EP2354475B1 - Verfahren zum Betrieb eines Kolbenexpanders eines Dampfmotors - Google Patents

Verfahren zum Betrieb eines Kolbenexpanders eines Dampfmotors Download PDF

Info

Publication number
EP2354475B1
EP2354475B1 EP10015706.4A EP10015706A EP2354475B1 EP 2354475 B1 EP2354475 B1 EP 2354475B1 EP 10015706 A EP10015706 A EP 10015706A EP 2354475 B1 EP2354475 B1 EP 2354475B1
Authority
EP
European Patent Office
Prior art keywords
steam
piston
dead centre
bottom dead
outlet opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10015706.4A
Other languages
English (en)
French (fr)
Other versions
EP2354475A2 (de
EP2354475A3 (de
Inventor
Raimund Prof.Dr. Almbauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Truck and Bus SE
Original Assignee
MAN Truck and Bus SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Truck and Bus SE filed Critical MAN Truck and Bus SE
Publication of EP2354475A2 publication Critical patent/EP2354475A2/de
Publication of EP2354475A3 publication Critical patent/EP2354475A3/de
Application granted granted Critical
Publication of EP2354475B1 publication Critical patent/EP2354475B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B17/00Reciprocating-piston machines or engines characterised by use of uniflow principle
    • F01B17/02Engines
    • F01B17/04Steam engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/36Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating the engines being of positive-displacement type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine

Definitions

  • the invention relates to a method for operating a piston expander, in which live steam from a steam supply is fed through an inlet valve into a cylinder chamber, the live steam introduced into the cylinder chamber is expanded in the power stroke due to a movement of a piston from top to bottom dead center, and the expanded steam is released Reaching the bottom dead center is directed from a closable outlet into a vapor discharge.
  • waste heat occurring in the area of the internal combustion engine and/or in the exhaust gas discharge is at least partially transferred to a secondary heat circuit.
  • a heat transfer fluid is circulated in the secondary heat circuit and is usually at least partially evaporated in an evaporator, the vapor is expanded in an expansion unit, for example in a piston expander, and finally liquefied again in a condenser.
  • the mechanical work generated by the expansion unit is supplied to the drive system, in particular a vehicle drive system, as additional work. It is also conceivable to use the mechanical work gained by using waste heat to drive other components, such as a fan or a compressor, or to generate electrical energy.
  • a heat recovery system for an internal combustion engine is known.
  • the vehicle is provided with additional drive energy from the waste heat from the internal combustion engine and/or the exhaust system.
  • the working medium of the secondary heat cycle is pumped into a condenser, in which it is liquefied with the release of heat, so that the corresponding steam cycle process is closed.
  • a piston of a reciprocating piston expander in which an outer diameter of the piston neck is smaller than an outer diameter of the piston head and/or the piston skirt and at the same time the length of the piston neck almost corresponds to the stroke of the piston when installed.
  • the steam piston expanders known from the prior art are usually operated in the two-stroke process.
  • the live steam is fed into a cylinder of the expander unit via an inlet valve, and in the following power stroke, the steam is expanded while releasing work.
  • the exhaust valve is opened at bottom dead center and the expanded vapor is pushed out of the cylinder during the exhaust stroke by moving the piston from bottom to top dead center.
  • the exhaust valve closes and the corresponding cycle process begins again.
  • the compression ratio must be designed in such a way that the working medium is expanded to a suitable level in the power cycle.
  • the compression ratio is too low, when the exhaust valve opens, the working medium will have an overpressure compared to the back pressure in the exhaust line, which has a negative effect due to the potential possibility of achieving greater relaxation affects the efficiency of the cycle.
  • the compression ratio is designed too high, the working medium is expanded to a pressure below the back pressure in the outlet line, which makes it more difficult to expel the expanded vapor and in turn has a negative effect on the efficiency of the cycle process.
  • the U.S. 2009/0056331 A1 discloses a highly efficient integrated heat engine consisting of a double compound cylinder structure, where the first cylinder is the primary combustion and/or expansion cylinder and the second cylinder is the secondary combustion and/or expansion cylinder. Power strokes driven by expansions of various working fluids such as air-fuel combustion products, steam, and compressed air are integrated into an engine block. There is, among other things, an exhaust air duct in the lower area of the cylinder.
  • the U.S. 1,227,836 discloses a single acting steam engine.
  • the connection between the cylinder and the condenser can be drilled wholly or partially perpendicular to the cylinder axis immediately above the piston in its lowest position.
  • the DE 198 47 742 C1 discloses a steam engine with a device for generating steam and a piston-cylinder unit for generating torque with the help of the steam. Only in the area of bottom dead center is an exhaust valve opened and the cooled vapor expelled.
  • the invention is based on the object of specifying a method for operating a steam piston expander unit which can be operated with a comparatively high level of efficiency.
  • the method to be specified is intended in particular to reduce the amount of live steam required to fill the piston without the efficiency of the cycle process being significantly reduced as a result.
  • According to the invention is a method for operating a piston expander, in which live steam from a steam supply is conducted through an inlet valve into a cylinder chamber, the live steam introduced into the cylinder chamber is expanded in the power stroke due to a movement of a piston from top to bottom dead center, and the expanded steam is at least partially expanded is conducted from a closable outlet opening into a vapor discharge, has been developed in such a way that the outlet opening is opened when or after reaching bottom dead center and then closed before the piston reaches top dead center in the exhaust stroke.
  • the outlet opening is closed in the exhaust stroke in a range of a crankshaft angle of 70° to 100° after bottom dead center.
  • the amount of live steam per cycle of the work process can be reduced in two ways.
  • the inlet valve throttles the live-steam to a lower pressure than the live-steam pressure.
  • this reduction in pressure leads to a decisive reduction in efficiency.
  • the method according to the invention makes use of a second option for reducing the amount of live steam per cycle.
  • the outlet opening is not open during the entire exhaust stroke, i.e. during the time in which the piston moves from bottom to top dead center, but the outlet opening is closed well before the piston reaches top dead center. Through this measure ensures that a significant amount of already expanded steam remains in the cylinder and is not discharged into the steam outlet.
  • This residual steam remaining in the cylinder is advantageously compressed in the exhaust stroke by the movement of the piston to top dead center.
  • the pressure is already significantly higher than the back pressure that otherwise prevails in the cylinder without compression of the residual steam.
  • the live-steam pressure is achieved by further compression of the already pre-stressed residual steam within the dead volume of the cylinder, with the state of the mixed steam being adjusted after injection of the live steam as a function of the states of the precompressed residual steam and the live steam.
  • This mixed vapor pressure can be achieved independently of the selection of a suitable compression ratio.
  • the method according to the invention for operating a piston expander advantageously achieves that the efficiency of the expander is comparatively high and at the same time a moderate increase in pressure within the cylinder is achieved.
  • the moderate increase in pressure is due to the fact that this is realized over a longer period of time, since the residual steam is initially pre-stressed and only then is it compressed to the live-steam pressure level by injecting live steam.
  • the intake valve is preferably opened as soon as the piston reaches top dead center and is kept open up to a crankshaft angle of about 30° after top dead center.
  • a mixed steam is generated by supplying the live steam into the cylinder chamber, in particular the dead volume of the cylinder chamber, the mixed steam pressure of which corresponds at least approximately to the live steam pressure.
  • the comparatively high mixed-steam pressure The live-steam pressure is achieved by further compression of the already pre-stressed residual steam within the dead volume of the cylinder, with the condition of the mixed-steam being adjusted after injection of the live steam as a function of the states of the pre-compressed residual steam and the live steam.
  • Mixing the live steam with the pressurized residual steam thus produces a mixed steam with an enthalpy that is higher than the usual ratios. This measure increases the efficiency of the cyclic process in a relatively simple manner.
  • figure 1 shows the lift of a valve in an outlet port of the cylinder of a vapor expander.
  • the function curves a, b, c of the valve lift over the crankshaft angle are given in relation to three different valve controls. Reaching the bottom dead center and the top dead center is indicated by a vertical line at approximately 182° or 361° crankshaft angle.
  • the continuous thin function curve a and the dotted curve b each show the lift of the exhaust valve in known standard methods.
  • the third function curve c which is designed as a thick line, shows the valve lift of the exhaust valve when using the method according to the invention for opening and closing the exhaust valve.
  • FIG. 1 An embodiment not according to the invention is given in figure 1 illustrated by the function curve d.
  • a special design of the outlet opening is used.
  • slots are provided in the cylinder wall, which create a connection between the cylinder interior and a vapor discharge as soon as the piston edge sweeps over the slot in the expansion stroke.
  • the at least one slot is closed again as soon as the piston edge has once again passed over the slot due to the opposite movement of the piston.
  • the at least one slot is opened at a crankshaft angle of approximately 20° before bottom dead center is reached and closed again at a crankshaft angle of approximately 20° after bottom dead center.
  • FIG 3 the structure of a steam expander is shown schematically. Since a corresponding vapor expander is usually operated in the two-stroke process, the crankshaft and camshaft speed are the same, so that the intake and exhaust valves are actuated by means of a corresponding crank web provided on the crankshaft. Such a design offers the advantage that neither an additional camshaft nor a corresponding drive is required. Of course, it is fundamentally conceivable to provide an additional camshaft in addition to the crankshaft, even in the case of a steam piston expander operated in the two-stroke process.
  • the invention relates to a method for suitably actuating inlet and outlet valves of a piston machine for vapor expansion.
  • FIG 3 schematically shown three technical options with which the actuation of the valves 4, 5 can be realized.
  • the method according to the invention which mainly relates to the point in time at which the valves 4, 5 are opened and closed, can be carried out with each of the three possible valve actuations.
  • FIG 3 The components of a steam piston expander shown that are essential for the implementation of the method according to the invention are the crankshaft 1, the camshaft 2 with the molded cams 3, the inlet valve 4, the outlet valve 5, the position sensor 6 and an actuation unit 7.
  • the valves are actuated via the crankshaft 1 ( Figure 3a ), via the camshaft 2 (3b) or the further actuating unit (7), which can be driven electrically, hydraulically or pneumatically.
  • a further actuating unit 7 which is primarily characterized by the fact that there is no mechanical connection between the crankshaft 1 and the intake or exhaust valve, a position sensor 6 on the crankshaft and a control unit 10 are also provided.
  • the instantaneous position of the crankshaft 1 is determined with the aid of the position sensor 6 and a corresponding value is sent to the control unit as an input variable.
  • This value is processed in the control unit 10 and an output variable is generated, on the basis of which the actuation of the inlet or outlet valve 4, 5 by the actuation unit 7 takes place.
  • the mixed steam forming in the cylinder has a pressure which at least almost corresponds to the live steam pressure in the steam supply 8 .
  • the live-steam pressure is achieved by further compression of the already pre-stressed residual steam within the dead volume of the cylinder, with the state of the mixed steam being adjusted after injection of the live steam as a function of the states of the precompressed residual steam and the live steam.
  • the outlet opening 5 is closed. If the outlet opening does not have an outlet valve but rather the already described non-inventive slot, which is released at about 20° before bottom dead center is reached, this is closed again due to the movement of the piston in the exhaust stroke and the resulting sweeping over of the piston edge .
  • the outlet opening 5 or the outlet slot 11 By closing the outlet opening 5 or the outlet slot 11 the residual steam is compressed in such a way that the residual steam pressure is only slightly lower than the live steam pressure when the top dead center is reached.
  • the small difference in pressure between residual and live steam offers the main advantage that when the live steam is injected into the dead volume of the cylinder, vapors that are exergetically very similar are mixed with one another.
  • the components of the cylinder in particular the intake valve, are subjected to comparatively little stress due to the compression of the residual steam and the associated small difference between the residual steam pressure and the live steam pressure.
  • no valve is required in addition to the inlet valve 4 .
  • a valve is also provided in the outlet opening 5 , which is actuated via a crank web of the crankshaft 1 , a cam 3 of the camshaft 2 or a further actuating unit 7 .
  • the outlet valve is opened as soon as the piston has reached bottom dead center and is closed at a crankshaft angle of approximately 70° to 100° after bottom dead center. After the outlet valve 5 has been closed, the residual vapor remaining in the cylinder is again compressed by the movement of the piston, so that the advantages already mentioned are achieved in this way.
  • valves can be suitably closed with the aid of a crank web ( Figure 3a ) can be pressed.
  • the main advantage of this design is that there is no need for an additional camshaft.

Description

    Technisches Gebiet:
  • Die Erfindung betrifft ein Verfahren zum Betrieb eines Kolbenexpanders, bei dem aus einer Dampfzuführung Frischdampf durch ein Einlassventil in einen Zylinderraum geleitet wird, der in den Zylinderraum eingeleitete Frischdampf im Arbeitstakt aufgrund einer Bewegung eines Kolbens vom oberen zum unteren Totpunkt entspannt wird und der entspannte Dampf nach Erreichen des unteren Totpunktes aus einer verschließbaren Auslassöffnung in eine Dampfabführung geleitet wird.
  • Stand der Technik:
  • Um Kraftstoffeinsparungen, insbesondere bei mobilen Verbrennungskraftmaschinen, wie etwa Kraftfahrzeugverbrennungsmotoren, realisieren zu können, werden derzeit vornehmlich zwei technische Lösungen priorisiert. Neben dem Einsatz unterschiedlicher Hybridkonzepte, die sich vor allem für den Stadt- und Verteilerverkehr aufgrund der dort vorkommenden Brems- und Beschleunigungsvorgänge anbieten, sind ferner Wärmerückgewinnungssysteme bekannt, die die Abwärme einer Verbrennungskraftmaschine nutzen, um zusätzliche Antriebsenergie bereitzustellen. Derartige Systeme zur Abwärmenutzung bieten sich bei mobilen Verbrennungskraftmaschinen vor allem für Fahrzeuge an, die im Fernverkehr betrieben werden.
  • In derartigen Abwärmenutzungssystemen wird die im Bereich der Verbrennungskraftmaschine und / oder in der Abgasabführung anfallende Abwärme zumindest teilweise an einen sekundären Wärmekreislauf übertragen. In dem sekundären Wärmekreislauf wird ein Wärmeträgerfluid umgewälzt und hierbei üblicherweise in einem Verdampfer zumindest teilweise verdampft, der Dampf in einer Expansionseinheit, beispielsweise in einem Kolbenexpander, entspannt und schließlich in einem Kondensator wieder verflüssigt. Die mit der Expansionseinheit erzeugte mechanische Arbeit wird als zusätzliche Arbeit dem Antriebssystem, insbesondere einem Fahrzeugantriebssystem, zugeführt. Genauso ist es denkbar, die durch Abwärmenutzung gewonnene mechanische Arbeit zum Antrieb anderer Komponenten, wie etwa eines Gebläses oder eines Verdichters, oder zur Erzeugung elektrischer Energie zu nutzen.
  • In diesem Zusammenhang ist aus der DE 10 2006 043 139 A1 ein Wärmerückgewinnungssystem für einen Verbrennungsmotor bekannt. Mit Hilfe des beschriebenen Systems wird dem Fahrzeug zusätzliche Antriebsenergie aus der Abwärme der Verbrennungskraftmaschine und / oder der Abgasanlage zur Verfügung gestellt. Nach Entspannung des dampfförmigen Arbeitsmediums im Expander wird das Arbeitsmedium des sekundären Wärmekreislaufs in einen Kondensator gefördert, in dem es unter Wärmeabgabe verflüssigt wird, so dass der entsprechende Dampfkreisprozess geschlossen ist.
  • Weiterhin ist aus der EP 2 154 400 A2 ein Kolben einer Hubkolbenexpansionsmaschine bekannt, bei dem ein Außendurchmesser des Kolbenhalses kleiner als ein Außendurchmesser des Kolbenkopfes und / oder des Kolbenschaftes ist und gleichzeitig die Länge des Kolbenhalses nahezu dem Hub des Kolbens im Einbauzustand entspricht. Mit der beschriebenen technischen Lösung ist es möglich, mit Hilfe verhältnismäßig einfacher konstruktiver Mittel eine effektive Nutzung der in dem Dampf enthaltenen Energie und somit der in einer Verbrennungskraftmaschine anfallenden Verlustwärme zu realisieren. Die beschriebene Konstruktion des Kolbens gewährleistet einen sanften Anlauf einer Kolbenexpansionsmaschine und eine effektive Trennung der Öl- und Dampfkreisläufe. Die effektive Trennung der Öl- und Dampfkreisläufe verhindert zuverlässig eine gegenseitige Verunreinigung der Kreisläufe durch Übertreten des jeweiligen Mediums.
  • Die aus dem Stand der Technik bekannten Dampf-Kolbenexpander werden üblicherweise im Zweitaktverfahren betrieben. Hierbei wird am oberen Totpunkt der Frischdampf über ein Einlassventil in einen Zylinder der Expandereinheit eingebracht und im folgenden Arbeitstakt wird der Dampf unter Abgabe von Arbeit entspannt. Schließlich wird im unteren Totpunkt das Auslassventil geöffnet und während des Ausschiebetaktes durch Bewegung des Kolbens vom unteren zum oberen Totpunkt der entspannte Dampf aus dem Zylinder ausgeschoben. Bei Erreichen des oberen Totpunktes schließt das Auslassventil und der entsprechende Kreisprozess beginnt von neuem. In Abhängigkeit der Frischdampfparameter sowie des Gegendrucks auf der Auslassseite muss das Verdichtungsverhältnis derart ausgelegt werden, dass das Arbeitsmedium im Arbeitstakt auf ein geeignetes Niveau entspannt wird.
  • Bei zu geringem Verdichtungsverhältnis weist das Arbeitsmedium beim Öffnen des Auslassventils einen Überdruck gegenüber dem Gegendruck in der Auslassleitung auf, was sich aufgrund der potenziellen Möglichkeit, eine größere Entspannung zu erreichen, negativ auf den Wirkungsgrad des Kreisprozesses auswirkt. Wird das Verdichtungsverhältnis hingegen zu groß ausgelegt, wird das Arbeitsmedium auf einen Druck unterhalb des Gegendrucks in der Auslassleitung entspannt, was das Ausschieben des entspannten Dampfs erschwert und sich wiederum negativ auf den Wirkungsgrad des Kreisprozesses auswirkt.
  • Der Einsatz von Dampf-Kolbenexpandern bei der Nutzung von Abwärme von Verbrennungskraftmaschinen erfordert eine komplexe Konstruktion. Um allen Anforderungen bzgl. Gewicht, Kosten, Haltbarkeit sowie notwendigem Service erfüllen zu können, werden in der Regel stehende Ventile verwendet. Durch diese Maßnahme entsteht im oberen Totpunkt ein Schadraum, der vergleichsweise groß ist und somit zu geringen geometrischen Verdichtungsverhältnissen führt. Hierdurch ergibt sich oftmals das Problem, dass nicht einmal der Schadraum hinreichend mit Frischdampf gefüllt werden darf.
  • Aus der DE 10 2007 049 464 A1 ist eine mit Gasdruck betriebene Kolbenmaschine bekannt. Über einen Auslassschlitz kann Dampf nach seiner Expansion abströmen.
  • Die US 2009/0056331 A1 offenbart eine hocheffiziente integrierte Wärmekraftmaschine, die aus einer Doppelverbund-Zylinderstruktur besteht, wobei der erste Zylinder der primäre Verbrennungs- und/oder Expansionszylinder ist und der zweite Zylinder der sekundäre Verbrennungs- und/oder Expansionszylinder ist. Arbeitshübe, die durch Ausdehnungen verschiedener Arbeitsfluide wie Luft-Kraftstoff-Verbrennungsprodukte, Dampf und Druckluft angetrieben werden, sind in einem Motorblock integriert. Es gibt u. a. einen Abluftkanal im unteren Bereich des Zylinders.
  • Die US 1,227,836 offenbart eine einfachwirkende Dampfmaschine. Um einen unwirksamen Auslasswinkel zu vermeiden, kann die Verbindung zwischen Zylinder und Kondensator ganz oder teilweise rechtwinklig zur Zylinderachse unmittelbar über dem Kolben in seiner untersten Position gebohrt sein.
  • Die DE 198 47 742 C1 offenbart eine Dampfmaschine mit einer Einrichtung zur Erzeugung von Dampf und eine Kolben-Zylinder-Einheit zur Erzeugung eines Drehmoments mit Hilfe des Dampfes. Erst im Bereich des unteren Totpunkts wird ein Auslassventil geöffnet und der abgekühlte Dampf ausgestoßen.
  • Ausgehend vom bekannten Stand der Technik und dem geschilderten Problem liegt der Erfindung die Aufgabe zugrunde, ein Verfahren zum Betrieb einer Dampf-Kolbenexpandereinheit anzugeben, die mit einem vergleichsweise hohen Wirkungsgrad betreibbar ist. Das anzugebende Verfahren soll insbesondere die für eine Füllung des Kolbens benötigte Frischdampfmenge reduzieren, ohne dass hierdurch der Wirkungsgrad des Kreisprozesses erheblich verringert wird.
  • Die zuvor beschriebene Aufgabe wird mit Hilfe eines Verfahrens gemäß Anspruch 1 gelöst. Vorteilhafte Ausführungsformen der Erfindung sind Gegenstand der abhängigen Ansprüche und werden in der folgenden Beschreibung unter teilweiser Bezugnahme auf die Figuren näher erläutert.
  • Erfindungsgemäß ist ein Verfahren zum Betrieb eines Kolbenexpanders, bei dem aus einer Dampfzuführung Frischdampf durch ein Einlassventil in einen Zylinderraum geleitet wird, der in den Zylinderraum eingeleitete Frischdampf im Arbeitstakt aufgrund einer Bewegung eines Kolbens vom oberen zum unteren Totpunkt entspannt wird und der entspannte Dampf zumindest teilweise aus einer verschließbaren Auslassöffnung in eine Dampfabführung geleitet wird, derart weitergebildet worden, dass die Auslassöffnung bei oder nach Erreichen des unteren Totpunkts geöffnet und anschließend geschlossen wird, bevor der Kolben im Ausschubtakt den oberen Totpunkt erreicht.
  • Erfindungsgemäß wird die Auslassöffnung im Ausschubtakt in einem Bereich eines Kurbelwellenwinkels von 70° bis 100° nach dem unteren Totpunkt geschlossen.
  • Grundsätzlich ist die Reduktion der Frischdampfmenge pro Zyklus des Arbeitsprozesses auf zwei Arten möglich. Einerseits ist es denkbar, das Einlassventil nur solange und soweit zu öffnen, dass im Zylinder nicht der Frischdampfdruck erreicht wird. In diesem Fall drosselt das Einlassventil den Frischdampf auf einen geringeren Druck als den Frischdampfdruck. Diese Reduzierung des Drucks führt allerdings zu einer entscheidenden Reduzierung des Wirkungsgrades. Aus diesem Grund macht das erfindungsgemäße Verfahren von einer zweiten Möglichkeit zur Reduktion der Frischdampfmenge pro Zyklus Gebrauch. Hierbei ist die Auslassöffnung nicht während des gesamten Ausschubtaktes, also während der Zeit, in der sich der Kolben vom unteren zum oberen Totpunkt bewegt, geöffnet, sondern die Auslassöffnung wird deutlich bevor der Kolben den oberen Totpunkt erreicht geschlossen. Durch diese Maßnahme wird erreicht, dass eine erhebliche Menge bereits entspannten Dampfs im Zylinder verbleibt und nicht in die Dampfabführung abgeleitet wird.
  • Dieser im Zylinder verbleibende Restdampf wird auf vorteilhafte Weise im Ausschubtakt durch die Bewegung des Kolbens zum oberen Totpunkt komprimiert. Dies führt dazu, dass beim Öffnen des Einlassventils bereits ein deutlich erhöhter Druck im Vergleich zu dem ansonsten ohne Kompression des Restdampfes im Zylinder herrschenden Gegendrucks vorhanden ist. Aufgrund des gegenüber dem üblichen Gegendruck erhöhten Drucks innerhalb des Zylinders wird ebenfalls nur eine vergleichsweise kleine Frischdampfmenge in den Zylinder eingeleitet. Nichtsdestotrotz wird durch die Eindüsung des Frischdampfes der sich im Schadvolumen des Zylinders ausbildende Mischdampf auf einen Druck gebracht, der dem Frischdampfdruck entspricht. Der Frischdampfdruck wird hierbei durch eine weitere Kompression des bereits vorgespannten Restdampfes innerhalb des Schadvolumens des Zylinders erreicht, wobei sich der Zustand des Mischdampfs nach Eindüsung des Frischdampfes in Abhängigkeit der Zustände des vorkomprimierten Restdampfes und des Frischdampfs einstellt. Dieser Mischdampfdruck lässt sich unabhängig von der Wahl eines geeigneten Verdichtungsverhältnisses erzielen.
  • Durch das erfindungsgemäße Verfahren zum Betrieb eines Kolbenexpanders wird auf vorteilhafte Weise erreicht, dass der Wirkungsgrad des Expanders vergleichsweise hoch ist und gleichzeitig ein moderater Druckanstieg innerhalb des Zylinders erreicht wird. Der moderate Druckanstieg ist darauf zurückzuführen, dass dieser über eine längere Zeitspanne verwirklicht wird, da zunächst der Restdampf vorgespannt und erst im Anschluss hieran durch Eindüsen von Frischdampf auf das Frischdampfdruckniveau komprimiert wird.
  • Das Einlassventil wird bevorzugt geöffnet, sobald der Kolben den oberen Totpunkt erreicht und wird bis zu einem Kurbelwellenwinkel von etwa 30° nach oberen Totpunkt geöffnet gehalten. Der große Vorteil des erfindungsgemäßen Verfahrens beruht darauf, dass sich im Schadvolumen zwei Dämpfe mischen, nämlich der Frischdampf sowie der vorverdichtete Restdampf, die exergetisch vergleichsweise ähnlich sind.
  • Bei der Ausführung des erfindungsgemäßen Verfahrens wird weiterhin bevorzugt sichergestellt, dass in einem Zeitraum zwischen dem Schließen der Auslassöffnung und dem darauffolgenden Schließen des Einlassventils ein Mischdampf durch die Zufuhr des Frischdampfes in den Zylinderraum, insbesondere das Schadvolumen des Zylinderraums, erzeugt wird, dessen Mischdampfdruck zumindest annähernd dem Frischdampfdruck entspricht. Der vergleichsweise hohe Mischdampfdruck Der Frischdampfdruck wird hierbei durch eine weitere Kompression des bereits vorgespannten Restdampfes innerhalb des Schadvolumens des Zylinders erreicht, wobei sich der Zustand des Mischdampfs nach Eindüsung des Frischdampfes in Abhängigkeit der Zustände des vorkomprimierten Restdampfes und des Frischdampfs einstellt. Durch das Mischen des Frischdampfes mit dem vorgespannten Restdampf wird somit ein Mischdampf mit einer gegenüber den üblichen Verhältnissen erhöhten Enthalpie erzeugt. Diese Maßnahme erhöht auf verhältnismäßig einfache Weise den Wirkungsgrad des Kreisprozesses.
  • Im Folgenden wird die Erfindung anhand von Figuren ohne Beschränkung des allgemeinen Erfindungsgedankens näher erläutert. Es zeigen:
  • Figur 1:
    Ventilerhebungskurve der Auslassöffnung;
    Figur 2:
    Druckverlauf im Zylinder sowie
    Figur 3:
    Schemadarstellungen eines 2-Takt-Dampfexpanders.
  • In Figur 1 ist der Hub eines Ventils in einer Auslassöffnung des Zylinders eines Dampfexpanders dargestellt. Hierbei werden die Funktionskurven a, b, c des Ventilhubes über den Kurbelwellenwinkel in Bezug auf drei verschiedene Ventilsteuerungen angegeben. Das Erreichen des unteren sowie des oberen Totpunktes wird jeweils durch eine vertikal verlaufende Linie bei etwa 182° bzw. 361° Kurbelwellenwinkel angegeben. Die durchgezogene dünne Funktionskurve a sowie die punktlinierte Kurve b zeigen jeweils den Hub des Auslassventils bei bekannten Standardverfahren. Die als dicke Linie ausgeführte dritte Funktionskurve c zeigt den Ventilhub des Auslassventils bei Nutzung des erfindungsgemäßen Verfahrens zum Öffnen und Schließen des Auslassventils.
  • Deutlich zu erkennen ist, dass bei einem Ventilhub des Auslassventils gemäß der Funktionskurven a, b das Auslassventil über einen vergleichsweise weiten Bereich zwischen dem unteren und dem oberen Totpunkt des Kolbens geöffnet wird. Im Vergleich zur erfindungsgemäßen Öffnung des Auslassventils, die durch die dick gezeichnete Funktionskurve c wiedergegeben wird, wird das Auslassventil bei den Standardverfahren nicht nur länger, sondern auch weiter geöffnet. Im Gegensatz zu den bekannten Verfahren wird die Auslassöffnung bei Einsatz des erfindungsgemäßen Verfahrens bereits deutlich vor Erreichen des oberen Totpunktes wieder geschlossen. Durch die beschriebene Maßnahme wird der im Zylinder zu diesem Zeitpunkt befindliche Restdampf aufgrund der Fortbewegung des Kolbens bei geschlossenem Auslassventil in Richtung auf den oberen Totpunkt nicht ausgeschoben sondern komprimiert.
  • Eine nicht-erfindungsgemäße Ausführungsform wird in Figur 1 durch die Funktionskurve d verdeutlicht. Bei dieser technischen Lösung wird eine spezielle Gestaltung der Auslassöffnung verwendet. Hierbei sind in der Zylinderwand Schlitze vorgesehen, die eine Verbindung zwischen dem Zylinderinnenraum und einer Dampfabführung herstellen, sobald die Kolbenkante im Expansionstakt den Schlitz überstreicht. Im Ausschubtakt wird der wenigstens eine Schlitz wieder verschlossen, sobald die Kolbenkante den Schlitz aufgrund der entgegen gesetzten Bewegung des Kolbens erneut überstrichen hat. In dem dargestellten Fall wird der wenigstens eine Schlitz bei einem Kurbelwellenwinkel von etwa 20° vor Erreichen des unteren Totpunkts geöffnet und bei einem Kurbelwellenwinkel von etwa 20° nach dem unteren Totpunkt wieder geschlossen.
  • In Ergänzung zu dem in Figur 1 dargestellten Verlauf des Hubes des Auslassventils während der Bewegung eines Kolbens, werden in Figur 2 die Druckverläufe für die drei in Figur 1 dargestellten Verfahren zum Schließen der Auslassöffnung dargestellt. Deutlich zu erkennen ist, dass bei den Standardverfahren a, b ein sehr schneller Druckanstieg kurz vor Erreichen des oberen Totpunktes erfolgt. Im Vergleich hierzu ist der Druckanstieg bei einem frühzeitigen Schließen des Auslassventils, also deutlich bevor der Kolben den oberen Totpunkt erreicht, sehr sanft. Dies ist darauf zurückzuführen, dass bei einem frühzeitigen Schließen des Auslassventils der Druck im Zylinder kontinuierlich durch die Kompression des Restdampfes ansteigt, während bei Einsatz der Standardverfahren a, b der Druck erst sehr kurz vor Erreichen des oberen Totpunktes, insbesondere etwa 10° Kurbelwellenwinkel vor Erreichen des oberen Totpunktes, ansteigt.
  • In Bezug auf die in Verbindung mit der Funktionskurve d in Figur 1 dargestellte Schlitzsteuerung der Auslassöffnung wird darauf hingewiesen, dass der Druck innerhalb des Zylinders im Ausschubtakt in Abhängigkeit der Gestaltung der Schlitze, insbesondere ihrer geometrischen Form, ansteigt. Im Vergleich zu einer Ventilsteuerung wird der Druckanstieg in den meisten Fällen weniger sanft erfolgen, die entsprechende Druckverlaufskurve somit in diesem Bereich einen etwas steileren Verlauf aufweisen.
  • In Figur 3 ist schematisch der Aufbau eines Dampfexpanders dargestellt. Da ein entsprechender Dampfexpander üblicherweise im Zweitaktaktverfahren betrieben wird, sind Kurbelwellen und Nockenwellendrehzahl gleich, so dass die Einlass- und Auslassventile mittels einer entsprechenden, an der Kurbelwelle vorgesehenen Kurbelwange betätigt werden. Eine derartige Ausführung bietet vor allem den Vorteil, dass weder eine zusätzliche Nockenwelle noch ein entsprechender Antrieb benötigt wird. Selbstverständlich ist es grundsätzlich denkbar, zusätzlich zur Kurbelwelle auch bei einem im Zweitaktverfahren betriebenen Dampfkolbenexpander eine zusätzliche Nockenwelle vorzusehen.
  • Wie die vorigen Ausführungen gezeigt haben, betrifft die Erfindung ein Verfahren zum geeigneten Betätigen von Ein- bzw. Auslassventilen einer Kolbenmaschine zur Dampfentspannung. Hierzu sind in Figur 3 schematisch drei technische Möglichkeiten dargestellt, mit denen die Betätigung der Ventile 4, 5 realisierbar ist. Mit jeder der der drei möglichen Ventilbetätigungen kann das erfindungsgemäße Verfahren, das sich in der Hauptsache auf den Zeitpunkt des Öffnens sowie des Schließens der Ventile 4, 5 bezieht, durchgeführt werden.
  • Die in Figur 3 abgebildeten, für die Realisierung des erfindungsgemäßen Verfahrens wesentlichen Bauteile eines Dampfkolbenexpanders sind die Kurbelwelle 1, die Nockenwelle 2 mit den angeformten Nocken 3, das Einlassventil 4, das Auslassventil 5, der Positionssensor 6 sowie eine Betätigungseinheit 7. Je nachdem, welche konstruktive Ausführung für den Dampfmotor gewählt wird, erfolgt die Betätigung der Ventile über die Kurbelwelle 1 (Fig. 3a), über die Nockenwelle 2 (3b) oder die weitere Betätigungseinheit (7), die elektrisch, hydraulisch oder pneumatisch angetrieben sein kann. Bei Verwendung einer weiteren Betätigungseinheit 7, die sich vor allem dadurch auszeichnet, das keine mechanische Verbindung zwischen der Kurbelwelle 1 und dem Einlass- bzw. Auslassventil besteht, sind ferner ein Positionssensor 6 an der Kurbelwelle sowie eine Steuereinheit 10 vorgesehen. Mit Hilfe des Positionssensors 6 wird die momentane Position der Kurbelwelle 1 ermittelt und ein entsprechender Wert als Eingangsgröße der Steuereinheit zugeleitet. In der Steuereinheit 10 wird dieser Wert verarbeitet und eine Ausgangsgröße generiert, unter deren Zugrundelegung die Betätigung des Einlass- bzw. Auslassventils 4, 5 durch die Betätigungseinheit 7 erfolgt.
  • Allen drei in Figur 3 dargestellten Ventilbetätigungsmechanismen ist gemein, dass Frischdampf über eine Dampfzufuhr 8 zum Einlassventil 4 gefördert wird. Das Öffnen des Einlassventils erfolgt entweder durch eine Kurbelwange der Kurbelwelle (Fig. 3a), eine Nocke 3 der Nockenwelle 2 (Fig. 3b) oder durch die Betätigungseinrichtung 7 sobald sich der Kolben 9 im oberen Totpunkt befindet. Bei Erreichen des oberen Totpunkts befindet sich innerhalb des verbliebenen Zylindervolumens, dem sogenannten Schadvolumen, komprimierter Restdampf, der nach der Entspannung nicht ausgeblasen, sondern erneut komprimiert worden ist. Nach Öffnung des Einlassventils 4 strömt Frischdampf in das Schadvolumen, wobei aufgrund des Einströmens von Frischdampf auch eine Kompression des im Schadvolumen des Zylinders befindlichen, vorgespannten Restdampfes stattfindet. Der sich im Zylinder bildende Mischdampf verfügt schließlich über einen Druck der zumindest nahezu dem Frischdampfdruck in der Dampfzuführung 8 entspricht. Der Frischdampfdruck wird hierbei durch eine weitere Kompression des bereits vorgespannten Restdampfes innerhalb des Schadvolumens des Zylinders erreicht, wobei sich der Zustand des Mischdampfs nach Eindüsung des Frischdampfes in Abhängigkeit der Zustände des vorkomprimierten Restdampfes und des Frischdampfs einstellt.
  • Bei einem Kurbelwellenwinkel von etwa 30° nach dem oberen Totpunkt wird das Einlassventil 4 wieder geschlossen. Aufgrund des im Zylinder befindlichen komprimierten Mischdampfs wird der Kolben 9 im Arbeitstakt nun in Richtung des unteren Totpunkts bewegt, so dass der Dampf entspannt wird. Bei Erreichen des unteren Totpunktes wird eine Auslassöffnung 5 geöffnet. Bei einer nicht-erfindungsgemäßen Variante ist diese als Schlitz 11 in der Zylinderwand ausgeführt, die freigegeben wird, sobald sich der Kolben 9 im Bereich des unteren Totpunkts befindet, wobei der Auslassschlitz durch Überstreichen der Kolbenkante bei einem Kurbelwellenwinkel von etwa 20° vor Erreichen des unteren Totpunkts freigegeben wird. Durch die freigegebene Auslassöffnung 5 bzw. den Auslassschlitz 11 entweicht nunmehr entspannter Mischdampf.
  • Sobald sich der Kolben 9 wieder in Richtung des oberen Totpunktes bewegt, wird die Auslassöffnung 5 geschlossen. Sofern die Auslassöffnung nicht über ein Auslassventil sondern über den bereits beschriebenen nicht-erfindungsgemäßen Schlitz, der bei etwa 20° vor Erreichen des unteren Totpunkts freigegeben wird, verfügt, wird dieser aufgrund der Bewegung des Kolbens im Ausschiebetakt und dem dadurch bedingten Überstreichen der Kolbenkante erneut geschlossen. Durch das Verschließen der Auslassöffnung 5 bzw. des Auslasschlitzes 11 wird der Restdampf derart komprimiert, dass der Restdampfdruck bei Erreichen des oberen Totpunktes nur geringfügig geringer als der Frischdampfdruck ist. Der geringe Druckunterschied zwischen Rest- und Frischdampf bietet vor allem den Vorteil, dass bei der Eindüsung des Frischdampfes in das Schadvolumen des Zylinders Dämpfe mit einander gemischt werden, die exergetisch sehr ähnlich sind. Darüber hinaus werden die Bauteile des Zylinders, insbesondere das Einlassventil aufgrund der Komprimierung des Restdampfes und des damit verbundenen geringen Unterschieds zwischen Restdampf- und Frischdampfdruck vergleichsweise wenig beansprucht. Außerdem wird aufgrund der beschriebenen ersten möglichen Gestaltungsform der Auslassöffnung 5 kein Ventil zusätzlich zum Einlassventil 4 benötigt.
  • Nach Erreichen des oberen Totpunkts wird wiederum das Einlassventil 4 geöffnet und der geschilderte Kreisprozess beginnt von neuem.
  • In einer Variante zur Durchführung des erfindungsgemäßen Verfahrens ist auch in der Auslassöffnung 5 ein Ventil vorgesehen, das über eine Kurbelwange der Kurbelwelle 1, eine Nocke 3 der Nockenwelle 2 oder eine weitere Betätigungseinheit 7 betätigt wird. Bei einer derartigen konstruktiven Gestaltung der Auslassöffnung, wird das Auslassventil geöffnet, sobald der Kolben den unteren Totpunkt erreicht hat und bei einem Kurbelwellenwinkel von etwa 70° bis 100° nach dem unteren Totpunkt geschlossen. Nachdem das Auslassventil 5 geschlossen worden ist, wird der im Zylinder verbleibende Restdampf durch die Bewegung des Kolbens wiederum komprimiert, so dass hierdurch die bereits erwähnten Vorteile erzielt werden.
  • Abschließend wird darauf hingewiesen, dass aufgrund des bevorzugten Betriebs einer Dampfkolbenexpansionsmaschine im Zweitaktverfahren, die Ventile auf geeignete Weise mit Hilfe einer Kurbelwange (Fig. 3a) betätigt werden. Vorteilhaft an dieser konstruktiven Gestaltung ist vor allem, dass auf den Einsatz einer zusätzlichen Nockenwelle verzichtet werden kann.
  • Bezugszeichenliste
  • 1
    Kurbelwelle
    2
    Nockenwelle
    3
    Nocke
    4
    Einlassventil
    5
    Auslassventil
    6
    Positionssensor
    7
    Betätigungseinheit
    8
    Dampfzufuhr
    9
    Kolben
    10
    Steuereinheit
    11
    Auslassschlitz

Claims (6)

  1. Verfahren zum Betrieb eines Kolbenexpanders, bei dem aus einer Dampfzuführung (8) Frischdampf durch ein Einlassventil (4) in einen Zylinderraum geleitet wird, der in den Zylinderraum eingeleitete Frischdampf im Arbeitstakt aufgrund einer Bewegung eines Kolbens (9) vom oberen zum unteren Totpunkt entspannt wird und der entspannte Dampf nach Erreichen des unteren Totpunkts aus einer verschließbaren Auslassöffnung (5; 11) in eine Dampfabführung geleitet wird,
    wobei die Auslassöffnung (5; 11) geöffnet wird, sobald sich der Kolben im Bereich des unteren Totpunkts befindet und anschließend geschlossen wird, bevor der Kolben im Ausschubtakt den oberen Totpunkt erreicht,
    dadurch gekennzeichnet,
    dass die Auslassöffnung (5) im Ausschubtakt in einem Bereich eines Kurbelwellenwinkels von 70° bis 100° nach dem unteren Totpunkt geschlossen wird.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass die Auslassöffnung (5, 11) bei einem Kurbelwellenwinkel von 20° vor Erreichen des unteren Totpunkts bis 20° nach Erreichen des unteren Totpunkts wenigstens einmal geöffnet wird.
  3. Verfahren nach Anspruch 1 oder Anspruch 2,
    dadurch gekennzeichnet, dass das Einlassventil (4) in einem Bereich einer Kurbelwellenstellung von 25° bis 35° nach Erreichen des oberen Totpunkts geschlossen wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, dass in einem Zeitraum zwischen dem Schließen der Auslassöffnung (5; 11) und dem Schließen des Einlassventils (4) durch die Zufuhr des Frischdampfes in den Zylinderraum ein Mischdampf erzeugt wird, dessen Mischdampfdruck nahezu dem Frischdampfdruck entspricht.
  5. Verwendung des Verfahrens nach einem der Ansprüche 1 bis 4, in einem Kolbenexpander eines Dampfkreislaufs, der mit Wärme aus einem Kühlkreislauf einer Verbrennungskraftmaschine versorgt wird.
  6. Verwendung des Verfahrens nach einem der Ansprüche 1 bis 4, in einem Kolbenexpander eines Dampfkreislaufs, der mit Wärme aus einem Kühlkreislauf einer Kraftfahrzeug-Verbrennungskraftmaschine versorgt wird.
EP10015706.4A 2010-02-05 2010-12-16 Verfahren zum Betrieb eines Kolbenexpanders eines Dampfmotors Active EP2354475B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT0016010A AT509394B1 (de) 2010-02-05 2010-02-05 Verfahren zum betrieb eines kolbenexpanders eines dampfmotors

Publications (3)

Publication Number Publication Date
EP2354475A2 EP2354475A2 (de) 2011-08-10
EP2354475A3 EP2354475A3 (de) 2017-11-15
EP2354475B1 true EP2354475B1 (de) 2023-02-01

Family

ID=44021985

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10015706.4A Active EP2354475B1 (de) 2010-02-05 2010-12-16 Verfahren zum Betrieb eines Kolbenexpanders eines Dampfmotors

Country Status (7)

Country Link
US (1) US9038388B2 (de)
EP (1) EP2354475B1 (de)
CN (1) CN102146808B (de)
AT (1) AT509394B1 (de)
BR (1) BRPI1100214B1 (de)
MX (1) MX2011001102A (de)
RU (1) RU2466278C2 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT509394B1 (de) * 2010-02-05 2012-01-15 Man Nutzfahrzeuge Oesterreich Verfahren zum betrieb eines kolbenexpanders eines dampfmotors
CN103122773B (zh) * 2011-11-18 2015-03-11 广西玉柴机器股份有限公司 一种蒸汽马达
ITMI20120497A1 (it) * 2012-03-28 2013-09-29 Roberto Rossetti Motore a vapore con valvole di ammissione e scarico dotate di controllo elettromagnetico.
US10475980B2 (en) * 2012-03-29 2019-11-12 Lenr Cars Sa Thermoelectric vehicle system
CN103423443A (zh) * 2012-05-22 2013-12-04 广西玉柴机器股份有限公司 蒸汽马达活塞
CN103422893B (zh) * 2012-05-25 2015-07-08 周登荣 用于气动汽车的空气动力发动机总成
CN103422892B (zh) * 2012-05-25 2016-03-30 周登荣 用于气动汽车的空气分配控制器
CN104329137B (zh) * 2014-10-20 2017-01-25 广西玉柴机器股份有限公司 蒸汽马达的配气机构
CN104806297A (zh) * 2015-03-11 2015-07-29 郭富强 一种余热利用的方法
US11519267B2 (en) * 2017-07-10 2022-12-06 Burckhardt Compression Ag Method and device for expanding a gas with a reciprocating-piston machine
CN109944640A (zh) * 2019-04-30 2019-06-28 天津大学 一种活塞式膨胀机的进排气电磁控制系统

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1227836A (en) * 1914-07-27 1917-05-29 Karl Schmid Single-acting, condensing, continuous-current steam-engine.
DE2022793A1 (de) * 1970-05-09 1971-11-25 Johannes Seiler Verfahren zur Durchfuehrung eines Dampfkraftprozesses in Kolbendampfmaschinen
US3708979A (en) * 1971-04-12 1973-01-09 Massachusetts Inst Technology Circuital flow hot gas engines
US3994640A (en) * 1975-11-18 1976-11-30 Sphero International Co. Spherical rotary steam engine
US4018050A (en) * 1976-07-16 1977-04-19 Coy F. Glenn Compressed air-operated motor employing dual lobe cams
US4159700A (en) * 1976-10-18 1979-07-03 Mccrum William H Internal combustion compound engines
US4183219A (en) * 1977-02-25 1980-01-15 Vargas Eduardo A Self starting hot gas engine with means for changing the expansion ratio
GB2033489B (en) * 1978-10-20 1982-11-17 Aga Ab Power output control of hot gas engines
IT1137334B (it) * 1981-04-10 1986-09-10 Giorgio Rebolini Motore ad aria compressa con camera d'espansione a volume variabile in funzione della pressione d'alimentazione
SU1315639A1 (ru) * 1984-03-27 1987-06-07 А.П. Николайчук и В.А. Слобод нюк Четырехтактный двигатель внутреннего сгорани
US5016441A (en) * 1987-10-07 1991-05-21 Pinto Adolf P Heat regeneration in engines
US5191766A (en) * 1991-06-10 1993-03-09 Vines Frank L Hybrid internal combustion/steam engine
US5309713A (en) * 1992-05-06 1994-05-10 Vassallo Franklin A Compressed gas engine and method of operating same
SE515966C2 (sv) * 1994-06-20 2001-11-05 Ranotor Utvecklings Ab Motoraggregat omfattande en förbränningsmotor och en ångmotor
DE29715962U1 (de) 1997-09-05 1997-11-27 Jaeger Emil Gmbh Co Kg Wellenkupplung
DE19847742C1 (de) * 1998-10-16 2000-01-13 Gab Ges Fuer Arbeits Und Beruf Dampfmaschine
DE19924548A1 (de) * 1999-05-28 2000-12-07 Miturbo Umwelttechnik Gmbh & C Verfahren und Vorrichtung zur Steuerung der Gaswechselvorgänge an Gasexpansions-Kolbenmaschinen
JP3852363B2 (ja) * 2002-04-19 2006-11-29 日産自動車株式会社 エンジンの制御装置
US7971449B2 (en) * 2004-08-14 2011-07-05 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Heat-activated heat-pump systems including integrated expander/compressor and regenerator
MD20050296A (ro) * 2005-10-04 2007-04-30 Георге МИХАЙЛОВ Motor cu ardere şi vaporizare internă cu mecanism fără bielă
DE102006028868B4 (de) * 2006-06-23 2017-07-13 Man Truck & Bus Ag Aufgeladene Brennkraftmaschine mit einer Expandereinheit in einem Wärmerückgewinnungskreislauf
DE102006043139B4 (de) 2006-09-14 2015-02-12 Man Truck & Bus Ag Vorrichtung zur Gewinnung von mechanischer oder elektrischer Energie aus der Abwärme eines Verbrennungsmotors eines Kraftfahrzeugs
US8109097B2 (en) * 2007-03-07 2012-02-07 Thermal Power Recovery, Llc High efficiency dual cycle internal combustion engine with steam power recovered from waste heat
US7603858B2 (en) * 2007-05-11 2009-10-20 Lawrence Livermore National Security, Llc Harmonic engine
US7975485B2 (en) * 2007-08-29 2011-07-12 Yuanping Zhao High efficiency integrated heat engine (HEIHE)
DE102007049464A1 (de) * 2007-10-16 2009-04-23 Armin Burghauser Jun. Steuerung des Einlasses einer mit Gasdruck betriebenen Kolbenmaschine insbesondere einer Dampfmaschine
JP2009097434A (ja) * 2007-10-17 2009-05-07 Sanden Corp 内燃機関の廃熱利用装置
US7584724B2 (en) * 2007-10-30 2009-09-08 Ford Global Technologies, Llc Variable compression ratio dual crankshaft engine
DE102007062580A1 (de) * 2007-12-22 2009-06-25 Daimler Ag Verfahren zur Rückgewinnung einer Verlustwärme einer Verbrennungskraftmaschine
US8091357B2 (en) * 2008-03-31 2012-01-10 Caterpillar Inc. System for recovering engine exhaust energy
US8028665B2 (en) * 2008-06-05 2011-10-04 Mark Dixon Ralston Selective compound engine
CN101289946A (zh) * 2008-06-11 2008-10-22 徐敏胜 两行程高压空气发动机
CN101476490B (zh) * 2009-01-16 2010-12-29 华南理工大学 膨胀比可调的车用气动发动机及其排气压力控制方法
DE102009035861B3 (de) * 2009-07-31 2011-02-24 Voith Patent Gmbh Antriebsvorrichtung und Verfahren für deren Betrieb
AT509394B1 (de) * 2010-02-05 2012-01-15 Man Nutzfahrzeuge Oesterreich Verfahren zum betrieb eines kolbenexpanders eines dampfmotors

Also Published As

Publication number Publication date
CN102146808B (zh) 2017-04-12
RU2466278C2 (ru) 2012-11-10
EP2354475A2 (de) 2011-08-10
EP2354475A3 (de) 2017-11-15
CN102146808A (zh) 2011-08-10
BRPI1100214B1 (pt) 2020-08-25
RU2011104049A (ru) 2012-08-10
US9038388B2 (en) 2015-05-26
BRPI1100214A2 (pt) 2012-07-24
US20110192162A1 (en) 2011-08-11
AT509394A1 (de) 2011-08-15
AT509394B1 (de) 2012-01-15
MX2011001102A (es) 2011-08-31

Similar Documents

Publication Publication Date Title
EP2354475B1 (de) Verfahren zum Betrieb eines Kolbenexpanders eines Dampfmotors
EP0379720A1 (de) Verfahren zur Steigerung der Motorbremsleistung bei Viertakt-Hubkolben-Brennkraftmaschinen
DE102005023178B4 (de) Kompressionsimpulsverfahren zum Anlassen eines Freikolben-Verbrennungsmotors
DE10054022A1 (de) Verfahren zum Betreiben einer Wärmekraftmaschine
EP0898059A2 (de) Dekompressionsventil-Motorbremse
DE102017120512B4 (de) Verfahren zum Betreiben eines Wasserstoffmotors für ein Kraftfahrzeug
WO2017102042A1 (de) Verfahren zum betreiben einer hubkolben-verbrennungskraftmaschine
EP3084197B1 (de) Verfahren zum betreiben einer hubkolben-verbrennungskraftmaschine
DE102013220637B4 (de) Verfahren und Vorrichtung zum Einstellen einer definierten Kurbelwellenabstellposition im Motorauslauf
DE60215879T2 (de) Zeitdauersteuerung für eine hydraulisch betätigte Motorbremse mittels Kompressionsverringerung
EP3714162A1 (de) Verfahren zum betreiben eines kolbenverdichters und kolbenverdichter
DE102013215857A1 (de) Verfahren zum Starten eines Verbrennungsmotors mit angeschlossenem Drucklufttank
DE102015009898A1 (de) Verfahren zum Betreiben einer Hubkolben-Verbrennungskraftmaschine
DE546460C (de) Doppelt wirkende Zweitaktbrennkraftmaschine
DE202015005274U1 (de) Kompressionsvorrichtung
DE10309730B4 (de) Verfahren zur Impulsaufladung einer Brennkraftmaschine
DE102018128038A1 (de) Motorbremsbetrieb einer Brennkraftmaschine
DE10217695A1 (de) Verfahren zum erleichterten Starten einer Brennkraftmaschine
DE102005059403A1 (de) Im Zweitaktverfahren durchzuführendes Motorbremsverfahren für eine Brennkraftmaschine
WO2017190722A1 (de) Zweitakt-brennkraftmaschine
DE4036537C1 (en) IC engine toxics reduction system - involves mixing off-gas from previous cycle to fresh air content
DE102013200630A1 (de) Verfahren zum Betreiben eines Verbrennungsmotors
DE102006038081A1 (de) Verfahren zum Aufladen einer Brennkraftmaschine sowie Brennkraftmaschine mit integrierter Aufladung
DE751617C (de)
AT134893B (de) Kurbelloser Motorkompressor mit zwei gegenläufigen Freiflugkolben.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAN TRUCK & BUS OESTERREICH AG

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F01K 7/00 20060101AFI20171012BHEP

Ipc: F01K 7/36 20060101ALI20171012BHEP

Ipc: F01K 23/06 20060101ALI20171012BHEP

Ipc: F01B 17/04 20060101ALI20171012BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180514

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200429

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAN TRUCK & BUS SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221017

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1546993

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010017033

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230201

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230601

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230501

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230201

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230201

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230201

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230201

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230601

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230502

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230201

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230201

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230201

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230201

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010017033

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230201

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20231103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231222

Year of fee payment: 14

Ref country code: NL

Payment date: 20231226

Year of fee payment: 14

Ref country code: IT

Payment date: 20231221

Year of fee payment: 14

Ref country code: FR

Payment date: 20231226

Year of fee payment: 14