data from the analysis was used to calculate the amount of cyanide which had bonded to the resin and was able to be eluted through the regeneration process.
- a total volume of 1 I of regeneration solution with 6 % in weight of NaCl was used to elute the cyanide (including organic nitrile) from the column containing Lewatit MonoPlus M600.
- Sample 1 is an analysis of the first 250 ml of regeneration solution used to elute the cyanide from the column, Sample 2 the second portion of 250 ml, Sample 3 the third portion of 250 ml and Sample 4 the fourth portion of 250 ml, giving 1 I of total eluent.
- the amount of total cyanide in 1 l eluent is 1.525 mg. The same was performed for the other regeneration cycles according to Tables 3 - 7.
- the aged electrolyte which is to be regenerated, should if possible be as close as possible to the original state (new batch).
- New batches of alkaline zinc-nickel electrolytes usually have an efficiency of 70 % for a current density of 1 A/dm 2 .
- the Hull cell test can be used and there is the option to determine the efficiency of the electrolyte using Faraday's law. Based on the layer thickness distribution of the electrolyte, it is possible to assess how good the regeneration effect is using an ion exchange resin.
- the Hull cell is used to determine the effects of the bath parameters (eg. temperature, pH value, electrolyte composition, lack of or surplus of additives, cleanliness, impurities from foreign metals) on the property of the plated layer depending on the current density.
- the cathode Since in a Hull cell the cathode is diagonal to the anode (see Figure 2 ), there is a distribution of current densities on the cathode. This makes it possible to examine the effect of the current density in a single experiment. Understandably the current density is higher at the edge nearest the anode than at the edge away from the anode ( Figure 2 ).
- the quality of coated surfaces ie. the composition, thickness, evenness and other properties, therefore primarily depend on the composition of the electrolyte and the plating conditions.
- the key quality factors are the composition of the electrolyte and the current parameters which must be monitored to assure a high quality coating.
- the composition of the electrolyte plays a significant role in this instance.
- Each individual additive in the electrolyte influences the properties of the electrolyte and the plated layer.
- concentration of the electrolyte constituents must be within certain limits.
- the majority of electrolytes contain, in addition to the inorganic constituents, additional organic-type additives. These organic constituents are designed to influence the properties of the layer that is to be plated. This includes for instance brightening, levelling, hardness, ductility and throwing power ability.
- the Hull cell test was carried out to examine the appearance of the plated layer and the zinc-nickel composition. Tests were carried out with the Hull cell on a new, on an aged and on an electrolyte that had been regenerated using ion exchange resins.
- This test is designed to give an indication as to how effective it is to come close to the original state (new batch).
- the Hull cell can be used to establish how losses during the ion exchange process affect the plating rate.
- the additives however only work effectively if they are used in a certain concentration and composition.
- the reduction in the TOC (Total Organic Carbon) content is due to the reduction of the nitrile concentration and that of the amine-containing complexing agents.
- the ion exchange process can preferably be carried out in conjunction with the freezing out of sodium carbonate to further increase the efficiency of the process and match the plating performance of a non-aged electrolyte.
- the electrolyte solution can be conveyed through a cooling device either before or after treatment in the ion exchange resin column (see Figure 3 ). During cooling, a sodium carbonate phase which can be separated, is formed.
- the old electrolyte is preferably treated in the freezer unit first and then in the ion exchange resin unit.
- the volume flow rate is 1000 ml/h. This represents a rate of 1.51 m/h and is within the value range specified by the manufacturer.
- a reference sample was taken from the zinc-nickel electrolyte which was to be regenerated (Sample 0 in the tables corresponds to an aged electrolyte).
- sample 0 in the tables corresponds to an aged electrolyte.
- sample 0 in the tables corresponds to an aged electrolyte.
- 1000 ml of alkaline zinc-nickel electrolytes were conveyed through the ion exchanger column, where 250 ml of sample fractions were taken every fifteen minutes (Samples 1 - 4 in Tables 8 and 9).
- the content of the different constituents was then examined in the sample fractions and compared with one another.
- the metal content, sodium hydroxide content, sodium carbonate content, sodium sulphate content, content of the complexing agents, TOC content and the total cyanide content of the samples was examined. Tables 8 and 9 show the test results.
- Table 8 Test results of the loading process for Lewatit MonoPlus M600 (aged electrolyte) Lewatit MonoPlus M600 Sample 0 Sample 1 Sample 2 Sample 3 Sample 4 Time Time Time Time Time [min] [min] [min] [min] 0 0-15 15-30 30-45 45-60 Zinc Zn [g/l] 12.4 11.9 12.0 12.1 12.0 Nickel Ni [g/l] 1.5 1.5 1.5 1.5 1.5 Sodium hydroxide NaOH [g/l] 94.5 78.9 94.7 95.5 94.1 Sodium carbonate Na 2 CO 3 [g/l] 56.6 58.8 59.2 57.8 58.3 Sodium sulphate Na 2 SO 4 [g/l] 4.50 4.73 4.77 4.51 4.70 Complexing agent - [ml/l] 140 132 135 138 135 Total cyanide CN- [mg/l] 92.0 5.2 5.1 5.2 4.8 TOC - [g/l] 45.8 40.0 44.2 44.0 44.0 Table 9: Test results of the loading process
- the test shows that the resin Lewatit MonoPlus M600 retains the interfering cyanide from the process solution.
- the test also shows that the resin's absorption capacity has by no means been reached and that the cyanide content dropped even after 60 minutes.
- the cyanide concentration is initially accompanied by a reduction in the concentration of zinc, sodium hydroxide, sodium carbonate, sodium sulphate and the complexing agent in the first fraction (Sample 1).
- the nickel concentration remains virtually constant throughout the whole test period.
- the Hull cell tests were carried out to examine the appearance of the plated layer and the zinc-nickel composition. Tests were carried out with the Hull cell on a new, on an aged and on an electrolyte that had been regenerated using ion exchangers. This test is designed to give an indication as to how important it is to come close to the original state (non aged electrolyte). The Hull cell can be used to establish how losses during the ion exchange process effect the plating rate.
- the Hull cell was filled with 250 ml of electrolyte as per Table 1. A nickel anode was used as the anode. Once the Hull cell plate had been cleaned, a 1-ampere current was applied. The coating time was fifteen minutes.
- the low current density range shows an even and bright plating result.
- the high and low current density ranges shown in Figure 2 act as measuring points for determining a layer thickness and the alloy composition of the zinc-nickel layer.
- the layer thicknesses were measured using an X-ray fluorescence measurement device at the two measuring points A (high current density range) and B (low current density range). Five measurements were taken at each measuring point.
- the X-ray fluorescence analysis is a standard method used for a quick and non-destructive determination of layer thicknesses. By using this measurement method, it was possible to ascertain the layer thickness and the amount of nickel and zinc. Based on the layer thickness distribution, it was then possible to draw a conclusion concerning the effect of the ion exchange process on the electrolyte parameters.
- the base or reference value which is to be obtained using the regeneration process is the layer thickness distribution of the newly included electrolyte [Table 10].
- a comparison of the layer thickness distribution for a new and an aged electrolyte [Table 11] also shows how quickly the efficiency level and thereby also the separation rate of the electrolyte drops as the lifetime increases.
- the initial concentration (Sample 0) is needed for this.
- Table 10 Composition of the layer - new electrolyte Layer thickness distribution of the new electrolyte Measuring point A Measuring point B Layer thickness Nickel part Zinc part Layer thickness Nickel part Zinc part [ ⁇ m] [%] [ ⁇ m] [%] [%] 1 5.15 13.9 86.1 1.76 13.7 86.3 2 5.22 13.8 86.2 1.77 14.2 85.8 3 5.14 14.5 85.5 1.78 13.9 86.1 4 5.10 14.2 85.8 1.87 14.5 85.5 5 5.18 13.9 86.1 1.80 13.7 86.3 Mean value 5.16 14.1 85.9 1.80 14.0 86.0
- Table 11 Composition of the layer - aged electrolyte Layer thickness distribution of the aged electrolyte Measuring point A Measuring point B Layer thickness Nickel part Zinc part Layer thickness Nickel part Zinc part [ ⁇ m] [%] [%] [ ⁇ m] [%] [%] 1 3.13 14.2 84.7 1.27 15.4 84.6 2 3.14 14.5 85.5 1.25 15.0 85.0 3 3.13 15.1
- the Hull cell test shows that the plated layer thickness at measuring points A and B is considerably higher and is closer to the non aged electrolyte, in comparison to the aged electrolyte [Table 11]. The result also shows that the nickel and zinc composition has not changed in the layer. It can therefore be said that removing the cyanide and organically bonded cyanide accelerates the separation rate of the alkaline zinc-nickel electrolyte and that the bath quality is significantly increased in comparison to the aged plating bath by using an ion exchanger system.
- Table 12 Layer thickness at the measuring point / electrolyte regenerated with Lewatit MonoPlus M600 and missing quantities supplemented Layer thickness distribution Electrolyte regenerated and supplemented Lewatit MonoPlus M600 Measuring point A Measuring point B Layer thickness Nickel part Zinc part Layer thickness Nickel part Zinc part [ ⁇ m] [%] [%] [ ⁇ m] [%] [%] 1 3.60 14.0 86.0 1.30 13.5 86.5 2 3.59 14.8 85.2 1.33 14.0 86.0 3 3.66 14.9 85.1 1.39 14.5 85.5 4 3.65 14.7 85.3 1.38 14.0 86.0 5 3.63 13.6 86.4 1.39 14.3 85.7 Mean value 3.63 14.4 85.6 1.36 14.1 85.9 Table 13: Layer thickness at the measuring point / electrolyte regenerated with Lewatit MonoPlus M500 and missing quantities supplemented Layer thickness distribution Electrolyte regenerated and & supplemented Lewatit MonoPlus M600 Measuring point A Measuring point B Layer thickness Nickel part Zin
- the efficiency of the electrolyte can be increased further by freezing out the sodium carbonate.
- An examination of the efficiency of the electrolyte once the sodium carbonate had been frozen out revealed a 7 % increase in the efficiency of the electrolyte.
- a regeneration of the zinc-nickel electrolyte by freezing out the sodium carbonate and removing the cyanide and nitrile using the ion exchanger is particularly advantageous.
- Table 14 Layer thickness distribution - electrolyte - sodium carbonate frozen out.
- Layer thickness distribution Electrolyte Na 2 CO 3 removed by means of freezing out Measuring point A Measuring point B
- Layer thickness Nickel part Zinc part Layer thickness Nickel part Zinc part [ ⁇ m] [%] [%] [ ⁇ m] [%] [%] 1 3.22 13.8 86.2 1.23 13.8 86.2 2 3.22 14.1 85.9 1.25 14.6 85.4 3 3.22 13.8 86.2 1.24 14.6 85.4 4 3.25 14.0 86.0 1.25 13.7 86.3 5 3.22 14.5 85.5 1.24 14.9 85.1
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Treatment Of Water By Ion Exchange (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Electroplating And Plating Baths Therefor (AREA)
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
Claims (11)
- Verfahren zur Abscheidung funktionaler Schichten von Zink- oder Zinklegierungen aus alkalischen Zink- oder Zinklegierungsbädern, die stickstoffhaltige organische Zusätze, ein lösliches Zinksalz und gegebenenfalls weitere Metallsalze enthalten, welche ausgewählt sind aus der Gruppe enthaltend Fe-, Ni-, Co- und Sn-Salze, umfassend die folgenden Stufen:(i) Bereitstellen eines Zink- oder Zinklegierungsbades enthaltend die vorgenannten Komponenten;(ii) elektrolytisches Abscheiden einer Zink- oder Zinklegierungsschicht auf dem zu beschichtenden Werkstück nach an sich bekannten Verfahren;(iii) Entnahme wenigstens eines Teils des Zink- oder Zinklegierungsbades und Durchführen des entnommenen Teils, das Cyanidionen und Nitrile enthält, die während der Abscheidung nach Schritt (ii) entstanden sind, durch eine Einrichtung umfassend einen lonenaustauscherharz geeignet zur Abtrennung von Cyanidionen;(iv) Rückführen des durchgeleiteten Teils in das Zink- oder Zinklegierungsbad, undder Ionenaustauscher wird regeneriert durch in-Kontakt-Bringen zunächst mit einer Natriumchlorid-Lösung und anschließender Konditionierung mit Natriumhydroxid.
- Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass zusätzlich folgender Verfahrensschritt vorgesehen ist: (v) Ergänzen verbrauchter Komponenten des Zink- oder Zinklegierungsbades
- Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Entnahme des Teils des Zink- oder Zinklegierungsbades und das Rückführen kontinuierlich oder diskontinuierlich erfolgt.
- Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Zink- oder Zinklegierungsbad organische Zusätze ausgewählt aus Glanzmitteln, Netzmitteln und stickstoffhaltigen Komplexbildnern enthält.
- Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die stickstoffhaltigen Komplexbildner ausgewählt sind aus der Gruppe enthaltend Polyalkylenamine.
- Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass es sich um ein galvanisches Bad zur Abscheidung von Zink-Nickel-Legierungen handelt.
- Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das lonenaustauscherharz ausgewählt ist aus der Gruppe bestehend aus stark basischen Anionentauscherharzen.
- Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das lonenaustauscherharz ausgewählt ist aus der Gruppe bestehend aus lonentauscherharzen, die als funktonale Gruppe quarternäre Ammoniumgruppen enthalten.
- Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass die Natriumchlorid-Lösung eine Konzentration an Natriumchlorid von 5 - 35 Gew.% aufweist.
- Verfahren nach einem der Ansprüche 1 oder 9 dadurch gekennzeichnet, dass die Temperatur der Natriumchlorid-Lösung während der Regenerierung auf der lonenaustauschersäule 10 - 70°C beträgt.
- Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Verfahren den zusätzlichen Schritt umfasst iii b) Herunterkühlen des Zink- oder Zinklegierungsbades zur Abtrennung von Natriumcarbonat auf eine Temperatur kleiner als 10°C.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102008058086A DE102008058086B4 (de) | 2008-11-18 | 2008-11-18 | Verfahren und Vorrichtung zur Reinigung von galvanischen Bädern zur Abscheidung von Metallen |
PCT/EP2009/008408 WO2010057675A2 (en) | 2008-11-18 | 2009-11-17 | Process and device for cleaning galvanic baths to plate metals |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2358927A2 EP2358927A2 (de) | 2011-08-24 |
EP2358927B1 EP2358927B1 (de) | 2013-01-02 |
EP2358927B2 true EP2358927B2 (de) | 2017-03-01 |
Family
ID=42114460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09771297.0A Active EP2358927B2 (de) | 2008-11-18 | 2009-11-17 | Verfahren zum reinigen von galvanischen bädern zur abscheidung von metallen |
Country Status (10)
Country | Link |
---|---|
US (1) | US20110210006A1 (de) |
EP (1) | EP2358927B2 (de) |
JP (1) | JP5730210B2 (de) |
KR (1) | KR20110090934A (de) |
CN (1) | CN102216498B (de) |
BR (1) | BRPI0921037B1 (de) |
CA (1) | CA2740644C (de) |
DE (1) | DE102008058086B4 (de) |
ES (1) | ES2402338T5 (de) |
WO (1) | WO2010057675A2 (de) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PL2384800T3 (pl) * | 2010-05-07 | 2013-07-31 | Dr Ing Max Schloetter Gmbh & Co Kg | Regeneracja alkalicznych elektrolitów cynkowo-niklowych drogą usuwania jonów cynkowych |
ES2416984T3 (es) * | 2010-09-21 | 2013-08-05 | Dr.Ing. Max Schlötter Gmbh & Co. Kg | Regeneración de electrolitos de cinc-níquel alcalinos mediante la eliminación de iones cianuro con la ayuda de compuestos de amonio cuaternario solubles |
DE102014223169A1 (de) * | 2014-11-13 | 2016-05-19 | Henkel Ag & Co. Kgaa | Verfahren zur selektiven Entfernung von Zink-Ionen aus alkalischen Badlösungen in der Oberflächenbehandlung von metallischen Bauteilen in Serie |
DE102016008333A1 (de) * | 2015-11-12 | 2017-05-18 | Liebherr-Aerospace Lindenberg Gmbh | Verfahren zur wasserstoffarmen Zink-Nickel Beschichtung eines hochfesten Vergütungsstahls |
EP3358045A1 (de) * | 2017-02-07 | 2018-08-08 | Dr.Ing. Max Schlötter GmbH & Co. KG | Verfahren zur galvanischen abscheidung von zink- und zinklegierungsüberzügen aus einem alkalischen beschichtungsbad mit reduziertem abbau von organischen badzusätzen |
CN107367438A (zh) * | 2017-07-14 | 2017-11-21 | 东莞市同欣表面处理科技有限公司 | 一种利用方形霍尔槽测试电镀电流效率的方法 |
CN110373706B (zh) * | 2019-08-22 | 2021-05-14 | 电子科技大学 | 一种酸性光亮镀铜电镀液的在线维护方法 |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3661734A (en) * | 1970-07-02 | 1972-05-09 | Remington Arms Co Inc | Carbonate removal |
US4321145A (en) * | 1980-06-11 | 1982-03-23 | Carlson Lee G | Ion exchange treatment for removing toxic metals and cyanide values from waste waters |
US4267159A (en) * | 1980-08-08 | 1981-05-12 | Crane Co. | Cyanide recovery |
US4708804A (en) * | 1985-06-28 | 1987-11-24 | Resource Technology Associates | Method for recovery of cyanide from waste streams |
DE3712511C3 (de) | 1986-04-14 | 1995-06-29 | Dipsol Chem | Alkalisches cyanidfreies Elektroplattierungsbad und Verwendung dieses Bades |
US4889602B1 (en) | 1986-04-14 | 1995-11-14 | Dipsol Chem | Electroplating bath and method for forming zinc-nickel alloy coating |
US4895659A (en) * | 1987-04-30 | 1990-01-23 | Regents Of The University Of Minnesota | Method for metal and cyanide recovery from plating baths and rinse waters |
DD286191A5 (de) * | 1989-07-14 | 1991-01-17 | Zi F. Isotopen- Und Strahlenforschung,De | Verfahren zur elution von cyanidisch komplexiertem zink aus stark basischen anionaustauschern |
DE4200774C2 (de) * | 1992-01-15 | 1993-11-25 | Rene Leutwyler | Verfahren zum Entfernen von Carbonaten aus galvanischen Bädern |
EP0601504B1 (de) | 1992-12-11 | 1997-08-20 | Hahnewald GmbH | Verfahren zur Verlängerung der Nutzungsdauer von Elektrolytlösungen durch Eliminierung organischer Störstoffe |
US5435898A (en) * | 1994-10-25 | 1995-07-25 | Enthone-Omi Inc. | Alkaline zinc and zinc alloy electroplating baths and processes |
AT408353B (de) * | 1998-06-19 | 2001-11-26 | Andritz Ag Maschf | Verfahren und anlage zum ansetzen sowie zum ergänzen eines elektrolyts |
DE19834353C2 (de) | 1998-07-30 | 2000-08-17 | Hillebrand Walter Gmbh & Co Kg | Alkalisches Zink-Nickelbad |
US6245128B1 (en) * | 1999-06-15 | 2001-06-12 | Mobil Oil Corporation | Process for the reclamation of spent alkanolamine solution |
DE19956666B4 (de) * | 1999-11-25 | 2009-10-29 | Enthone Gmbh | Verfahren zur kontinuierlichen Abscheidung blendfreier Metallüberzüge auf einer metallischen Oberfläche |
US6755960B1 (en) * | 2000-06-15 | 2004-06-29 | Taskem Inc. | Zinc-nickel electroplating |
DE10146559A1 (de) * | 2001-09-21 | 2003-04-10 | Enthone Omi Deutschland Gmbh | Verfahren zur Abscheidung einer Zink-Nickel-Legierung aus einem Elektrolyten |
US8377283B2 (en) * | 2002-11-25 | 2013-02-19 | Coventya, Inc. | Zinc and zinc-alloy electroplating |
DE10355077A1 (de) * | 2003-11-24 | 2005-06-09 | Walter Hillebrand Gmbh & Co. Galvanotechnik | Verfahren zum abwasserarmen Betrieb eines alkalischen Zink-Nickel-Bades |
US20050133374A1 (en) * | 2003-12-18 | 2005-06-23 | Applied Materials, Inc. | Method and apparatus for acid and additive breakdown removal from copper electrodeposition bath |
US20050133376A1 (en) * | 2003-12-19 | 2005-06-23 | Opaskar Vincent C. | Alkaline zinc-nickel alloy plating compositions, processes and articles therefrom |
DE102004061255B4 (de) * | 2004-12-20 | 2007-10-31 | Atotech Deutschland Gmbh | Verfahren für den kontinuierlichen Betrieb von sauren oder alkalischen Zink- oder Zinklegierungsbädern und Vorrichtung zur Durchführung desselben |
US20060283715A1 (en) * | 2005-06-20 | 2006-12-21 | Pavco, Inc. | Zinc-nickel alloy electroplating system |
US7776296B2 (en) * | 2006-03-10 | 2010-08-17 | Cansolv Technologies Inc. | Regeneration of ion exchangers that are used for salt removal from acid gas capture plants |
-
2008
- 2008-11-18 DE DE102008058086A patent/DE102008058086B4/de not_active Withdrawn - After Issue
-
2009
- 2009-11-17 KR KR1020117011296A patent/KR20110090934A/ko not_active Application Discontinuation
- 2009-11-17 WO PCT/EP2009/008408 patent/WO2010057675A2/en active Application Filing
- 2009-11-17 CA CA2740644A patent/CA2740644C/en active Active
- 2009-11-17 JP JP2011536794A patent/JP5730210B2/ja active Active
- 2009-11-17 EP EP09771297.0A patent/EP2358927B2/de active Active
- 2009-11-17 US US13/123,934 patent/US20110210006A1/en not_active Abandoned
- 2009-11-17 ES ES09771297.0T patent/ES2402338T5/es active Active
- 2009-11-17 BR BRPI0921037-7A patent/BRPI0921037B1/pt active IP Right Grant
- 2009-11-17 CN CN200980145596.1A patent/CN102216498B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
BRPI0921037A2 (pt) | 2015-12-29 |
WO2010057675A2 (en) | 2010-05-27 |
JP5730210B2 (ja) | 2015-06-03 |
CA2740644A1 (en) | 2010-05-27 |
WO2010057675A3 (en) | 2010-08-05 |
EP2358927A2 (de) | 2011-08-24 |
CN102216498A (zh) | 2011-10-12 |
CN102216498B (zh) | 2014-08-06 |
ES2402338T5 (es) | 2017-07-25 |
EP2358927B1 (de) | 2013-01-02 |
JP2012509401A (ja) | 2012-04-19 |
KR20110090934A (ko) | 2011-08-10 |
CA2740644C (en) | 2016-07-26 |
DE102008058086A1 (de) | 2010-05-27 |
BRPI0921037B1 (pt) | 2020-01-07 |
US20110210006A1 (en) | 2011-09-01 |
ES2402338T3 (es) | 2013-04-30 |
DE102008058086B4 (de) | 2013-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2358927B2 (de) | Verfahren zum reinigen von galvanischen bädern zur abscheidung von metallen | |
KR101513333B1 (ko) | 금속 코팅 검사 방법 및 상기 금속 코팅의 증착을 실행하는 증착 전해질의 분석 제어 방법 | |
CN102959136A (zh) | 容器用钢板及其制造方法 | |
JP2009185338A (ja) | 無電解ニッケルめっき液の処理方法 | |
EP1979511B1 (de) | Verfahren zur beschichtung von substratoberflächen | |
CA1139257A (en) | Recovery and reuse of nickel electroplating baths carried away by workpieces | |
US7138043B2 (en) | Method for applying a metal layer to a light metal surface | |
CN106460187A (zh) | 用于改进的泳透力的金属预处理改性 | |
JP2006316330A (ja) | めっき素材表面活性化硝酸溶液の機能維持方法と装置 | |
Aleksinas | Troubleshooting electroless nickel plating solutions | |
Walker | Structure and properties of electrodeposited metals | |
CN1527744A (zh) | 载有二价金属离子的弱酸离子交换剂的分级再生 | |
KR20200012351A (ko) | 자동차 부품용 아연-니켈 합금도금액 | |
EP2570514B1 (de) | Verfahren zum Entfernen von Verunreinigungen aus einer Plattierflüssigkeit | |
RU2503751C2 (ru) | Способ нанесения гальванических железных покрытий в проточном электролите с крупными дисперсными частицами | |
JP3067310B2 (ja) | アルミニウム製缶体の脱脂方法およびその脱脂方法に用いられる管理装置 | |
Browning | Plating and Electroplating | |
US20220389607A1 (en) | Method for reducing the concentration of iron ions in a trivalent chromium eletroplating bath | |
JPS6361399B2 (de) | ||
CA3202631A1 (en) | Multilayer corrosion system | |
Zhu et al. | Electrodeposition of zinc-nickel coating on AZ31 magnesium alloy | |
RU96120975A (ru) | Способ никелирования деталей из стали, меди и медных сплавов | |
Yagi et al. | Electrochemical iron-chromium alloying of carbon steel surface using alternating pulsed electrolysis | |
Kutnahorsky | Electroless copper deposition: A sustainable approach | |
Yagi et al. | Alternating Pulsed Electrolysis for Iron-Chromium Surface Alloying of Conventional Carbon Steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20110615 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ATOTECH DEUTSCHLAND GMBH |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 591688 Country of ref document: AT Kind code of ref document: T Effective date: 20130115 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602009012526 Country of ref document: DE Effective date: 20130228 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2402338 Country of ref document: ES Kind code of ref document: T3 Effective date: 20130430 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 591688 Country of ref document: AT Kind code of ref document: T Effective date: 20130102 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20130102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130502 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130402 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130402 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130403 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130502 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 |
|
26 | Opposition filed |
Opponent name: DR. HESSE GMBH & CIE KG Effective date: 20130928 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 602009012526 Country of ref document: DE Effective date: 20130928 |
|
PLAF | Information modified related to communication of a notice of opposition and request to file observations + time limit |
Free format text: ORIGINAL CODE: EPIDOSCOBS2 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20131117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131130 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131130 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131117 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20091117 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 20170301 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R102 Ref document number: 602009012526 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: DC2A Ref document number: 2402338 Country of ref document: ES Kind code of ref document: T5 Effective date: 20170725 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20231124 Year of fee payment: 15 Ref country code: FR Payment date: 20231120 Year of fee payment: 15 Ref country code: DE Payment date: 20231121 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240126 Year of fee payment: 15 |