EP2350229A1 - Nanoparticules fluorescentes, leur procédé de préparation et leur application en marquage biologique - Google Patents

Nanoparticules fluorescentes, leur procédé de préparation et leur application en marquage biologique

Info

Publication number
EP2350229A1
EP2350229A1 EP09745056A EP09745056A EP2350229A1 EP 2350229 A1 EP2350229 A1 EP 2350229A1 EP 09745056 A EP09745056 A EP 09745056A EP 09745056 A EP09745056 A EP 09745056A EP 2350229 A1 EP2350229 A1 EP 2350229A1
Authority
EP
European Patent Office
Prior art keywords
precursor
temperature
nanocrystals
nanocrystal
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09745056A
Other languages
German (de)
English (en)
Inventor
Peter Reiss
Toufic Jean Daou
Isabelle Texier-Nogues
Liang Li
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP2350229A1 publication Critical patent/EP2350229A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/61Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing fluorine, chlorine, bromine, iodine or unspecified halogen elements
    • C09K11/611Chalcogenides
    • C09K11/612Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • C09K9/02Organic tenebrescent materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape

Definitions

  • the present invention belongs to the technical field of semiconductor nanocrystals.
  • the present invention proposes a method for preparing nanocrystals comprising a semiconductor of ternary composition, typically of type ABC2, such as nanocrystals of CuInS2 optionally coated with a layer of another type DE semiconductor such as ZnS.
  • the present invention also relates to the novel luminescent materials thus prepared and in particular based on CuInS2 / ZnS core / shell nanocrystals whose emission covers the visible spectrum and the near infrared as well as their various uses and in particular for in vivo imaging.
  • markers Two main types of Near-Infrared Fluorescent Markers (or “labels” in English), which is the wavelength range for which light absorption and light scattering by biological tissues are minimal, have been developed for in vivo imaging. These markers are either molecular fluorescent markers, ie organic fluorophores absorbing / emitting in the near infrared, or nano-particle fluorescent markers.
  • ICG indocyanine green
  • ICG indocyanine green
  • Clinical applications using ICG are, at present, essentially applications in vascularization imaging, such as angiography of the eye.
  • the entire palette of colors of the visible and near infrared and ultraviolet can be obtained with semiconductor nanocrystals by the appropriate choice of their size and composition.
  • the most studied materials are chalcogenides of cadmium (CdS, CdSe, CdTe) and lead (PbS, PbSe).
  • CdS, CdSe, CdTe chalcogenides of cadmium
  • PbS, PbSe lead
  • the European RoHS Directive Restriction of Hazardous Substances
  • EEEE Electrical and Electronic Equipment
  • nanocrystals based on cadmium [1], lead or arsenic [2] are not acceptable for a large number of applications as a biological marker, and in particular for in vivo labeling in the body human. It is therefore essential to find alternative materials for the production of nanocrystals, while keeping the desired optical properties.
  • the optical quality of a luminescent material composed of nanocrystals depends on several parameters, the most important of which are:
  • CIS nanocrystals There are several methods for preparing CIS nanocrystals, among which the method of decomposing precursors in a high temperature organic solvent gives access to the narrowest size dispersion.
  • a small size dispersion of the nanocrystals leads to a narrow emission spectrum, i.e. a pure emission color which is particularly advantageous for technological applications.
  • the main synthesis routes are as follows.
  • a modification of this protocol includes the addition of hexanethiol to the reaction mixture and gives access to nanoparticles soluble in organic solvent [4].
  • the nanocrystals of CIS obtained have a size of between 2 and 4 nm and the maximum fluorescence quantum yield is around 5%.
  • Another variant of the method consists in triggering the reaction by UV irradiation (photolysis) [5].
  • the main disadvantage of these approaches is the use of a monomolecular precursor which is not commercially available and which must therefore be synthesized beforehand using, for example, the procedure described in the article by Banger et al., 2003 [ 6].
  • Nakamura et al. have more recently described a second synthetic route that uses individual sources of copper, indium and sulfur [7].
  • the octadecene which serves as the solvent is mixed with copper iodide and indium iodide dissolved in oleylamine and sulfur, dissolved in trioctylphosphine. After heating the mixture at 160-240 ° C., the size of the nanocrystals obtained is 3.5-7.5 nm, respectively. However, the fluorescence quantum yield is low, less than 0.1%. A value of 5% was obtained with the quaternary system, Zn-Cu-In-S, described in the same article.
  • CIS nanocrystals with a size of 4-30 nm according to the parameters chosen. No information concerning the photoluminescence properties of these crystals is given.
  • the methods of preparation described above make it possible to obtain CIS nanocrystals in a wide range of sizes and with a small size dispersion. However, they do not solve the problem of fluorescence quantum yield which remains low (less than 5%). As a result, the intended applications of CIS nanocrystals are limited to solar cells, which are based on the nanoparticle absorption properties and not on their fluorescence. In the state of the art, the use of CIS nanocrystals as emitter / fluorophores and in particular in biological labeling is not described.
  • the present invention proposes, first of all, a new process for the synthesis of nanocrystals comprising a semiconducting semiconductor compound consisting of elements A, B and C, hereinafter called ternary compound (A, B, C), and particularly in a stoichiometric form of formula ABC2.
  • This method completed by a step of coating with a shell, the external part of which comprises another semiconductor of formula DE, makes it possible to obtain nanocrystals, in particular nanocrystals of the "core / shell” type and, in particular, core nanocrystals.
  • shell / formula CIS / ZnS having a fluorescence quantum yield greater than 10% and a high stability against photo-oxidation.
  • the processes according to the present invention used are very simple to implement, which facilitates the change of scale to manufacture these nanocrystals in larger quantities.
  • the method of the present invention is remarkable because not only it allows the preparation of CIS nanocrystals optionally coated with a ZnS shell, but also it is generalizable to the preparation of nanocrystals comprising a ternary compound (A, B, C) semiconductor, and particularly of formula ABC2, optionally coated with a shell comprising at least one semiconductor of formula DE with A representing a metal or metalloid in the oxidation state +1, B representing a metal or metalloid in the state oxidation agent + III, C representing an element in the oxidation state -II, D representing a metal or metalloid in the oxidation state +11 and E representing an element in the oxidation state -II.
  • the present invention relates to a process for preparing a nanocrystal comprising a semiconducting ternary compound consisting of elements
  • process (I) comprising the successive steps of: a) preparing a mixture comprising at least one precursor of A, at least one precursor of B and at least one precursor of C at a temperature T a ; b) maintaining the mixture obtained in step (a) at a temperature T b greater than or equal to the temperature T a ; c) bringing the mixture obtained in step (b) of the temperature T b to a temperature T c greater than the temperature T b ; di) optionally purifying the nanocrystals comprising a ternary semiconductor compound consisting of elements A, B and C, and more particularly of formula ABC2, obtained in step
  • the nanocrystal prepared according to the method of the invention comprises a semiconducting semiconducting compound consisting of elements A, B and C, and more particularly of formula ABC2, with A representing a metal or metalloid in oxidation state +1, B representing a metal or metalloid in the state oxidation agent + III and C representing an element in the oxidation state -II, this type of semiconductor being called I-III-VI.
  • the metal or metalloid in the oxidation state +1 implemented in the context of the present invention is advantageously chosen between copper (Cu), silver (Ag) and mixtures thereof.
  • the metal or metalloid in the oxidation state + III used in the context of the present invention is advantageously chosen from gallium (Ga), indium (In), aluminum (Al) and their mixtures.
  • the element in the oxidation state -II used in the context of the present invention is advantageously chosen from sulfur (S), oxygen (O), selenium (Se), tellurium ( Te) and their mixtures.
  • ternary compound (A, B, C) semiconductor included in the nanocrystal prepared according to the process of the invention there may be mentioned CuIn 3 Se 5 , CuIn 3 S 5 , CuIn 5 SeS, CuIn 5 Ss, Cu 2 In 2 Se 4 , CuIn 7 SeH ...
  • the semiconductors of formula ABC 2 there are typically the semiconductors of formula ABC 2 , among which mention may in particular be made CuAlS 2 , CuGaS 2 , CuInS 2 , CuAlO 2 , CuGaO 2 , CuInO 2 , CuAlSe 2 , CuGaSe 2 , CuInSe 2 , CuAlTe 2 , CuGaTe 2 , CuInTe 2 , AgAlS 2 , AgGaS 2 , AgInS 2 , AgAlO 2 , AgGaO 2 , AgInO 2 , AgAlSe 2 , AgGaSe 2 , AgInSe 2 , AgAlTe 2 , AgGaTe 2 , AgInTe 2 and mixtures thereof.
  • the core of the nanocrystal prepared according to the process of the invention comprises a semiconductor of formula ABC 2 chosen from CuInS 2 , CuGaS2, CuInS ⁇ 2, CuGaS ⁇ 2 and mixtures thereof, and more particularly, said semiconductor is CuInS2.
  • the nanocrystal prepared according to the method of the invention consists exclusively of a semiconductor as previously defined (ie a ternary semiconductor consisting of elements A, B and C and, more particularly, a semiconductor of formula ABC2 ).
  • the nanocrystal prepared by the process (1) of the present invention has a diameter of less than 10 nm, in particular less than 8 nm and in particular between 1 and 6 nm.
  • the precursor of A used is selected from the group consisting of a copper precursor, a silver precursor, and mixtures thereof. All the precursors of copper and silver known to those skilled in the art and in particular the precursors in liquid or solid form can be used in the present invention.
  • the precursor of A is chosen from the salts of A, the halides of A, the oxides of A and the organometallic compounds of A.
  • organometallic compound of A is meant, more particularly, a compound of A substituted, a carboxylate of A or a phosphonate of A.
  • substituted A compound in the context of the present invention a compound of formula R1A in which R1 represents a hydrocarbon group of 1 to 20 carbon atoms such that a alkyl radical, an alkenyl radical, an alkoxy radical, an aryl radical or an aryloxy radical.
  • a carboxylate is meant in the context of the present invention a compound of formula R 2 COOA in which R 2 represents a hydrocarbon group of 1 to 20 carbon atoms such as an alkyl radical, an alkenyl radical, an alkoxy radical, an aryl radical or an aryloxy radical.
  • R 3 represents a hydrocarbon group of 1 to 20 carbon atoms such as an alkyl radical, an alkenyl radical, an alkoxy radical, an aryl radical or an aryloxy radical;
  • R 4 represents a hydrogen atom or a hydrocarbon group of 1 to 20 carbon atoms such as an alkyl radical, an alkenyl radical, an alkoxy radical, an aryl radical or an aryloxy radical
  • R 5 represents a hydrogen atom; hydrogen or a hydrocarbon group of 1 to 20 carbon atoms such as an alkyl radical, an alkenyl radical, an alkoxy radical, an aryl radical or an aryloxy radical.
  • alkyl group means a linear, branched or cyclic alkyl group, optionally substituted, of 1 to 20 carbon atoms, in particular of 1 to 15 carbon atoms, and in particular, from 1 to 10 carbon atoms.
  • alkenyl group means an alkenyl group. linear, branched or cyclic, optionally substituted, from 2 to 20 carbon atoms, in particular from 2 to 15 carbon atoms and, in particular, from 2 to 10 carbon atoms.
  • alkoxy group means an oxygen atom substituted with an alkyl as defined above.
  • aryl group means an optionally substituted mono- or polycyclic aromatic group having from 6 to 20 carbon atoms, especially from 6 to 14 carbon atoms, in particular from 6 to 8 carbon atoms.
  • aryloxy group means an oxygen atom substituted with an aryl as defined above.
  • the term "optionally substituted” is a radical substituted with one or more groups chosen from: an alkyl group, an alkoxy group, a halogen, a hydroxy, a cyano, a trifluoromethyl or a nitro.
  • halogen means a fluorine, chlorine, bromine or iodine.
  • A when A is copper, mention may be made of copper chloride, copper iodide, copper acetate and copper acetylacetonate, copper stearate, copper palmitate, copper myristate, copper laurate, copper oleate and mixtures thereof. More particularly, said copper precursor is copper iodide.
  • the B precursor used is advantageously chosen from the group consisting of an indium precursor, a gallium precursor, an aluminum precursor and their mixtures. All the precursors of indium, aluminum and gallium known to those skilled in the art and in particular the precursors in liquid or solid form can be used in the present invention.
  • the precursor of B is chosen from among the salts of B, the halides of B, the oxides of B and the organometallic compounds of B.
  • organometallic compound of B is meant, more particularly, a compound of B trimer. substituted, a carboxylate of B or a phosphonate of B.
  • tri-substituted B compound in the context of the present invention a compound of formula (R 8) B in which each Re, identical or different, represents a hydrocarbon group of 1 to 20 carbon atoms such as an alkyl radical, an alkenyl radical, an alkoxy radical, an aryl radical or an aryloxy radical.
  • B carboxylate means a compound of formula (R 7 COO) 3B in which each R 7 , which may be identical or different, represents a hydrocarbon group of 1 to 20 carbon atoms, such as an alkyl radical, a radical alkenyl, an alkoxy radical, an aryl radical or an aryloxy radical.
  • B phosphonate means a compound of formula [R 8 -P (OR 9 ) (ORio) O] 3B in which: each Rg, which may be identical or different, represents a hydrocarbon group of 1 to 20 carbon atoms such as an alkyl radical, an alkenyl radical, an alkoxy radical, an aryl radical or an aryloxy radical; each Rg, which may be identical or different, represents a hydrogen atom or a hydrocarbon group of 1 to 20 carbon atoms such as an alkyl radical, an alkenyl radical, an alkoxy radical, an aryl radical or an aryloxy radical, and each Rio , identical or different, represents a hydrogen atom or a hydrocarbon group of 1 to 20 carbon atoms such as an alkyl radical, an alkenyl radical, an alkoxy radical, an aryl radical or an aryloxy radical.
  • alkyl, alkenyl, alkoxy, aryl and aryloxy radicals are as defined for the precursors of A.
  • precursor of B when B is indium, mention may be made of indium trichloride, triethylindium, indium triacetate and tri (acetylacetonate).
  • said indium precursor is indium acetate.
  • the C precursor used is selected from the group consisting of a sulfur precursor, an oxygen precursor, a selenium precursor, a tellurium precursor and mixtures thereof. All the precursors of sulfur, oxygen, selenium and tellurium known to those skilled in the art and in particular the precursors in liquid or solid form can be used in the present invention.
  • the precursor of C is selected from elemental selenium dissolved in an organic solvent; elemental tellurium dissolved in an organic solvent; elemental sulfur dissolved in an organic solvent; an aliphatic thiol; a xanthate; an amine oxide; a phosphine selenide; a phosphine oxide; a compound of formula C (Si (Rn) 3) 2 in which C represents a member selected from the group consisting of S, Se and Te and each Rn, which is the same or different, is a linear, branched or cyclic alkyl group, optionally substituted , from 1 to 10 carbon atoms, especially from 1 to 6 carbon atoms and, in particular, from 1 to 3 carbon atoms, and mixtures thereof.
  • the aliphatic thiol is of formula C n H 2n + i-SH with n representing an integer between 1 and 25, in particular between 5 and 20 and, in particular, between 8 and 18.
  • xanthate is meant in the context of the present invention a compound of sequence
  • the alkyl, alkenyl, alkoxy, aryl and aryloxy radicals are as defined for the precursors of A.
  • amine oxide in the context of the present invention a compound of sequence (R13) 3NO in which each R13, identical or different, represents a hydrocarbon group of 1 to 20 carbon atoms such as an alkyl radical, an alkenyl radical, an alkoxy radical, an aryl radical or an aryloxy radical.
  • the alkyl, alkenyl, alkoxy, aryl and aryloxy radicals are as defined for the precursors of A.
  • the organic solvent in which selenium, tellurium or elemental sulfur is dissolved is chosen from trialkylphosphines in which the alkyl group comprises from 4 to 12 carbon atoms and alkenes.
  • organic solvents which may be used, mention may be made of 1-octadecene, tributylphosphine and trioctylphosphine.
  • selenide and oxide phosphines that may be used in the context of the present invention are respectively chosen from trialkylphosphine selenide and trialkylphosphine oxide in which the alkyl group comprises from 4 to 12 carbon atoms.
  • the precursors of A, B and C used in the context of the present invention may be commercially available products or products for which the person skilled in the art knows at least one simple method of preparation.
  • at least one of the precursors of A, B and C may have been optionally prepared beforehand before being introduced into the mixture of step (a) or may be prepared in situ in said mixture.
  • the mixture of at least one precursor of A, at least one precursor of B and at least one precursor of C, ie the mixture prepared in step (a) of the process of the invention, is carried out in an organic solvent.
  • said organic solvent is an alkane, a secondary or tertiary amine, or an alkene having a boiling point greater than T c , ie greater than the temperature chosen for step (c) of the process according to the invention.
  • alkane is meant, in the context of the present invention, a linear, branched or cyclic alkane, optionally substituted, of 1 to 40 carbon atoms. carbon, especially from 10 to 35 carbon atoms and, in particular, from 14 to 30 carbon atoms.
  • alkanes that may be used in the context of the present invention are hexadecane and squalane (C30H62)
  • second or tertiary amine is meant, in the context of the present invention, especially dialkylamines and trialkylamines whose alkyl group comprises from 4 to 24 carbon atoms, especially from 8 to 20 carbon atoms.
  • the secondary amine (tertiary) which may be used in the context of the present invention is dioctylamine (trioctylamine) which has 8 carbon atoms per alkyl chain.
  • alkene is meant, in the context of the present invention, a linear, branched or cyclic alkene, optionally substituted, of 2 to 40 carbon atoms, in particular of 10 to 35 carbon atoms and, in particular, of 14 to 30 carbon atoms. at 40 carbon atoms.
  • an alkene that can be used in the context of the present invention is squalene (C30H50).
  • a solvent more particularly used to prepare the mixture of precursors in the process according to the invention is 1-octadecene (CiSH 36 ).
  • the mixture of precursors in said solvent may further contain an element selected from the group consisting of a stabilizer for the surface of the nanocrystals and a primary amine.
  • the mixture of precursors in said solvent may further contain a stabilizer for the surface of the nanocrystals.
  • stabilizer for the surface of the nanocrystals also called “stabilizing ligand” means in the context of the present invention an organic molecule which binds to the surface of the nanocrystal and which thus avoids the aggregation of the nanocrystals. Any stabilizer known to those skilled in the art can be used in the context of the present invention.
  • said stabilizer is chosen from thiols and especially aliphatic thiols as previously described; alkylphosphines and especially tri (alkyl) phosphines as previously described; alkylphosphine oxides and phosphonic acids as previously described; carboxylic acids and especially aliphatic or olefinic carboxylic acids such as lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid or mixtures thereof.
  • the mixture of precursors in said solvent may also contain a primary amine.
  • the primary amine is an alkylamine whose alkyl group comprises from 4 to 24 carbon atoms, especially from 8 to 20 carbon atoms.
  • the primary amines which may be used in the context of the present invention are octylamine, dodecylamine, hexadecylamine (HDA) and oleylamine.
  • the concentration of the precursor of A, the precursor of B and the precursor of C in the mixture during step (a) of the process is between 2.5 and 150 mmol / L, especially between 5 and 100 mmol / L and in particular between 10 and 20 mmol / L.
  • the stabilizers are also sources of precursors used in the process according to the invention and in particular precursors of C such as sulfur precursors.
  • precursors of C such as sulfur precursors.
  • the total amount of a precursor also acting as a stabilizer is much greater in the mixture than the quantity defined above.
  • the amount of a compound acting as precursor and stabilizer is between 10 mmol / L and 5 mol / L, in particular between 100 mmol / L and 1 mol / L and in particular between 200 and 700 mmol / L. .
  • the temperature T a of the precursor mixture during step (a) is less than 50 ° C., in particular less than 40 ° C. and, in particular, less than 30 ° C. More particularly, the mixture of precursors is at room temperature.
  • ambient temperature is meant a temperature of 20 ° C ⁇ 5 ° C.
  • step (a) of the process of the invention is carried out with stirring.
  • Various means known to those skilled in the art can be used to stir the mixture used in step (a) of the process of the invention.
  • the mixture can be stirred using a stirrer, a magnetic bar, an ultrasonic bath or a homogenizer.
  • step (a) of the process of the invention may be carried out under a flow of an inert gas and in particular under a stream of argon, nitrogen or a mixture thereof.
  • Step (b) of the process of the invention aims at keeping the mixture prepared in step (a) at a temperature T b greater than or equal to the initial temperature of the mixture, ie the temperature T a as defined above.
  • the precursors of A and B can be converted by reaction with the stabilizer molecules in the medium.
  • indium triacetate can react with myristic acid to form indium trimyristate.
  • the temperature T b of the precursor mixture during step (b) is less than 100 ° C., in particular between 30 and 80 ° C., in particular between 40 and 60 ° C., more particularly, the mixture precursors is at a temperature of the order of 50 ° C.
  • “Temperature of the order of 50 ° C.” means a temperature of 50 ° C. ⁇ 5 ° C.
  • the temperature T b is equal to the initial temperature of the mixture, ie the temperature T a of step (a).
  • duration of the order of 60 min means a duration of 60 min ⁇ 10 min.
  • the temperature T b is greater than the initial temperature of the mixture, ie the temperature T a of step (a).
  • the latter is raised from the temperature T a to T b.
  • This passage can be made increasingly linear or with at least one level. Particularly advantageously, this passage is increasingly linear, in particular with a ramp of 1 to 20 ° C. per second, in particular a ramp of 2.5 to 15 ° C. per second and, more particularly, a ramp of 5 to 10 ° C. 0 C per second.
  • Step (b) is advantageously carried out under a primary vacuum. After step (b), purging with an inert gas such as argon, nitrogen or a mixture thereof is performed. Similarly, step (b) of the process of the invention is carried out with stirring and in particular according to the embodiments previously envisaged for step (a) of the process.
  • an inert gas such as argon, nitrogen or a mixture thereof.
  • Step (c) of the process of the invention consists in gradually heating the reaction mixture obtained in step (b) of the process of the invention of the temperature T b to a higher temperature, ie the temperature T c .
  • the temperature T c is greater than 150 ° C., in particular greater than 180 ° C., in particular between 180 ° C. and 300 ° C., and more particularly between 200 ° C. and 270 ° C.
  • the temperature T c is of the order of 230 ° C.
  • By “of the order of 230 ° C” means a temperature of 230 ° C. ⁇ 20 ° C. and in particular a temperature of 230 ° C. ⁇ 10 ° C.
  • step (c) of the process according to the invention the transition from the temperature T b to the temperature T c is increasingly linear.
  • the linear increase in temperature is carried out with a ramp of 0.5 to 20 ° C. per second, in particular a ramp of 1 to 10 ° C. per second and, more particularly, a ramp of 1.5 to 5 °. C per second.
  • step (c) of the process according to the invention the transition from the temperature T b to the temperature T c is increasing with at least one step.
  • Bearing means a temperature T between T b and T c which is kept constant for a time between 5 sec and 1 h, in particular between 15 sec and 45 min, in particular between 30 sec and 30 min and, more particularly, between 1 min and 15 min.
  • the increase in temperature between the temperatures T b and T c can have from 1 to 10 steps and in particular from 2 to 5 steps.
  • the temperature is increased by linearly under the conditions as defined for the first variant of step (c).
  • step (c) once the temperature T c has been reached, this temperature can be kept constant for a period of between 10 minutes and 5 hours, in particular between 20 minutes and 3.5 hours and, in particular, between 30 minutes and 30 minutes. min and 2 h.
  • the duration of step (c) is of the order of 40 min.
  • “duration of the order of 40 min” is meant a duration of 40 min ⁇ 10 min and in particular a duration of 40 min ⁇ 5 min.
  • Step (c) is advantageously carried out with stirring and in particular according to the embodiments previously envisaged for step (a) of the process.
  • step (di) of the process according to the invention the nanocrystals obtained are purified from the reaction mixture, ie the nanocrystals are separated from said reaction mixture.
  • Those skilled in the art know different techniques for this purification using a precipitation step, a dilution step and / or a filtration step.
  • the techniques used in the prior art for purifying luminescent nanocrystals can be used in the context of step (d1) of the process of the invention.
  • the step (di) of the process is carried out at a temperature below the temperature T c .
  • the reaction mixture obtained after step (c) of the process is cooled or allowed to cool to room temperature.
  • the nanocrystals are purified by precipitation using a suitable solvent or mixture of solvents.
  • a mixture of an alcohol such as methanol and chloroform (advantageously in a proportion of 1: 1 vol: vol) can be used to dilute the reaction mixture obtained following the step
  • the purification step (di) of the process according to the invention may optionally be repeated one or more times.
  • the process (1) according to the present invention makes it possible to obtain nanocrystals of ternary composition (A, B, C) and particularly of formula ABC2 exhibiting a maximum observed fluorescence quantum yield.
  • the nanocrystal prepared according to the method of the present invention is a CIS nanocrystal
  • the maximum fluorescence quantum yield observed is of the order of 8%.
  • a method widely used to increase the quantum yield of nanocrystals of various materials is to passivate their surface by growing around the nanocrystal corresponding to the "core” a shell of a semiconductor width of upper bandgap.
  • This system is called “heart / shell” in the scientific literature.
  • the methods used for the deposition of the shell are essentially the same as those used for the preparation of the heart.
  • the present invention proposes to cover them with a shell of a DE semiconductor, D being a metal or metalloid in the oxidation state +11 and E representing an element in the oxidation state -II.
  • the present invention thus proposes a process for preparing a nanocrystal having (i) a core comprising a semiconductor of ternary composition (A, B, C), and more particularly of formula ABC2, with A representing a metal or metalloid in the oxidation state +1, B representing a metal or metalloid in the oxidation state + III and C representing an element in the oxidation state -II, coated by (ii) a shell whose outer portion comprises a semiconductor of the formula DE with D representing a metal or metalloid in the oxidation state + 11 and E representing an element in the oxidation state -II.
  • a semiconductor of formula DE is also called II-VI.
  • the semiconductor implemented in the outer part of the shell has the formula ZnSi_ x F x , with F representing an element in the oxidation state -II and x being a decimal number such that 0 ⁇ x ⁇ 1 .
  • the present invention provides a process for preparing a nanocrystal having (i) a core comprising a semiconductor of ternary composition (A, B, C), and more particularly of formula ABC2, with A representing a metal or metalloid in oxidation state +1, B representing a metal or metalloid in oxidation state + III and C representing an element in oxidation state -II, coated by (ii) a shell of which the external part comprises a semiconductor of formula ZnSi_ x F x , with F representing an element in the oxidation state -II and x being a decimal number such that 0 ⁇ x ⁇ 1, said method (hereinafter referred to as process (2)) comprising the steps of: ⁇ ) preparing a nanocrystal comprising a ternary semiconductor compound consisting of elements A, B and C, and more particularly of formula ABC2, according to a process as defined above, then ⁇ ) coating the nanocrystal prepared in step ( ⁇ ) with a shell whose external portion comprises a
  • the nanocrystal prepared by the process (2) of the present invention has a diameter of less than 15 nm, especially less than 12 nm and in particular less than 10 nm.
  • the shell of the nanocrystal prepared by the process (2) according to the invention has a thickness of between 0.3 and 6 nm, in particular between 0.5 and 4 nm and in particular between 1 and 2 nm.
  • step ( ⁇ ) of the method according to the present invention Any technique known to those skilled in the art for coating or surrounding a nanocrystal of a semiconductor with one or more layers of another (or other) semiconductor (s) can be used in the frame of step ( ⁇ ) of the method according to the present invention.
  • Said step ( ⁇ ) may be implemented on the nanocrystals prepared by the method (1), purified (ie following step (di)) or not (ie following step (c)).
  • the process (2) comprises the successive steps of: a) preparing a mixture comprising at least one precursor of A, at least one precursor of B and at least one precursor of C at a temperature T a ; b) maintaining the mixture obtained in step (a) at a temperature T b greater than or equal to the temperature T a ; c) bringing the mixture obtained in step (b) of the temperature T b to a temperature T c greater than the temperature T b ; d2) adding, to the mixture obtained in step (c) and maintained at temperature T c , at least one zinc precursor, at least one sulfur precursor and optionally at least one precursor of F; e2) purifying the nanocrystals having a core comprising a semiconducting ternary compound consisting of elements A, B and C, and, more particularly, of formula ABC2, coated with a shell whose outer layer comprises a semiconductor of formula ZnSi_ x F x , obtained in step (d2).
  • steps (a), (b) and (c) of the process (1) according to the invention apply mutatis mutandis to steps (a), (b) and (c). ) of the process (2) according to the invention.
  • the nanocrystal prepared according to the process (2) of the present invention has a shell whose external part comprises a semiconductor of formula ZnSi x F x , with F representing an element in the oxidation state -II and x being a decimal number such that 0 ⁇ x ⁇ 1.
  • F is an element in the oxidation state -II chosen in particular from oxygen (0), selenium (Se), tellurium (Te) and mixtures thereof.
  • the shell of the nanocrystal prepared according to the method (2) of the invention may consist of a single layer or of several layers (i.e. be a multilayer shell). In the case where the shell consists of only one layer, the outer portion of the shell corresponds to said layer.
  • the outer part of the shell corresponds to the outer layer of the shell.
  • outer layer is meant in the context of the present invention the shell layer furthest from the nanocrystal core and in direct contact with the medium or the environment in which the nanocrystal is located.
  • a multilayer shell may comprise from 2 to 10, in particular from 2 to 5 different semiconductor layers.
  • x in the formula ZnSi_ x F x is equal to 0 and the shell is formed only of a layer which is therefore a layer of ZnS.
  • x in the formula ZnSi_ x F x is such that 0 ⁇ x ⁇ 1 and the shell is formed of only one layer.
  • x in the formula ZnSi_ x F x is equal to 0 and the shell comprises at minus two different layers among which the outer layer is a layer of ZnS.
  • x in the formula ZnSi_ x F x is such that 0 ⁇ x ⁇ 1 and the shell comprises at least two different layers.
  • the layer (s) of the shell of the nanocrystal prepared according to the method (2) of the invention can (wind) have a uniform chemical composition or, inside, a same layer, a chemical composition which differs and in particular a chemical composition in the form of a gradient.
  • the outer part of the shell will be constituted by the outer zone of a shell with a layer and by the outer zone of the outer layer of a multilayer shell.
  • the layer (or layers) included between the core of the nanocrystal and the outer layer of formula ZnSi ⁇ F x as defined above may comprise a semiconductor of ternary composition (A, B, C), and, more particularly, of formula ABC2, as defined above, and / or a semiconductor of formula DE as defined above.
  • the metal or metalloid D in the +11 oxidation state is chosen in particular from magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), zinc (Zn), cadmium (Cd), mercury
  • the element E in the oxidation state -II is in particular chosen from oxygen (O), sulfur (S), selenium (Se), tellurium (Te) and mixtures thereof.
  • Examples semiconductors that may be present in the layers between the core of the nanocrystal and the outer layer of the shell are, for example, MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS, BaSe, BaTe, ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, HgS, HgSe, HgTe, SnS, SnSe, SnTe, PbS, PbSe, PbTe and mixtures thereof.
  • examples of semiconductors that may be present in the layers between the core of the nanocrystal and the outer layer of the shell are selected from the group consisting of MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe , BaS, BaSe, BaTe, ZnO, ZnS, ZnSe, ZnTe, SnS, SnSe, SnTe and mixtures thereof.
  • reaction mixture used in the context of the present invention and in particular in step (cb) also contains the precursors of the elements constituting the layers other than the outer layer of the shell.
  • Step (cb) allows, on the one hand, to add, to the mixture obtained in step (c), ie to the mixture containing nanocrystals of type (A, B, C), and in particular ABC2, forming the core nanocrystals prepared by implementation of the method (2), the precursors of the (or) shell (s) surrounding or coating such a core and, secondly, to maintain the mixture at the temperature T c at which the shell is formed.
  • All the precursors used in the process (2) of the present invention are either commercially available products, ie products for which the person skilled in the art knows at least one preparation process.
  • at least one of the precursors of zinc, sulfur and F may have been optionally prepared beforehand before introduction into the mixture of step (cb) or be prepared in situ in said mixture.
  • the zinc precursor used is chosen from the group consisting of zinc salts, zinc halides, zinc oxides and organometallic zinc compounds.
  • organometallic compound of zinc is meant, more particularly, a bi-substituted zinc compound, a zinc carboxylate or a zinc phosphonate.
  • bi-substituted zinc compound in the context of the present invention a compound of formula (R 1 ) 2 Zn in which each R 4 , identical or different, represents a hydrocarbon group of 1 to 20 carbon atoms such an alkyl radical, an alkenyl radical, an alkoxy radical, an aryl radical or an aryloxy radical.
  • zinc carboxylate is meant in the context of the present invention a compound of formula (R 1 COO) 2Zn in which each R 5 , identical or different, represents a hydrocarbon group of 1 to 20 carbon atoms such as an alkyl radical, an alkenyl radical, an alkoxy radical, an aryl radical or an aryloxy radical.
  • R 5 represents a hydrocarbon group of 1 to 20 carbon atoms such as an alkyl radical, an alkenyl radical, an alkoxy radical, an aryl radical or an aryloxy radical.
  • a carboxylate advantageously used is zinc stearate.
  • each R 6 identical or different, represents a hydrocarbon group of 1 to 20 carbon atoms such as an alkyl radical, an alkenyl radical, an alkoxy radical, an aryl radical or an aryloxy radical
  • each R 17 identical or different, represents a hydrogen atom, a hydrocarbon group of 1 to 20 carbon atoms such as an alkyl radical, an alkenyl radical, an alkoxy radical, an aryl radical or an aryloxy radical
  • each Ris identical or different, represents a hydrogen atom, a hydrocarbon group of 1 to 20 carbon atoms such as an alkyl radical, an alkenyl radical, an alkoxy radical, an aryl radical or an aryloxy radical.
  • alkyl, alkenyl, alkoxy, aryl and aryloxy radicals are as defined for the precursors of A.
  • the sulfur precursor used is chosen from the group consisting of an aliphatic thiol, elemental sulfur dissolved in an organic solvent, a xanthate and a compound of formula S (Si (1 * 19) 3) 2 in which each R 19, identical or different, is a linear, branched or cyclic, optionally substituted, alkyl group of 1 to 10 carbon atoms, in particular from 1 to 6 carbon atoms and, in particular, from 1 to 3 carbon atoms.
  • the sulfur precursors such as the aliphatic thiol and the xanthates, and the forms of implementation of these as the organic solvent used are as previously defined.
  • the precursor of F possibly used in step (cb) is chosen from the group consisting of an oxygen precursor, a selenium precursor, a tellurium precursor and their mixtures.
  • the precursor of F is selected from elemental selenium dissolved in an organic solvent; elemental tellurium dissolved in an organic solvent; zinc acetate; a phosphine selenide; a phosphine oxide; a compound of formula F '(Si (1 * 20) 3) 2 in which F' represents Se or Te and each R20, which is identical or different, is a linear, branched or cyclic alkyl group, optionally substituted, of 1 to 10 atoms carbon, especially from 1 to 6 carbon atoms and, in particular, from 1 to 3 carbon atoms, and mixtures thereof.
  • the precursors of F such as phosphines selenide and oxide, and the forms of implementation thereof as the organic solvent used are as previously defined.
  • the concentration of the zinc precursor and that of the sulfur precursor, optionally with the precursor of F is between 5 and 400 mmol / L, especially between 10 and 300 mmol / L and in particular between 20 and 200 mmol / L.
  • the precursors of the various elements, metals and metalloids constituting the layers other than the outer layer of the shell are present in the reaction mixture at a concentration of between 5 and 400 mmol / L, especially between 10 and 300 mmol / L and in particular between 20 and 200 mmol / L.
  • step (cb) The addition of the precursors of zinc, sulfur and possibly F and other metals, metalloids or elements constituting the inner layers of the shell during step (cb) can be done in different ways.
  • the precursors to be added are premixed together and the mixture thus obtained is added at once to the mixture of step (c).
  • the precursors to be added are premixed together and the mixture thus obtained is added at least twice to the mixture of step (c).
  • the precursor mixture is advantageously added in the form of a drop by drop.
  • the precursors to be added are added independently of each other to the mixture of step (c), each precursor being able to be added to said mixture in one alone or at least twice, or even in the form of a drip.
  • certain precursors are mixed together and the mixture (or mixtures) thus obtained is (are) added (s) to the mixture of step (c) in a single or at least two time, even in the form of a drip, while at least one other precursor is added, independently of this (or these) mixture (s), to the mixture of step (c) and this, in one or at least twice, or even in the form of a drip.
  • the precursors can be added in solid form, especially in powder form or in the form of a solution.
  • this solution comprises, as solvent, a solvent organic as previously defined.
  • the temperature of the mixture during step (cb) is maintained at the temperature T c as previously defined. It should be noted that it may be necessary to bring the temperature of the mixture of step (c) to the temperature T c , if the temperature of said mixture decreases between steps (c) and (cb).
  • the different means and forms of implementation to bring and / or maintain the mixture to the temperature T c during step (cb) are identical to those envisaged for steps (b) and (c).
  • Step (cb) advantageously has a duration of between 5 min and 5 h, in particular between 10 min and 3.5 h and, in particular, between 20 min and 2 h.
  • the duration of step (cb) is of the order of 30 min.
  • duration of the order of 30 min is meant a duration of 30 min ⁇ 10 min and especially a duration of 30 min ⁇ 5 min.
  • the precursors of zinc, sulfur, F and other metals, metalloids or elements constituting the inner layers of the shell may be added to the mixture throughout the duration of step (cb) or have been added in the first minutes of step (cb).
  • the first minutes is meant within the scope of the present invention the l st, the 2 1 st, the 5 1 st, 1 st 15 minutes of step (cb).
  • the purification step ( ⁇ 2) of the process (2) is a purification / separation step of the core / shell nanocrystals thus prepared, to which the embodiments and variants previously envisaged for step (di) apply. .
  • the present invention relates to any nanocrystal obtainable by a method according to the present invention, i.e.
  • a nanocrystal comprising a semiconductor of ternary composition (A, B, C), and more particularly of formula ABC2, or a nanocrystal having (i) a core comprising a semiconductor of ternary composition (A, B, C), and, more particularly, of formula ABC2, with A representing a metal or metalloid in the +1 oxidation state B being a metal or metalloid in oxidation state + III and C representing an element in the oxidation state -II, coated with (ii) a shell whose external part comprises a semiconductor of formula ZnSi_ x F x , with F representing an element in the oxidation state -II and x being a decimal number such that 0 ⁇ x ⁇ 1.
  • the present invention relates to a nanocrystal having a core comprising a semiconductor comprising copper, indium and sulfur, coated by a shell whose outer portion comprises a semiconductor comprising zinc and sulfur, capable of to be obtained by a process according to the invention.
  • this material is non-toxic and has good chemical stability
  • the nanocrystal object of the present invention ie having a core comprising a semiconductor comprising copper, indium and sulfur, coated by a shell whose outer portion comprises a semiconductor comprising zinc and sulfur, obtainable by a process according to the invention has a fluorescence quantum yield higher than the values reported to date.
  • the fluorescence quantum yield with the nanocrystals according to the invention is greater than 5% at ambient temperature, especially greater than 10% at room temperature, in particular greater than 20% at ambient temperature and, more particularly, greater than 50%.
  • the nanocrystal having a core comprising a semiconductor comprising copper, indium and sulfur, coated by a shell whose outer part comprises a semiconductor comprising zinc and sulfur, object of the present invention emits in the near infrared, advantageously in the spectral range of 500 to 900 nm and in particular in the spectral range of 650 to 900 nm, which is particularly interesting for in vivo optical imaging.
  • the present invention also relates to a composition
  • a composition comprising at least one nanocrystal having a core comprising a semiconductor comprising copper, indium and sulfur, coated by a shell whose external part comprises a semiconductor comprising zinc and aluminum. sulfur in an aqueous medium.
  • Said composition is advantageously a liquid composition.
  • aqueous medium in the context of the present invention a medium selected from the group consisting of water, demineralised water, deionized water, a saline solution such as PBS, a physiological solution, solution of sodium chloride, aqueous acetic acid, a mixture of water and an organic solvent as defined above and mixtures thereof.
  • the nanocrystals according to the present invention are in an organic medium and need to be transferred to an aqueous medium before any use in biology and in particular for in vivo molecular imaging.
  • nanocrystals in an aqueous medium are generally carried out by any technique known to those skilled in the art. These techniques involve (i) an exchange of ligands (ie the initial ligands stabilizing the nanocrystals in an organic medium by ligands which will stabilize the nanoparticles in an aqueous medium), (ii) the formation of an intermediate layer between the nanocrystal and the nanocrystal.
  • aqueous medium such as a layer of silica, or
  • the method (2) according to the present invention may have an additional step for functionalizing the purified nanocrystals after step ( ⁇ 2).
  • the passage of the nanocrystals in aqueous buffer is carried out under conditions which favor a maximum exchange rate of ligands such as than dodecanethiol by the new amphiphilic ligands and a stability of the nanocrystals thus functionalised in aqueous suspension.
  • Any amphiphilic ligand known to those skilled in the art can be used in this functionalization.
  • amphiphilic ligands of the mercaptocarboxylic acid type, of the ⁇ -diketone type and dihydrolipoic acid The latter has a small size, a group charged to promote solubilization in water, and two thiol functions known for their high affinity with the surface of nanocrystals comprising a shell of zinc sulfide.
  • the present invention finally relates to the use of a nanocrystal capable of being prepared according to a method of the invention or a nanocrystal according to the invention in a light-emitting diode or in a photovoltaic cell.
  • the present invention finally relates to the use of a nanocrystal capable of being prepared according to a process of the invention, a nanocrystal according to the invention or a composition according to the present invention for the fluorescent marking of chemical molecules or organic.
  • nanocrystals based on CIS / ZnS having a higher fluorescence quantum yield than the nanocrystals known hitherto and in particular greater than 20% at ambient temperature in the visible spectrum (480-650 nm) and greater than 5% in the near infrared (650-900 nm).
  • the CIS / ZnS nanocrystals can be transferred to an aqueous medium and used as a fluorescent marker in biology. They do not contain cadmium, lead or mercury, heavy metals with acute or chronic toxicity. Their emission properties are sufficiently powerful to allow the detection of their biodistribution in vivo without sacrificing the animal in Nude mice at doses of the order of 10 17 copper atoms / mouse of 20 g.
  • FIG. 1 shows the UV-vis absorption spectra of the samples taken during the experiment described in Part II below (synthesis of CIS nanocrystals), using a reaction temperature of 200 ° C.
  • Figure 2 shows the photoluminescence spectra of the samples taken during the experiment described in Part II below (synthesis of CIS nanocrystals). The excitation wavelength is 470 nm.
  • FIG. 3 shows the photoluminescence spectra of the CIS / ZnS samples prepared according to part III below, using for the synthesis of CIS core nanocrystals a temperature of 230 ° C. and a reaction time of 20 min (FIG. 3A); 40 min (Figure 3B); 60 min ( Figure 3C). The excitation wavelength is 470 nm.
  • FIG. 4 shows an X-ray powder diffractogram of the CIS core nanocrystals prepared by heating at 270 ° C. for 30 min (Curve A), CIS core nanocrystals prepared by heating at 230 ° C. for 40 min (Curve B), and CIS / ZnS core / shell nanocrystals (Curve C), made from sample B.
  • Figure 5 shows transmission electron microscopy images of a sample of CIS core nanocrystals prepared in heating at 230 0 C for 40 min (Figure 5A) and sample heart / shell CIS / ZnS corresponding to the same magnification ( Figure 5B).
  • FIG. 6 shows the photoluminescence spectra of the CIS-ZnS nanocrystals before and after transfer in IX PBS aqueous buffer (excitation at 590 nm).
  • Figure 7 shows the fluorescence images showing the bio-distribution over time of nanocrystals CIS-ZnS (6, 5.10 16 - l, 3.10 17 copper atoms) injected intravenously.
  • UV-visible absorption spectra were measured on a Hewlett-Packard 8452A spectrometer (wavelength spectral domain: 190-820 nm, resolution 2 nm), the photoluminescence spectra were acquired with Hitachi F-4500 spectrometer.
  • dilute colloidal solutions of nanocrystals in hexane were placed in 1 cm optical path quartz cuvettes.
  • the fluorescence quantum yields at room temperature were obtained by comparing the emission intensity - spectrally integrated - of the solution of nanocrystals in hexane with that of a 6G rhodamine solution in ethanol, both solutions having the same optical density ( ⁇ 0.03) at the excitation wavelength (490 nm).
  • RX diffractograms were obtained on a Philips X'Pert device, using a Co source at 50 kV and 35 mA. Transmission electron microscopy images were acquired with a JEOL 4000FX microscope.
  • Step 1 0.3 mmol of copper (I) iodide, 0.3 mmol of indium (III) acetate, 12.5 mmol of 1-dodecanethiol and 25 ml of 1-octadecene are placed in a flask 50 mL tricol equipped with a condenser and mixed under a stream of inert gas (argon or nitrogen) using a magnetic stirrer.
  • Step 2 This mixture is heated at 50 ° C. for 1 h under a primary vacuum and then purged with nitrogen or argon.
  • Step 3 The reaction mixture is heated at 230 ° C., and it is left stirring at this temperature for 40 min. For the rise in temperature, during which the reaction mixture becomes transparent, a ramp of about 150 ° C / minute is used.
  • Step 4 After cooling to room temperature, the CIS nanocrystals can be isolated by adding a volume equivalent of a chloroform / methanol mixture (1: 1 vol: vol) and 10 equivalents by volume of acetone, then by centrifugation. The resulting precipitate containing the nanocrystals can be dispersed in organic solvents such as hexane, toluene or chloroform.
  • FIGS. 1 and 2 The UV-vis absorption and photoluminescence absorption spectra of the CIS nanocrystals before coating with a ZnS shell, obtained during a synthesis carried out at 200 ° C., are shown in FIGS. 1 and 2, respectively.
  • step 3 For the growth of the shell in ZnS, the reaction described in part II is continued after step 3, that is to say before purification.
  • the temperature of the reaction mixture is maintained (or adjusted in the case where the synthesis of CIS crystals has been carried out at another temperature) at
  • the purification of the CIS / ZnS nanocrystals is carried out in the same manner as described for CIS crystals, i.e. step 4 of Part II.
  • Figure 3 shows the evolution of the photoluminescence spectra during the growth of the ZnS shell on three different samples of CIS nanocrystals.
  • Figure 3A both a more symmetrical shape of the fluorescence line, a narrowing of its width from 120 nm (FWHM, width at half-height) to 100 nm and an increase in integrated intensity (500 -900 nm) by a factor> 7.
  • the quantum yield of this sample was determined at 61%.
  • the photoluminescence spectrum of the CIS core sample visible in FIG. 3B has two distinct peaks at 723 and 802 nm, as well as a shoulder at around 680 nm. During the coating with the ZnS shell, the peaks at 682 and 723 nm, whose intensity increases most strongly. The integrated intensity increases by a factor of 5 and the fluorescence quantum yield of the sample is 42%.
  • Figure 3C shows that it is also possible to specifically increase the intensity of the line with longer wavelength (810-820 nm). An improvement in integrated intensity is observed at a factor of 4.1 giving a quantum yield of 8%.
  • Figure 5 compares transmission electron microscopy images of the CIS nanocrystals before and after growth of the shell into ZnS. There is an increase in the average size of 3 nm to 7 nm corresponding to the deposition of a shell consisting of about 6 monolayers of ZnS. The size distribution of the core / shell sample is less than 10%.
  • the nanocrystals are washed twice by the addition of a non-solvent (ethanol) in the following manner.
  • a solution of 250 ⁇ l of hexane containing the CIS-ZnS nanocrystals (synthesized as described above) is placed in a 1.5 ml microtube.
  • 250 ⁇ L of ethanol are added to precipitate the nanocrystals.
  • the microtube is centrifuged at 13,000 x g for 10 min on a Thermo Electro Corporation model HERAEUS PICO17 centrifuge.
  • the CIS-ZnS nanocrystals are separated from the supernatant and then redispersed in 250 ⁇ l of hexane.
  • the nanocrystals are dried under vacuum at 50 ° C. Once the residue of hexane and ethanol is evaporated, 40 ⁇ l of dihydrolipoic acid are added and the reaction mixture is heated to 70 ° C. magnetic stirring. After two hours of heating, 1 mL of dimethylformamide is added to solubilize the contents. Then an excess of potassium tert-butoxide is added, resulting in the precipitation of the nanocrystals. The microtube is centrifuged at 13,000 xg for 10 min on a Thermo Electro Corporation model HERAEUS PICO17 centrifuge. The CIS nanocrystals are separated from the supernatant and redispersed in a buffer solution (0.01 M sodium phosphate and 0.15 M sodium chloride) with a pH of 7.4.
  • a buffer solution (0.01 M sodium phosphate and 0.15 M sodium chloride
  • this solution of CIS-ZnS nanocrystals is purified on a Sephadex G25 NAP-5 column (GE Healthcare) to eliminate the excess of potassium tert-butoxide. A small amount of dihydrolipoic acid is added to the purified solution to increase the colloidal stability of the product.
  • the different elements constituting the nanocrystal present in the solution are assayed by an inductively coupled plasma mass spectrometry (ICP-MS) analysis after treatment with 65% nitric acid; the absence of agglomerates: the hydrodynamic diameter of the nanoparticles obtained in aqueous PBS IX buffer after ligand exchange is determined using the NANO-ZS nanosizer from Malvern: a hydrodynamic diameter of 17 ⁇ 3 nm is obtained; a high optical signal to have good detection sensitivity.
  • the optical properties of these nanocrystals are determined after the passage in the aqueous phase.
  • Figure 6 shows the photoluminescence spectra obtained before and after passage in aqueous buffer (excitation at 590 nm). A red shift of approximately 50 nm from the emission wavelength of the nanocrystals is observed after transfer into aqueous buffer.
  • mice were maintained under gaseous general anesthesia (isoflurane) throughout the experiment.
  • the anesthetized mice were imaged with a Reflectance Fluorescence Imaging (FRI) device comprising as a source of excitation a ring of LEDs provided with interference filters, emitting at 633 nm (power of illumination 50 ⁇ W.cm "2 ) as described for example in the article by Texier et al., 2005 [9].
  • FPI Reflectance Fluorescence Imaging
  • Figure 7 shows the evolution as a function of time of the fluorescence of nanocrystals CIS-ZnS functionalized with dihydrolipoic acid in the mouse over a period of 24 hours. No change in the behavior of the animal is observed during the 24 hours following the injection and no sign of toxicity is detected.
  • Nanocrystals are directed to the liver and lungs as early as 15 minutes after injection. Fecal elimination is observed 6 h after injection. These non-invasive observations in vivo are confirmed by fluorescence organ analysis after sacrifice of the animal at 24 h.
  • the CIS-ZnS nanocrystals functionalized with dihydrolipoic acid are suitable for in vivo fluorescence imaging.
  • Their subsequent functionalization by different targeting ligands anti-bodies, peptides, saccharides) making it possible to direct them towards other areas of interest to be imaged can be envisaged by grafting these so-called targeting ligands on the acid function of dihydrolipoic acid.
  • at least partial elimination of these nanocrystals by the faecal route should allow their repeated use in imaging protocols, especially in order to evaluate the effectiveness of therapeutic treatments.

Abstract

La présente invention concerne un procédé de préparation de nanocristaux comprenant un composé ternaire semi-conducteur constitué des éléments A, B et C et, plus particulièrement, un semi-conducteur de formule ABC2 éventuellement revêtu par une coquille dont la partie externe comprend un semi-conducteur de formule ZnS1-xFx, avec A représentant un métal ou métalloïde à l'état d'oxydation +I, B représentant un métal ou métalloïde à l'état d'oxydation +III, C représentant un élément à l'état d'oxydation -II, F représentant un élément à l'état d'oxydation -II et x étant un nombre décimal tel que 0 = x < 1. La présente invention concerne également les nanocristaux ainsi préparés et leurs utilisations.

Description

NANOPARTICULES FLUORESCENTES, LEUR PROCEDE DE PRÉPARATION ET LEUR APPLICATION EN MARQUAGE BIOLOGIQUE
DESCRIPTION
DOMAINE TECHNIQUE
La présente invention appartient au domaine technique des nanocristaux de semi-conducteurs.
Plus particulièrement, la présente invention propose un procédé de préparation de nanocristaux comprenant un semi-conducteur de composition ternaire, typiquement de type ABC2, tels que des nanocristaux de CuInS2 éventuellement enrobés par une couche d'un autre semi-conducteur de type DE tel que du ZnS. La présente invention concerne également les nouveaux matériaux luminescents ainsi préparés et notamment à base de nanocristaux cœur/coquille CuInS2/ZnS dont l'émission couvre le spectre visible et le proche infrarouge ainsi que leurs différentes utilisations et notamment pour l'imagerie in vivo.
ETAT DE LA TECHNIQUE ANTERIEURE
Deux principaux types de marqueurs (ou « labels » en anglais) fluorescents dans le proche infrarouge qui est le domaine de longueurs d'onde pour lesquelles l'absorption et la diffusion de la lumière par les tissus biologiques sont minimales ont été développés pour l'imagerie in vivo. Ces marqueurs sont soit des marqueurs fluorescents moléculaires, i.e. des fluorophores organiques absorbant/émettant dans le proche infrarouge, soit des marqueurs fluorescents nano-particulaires .
Le seul fluorophore organique aujourd'hui autorisé à l'injection chez l'homme est le vert d' indocyanine (ou ICG pour « IndoCyanine Green ») . Malheureusement, ce fluorophore est peu soluble en tampon aqueux, ne comporte aucun groupe chimique permettant son greffage à un ligand biologique de ciblage, tel un peptide, un anticorps ou une protéine, et s'adsorbe de façon importante sur les protéines plasmatiques . Les applications cliniques utilisant 1 ' ICG sont, à l'heure actuelle, essentiellement des applications en imagerie de la vascularisation, telle que l'angiographie de l'œil. C'est pourquoi de nombreuses autres cyanines absorbant/émettant dans le proche infrarouge ont été développées et brevetées ces dernières années (Amersham, Molecular Probes, Schering, Li-Cor, Biosearch) , les efforts mis en œuvre pour développer de telles cyanines portant sur l'amélioration de leur solubilité et leur fonctionnalisation par des groupes de greffage permettant de les coupler à des biomolécules sondes de processus biologiques, comme des peptides. Ces fluorophores, dont certains sont aujourd'hui commercialisés à des prix très élevés, ne sont pas à notre connaissance et au jour d'aujourd'hui approuvés pour injection chez l'homme, bien que des études de toxicité dans ce sens soient très certainement en cours chez plusieurs fournisseurs. Certains de ces fluorophores organiques sont en revanche utilisés pour l'imagerie de fluorescence du petit animal. Ainsi la société Visen commercialise différentes sondes à base de fluorophores organiques pour visualiser chez le petit animal le flux sanguin, la consommation en glucose des tumeurs, l'activité ostéoblastique, l'activité de métalloprotéases, l'activité des cathepsines et de la plasmine.
Cependant, ces fluorophores présentent les inconvénients inhérents aux fluorophores organiques absorbant/émettant dans le proche infrarouge : vitesse de photo-blanchiement importante, raies d'émission larges, faible décalage spectral entre l'absorption et l'émission, et faibles rendements quantiques d'émission (10 à 15% dans l'eau pour les fluorophores émettant au- delà de 650 nm) . Pour ces différentes raisons, les nanocristaux de semi-conducteurs sont très rapidement apparus comme une alternative intéressante en tant que marqueurs luminescents pour la biologie. Les cristaux de semi-conducteurs sont des matériaux luminescents connus depuis plusieurs décennies. Dans les années 1980—1990, il a été montré que leur spectre d'émission dépend de la taille du cristal lorsque celle-ci devient suffisamment petite. Pour des cristaux dont la taille se situe approximativement dans la gamme allant de 1 à 10 nm appelés « nanocristaux » ou « boîtes quantiques », cette dépendance est extrêmement prononcée. De fait, la palette entière des couleurs du visible et des proches infrarouge et ultraviolet peut être obtenue avec des nanocristaux semi-conducteurs par le choix approprié de leur taille et composition. Pour couvrir le spectre visible et proche infrarouge, très important dans les domaines d'éclairage/affichage et du marquage biologique, les matériaux les plus étudiés sont les chalcogénures de cadmium (CdS, CdSe, CdTe) et de plomb (PbS, PbSe) . Cependant, la Directive Européenne RoHS (Restriction of Hazardous Substances) prévoit l'élimination entre autres du plomb, mercure et cadmium dans les Équipements Électriques et Électroniques (EEE) , commercialisés en Europe à partir du 1er juillet 2006. De même, du fait de leur toxicité intrinsèque, les nanocristaux à base de cadmium [1], de plomb ou d'arsenic [2] ne sont pas acceptables pour grand nombre d'applications en tant que marqueur biologique, et en particulier pour le marquage in vivo dans le corps humain. II est donc indispensable de trouver des matériaux alternatifs pour la fabrication des nanocristaux, tout en gardant les propriétés optiques recherchées .
D'une manière générale, la qualité optique d'un matériau luminescent composé de nanocristaux dépend de plusieurs paramètres, dont les plus importants sont :
- la taille des nanocristaux, qui règle la longueur d'onde d'émission ; - la distribution de taille des nanocristaux, qui contrôle la largeur de raie d' émission ; la passivation de surface des nanocristaux, responsable du rendement quantique de fluorescence et de la stabilité dans le temps. La roquesite de formule CuInS2 (ou CIS) , membre de la famille des chalcopyrites ternaires, est un matériau intéressant pour substituer les nanocristaux à base de cadmium et de plomb. Grâce à sa largeur de bande interdite de 1,5 eV, il est possible de varier la longueur d'onde d'émission des nanocristaux de CIS dans le spectre visible et dans le proche infrarouge en changeant leur taille. Cependant, les nanocristaux de CIS montrent généralement une très faible efficacité de fluorescence à température ambiante, comme en témoigne la littérature.
Il existe plusieurs méthodes de préparation des nanocristaux de CIS parmi lesquelles la méthode de décomposition des précurseurs dans un solvant organique à haute température donne accès à la dispersion en taille la plus étroite. Une faible dispersion en taille des nanocristaux mène à un spectre d'émission étroit, i.e. une couleur d'émission pure ce qui est particulièrement avantageux pour les applications technologiques. Les principales voies de synthèse sont les suivantes.
Une première voie de synthèse a été décrite en 2003 dans l'article de Castro et al. [3] . Ces derniers ont proposé l'utilisation de (PPh3) 2CuIn (SEt) 4 qui est un précurseur monomoléculaire, à la fois source de cuivre, d' indium et de soufre. Ce précurseur est placé dans un ballon contenant comme solvant du dioctyl phthalate. Le mélange, chauffé à 2000C, conduit à la formation d'une poudre rouge. Cette poudre est isolée, purifiée, dispersée dans du dioctyl phthalate et chauffée ensuite à 250-3000C. Une poudre brune ou noire constituée des nanocristaux de CIS est alors obtenue. Une modification de ce protocole comprend l'ajout du hexanethiol au mélange réactionnel et donne accès à des nanoparticules solubles en solvant organique [4] . Les nanocristaux de CIS obtenus ont une taille comprise entre 2 et 4 nm et le rendement quantique de fluorescence maximal se situe autour de 5%. Une autre variante de la méthode consiste à déclencher la réaction par irradiation UV (photolyse) [5] . Le principal désavantage de ces approches est l'utilisation d'un précurseur monomoléculaire qui n'est pas disponible commercialement et qui doit donc être synthétisé auparavant en utilisant, par exemple, la procédure décrite dans l'article de Banger et al., 2003 [6] .
Nakamura et al. ont décrit plus récemment une seconde voie de synthèse qui utilise des sources individuelles de cuivre, indium et soufre [7] . Dans ce cas, on mélange, dans l'octadécène qui sert de solvant, l'iodure de cuivre et l'iodure d' indium dissous dans de l'oléylamine ainsi que le soufre, dissous dans de la trioctylphosphine . Après chauffage du mélange à 160- 2400C, la taille des nanocristaux obtenus est de 3,5-7,5 nm, respectivement. Cependant, le rendement quantique de fluorescence est faible, inférieur à 0,1%. Une valeur de 5% a été obtenue avec le système quaternaire, Zn-Cu-In-S, décrit dans le même article.
Une autre voie de synthèse très récente utilise les diéthyldithiocarbamates de cuivre et d' indium, préparés au préalable par réaction de chlorure de cuivre (II) et de chlorure d' indium (III) avec le diéthyldithiocarbamate de sodium [8] . Les deux précurseurs sont mélangés avec de l'acide oléique ou du dodécanethiol (stabilisant) dans le 1-octadécène
(solvant) . Après chauffage du mélange réactionnel à 2000C, l'oléylamine est injectée, déclenchant la réaction pour former les nanocristaux de CIS d'une taille de 4-30 nm selon les paramètres choisis. Aucune information concernant les propriétés de photoluminescence de ces cristaux n'est donnée. En résumé, les méthodes de préparation décrites ci-dessus permettent d'obtenir des nanocristaux de CIS dans une large gamme de taille et avec une faible dispersion en taille. Cependant elles ne résolvent pas le problème du rendement quantique de fluorescence qui demeure faible (inférieur à 5%) . De ce fait, les applications envisagées des nanocristaux CIS sont limitées aux cellules solaires, qui sont basées sur les propriétés d' absorption des nanoparticules et non pas sur leur fluorescence. Dans l'état de l'art, l'utilisation des nanocristaux CIS en tant que émetteurs/fluorophores et en particulier dans le marquage biologique n'est pas décrite.
EXPOSÉ DE L'INVENTION La présente invention permet de résoudre les problèmes techniques et désavantages précédemment listés .
En effet, la présente invention propose, tout d'abord, un nouveau procédé pour la synthèse des nanocristaux comprenant un composé ternaire semiconducteur constitué des éléments A, B et C, ci-après dénommé composé ternaire (A, B, C) , et particulièrement sous une forme stoechiométrique de formule ABC2. Ce procédé complété par une étape d' enrobage par une coquille dont la partie externe comprend un autre semi- conducteur de formule DE permet d' obtenir des nanocristaux, notamment des nanocristaux de type « cœur/coquille » et, en particulier, des nanocristaux cœur/coquille de formule CIS/ZnS ayant un rendement quantique de fluorescence supérieur à 10% et une grande stabilité contre la photo-oxydation. De plus, les procédés selon la présente invention utilisés sont très simples à mettre en œuvre, ce qui facilite le changement d'échelle pour fabriquer ces nanocristaux en plus grande quantité. Enfin, le procédé de la présente invention est remarquable car non seulement il permet la préparation de nanocristaux de CIS éventuellement revêtus par une coquille de ZnS, mais aussi il est généralisable à la préparation de nanocristaux comprenant un composé ternaire (A, B, C) semiconducteur, et particulièrement de formule ABC2, éventuellement revêtus par une coquille comprenant au moins un semi-conducteur de formule DE avec A représentant un métal ou métalloïde à l'état d'oxydation +1, B représentant un métal ou métalloïde à l'état d'oxydation +III, C représentant un élément à l'état d'oxydation -II, D représentant un métal ou métalloïde à l'état d'oxydation +11 et E représentant un élément à l'état d'oxydation -II. Ainsi, la présente invention concerne un procédé de préparation d'un nanocristal comprenant un composé ternaire semi-conducteur constitué des éléments
A, B et C, et, plus particulièrement, de formule ABC2, avec A représentant un métal ou métalloïde à l'état d'oxydation +1, B représentant un métal ou métalloïde à l'état d'oxydation +III et C représentant un élément à l'état d'oxydation -II, ledit procédé (ci-après désigné procédé (I)) comprenant les étapes successives consistant à : a) préparer un mélange comprenant au moins un précurseur de A, au moins un précurseur de B et au moins un précurseur de C à une température Ta ; b) maintenir le mélange obtenu à l'étape (a) à une température Tb supérieure ou égale à la température Ta ; c) porter le mélange obtenu à l'étape (b) de la température Tb à une température Tc supérieure à la température Tb ; di) éventuellement purifier les nanocristaux comprenant un composé ternaire semi-conducteur constitué des éléments A, B et C, et, plus particulièrement, de formule ABC2, obtenus à l'étape
(c) .
Le nanocristal préparé selon le procédé de l'invention comprend un composé ternaire semiconducteur constitué des éléments A, B et C, et, plus particulièrement, de formule ABC2, avec A représentant un métal ou métalloïde à l'état d'oxydation +1, B représentant un métal ou métalloïde à l'état d'oxydation +III et C représentant un élément à l'état d'oxydation -II, ce type de semi-conducteur étant appelé I-III-VI.
A, le métal ou métalloïde à l'état d'oxydation +1 mis en œuvre dans le cadre de la présente invention est avantageusement choisi entre le cuivre (Cu), l'argent (Ag) et leurs mélanges.
B, le métal ou métalloïde à l'état d'oxydation +III mis en œuvre dans le cadre de la présente invention est avantageusement choisi parmi le gallium (Ga), l'indium (In), l'aluminium (Al) et leurs mélanges .
C, l'élément à l'état d'oxydation -II mis en œuvre dans le cadre de la présente invention est avantageusement choisi parmi le soufre (S), l'oxygène (O) , le sélénium (Se) , le tellure (Te) et leurs mélanges .
A titre d'exemple de composé ternaire (A, B, C) semi-conducteur compris dans le nanocristal préparé selon le procédé de l'invention, on peut citer CuIn3Se5, CuIn3S5, CuIn5SeS, CuIn5Ss, Cu2In2Se4, CuIn7SeH... Parmi les composés ternaires (A, B, C) stoechiométriques, on trouve typiquement les semiconducteurs de formule ABC2, parmi lesquels on peut notamment citer CuAlS2, CuGaS2, CuInS2, CuAlO2, CuGaO2, CuInO2, CuAlSe2, CuGaSe2, CuInSe2, CuAlTe2, CuGaTe2, CuInTe2, AgAlS2, AgGaS2, AgInS2, AgAlO2, AgGaO2, AgInO2, AgAlSe2, AgGaSe2, AgInSe2, AgAlTe2, AgGaTe2, AgInTe2 et leurs mélanges. En particulier, le cœur du nanocristal préparé selon le procédé de l'invention comprend un semi-conducteur de formule ABC2 choisi parmi CuInS2, CuGaS2, CuInSθ2, CuGaSθ2 et leurs mélanges et, plus particulièrement, ledit semi-conducteur est le CuInS2.
Avantageusement, le nanocristal préparé selon le procédé de l'invention est constitué exclusivement d'un semi-conducteur tel que précédemment défini (i.e. un semi-conducteur ternaire constitué des éléments A, B et C et, plus particulièrement, un semiconducteur de formule ABC2) .
Le nanocristal préparé par le procédé (1) de la présente invention a un diamètre inférieur à 10 nm, notamment inférieur à 8 nm et, en particulier, compris entre 1 et 6 nm.
Dans le cadre de la présente invention, le précurseur de A mis en œuvre est choisi dans le groupe constitué par un précurseur de cuivre, un précurseur d'argent, et leurs mélanges. Tous les précurseurs de cuivre et d'argent connus de l'homme du métier et notamment les précurseurs se présentant sous forme liquide ou solide sont utilisables dans la présente invention .
Avantageusement, le précurseur de A est choisi parmi les sels de A, les halogénures de A, les oxydes de A et les composés organométalliques de A. Par « composé organométallique de A », on entend, plus particulièrement, un composé de A substitué, un carboxylate de A ou un phosphonate de A.
Par « composé de A substitué », on entend dans le cadre de la présente invention un composé de formule RiA dans laquelle Ri représente un groupe hydrocarboné de 1 à 20 atomes de carbone tel qu'un radical alkyle, un radical alcényle, un radical alcoxy, un radical aryle ou un radical aryloxy.
Par « carboxylate de A », on entend dans le cadre de la présente invention un composé de formule R2COOA dans laquelle R2 représente un groupe hydrocarboné de 1 à 20 atomes de carbone tel qu'un radical alkyle, un radical alcényle, un radical alcoxy, un radical aryle ou un radical aryloxy.
Par « phosphonate de A », on entend dans le cadre de la présente invention un composé de formule R3-P(OR4) (OR5)OA dans laquelle :
- R3 représente un groupe hydrocarboné de 1 à 20 atomes de carbone tel qu'un radical alkyle, un radical alcényle, un radical alcoxy, un radical aryle ou un radical aryloxy ;
- R4 représente un atome d'hydrogène ou un groupe hydrocarboné de 1 à 20 atomes de carbone tel qu'un radical alkyle, un radical alcényle, un radical alcoxy, un radical aryle ou un radical aryloxy, et - R5 représente un atome d'hydrogène ou un groupe hydrocarboné de 1 à 20 atomes de carbone tel qu'un radical alkyle, un radical alcényle, un radical alcoxy, un radical aryle ou un radical aryloxy.
Dans le cadre de la présente invention et sauf mention contraire, on entend par « groupe alkyle » un groupe alkyle linéaire, ramifié ou cyclique, éventuellement substitué, de 1 à 20 atomes de carbone, notamment de 1 à 15 atomes de carbone et, en particulier, de 1 à 10 atomes de carbone. Dans le cadre de la présente invention, on entend par « groupe alcényle » un groupe alcényle linéaire, ramifié ou cyclique, éventuellement substitué, de 2 à 20 atomes de carbone, notamment de 2 à 15 atomes de carbone et, en particulier, de 2 à 10 atomes de carbone. Dans le cadre de la présente invention, on entend par « groupe alcoxy » un atome d' oxygène substitué par un alkyle tel que précédemment défini.
Dans le cadre de la présente invention, on entend par « groupe aryle » un groupe aromatique mono- ou polycyclique, éventuellement substitué, ayant de 6 à 20 atomes de carbone, notamment de 6 à 14 atomes de carbone, en particulier, de 6 à 8 atomes de carbone.
Dans le cadre de la présente invention, on entend par « groupe aryloxy » un atome d' oxygène substitué par un aryle tel que précédemment défini.
Dans le cadre de la présente invention, on entend par « éventuellement substitué » un radical substitué par un ou plusieurs groupes choisis parmi : un groupe alkyle, un groupe alcoxy, un halogène, un hydroxy, un cyano, un trifluorométhyle ou un nitro.
Dans le cadre de la présente invention, on entend par « halogène » un fluor, chlore, brome ou iode .
A titre d'exemples de précurseur de A utilisables dans le cadre de la présente invention, lorsque A est le cuivre, on peut citer le chlorure de cuivre, l'iodure de cuivre, l'acétate de cuivre, 1' acétylacétonate de cuivre, le stéarate de cuivre, le palmitate de cuivre, le myristate de cuivre, le laurate de cuivre, l'oléate de cuivre et leurs mélanges. Plus particulièrement, ledit précurseur de cuivre est l'iodure de cuivre.
Dans le cadre de la présente invention, le précurseur de B mis en œuvre est avantageusement choisi dans le groupe constitué par un précurseur d' indium, un précurseur de gallium, un précurseur d'aluminium et leurs mélanges. Tous les précurseurs d' indium, d'aluminium et de gallium connus de l'homme du métier et notamment les précurseurs se présentant sous forme liquide ou solide sont utilisables dans la présente invention .
Avantageusement, le précurseur de B est choisi parmi les sels de B, les halogénures de B, les oxydes de B et les composés organométalliques de B. Par « composé organométallique de B », on entend, plus particulièrement, un composé de B tri-substitué, un carboxylate de B ou un phosphonate de B.
Par « composé de B tri-substitué », on entend dans le cadre de la présente invention un composé de formule (Rδ^B dans laquelle chaque Re, identique ou différent, représente un groupe hydrocarboné de 1 à 20 atomes de carbone tel qu'un radical alkyle, un radical alcényle, un radical alcoxy, un radical aryle ou un radical aryloxy.
Par « carboxylate de B », on entend dans le cadre de la présente invention un composé de formule (R7COO) 3B dans laquelle chaque R7, identique ou différent, représente un groupe hydrocarboné de 1 à 20 atomes de carbone tel qu'un radical alkyle, un radical alcényle, un radical alcoxy, un radical aryle ou un radical aryloxy.
Par « phosphonate de B », on entend dans le cadre de la présente invention un composé de formule [R8-P(OR9) (ORio)0]3B dans laquelle : chaque Rg, identique ou différent, représente un groupe hydrocarboné de 1 à 20 atomes de carbone tel qu'un radical alkyle, un radical alcényle, un radical alcoxy, un radical aryle ou un radical aryloxy ; chaque Rg, identique ou différent, représente un atome d'hydrogène ou un groupe hydrocarboné de 1 à 20 atomes de carbone tel qu'un radical alkyle, un radical alcényle, un radical alcoxy, un radical aryle ou un radical aryloxy, et chaque Rio, identique ou différent, représente un atome d'hydrogène ou un groupe hydrocarboné de 1 à 20 atomes de carbone tel qu'un radical alkyle, un radical alcényle, un radical alcoxy, un radical aryle ou un radical aryloxy.
Les radicaux alkyle, alcényle, alcoxy, aryle et aryloxy sont tels que définis pour les précurseurs de A.
A titre d'exemples de précurseur de B utilisables dans le cadre de la présente invention, lorsque B est l'indium, on peut citer le trichlorure d' indium, le triéthyl-indium, le triacétate d' indium, le tri (acétylacétonate) d' indium, le trioctanoate d' indium, le tristéarate d' indium, la trilaurate d' indium, le tripalmitate d' indium, la trimyristate d' indium, le trioléate d' indium et leurs mélanges. Plus particulièrement, ledit précurseur d' indium est l'acétate d' indium.
Dans le cadre de la présente invention, le précurseur de C mis en œuvre est choisi dans le groupe constitué par un précurseur de soufre, un précurseur d'oxygène, un précurseur de sélénium, un précurseur de tellure et leurs mélanges. Tous les précurseurs de soufre, d'oxygène, de sélénium et de tellure connus de l'homme du métier et notamment les précurseurs se présentant sous forme liquide ou solide sont utilisables dans la présente invention.
Le précurseur de C est choisi parmi le sélénium élémentaire dissous dans un solvant organique ; le tellure élémentaire dissous dans un solvant organique ; le soufre élémentaire dissous dans un solvant organique ; un thiol aliphatique ; un xanthate ; un aminé oxyde; une phosphine séléniure ; un phosphine oxyde ; un composé de formule C (Si (Rn) 3) 2 dans laquelle C représente un élément choisi dans le groupe constitué par S, Se et Te et chaque Rn, identique ou différent, est un groupe alkyle linéaire, ramifié ou cyclique, éventuellement substitué, de 1 à 10 atomes de carbone, notamment de 1 à 6 atomes de carbone et, en particulier, de 1 à 3 atomes de carbone, et leurs mélanges.
Avantageusement, le thiol aliphatique est de formule CnH2n+i-SH avec n représentant un nombre entier compris entre 1 et 25, notamment entre 5 et 20 et, en particulier, entre 8 et 18. A titre de thiols aliphatiques utilisables dans le cadre de la présente invention, on peut citer l' octanethiol (n = 8), 1' octadécanethiol (n = 18), le dodécanethiol (n = 12) et leurs mélanges. Par « xanthate », on entend dans le cadre de la présente invention un composé de séquence
(Ri2<0CS2)nY avec Y représentant un métal ou métalloïde à l'état d'oxydation +n et R12 représentant un groupe hydrocarboné de 1 à 20 atomes de carbone tel qu'un radical alkyle, un radical alcényle, un radical alcoxy, un radical aryle ou un radical aryloxy. Les radicaux alkyle, alcényle, alcoxy, aryle et aryloxy sont tels que définis pour les précurseurs de A.
Par « aminé oxyde », on entend dans le cadre de la présente invention un composé de séquence (Ri3)3NO dans laquelle chaque R13, identique ou différent, représente un groupe hydrocarboné de 1 à 20 atomes de carbone tel qu'un radical alkyle, un radical alcényle, un radical alcoxy, un radical aryle ou un radical aryloxy. Les radicaux alkyle, alcényle, alcoxy, aryle et aryloxy sont tels que définis pour les précurseurs de A. A titre d'aminé oxyde utilisable dans le cadre de la présente invention, on peut citer le triméthylamine N-oxyde (R13 = méthyl) . Avantageusement, le solvant organique dans lequel le sélénium, le tellure ou le soufre élémentaire est dissous est choisi parmi les trialkylphosphines dans lesquelles le groupe alkyle comprend de 4 à 12 atomes de carbone et les alcènes. A titre d'exemples de solvants organiques utilisables, on peut citer le 1-octadécène, la tributylphosphine et la trioctylphosphine .
Plus particulièrement, les phosphines séléniure et oxyde susceptibles d'être utilisées dans le cadre de la présente invention sont respectivement choisies parmi les trialkylphosphines séléniure et les trialkylphosphines oxyde dans lesquelles le groupe alkyle comprend de 4 à 12 atomes de carbone.
Les précurseurs de A, de B et de C mis en œuvre dans le cadre de la présente invention peuvent être des produits accessibles dans le commerce ou des produits pour lesquels l'homme du métier connaît au moins un procédé simple de préparation. Ainsi, au moins un parmi les précurseurs de A, de B et de C peut avoir été éventuellement préparé au préalable avant son introduction dans le mélange de l'étape (a) ou être préparé in situ dans ledit mélange.
Le mélange d' au moins un précurseur de A, d'au moins un précurseur de B et d'au moins un précurseur de C, i.e. le mélange préparé à l'étape (a) du procédé de l'invention, est effectué dans un solvant organique .
Avantageusement, ledit solvant organique est un alcane, une aminé secondaire ou tertiaire, ou un alcène ayant un point d'ébullition supérieur à Tc , i.e. supérieur à la température choisie pour l'étape (c) du procédé selon l'invention.
Par « alcane », on entend, dans le cadre de la présente invention, un alcane linéaire, ramifié ou cyclique, éventuellement substitué, de 1 à 40 atomes de carbone, notamment de 10 à 35 atomes de carbone et, en particulier, de 14 à 30 atomes de carbone. A titre d'exemple, les alcanes susceptibles d'être utilisés dans le cadre de la présente invention sont l'hexadécane et le squalane (C30H62) •
Par « aminé secondaire ou tertiaire », on entend, dans le cadre de la présente invention, notamment les dialkylamines et trialkylamines dont le groupe alkyle comprend de 4 à 24 atomes de carbone, notamment de 8 à 20 atomes de carbone. A titre d'exemple, l'aminé secondaire (tertiaire) susceptible d'être utilisée dans le cadre de la présente invention est la dioctylamine (trioctylamine) qui comporte 8 atomes de carbone par chaîne alkyle. Par « alcène », on entend, dans le cadre de la présente invention, un alcène linéaire, ramifié ou cyclique, éventuellement substitué, de 2 à 40 atomes de carbone, notamment de 10 à 35 atomes de carbone et, en particulier, de 14 à 40 atomes de carbone. A titre d'exemple, un alcène susceptible d'être utilisé dans le cadre de la présente invention est le squalène (C30H50) .
Un solvant plus particulièrement utilisé pour préparer le mélange de précurseurs dans le procédé selon l'invention est le 1-octadécène (CiSH36) .
De plus, le mélange de précurseurs dans ledit solvant peut contenir en outre un élément choisi dans le groupe constitué par un stabilisant pour la surface des nanocristaux et une aminé primaire. En effet, le mélange de précurseurs dans ledit solvant peut contenir en outre un stabilisant pour la surface des nanocristaux . Par « stabilisant pour la surface des nanocristaux », également nommé « ligand stabilisant », on entend dans le cadre de la présente invention une molécule organique qui se lie à la surface du nanocristal et qui évite ainsi l'agrégation des nanocristaux. Tout stabilisant connu de l'homme du métier est utilisable dans le cadre de la présente invention. Avantageusement, ledit stabilisant est choisi parmi les thiols et notamment les thiols aliphatiques tels que précédemment décrits ; les alkylphosphines et notamment les tri (alkyl) phosphines telles que précédemment décrites ; les alkylphosphine oxydes et les acides phosphoniques tels que précédemment décrits ; les acides carboxyliques et notamment les acides carboxyliques aliphatiques ou oléfiniques tels que l'acide laurique, l'acide myristique, l'acide palmitique, l'acide stéarique, l'acide oléique ou leurs mélanges.
Enfin, le mélange de précurseurs dans ledit solvant peut également contenir une aminé primaire. Avantageusement, l'aminé primaire est une alkylamine dont le groupe alkyle comprend de 4 à 24 atomes de carbone, notamment de 8 à 20 atomes de carbone. A titre d'exemple, les aminés primaires susceptibles d'être utilisées dans le cadre de la présente invention sont 1' octylamine, le dodécylamine, l' héxadécylamine (HDA) et l' oléylamine .
La concentration du précurseur de A, du précurseur de B et du précurseur de C dans le mélange lors de l'étape (a) du procédé est comprise entre 2,5 et 150 mmol/L, notamment entre 5 et 100 mmol/L et en particulier entre 10 et 20 mmol/L.
Il convient de remarquer que certains des stabilisants précédemment listés sont également des sources de précurseurs mis en œuvre dans le procédé selon l'invention et notamment des précurseurs de C tels que des précurseurs de soufre. Dans ce cas, il est clair que la quantité totale d'un précurseur jouant également un rôle de stabilisant est largement supérieure, dans le mélange, à la quantité définie ci- dessus. Ainsi, la quantité d'un composé jouant le rôle de précurseur et de stabilisant est comprise entre 10 mmol/L et 5 mol/L, notamment entre 100 mmol/L et 1 mol/L et en particulier entre 200 et 700 mmol/L.
Avantageusement, la température Ta du mélange de précurseurs lors de l'étape (a) est inférieure à 500C, notamment inférieure à 400C et, en particulier, inférieure à 300C. Plus particulièrement, le mélange de précurseurs est à température ambiante. Par « température ambiante », on entend une température de 20°C ± 5°C.
De façon avantageuse, l'étape (a) du procédé de l'invention est effectuée sous agitation. Différents moyens connus de l'homme du métier peuvent être utilisés pour agiter le mélange mis en œuvre lors de l'étape (a) du procédé de l'invention. A titre d'exemples, le mélange peut être agité en utilisant un agitateur, un barreau magnétique, un bain à ultrasons ou un homogénéisateur . Enfin, l'étape (a) du procédé de l'invention peut être mise en œuvre sous flux d'un gaz inerte et notamment sous flux d'argon, d'azote ou d'un de leurs mélanges.
L'étape (b) du procédé de l'invention vise à maintenir le mélange préparé à l'étape (a) à une température Tb supérieure ou égale à la température initiale du mélange, i.e. la température Ta telle que précédemment définie. Durant cette étape les précurseurs de A et de B peuvent être transformés par réaction avec les molécules de stabilisant dans le milieu. A titre d'exemple, le triacétate d' indium peut réagir avec l'acide myristique pour former du trimyristate d' indium.
Avantageusement, la température Tb du mélange de précurseurs lors de l'étape (b) est inférieure à 1000C, notamment comprise entre 30 et 800C, en particulier, comprise entre 40 et 600C. Plus particulièrement, le mélange de précurseurs est à une température de l'ordre de 500C. Par « température de l'ordre de 500C », on entend une température de 500C ± 5°C.
Dans une première variante de l'étape (b) du procédé selon l'invention, la température Tb est égale à la température initiale du mélange, i.e. la température Ta de l'étape (a) . Dans ce cas, une fois le mélange de précurseurs réalisé, ce dernier est maintenu à la température Tb = Ta pendant une durée comprise entre 15 et 180 min, notamment entre 30 et 120 min et, en particulier, pendant une durée de l'ordre de 60 min. Par « durée de l'ordre de 60 min », on entend une durée de 60 min ± 10 min.
Dans une seconde variante de l'étape (b) du procédé selon l'invention, la température Tb est supérieure à la température initiale du mélange, i.e. la température Ta de l'étape (a) . Dans ce cas, une fois le mélange de précurseurs réalisé, ce dernier est porté de la température Ta à température Tb. Ce passage peut se faire de façon croissante soit linéaire, soit avec au moins un palier. De façon particulièrement avantageuse, ce passage se fait de façon croissante linéaire notamment avec une rampe de 1 à 200C par seconde, notamment une rampe de 2,5 à 15°C par seconde et, plus particulièrement, une rampe de 5 à 100C par seconde.
L'étape (b) est avantageusement mise en œuvre sous vide primaire. Une fois l'étape (b) terminée, une purge avec un gaz inerte tel que de l'argon, de l'azote ou un de leurs mélanges est effectuée. De même, l'étape (b) du procédé de l'invention est effectuée sous agitation et notamment selon les formes de mise en œuvre précédemment envisagées pour l'étape (a) du procédé.
L'étape (c) du procédé de l'invention consiste à chauffer de façon progressive le mélange réactionnel obtenu à l'étape (b) du procédé de l'invention de la température Tb à une température plus élevée, i.e. la température Tc. Durant cette étape la formation et la croissance des nanocristaux du composé ternaire semi-conducteur (A, B, C) ont lieu. Avantageusement, la température Tc est supérieure à 1500C, notamment supérieure à 1800C, en particulier comprise entre 1800C et 3000C, et, plus particulièrement, comprise entre 2000C et 2700C. Avantageusement, la température Tc est de l'ordre de 230°C. Par « de l'ordre de 230°C », on entend une température de 2300C ± 200C et notamment une température de 230°C ± 100C.
Dans une première variante de l'étape (c) du procédé selon l'invention, le passage de la température Tb à la température Tc se fait de façon croissante linéaire.
Avantageusement, l'augmentation linéaire de la température est effectuée avec une rampe de 0,5 à 200C par seconde, notamment une rampe de 1 à 100C par seconde et, plus particulièrement, une rampe de 1,5 à 5°C par seconde.
Dans une seconde variante de l'étape (c) du procédé selon l'invention, le passage de la température Tb à la température Tc se fait de façon croissante avec au moins un palier.
Par « palier », on entend une température T comprise entre Tb et Tc qui est maintenue constante pendant un temps compris entre 5 sec et 1 h, notamment entre 15 sec et 45 min, en particulier entre 30 sec et 30 min et, plus particulièrement, entre 1 min et 15 min. L'augmentation de la température entre les températures Tb et Tc peut présenter de 1 à 10 paliers et notamment de 2 à 5 paliers. Entre Tb et le premier palier, entre deux paliers consécutifs et entre le dernier palier et Tc, la température est augmentée de façon linéaire dans les conditions telles que définies pour la première variante de l'étape (c) .
Lors de l'étape (c) , une fois la température Tc atteinte, cette température peut être maintenue constante pendant une durée comprise entre 10 min et 5 h, notamment entre 20 min et 3,5 h et, en particulier, entre 30 min et 2 h. Avantageusement, la durée de l'étape (c) est de l'ordre de 40 min. Par « durée de l'ordre de 40 min », on entend une durée de 40 min ± 10 min et notamment une durée de 40 min ± 5 min.
L'homme du métier connaît différentes techniques et différents moyens permettant de porter progressivement le mélange de précurseurs de la température Ta à la température Tb et de la température Tb à la température Tc. A titre d'exemples, on peut citer l'utilisation d'un ballon ou réacteur contenant le mélange de précurseurs, thermostaté programmable, ou l'utilisation d'un bain chauffé au préalable à la température requise qui peut être la température d'un palier, la température Tb ou la température Tc dans lequel est plongé le ballon ou le réacteur contenant le mélange de précurseurs.
L'étape (c) est avantageusement effectuée sous agitation et notamment selon les formes de mise en œuvre précédemment envisagées pour l'étape (a) du procédé .
Lors de l'étape (di) du procédé selon l'invention, les nanocristaux obtenus sont purifiés à partir du mélange réactionnel, i.e. les nanocristaux sont séparés dudit mélange réactionnel. L'homme du métier connaît différentes techniques pour cette purification mettant en œuvre une étape de précipitation, une étape de dilution et/ou une étape de filtration. Les techniques mises en œuvre dans l'art antérieur pour purifier des nanocristaux luminescents sont utilisables dans le cadre de l'étape (dl) du procédé de l'invention.
Avantageusement, l'étape (di) du procédé est mise en œuvre à une température inférieure à la température Tc. Ainsi, le mélange réactionnel obtenu suite à l'étape (c) du procédé est refroidi ou laissé à refroidir jusqu'à température ambiante. Ensuite, les nanocristaux sont purifiés par précipitation en utilisant un solvant ou un mélange de solvants appropriés .
On peut utiliser, par exemple, un mélange d'un alcool tel que du méthanol et de chloroforme (avantageusement en une proportion 1:1 vol: vol) pour diluer le mélange réactionnel obtenu suite à l'étape
(c) jusqu'au double volume, et ensuite précipiter avec un excès d'acétone. Les nanocristaux sont récupérés par centrifugation et peuvent ensuite être dispersés dans des solvants organiques tels que l'hexane, le toluène ou le chloroforme. L'étape (di) de purification du procédé selon l'invention peut éventuellement être répétée une ou plusieurs fois.
Il est clair pour l'homme du métier qu'il existe deux principaux moyens pour contrôler la taille des nanocristaux de composition ternaire (A, B, C) obtenus par le procédé (1) selon l'invention et par conséquence leur couleur d'émission. Ces principaux moyens sont (1) le temps de réaction et (2) l'ajustement des paramètres réactionnels . L'homme du métier saura donc adapter, sans effort inventif, ces paramètres pour obtenir un nanocristal de composition ternaire (A, B, C) présentant une couleur d'émission particulière .
Le procédé (1) selon la présente invention permet d'obtenir des nanocristaux de composition ternaire (A, B, C) et particulièrement de formule ABC2 présentant un rendement quantique de fluorescence maximum observé intéressant. A titre d'exemple, lorsque le nanocristal préparé selon le procédé de la présente invention est un nanocristal CIS, le rendement quantique de fluorescence maximum observé est de l'ordre de 8%.
Une méthode largement utilisée pour augmenter le rendement quantique des nanocristaux de matériaux variés (e.g. CdSe, CdS, etc.) consiste à passiver leur surface en faisant croître autour du nanocristal correspondant au « cœur » une coquille d'un semi-conducteur à largeur de bande interdite supérieure. Ce système est dénommé « cœur/coquille » dans la littérature scientifique. Les méthodes utilisées pour le dépôt de la coquille sont essentiellement les mêmes que celles employées pour la préparation du cœur. Pour améliorer les propriétés des nanocristaux de composition ternaire (A, B, C) , la présente invention propose de les recouvrir avec une coquille d'un semi-conducteur DE, D représentant un métal ou métalloïde à l'état d'oxydation +11 et E représentant un élément à l'état d'oxydation -II.
La présente invention propose donc un procédé de préparation d'un nanocristal présentant (i) un cœur comprenant un semi-conducteur de composition ternaire (A, B, C) , et, plus particulièrement, de formule ABC2, avec A représentant un métal ou métalloïde à l'état d'oxydation +1, B représentant un métal ou métalloïde à l'état d'oxydation +III et C représentant un élément à l'état d'oxydation -II, revêtu par (ii) une coquille dont la partie externe comprend un semi-conducteur de formule DE avec D représentant un métal ou métalloïde à l'état d'oxydation +11 et E représentant un élément à l'état d'oxydation -II. Un semi-conducteur de formule DE est également appelé II-VI. Plus particulièrement, le semiconducteur mis en œuvre dans la partie externe de la coquille est de formule ZnSi_xFx, avec F représentant un élément à l'état d'oxydation -II et x étant un nombre décimal tel que 0 ≤ x < 1.
Ainsi, la présente invention propose un procédé de préparation d'un nanocristal présentant (i) un cœur comprenant un semi-conducteur de composition ternaire (A, B, C) , et, plus particulièrement, de formule ABC2, avec A représentant un métal ou métalloïde à l'état d'oxydation +1, B représentant un métal ou métalloïde à l'état d'oxydation +III et C représentant un élément à l'état d'oxydation -II, revêtu par (ii) une coquille dont la partie externe comprend un semi-conducteur de formule ZnSi_xFx, avec F représentant un élément à l'état d'oxydation -II et x étant un nombre décimal tel que 0 ≤ x < 1, ledit procédé (ci-après désigné procédé (2)) comprenant les étapes consistant à : α) préparer un nanocristal comprenant un composé ternaire semi-conducteur constitué des éléments A, B et C, et, plus particulièrement de formule ABC2, selon un procédé tel que précédemment défini, puis β) revêtir le nanocristal préparé à l'étape (α) par une coquille dont la partie externe comprend un semi-conducteur de formule ZnSi_xFx, avec F représentant un élément à l'état d'oxydation -II et x étant un nombre décimal tel que 0 ≤ x < 1.
Le nanocristal préparé par le procédé (2) de la présente invention a un diamètre inférieur à 15 nm, notamment inférieur à 12 nm et en particulier inférieur à 10 nm.
La coquille du nanocristal préparé par le procédé (2) selon l'invention a une épaisseur comprise entre 0,3 et 6 nm, notamment entre 0,5 et 4 nm et en particulier entre 1 et 2 nm.
Toute technique connue de l'homme du métier permettant d'enrober ou d'entourer un nanocristal d'un semi-conducteur avec une ou plusieurs couches d'un autre (ou d'autres) semi-conducteur (s) est utilisable dans le cadre de l'étape (β) du procédé selon la présente invention. Ladite étape (β) peut être mise en œuvre sur les nanocristaux préparés par le procédé (1), purifiés (i.e. suite à l'étape (di) ) ou non (i.e. suite à l' étape (c) ) . Avantageusement, le procédé (2) selon la présente invention comprend les étapes successives consistant à : a) préparer un mélange comprenant au moins un précurseur de A, au moins un précurseur de B et au moins un précurseur de C à une température Ta ; b) maintenir le mélange obtenu à l'étape (a) à une température Tb supérieure ou égale à la température Ta ; c) porter le mélange obtenu à l'étape (b) de la température Tb à une température Tc supérieure à la température Tb ; d2) ajouter, au mélange obtenu à l'étape (c) et maintenu à la température Tc, au moins un précurseur de zinc, au moins un précurseur de soufre et éventuellement au moins un précurseur de F ; e2) purifier les nanocristaux présentant un cœur comprenant un composé ternaire semi-conducteur constitué des éléments A, B et C, et, plus particulièrement, de formule ABC2, revêtu d'une coquille dont la couche externe comprend un semiconducteur de formule ZnSi_xFx, obtenus à l'étape (d2) .
Les différentes formes de mise en œuvre et variantes envisagées pour les étapes (a) , (b) et (c) du procédé (1) selon l'invention s'appliquent mutatis mutandis aux étapes (a), (b) et (c) du procédé (2) selon l'invention.
Le nanocristal préparé selon le procédé (2) de la présente invention présente une coquille dont la partie externe comprend un semi-conducteur de formule ZnSi-xFx, avec F représentant un élément à l'état d'oxydation -II et x étant un nombre décimal tel que 0 ≤ x < 1. F est un élément à l'état d'oxydation -II notamment choisi parmi l'oxygène (0), le sélénium (Se), le tellure (Te) et leurs mélanges.
La coquille du nanocristal préparé selon le procédé (2) de l'invention peut être constituée d'une seule couche ou de plusieurs couches (i.e. être une coquille multicouche) . Dans le cas où la coquille n'est constituée que d'une couche, la partie externe de la coquille correspond à ladite couche.
Dans le cas où la coquille est constituée de plusieurs couches, la partie externe de la coquille correspond à la couche externe de la coquille. Par « couche externe », on entend dans le cadre de la présente invention la couche de la coquille la plus éloignée du cœur du nanocristal et en contact direct avec le milieu ou l'environnement dans lequel le nanocristal se trouve. Une coquille multicouche peut comprendre de 2 à 10, notammment de 2 à 5 couches de semi-conducteurs différents. Ainsi, différentes variantes sont envisageables pour la coquille du nanocristal préparé par le procédé de l'invention.
Dans une première variante, x dans la formule ZnSi_xFx est égal à 0 et la coquille n'est formée que d'une couche qui est donc une couche de ZnS.
Dans une seconde variante, x dans la formule ZnSi_xFx est tel que 0 < x < 1 et la coquille n'est formée que d'une couche. Dans une troisième variante, x dans la formule ZnSi_xFx est égal à 0 et la coquille comprend au moins deux couches différentes parmi lesquelles la couche externe est une couche de ZnS.
Dans une quatrième variante, x dans la formule ZnSi_xFx est tel que 0 < x < 1 et la coquille comprend au moins deux couches différentes.
De plus, la (ou les) couche (s) de la coquille du nanocristal préparé selon le procédé (2) de l'invention peut (vent) présenter une composition chimique uniforme ou, à l'intérieur, d'une même couche, une composition chimique qui diffère et notamment une composition chimique sous forme de gradient. Dans ce cas de figure, la partie externe de la coquille sera constituée par la zone externe d'une coquille à une couche et par la zone externe de la couche externe d'une coquille multicouche.
Lorsque la coquille est multicouche, la (ou les) couche (s) comprise (s) entre le cœur du nanocristal et la couche externe de formule ZnSi_xFx telle que précédemment définie peuvent comprendre un semi- conducteur de composition ternaire (A, B, C) , et, plus particulièrement, de formule ABC2, telle que précédemment définie et/ou un semi-conducteur de formule DE telle que précédemment définie.
Le métal ou métalloïde D à l'état d'oxydation +11, est notamment choisi parmi le magnésium (Mg) , le calcium (Ca) , le strontium (Sr) , le baryum (Ba) , le zinc (Zn) , le cadmium (Cd) , le mercure
(Hg), l'étain (Sn), le plomb (Pb) et leurs mélanges.
L'élément E à l'état d'oxydation -II est notamment choisi parmi l'oxygène (O), le soufre (S), le sélénium (Se), le tellure (Te) et leurs mélanges. Des exemples de semi-conducteurs pouvant être présents dans les couches comprises entre le cœur du nanocristal et la couche externe de la coquille sont, par exemple, MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS, BaSe, BaTe, ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, HgS, HgSe, HgTe, SnS, SnSe, SnTe, PbS, PbSe, PbTe et leurs mélanges. Plus particulièrement, des exemples de semiconducteurs pouvant être présents dans les couches comprises entre le cœur du nanocristal et la couche externe de la coquille sont choisis dans le groupe constitué par MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS, BaSe, BaTe, ZnO, ZnS, ZnSe, ZnTe, SnS, SnSe, SnTe et leurs mélanges.
Il est donc clair que, dans le cas d'une coquille multicouche, le mélange réactionnel mis en œuvre dans le cadre de la présente invention et notamment à l'étape (cb) contient en outre les précurseurs des éléments constituant les couches autres que la couche externe de la coquille.
L'étape (cb) permet, d'une part, d'ajouter, au mélange obtenu à l'étape (c) , i.e. au mélange contenant les nanocristaux de type (A, B, C) , et notamment ABC2, formant le cœur des nanocristaux préparés par mise en œuvre du procédé (2), les précurseurs de la (ou des) coquille (s) entourant ou enrobant un tel cœur et, d'autre part, de maintenir le mélange à la température Tc à laquelle la coquille est formée . Tous les précurseurs mis en œuvre dans le cadre du procédé (2) de la présente invention sont soit des produits accessibles dans le commerce, soit des produits pour lesquels l'homme du métier connaît au moins un procédé de préparation. Ainsi, au moins un parmi les précurseurs de zinc, de soufre et de F peut avoir été éventuellement préparé au préalable avant son introduction dans le mélange de l'étape (cb) ou être préparé in situ dans ledit mélange.
Dans le cadre de la présente invention, le précurseur de zinc mis en œuvre est choisi dans le groupe constitué par les sels de zinc, les halogénures de zinc, les oxydes de zinc et les composés organométalliques de zinc. Par « composé organométallique de zinc », on entend, plus particulièrement, un composé de zinc bi-substitué, un carboxylate de zinc ou un phosphonate de zinc.
Par « composé de zinc bi-substitué », on entend dans le cadre de la présente invention un composé de formule (Ri4) 2Zn dans laquelle chaque Ri4, identique ou différent, représente un groupe hydrocarboné de 1 à 20 atomes de carbone tel qu'un radical alkyle, un radical alcényle, un radical alcoxy, un radical aryle ou un radical aryloxy.
Par « carboxylate de zinc », on entend dans le cadre de la présente invention un composé de formule (Ri5COO) 2Zn dans laquelle chaque Ri5, identique ou différent, représente un groupe hydrocarboné de 1 à 20 atomes de carbone tel qu'un radical alkyle, un radical alcényle, un radical alcoxy, un radical aryle ou un radical aryloxy. Un carboxylate avantageusement mis en œuvre est le stéarate de zinc. Par « phosphonate de zinc », on entend dans le cadre de la présente invention un composé de formule [Ri6-P(ORi7) (ORi8)O]2Zn dans laquelle : chaque Ri6, identique ou différent, représente un groupe hydrocarboné de 1 à 20 atomes de carbone tel qu'un radical alkyle, un radical alcényle, un radical alcoxy, un radical aryle ou un radical aryloxy ; chaque Ri7, identique ou différent, représente un atome d'hydrogène, un groupe hydrocarboné de 1 à 20 atomes de carbone tel qu'un radical alkyle, un radical alcényle, un radical alcoxy, un radical aryle ou un radical aryloxy, et chaque Ris, identique ou différent, représente un atome d'hydrogène, un groupe hydrocarboné de 1 à 20 atomes de carbone tel qu'un radical alkyle, un radical alcényle, un radical alcoxy, un radical aryle ou un radical aryloxy.
Les radicaux alkyle, alcényle, alcoxy, aryle et aryloxy sont tels que définis pour les précurseurs de A.
Dans le cadre de la présente invention, le précurseur de soufre mis en œuvre est choisi dans le groupe constitué par un thiol aliphatique, le soufre élémentaire dissous dans un solvant organique, un xanthate et un composé de formule S (Si (1*19)3) 2 dans laquelle chaque R19, identique ou différent, est un groupe alkyle linéaire, ramifié ou cyclique, éventuellement substitué, de 1 à 10 atomes de carbone, notamment de 1 à 6 atomes de carbone et, en particulier, de 1 à 3 atomes de carbone.
Les précurseurs du soufre comme le thiol aliphatique et les xanthates, et les formes de mise en œuvre de ces derniers comme le solvant organique utilisé sont telles que précédemment définies.
Dans le cadre de la présente invention, le précurseur de F éventuellement mis en œuvre dans l'étape (cb) est choisi dans le groupe constitué par un précurseur d'oxygène, un précurseur de sélénium, un précurseur de tellure et leurs mélanges.
Avantageusement, le précurseur de F est choisi parmi le sélénium élémentaire dissous dans un solvant organique ; le tellure élémentaire dissous dans un solvant organique ; l'acétate de zinc ; une phosphine séléniure ; un phosphine oxyde ; un composé de formule F' (Si (1*20)3) 2 dans laquelle F' représente Se ou Te et chaque R20, identique ou différent, est un groupe alkyle linéaire, ramifié ou cyclique, éventuellement substitué, de 1 à 10 atomes de carbone, notamment de 1 à 6 atomes de carbone et, en particulier, de 1 à 3 atomes de carbone, et leurs mélanges . Les précurseurs de F comme les phosphines séléniure et oxyde, et les formes de mise en œuvre de ces derniers comme le solvant organique utilisé sont tels que précédemment définis.
La concentration du précurseur de zinc et celle du précurseur de soufre éventuellement avec le précurseur de F est comprise entre 5 et 400 mmol/L, notamment entre 10 et 300 mmol/L et en particulier entre 20 et 200 mmol/L.
Lorsque la coquille du nanocristal est multicouche, les précurseurs des différents éléments, métaux et métalloïdes constituant les couches autres que la couche externe de la coquille sont présents, dans le mélange réactionnel, à une concentration comprise entre 5 et 400 mmol/L, notamment entre 10 et 300 mmol/L et en particulier entre 20 et 200 mmol/L.
L'ajout des précurseurs de zinc, de soufre et, éventuellement, de F et d'autres métaux, métalloïdes ou éléments constituant les couches internes de la coquille lors de l'étape (cb) peut se faire de différentes façons.
Dans une première variante, les précurseurs à ajouter sont préalablement mélangés entre eux et le mélange ainsi obtenu est ajouté en une seule fois au mélange de l'étape (c) .
Dans une seconde variante, les précurseurs à ajouter sont préalablement mélangés entre eux et le mélange ainsi obtenu est ajouté au moins deux fois au mélange de l'étape (c) . Dans cette variante, le mélange de précurseurs est avantageusement ajouté sous forme d'un goutte à goutte.
Dans une troisième variante, les précurseurs à ajouter sont ajoutés indépendamment les uns des autres au mélange de l'étape (c) , chaque précurseur pouvant être ajouté audit mélange en une seule ou en au moins deux fois, voire sous forme d'un goutte à goutte.
Dans une quatrième variante, certains précurseurs sont mélangés ensemble et le (ou les) mélange (s) ainsi obtenu (s) est (sont) ajouté (s) au mélange de l'étape (c) en une seule ou en au moins deux fois, voire sous forme d'un goutte à goutte, alors qu'au moins un autre précurseur est ajouté, indépendamment de ce (ou ces) mélange (s), au mélange de l'étape (c) et ce, en une seule ou en au moins deux fois, voire sous forme d'un goutte à goutte.
Quelle que soit la variante mise en œuvre pour l'ajout des précurseurs, ces derniers peuvent être ajoutés sous forme solide notamment en poudre ou sous forme d'une solution. Lorsqu'au moins un précuseur parmi les précurseurs de zinc, de soufre et, éventuellement, de F et d'autres métaux, métalloïdes ou éléments constituant les couches internes de la coquille est ajouté en solution, cette solution comprend, comme solvant, un solvant organique tel que précédemment défini.
La température du mélange lors de l'étape (cb) est maintenue à la température Tc telle que précédemment définie. Il convient de remarquer qu'il peut être nécessaire de porter la température du mélange de l'étape (c) à la température Tc, si la température dudit mélange diminue entre les étapes (c) et (cb) . Les différents moyens et formes de mise en œuvre pour porter et/ou maintenir le mélange à la température Tc durant l'étape (cb) sont identiques à ceux envisagés pour les étapes (b) et (c) .
L'étape (cb) présente avantageusement une durée comprise entre 5 min et 5 h, notamment entre 10 min et 3,5 h et, en particulier, entre 20 min et 2 h. Avantageusement, la durée de l'étape (cb) est de l'ordre de 30 min. Par « durée de l'ordre de 30 min », on entend une durée de 30 min ± 10 min et notamment une durée de 30 min ± 5 min. Les précurseurs de zinc, de soufre, de F et d'autres métaux, métalloïdes ou éléments constituant les couches internes de la coquille peuvent être ajoutés au mélange durant toute la durée de l'étape (cb) ou avoir été ajoutés dans les premières minutes de l'étape (cb) . Par « les premières minutes », on entend dans le cadre de la présente invention la lere, les 2 1ères, les 5 1ères, les 15 1ères minutes de l'étape (cb) .
L'étape (θ2) de purification du procédé (2) est une étape de purification/séparation des nanocristaux cœur/coquille ainsi préparés à laquelle s'appliquent les formes de mise en œuvre et les variantes précédemment envisagées pour l'étape (di) .
La présente invention concerne tout nanocristal susceptible d'être obtenu par un procédé selon la présente invention, i.e. :
- soit un nanocristal comprenant un semiconducteur de composition ternaire (A, B, C) , et, plus particulièrement, de formule ABC2, soit un nanocristal présentant (i) un cœur comprenant un semi-conducteur de composition ternaire (A, B, C) , et, plus particulièrement, de formule ABC2, avec A représentant un métal ou métalloïde à l'état d'oxydation +1, B représentant un métal ou métalloïde à l'état d'oxydation +III et C représentant un élément à l'état d'oxydation -II, revêtu par (ii) une coquille dont la partie externe comprend un semi-conducteur de formule ZnSi_xFx, avec F représentant un élément à l'état d'oxydation -II et x étant un nombre décimal tel que 0 ≤ x < 1.
Plus particulièrement, la présente invention concerne un nanocristal présentant un cœur comprenant un semi-conducteur comprenant du cuivre, de l'indium et du soufre, revêtu par une coquille dont la partie externe comprend un semi-conducteur comprenant du zinc et du soufre, susceptible d'être obtenu par un procédé selon l'invention.
En effet, l'utilisation d'un matériau semi- conducteur comprenant du zinc et du soufre en partie externe de la coquille a plusieurs avantages :
1) ce matériau est non toxique et présente une bonne stabilité chimique ;
2) son paramètre de maille (5,41 A) est proche de celui du cœur CIS (5,52 A) soit un désaccord de maille d'environ 2%, un faible désaccord de maille entre les matériaux cœur et coquille étant indispensable afin de pouvoir faire croître la coquille de manière épitaxiale et d'éviter ainsi la formation de défauts cristallins qui pourront diminuer l'efficacité de fluorescence ; 3) sa grande largeur de bande interdite de 3,8 eV (« band gap » en anglais) et son alignement de bandes énergétiques par rapport au CIS assurent le confinement dans le CIS des porteurs de charge générés lors d'une excitation lumineuse. En conséquence, la coquille de ZnS n'influence pas (ou très peu) la longueur d'onde d'émission. En revanche, l'intensité de fluorescence et la photo-stabilité pourront être fortement améliorées grâce à la meilleure passivation de la surface de CIS et de sa séparation physique du milieu environnant par la coquille de ZnS.
Plus particulièrement, le nanocristal objet de la présente invention, i.e. présentant un cœur comprenant un semi-conducteur comprenant du cuivre, de l'indium et du soufre, revêtu par une coquille dont la partie externe comprend un semi-conducteur comprenant du zinc et du soufre, susceptible d'être obtenu par un procédé selon l'invention possède un rendement quantique de fluorescence plus élevé que les valeurs rapportées à ce jour. Le rendement quantique de fluorescence avec les nanocristaux selon l'invention est supérieur à 5% à température ambiante, notamment supérieur à 10% à température ambiante, en particulier, supérieur à 20% à température ambiante et, plus particulièrement, supérieur à 50%.
L'homme du métier connaît différentes techniques permettant, pour un nanocristal donné, d' obtenir son rendement quantique de fluorescence à température ambiante. A titre d'exemple, on peut citer la technique consistant à comparer l'intensité d'émission intégrée spectralement, d'une dispersion de nanocristaux selon l'invention dans de l'hexane de densité optique X à une longueur d'onde d'excitation Y avec celle d'une solution de rhodamine G6 dans de l'éthanol de même densité optique et à la même longueur d'onde d'excitation.
Le nanocristal présentant un cœur comprenant un semi-conducteur comprenant du cuivre, de l'indium et du soufre, revêtu par une coquille dont la partie externe comprend un semi-conducteur comprenant du zinc et du soufre, objet de la présente invention émet dans le proche infrarouge, avantageusement dans la gamme spectrale de 500 à 900 nm et notamment, dans la gamme spectrale de 650 à 900 nm, ce qui est particulièrement intéressant pour l'imagerie optique in vivo.
La présente invention concerne également une composition comprenant au moins un nanocristal présentant un cœur comprenant un semi-conducteur comprenant du cuivre, de l'indium et du soufre, revêtu par une coquille dont la partie externe comprend un semi-conducteur comprenant du zinc et du soufre dans un milieu aqueux. Ladite composition est avantageusement une composition liquide.
Par « milieu aqueux », on entend dans le cadre de la présente invention un milieu choisi dans le groupe constitué par l'eau, l'eau déminéralisée, l'eau désionisée, une solution saline telle que du PBS, une solution physiologique, une solution de chlorure de sodium, de l'acide acétique aqueux, un mélange d'eau et d'un solvant organique tel que précédemment défini et leurs mélanges.
En effet, une fois synthétisés, les nanocristaux selon la présente invention se trouvent en milieu organique et nécessitent d'être transférés en milieu aqueux avant toute utilisation en biologie et en particulier pour l'imagerie moléculaire in vivo.
Le passage des nanocristaux en milieu aqueux s'effectue généralement par toute technique connue de l'homme du métier. Ces techniques impliquent (i) un échange de ligands (i.e. on échange les ligands initiaux stabilisant les nanocristaux en milieu organique par des ligands qui stabiliseront les nanoparticules en milieu aqueux), (ii) la formation d'une couche intermédiaire entre le nanocristal et le milieu aqueux telle qu'une couche de silice, ou encore
(iii) l'interaction hydrophobe/hydrophobe avec au moins un polymère amphiphile avec la partie hydrophobe du polymère interagissant avec les ligands organiques initiaux stabilisant les nanocristaux, et la partie hydrophile servant à stabiliser lesdits nanocristaux en tampon aqueux. Pour toutes ces techniques, on parle de fonctionnalisation des nanocristaux.
Par conséquent, le procédé (2) selon la présente invention peut présenter une étape additionnelle visant à fonctionnaliser les nanocristaux purifiés après l'étape (θ2) .
Plus particulièrement, dans le cadre de l'échange de ligands, le passage des nanocristaux en tampon aqueux est réalisé dans des conditions qui favorisent un taux d'échange maximum des ligands tels que le dodécanethiol par les nouveaux ligands amphiphiles et une stabilité des nanocristaux ainsi fonctionnalisés en suspension aqueuse. Tout ligand amphiphile connu de l'homme du métier est utilisable dans cette fonctionnalisation . A titre d'exemples, on peut citer les ligands amphiphiles de type acide mercaptocarboxylique, de type β-dicétone et l'acide dihydrolipoïque . Ce dernier présente une petite taille, un groupe chargé pour favoriser la solubilisation dans l'eau, et deux fonctions thiol connues pour leur grande affinité avec la surface des nanocristaux comportant une coquille de sulfure de zinc.
La présente invention concerne enfin l'utilisation d'un nanocristal susceptible d'être préparé selon un procédé de l'invention ou d'un nanocristal selon l'invention dans une diode électroluminescente ou dans une cellule photovoltaïque .
La présente invention concerne enfin l'utilisation d'un nanocristal susceptible d'être préparé selon un procédé de l'invention, d'un nanocristal selon l'invention ou d'une composition selon la présente invention pour le marquage fluorescent de molécules chimiques ou biologiques.
Pour résumer les avantages particuliers apportés par la présente invention, l'intérêt de la méthode proposée est multiple :
1. Elle donne des nanocristaux à base de CIS/ZnS ayant un rendement quantique de fluorescence plus élevé que les nanocristaux connus jusqu'à présent et notamment supérieur à 20% à température ambiante dans le spectre visible (480-650 nm) et supérieur à 5% dans le proche infrarouge (650-900 nm) .
2. Elle donne accès à des nanocristaux CIS/ZnS émettant dans le proche infrarouge et notamment dans la gamme spectrale 650-900 nm, particulièrement intéressante pour l'imagerie optique in vivo.
3. Elle est très simple, ce qui facilite le changement d'échelle afin d'augmenter la quantité produite. En particulier, aucun précurseur pyrophorique n'est utilisé et les étapes de synthèse des cristaux cœur et cœur/coquille se suivent directement, i.e. sans purification intermédiaire des cristaux cœur CIS. De plus, aucune étape de tri en taille (e.g. par précipitation sélective) n'est requise du fait de la faible dispersion en taille des échantillons obtenus directement après la synthèse.
4. Après fonctionnalisation adéquate de la surface, les nanocristaux CIS/ZnS peuvent être transférés en milieu aqueux et utilisés en tant que marqueur fluorescent en biologie. Ils ne comportent pas de cadmium, plomb ou mercure, métaux lourds présentant une toxicité aiguë ou chronique. Leurs propriétés d'émission sont suffisamment performantes pour permettre la détection de leur biodistribution in vivo sans sacrifice de l'animal chez la souris Nude à des doses de l'ordre de 1017 atomes de cuivre/souris de 20g.
D'autres caractéristiques et avantages de la présente invention apparaîtront encore à l'homme du métier à la lecture des exemples ci-dessous donnés à titre illustratif et non limitatif, et faisant référence aux figures annexées.
BRÈVE DESCRIPTION DES DESSINS La figure 1 présente les spectres d'absorption UV-vis des prélèvements effectués lors de l'expérience décrite à la partie II ci-après (synthèse de nanocristaux CIS) , en utilisant une température de réaction de 2000C. La figure 2 présente les spectres de photoluminescence des prélèvements effectués lors de l'expérience décrite à la partie II ci-après (synthèse de nanocristaux CIS) . La longueur d'onde d'excitation est 470 nm. La figure 3 présente les spectres de photoluminescence des échantillons CIS/ZnS préparés selon la partie III ci-après en utilisant pour la synthèse de nanocristaux cœur CIS une température de 2300C et un temps de réaction de 20 min (Figure 3A) ; 40 min (Figure 3B) ; 60 min (Figure 3C) . La longueur d'onde d'excitation est 470 nm.
La figure 4 présente un diffractogramme de rayons X sur poudre des nanocristaux cœur CIS préparés en chauffant à 2700C pendant 30 min (Courbe A), des nanocristaux cœur CIS préparés en chauffant à 2300C pendant 40 min (Courbe B) , et des nanocristaux cœur/coquille CIS/ZnS (Courbe C) , fabriqués à partir de l'échantillon B.
La figure 5 présente les images de microscopie électronique à transmission d'un échantillon des nanocristaux cœur CIS préparés en chauffant à 2300C pendant 40 min (Figure 5A) et de l'échantillon cœur/coquille CIS/ZnS correspondant au même agrandissement (Figure 5B) .
La figure 6 présente les spectres de photoluminescence des nanocristaux CIS-ZnS avant et après transfert en tampon aqueux PBS IX (excitation à 590 nm) .
La figure 7 présente les images de fluorescence montrant la bio-distribution au cours du temps de nanocristaux CIS-ZnS (6, 5.1016 - l,3.1017 atomes de cuivre) injectés par voie intraveineuse
(veine caudale) dans des souris Nude saines.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
Toutes les manipulations de matériaux sensibles à l'air sont faites en boîte à gants ou en utilisant une rampe à vide (technique de Schlenk) .
I . Matériel et Méthodes . Pour la caractérisation, les spectres d'absorption UV-visible ont été mesurés sur un spectromètre Hewlett-Packard 8452A (domaine spectral en longueur d'onde : 190-820 nm, résolution 2 nm) , les spectres de photoluminescence ont été acquis avec un spectromètre Hitachi F-4500. Pour ces mesures spectroscopiques, les solutions colloïdales diluées de nanocristaux dans de l'hexane ont été placées dans des cuvettes en quartz de chemin optique 1 cm. Les rendements quantiques de fluorescence à température ambiante ont été obtenus par comparaison de l'intensité d'émission — intégrée spectralement — de la solution de nanocristaux dans l'hexane avec celle d'une solution de rhodamine 6G dans 1 ' éthanol, les deux solutions ayant la même densité optique (< 0,03) à la longueur d'onde d'excitation (490 nm) . Les diffractogrammes RX ont été obtenus sur un appareil Philips X'Pert, utilisant une source de Co, à 50 kV et 35 mA. Les images de microscopie électronique à transmission ont été acquises avec un microscope JEOL 4000FX.
Tous les produits sauf le stéarate de zinc (Riedel de Haën) et l'iodure de cuivre (Acros) ont été achetés chez Sigma-Aldrich et utilisés tels quels, acétate d' indium (pureté 99,99%), iodure de cuivre (pureté 99,995%), stéarate de zinc (pureté 90%), dodécanethiol (pureté 97%) et 1-octadécène (pureté 90%) . La synthèse d' éthylxanthate de zinc, utilisé dans la croissance de la coquille, est décrite par la suite : 0,005 mol de chlorure de cadmium est dissous dans 20 mL d'eau distillée. On lui ajoute une solution de 0,01 mol d' éthylxanthogénate de potassium dissous dans 20 mL d'eau distillée. Un précipité blanc est ainsi formé, qu'on filtre, puis lave 3 fois avec 50 mL d'eau distillée et sèche sous vide.
II . Synthèse de nanocristaux de CIS. II. A. Protocole.
Etape 1 : 0,3 mmol d' iodure de cuivre (I), 0,3 mmol d'acétate d' indium (III) , 12,5 mmol de 1- dodécanethiol et 25 mL de 1-octadécène sont placés dans un ballon tricol de 50 mL équipé d'un condenseur et mélangés sous flux de gaz inerte (argon ou azote) à l'aide d'un agitateur magnétique. Etape 2 : On chauffe ce mélange à 500C pendant 1 h sous vide primaire, puis on purge avec de l'azote ou de l'argon.
Etape 3 : On chauffe le mélange réactionnel à 2300C, et on laisse sous agitation à cette température pendant 40 min. Pour la montée en température, pendant laquelle le mélange réactionnel devient transparent, on utilise une rampe d'environ 150°C/minute. Etape 4 : Après refroidissement à température ambiante, les nanocristaux CIS peuvent être isolés par ajout d'un équivalent en volume d'un mélange chloroforme/méthanol (1:1 vol: vol) et de 10 équivalents en volume d'acétone, puis par centrifugation . Le précipité résultant contenant les nanocristaux peut être dispersé dans des solvants organiques tels que l'hexane, le toluène ou le chloroforme.
II. B. Caractérisation des nanocristaux de CIS.
Les spectres d'absorption UV-vis et de photoluminescence des nanocristaux CIS avant enrobage avec une coquille ZnS, obtenus courant une synthèse effectuée à 2000C, sont présentés aux Figures 1 et 2, respectivement.
Dans la Figure 1, on observe le déplacement du seuil d'absorption vers de plus grandes longueurs d'onde avec le temps, indiquant l'augmentation de la taille des nanocristaux au cours de la réaction. A partir de 130 min, cette évolution stagne. Dans les spectres de photoluminescence
(Figure 2), on observe un signal ayant son maximum aux alentours de 650 nm à 20 min. Le pic se déplace avec le temps de réaction vers de plus grandes longueurs d'onde, ce qui est accompagné par l'apparition de deux pics localisés à environ 713 et 806 nm. L'intensité relative de ces trois signaux varie également avec le temps. Les spectres de photoluminescence de CIS présentent généralement plusieurs raies qui proviennent des transitions impliquant des états électroniques à l'intérieur du gap (bande interdite du semiconducteur) . Ces derniers se situent à proximité de la bande de valence et proche de la bande de conduction, donnant lieu à des transitions de type donneur- accepteur, par exemple. Le rendement quantique de fluorescence maximum observé des cristaux cœur CIS préparés selon le procédé de la présente invention est de l'ordre de 8%.
III. Synthèse de nanocristaux cœur/coquille
CIS/ZnS.
III. A. Protocole.
Pour la croissance de la coquille en ZnS, on continue la réaction décrite en partie II après l'étape 3, c'est-à-dire avant la purification.
La température du mélange réactionnel est maintenue (ou ajustée dans le cas où la synthèse de cristaux CIS a été effectuée à une autre température) à
2300C et les précurseurs de ZnS, un mélange de 2,5 mmol de stéarate de zinc et de 0,32 mmol d' éthylxanthate de zinc dans 20 mL de 1-octadécène, sont ajoutés goutte à goutte pendant 30 min.
Après refroidissement à température ambiante, la purification des nanocristaux CIS/ZnS est effectuée de même manière que décrit pour les cristaux CIS, i.e. étape 4 de la partie II.
III. B. Caractérisation des nanocristaux cœur/coquille CIS/Zns et comparaison avec les nanocristaux CIS.
La Figure 3 montre l'évolution des spectres de photoluminescence au cours de la croissance de la coquille de ZnS sur trois échantillons différents de nanocristaux CIS. Dans la Figure 3A, on observe à la fois une forme plus symétrique de la raie de fluorescence, un rétrécissement de sa largeur de 120 nm (FWHM, largeur à mi-hauteur) à 100 nm et une augmentation de l'intensité intégrée (500-900 nm) d'un facteur > 7. Le rendement quantique de cet échantillon a été déterminé à 61%.
Le spectre de photoluminescence de l'échantillon cœur CIS visible en Figure 3B présente deux pics distincts à 723 et 802 nm, ainsi qu'un épaulement aux alentours de 680 nm. Pendant l'enrobage avec la coquille de ZnS, ce sont les pics à 682 et à 723 nm dont l'intensité augmente le plus fortement. L'intensité intégrée augmente d'un facteur 5 et le rendement quantique de fluorescence de l'échantillon est de 42%. La Figure 3C montre qu' il est également possible d'augmenter spécifiquement l'intensité de la raie à plus grande longueur d'onde (810-820 nm) . On observe une amélioration de l'intensité intégrée d'un facteur 4,1 donnant un rendement quantique de 8%. Ces résultats montrent qu'on peut couvrir une large gamme spectrale avec les nanocristaux CIS/ZnS. L'enrobage par le ZnS permet d'augmenter de manière significative le rendement quantique de fluorescence.
Dans la Figure 4, les diffractogrammes de rayons X sur poudre, obtenus pour des échantillons cœur et cœur/coquille, sont comparés. Les diffractogrammes des échantillons A et B montrent les pics caractéristiques de la phase cubique du CuInS2 (carte de « Joint Committee on Powder Diffraction Standards », JCPDS, No. 001-8517) . Ces deux échantillons contiennent des nanocristaux de CIS de tailles différentes. La largeur des pics plus grande pour l'échantillon B indique que la taille des cristallites est plus petite. Le diffractogramme de l'échantillon C confirme la formation de l' hétérostructure CIS/ZnS. Les pics comprennent à la fois la contribution de la phase cubique de CIS et de la structure blende de zinc ZnS (carte JCPDS No. 05-0566) .
La Figure 5 compare des images de microscopie électronique à transmission des nanocristaux CIS avant et après croissance de la coquille en ZnS. On observe une augmentation de la taille moyenne de 3 nm à 7 nm correspondant au dépôt d'une coquille constitué d'environ 6 monocouches de ZnS. La distribution de taille de l'échantillon cœur/coquille est inférieure à 10%. III. C. Fonctionnalisation des nanocristaux CIS/ZnS.
Tous les produits sauf les colonnes NAP-5 (GE Healthcare) ont été achetés chez Sigma-Aldrich. Dans un premier temps, pour éliminer l'excès de dodécanethiol utilisé dans l'étape de synthèse des nanocristaux, ces derniers sont lavés à deux reprises par l'ajout d'un non solvant (éthanol) de la manière suivante. Une solution de 250 μL d'hexane contenant les nanocristaux CIS-ZnS (synthétisés comme décrit ci- dessus) est placée dans un microtube de 1,5 mL . 250 μL d' éthanol sont ajoutés pour entraîner la précipitation des nanocristaux. Le microtube est centrifugé à 13 000 x g pendant 10 min sur une centrifugeuse Thermo Electro Corporation modèle HERAEUS PICO17. Les nanocristaux CIS-ZnS sont séparés du surnageant puis redispersés dans 250 μL d'hexane.
Après l'étape de lavage, les nanocristaux sont séchés sous vide à 500C. Une fois le reste d'hexane et d' éthanol évaporé, 40 μL d'acide dihydrolipoïque sont ajoutés et le mélange réactionnel est chauffé à 700C sous agitation magnétique. Au bout de deux heures de chauffage, 1 mL de diméthylformamide est ajouté pour solubiliser le contenu. Puis un excès de tert-butoxyde de potassium est additionné, entraînant la précipitation des nanocristaux. Le microtube est centrifugé à 13 000 x g pendant 10 min sur une centrifugeuse Thermo Electro Corporation modèle HERAEUS PICO17. Les nanocristaux CIS sont séparés du surnageant puis redispersés dans une solution tampon (0,01 M de phosphate de sodium et 0,15 M de chlorure de sodium) avec un pH de 7,4.
Enfin, cette solution de nanocristaux CIS- ZnS est purifiée sur une colonne NAP-5 Sephadex G25 (GE Healthcare) pour éliminer l'excès de tert-butoxyde de potassium. Une petite quantité d'acide dihydrolipoïque est ajoutée à la solution purifiée pour augmenter la stabilité colloïdale du produit.
IV. Injection intraveineuse des nanocristaux CIS/ZnS fonctionnalisés.
Une fois l'échange de ligands réalisé, trois conditions doivent être réunies pour pouvoir utiliser le produit pour des applications biologiques, et notamment l'injecter dans le petit animal pour l'imagerie de fluorescence in vivo. Ces conditions sont les suivantes :
- la connaissance de la concentration des solutions : les différents éléments constituant le nanocristal présent dans la solution sont dosés par une analyse par spectrométrie de masse couplée à un plasma inductif (ICP-MS) après un traitement à l'acide nitrique 65% ; l'absence d'agglomérats : le diamètre hydrodynamique des nanoparticules obtenues en tampon aqueux PBS IX après échange de ligands est déterminé à l'aide du nanosizer NANO-ZS de Malvern : on obtient un diamètre hydrodynamique de 17±3 nm ; un signal optique élevé pour avoir une bonne sensibilité de détection. Les propriétés optiques de ces nanocristaux sont déterminées après le passage dans la phase aqueuse. La Figure 6 représente les spectres de photoluminescence obtenus avant et après passage en tampon aqueux (excitation à 590 nm) . On observe un décalage vers le rouge d'environ 50 nm de la longueur d'onde d'émission des nanocristaux après transfert en tampon aqueux.
Une fois ces conditions vérifiées, 200 μL de la solution aqueuse de nanocristaux CIS-ZnS fonctionnalisés correspondant à 6, 5.1016 - l,3.1017 atomes de cuivre, sont injectés par voie intraveineuse dans la queue de souris Nude femelles âgées de 6 à 8 semaines, et maintenues sous conditions sans pathogènes (IFFA-Credo, Marcy l'Etoile, France) .
Les souris ont été maintenues sous anesthésie générale par voie gazeuse (isoflurane) tout le long de l'expérience. Les souris anesthésiées ont été imagées avec un dispositif d' imagerie de fluorescence par réflectance (ou FRI pour « Fluorescence Réflectance Imaging ») , comportant comme source d'excitation une couronne de LEDs munies de filtres interférentiels, émettant à 633 nm (puissance d' éclairement 50 μW.cm"2) comme décrit par exemple dans l'article de Texier et al., 2005 [9] .
Les images ont été recueillies après filtration par un filtre coloré RG665 de densité optique >5 à la longueur d'onde d'excitation par une caméra CCD (Orca BTL, Hamamatsu) avec un temps d'exposition de 500 ms . Les signaux ont été quantifiés à l'aide du logiciel de traitement d'images Wasabi. La Figure 7 montre l'évolution en fonction du temps de la fluorescence des nanocristaux CIS-ZnS fonctionnalisés par l'acide dihydrolipoïque au sein de la souris sur une période de 24 h. Aucune modification du comportement de l'animal n'est observée pendant les 24 h suivant l'injection et aucun signe de toxicité n'est décelé.
Les nanocristaux sont dirigés vers le foie et les poumons dès 15 min après l'injection. Une élimination par voie fécale est observée 6 h après injection. Ces observations non invasives in vivo sont confirmées par analyse des organes par fluorescence après sacrifice de l'animal à 24 h.
En conclusion, les nanocristaux CIS-ZnS fonctionnalisés par l'acide dihydrolipoïque sont adaptés à l'imagerie de fluorescence in vivo. Leur fonctionnalisation ultérieure par différents ligands de ciblage (anti-corps, peptides, saccharides) permettant de les diriger vers d'autres zones d'intérêt à imager peut être envisagée en greffant ces dits ligands de ciblage sur la fonction acide de l'acide dihydrolipoïque. De plus, une élimination, au moins partielle, de ces nanocristaux par voie fécale devrait permettre leur utilisation répétée dans des protocoles d'imagerie, notamment dans le but d'évaluer l'efficacité de traitements thérapeutiques.
RÉFÉRENCES
[1] H. S. Choi, W. Liu, P. Misra, E. Tanaka, J. P. Zimmer, B. I. Ipe, M. G. Bawendi, J. V. Frangioni, Nat . Biotechnol . 2007, 25, 1165-1170.
[2] J. P. Zimmer, S. W. Kim, S. Ohnishi, E. Tanaka, J. V. Frangioni, M. G. Bawendi, J. Am. Chem. Soc. 2006, 128, 2526-2527.
[3] S. L. Castro, S. G. Bailey, R. P. Raffaelle, K. K. Banger, A. F. Hepp, Chem. Mater. 2003, 15, 3142-3147.
[4] S. L. Castro, S. G. Bailey, R. P.
Raffaelle, K. K. Banger, A. F. Hepp, J. Phys . Chem. B 2004, 108, 12429-12435.
[5] J. J. Nairn, P. J. Shapiro, B. Twamley, T. Pounds, R. von Wandruszka, T. R. Fletcher, M.
Williams, C. M. Wang, M. G. Norton, Nano Lett . 2006, 6, 1218-1223.
[6] K. K. Banger, M. H. C. Jin, J. D. Harris, P. E. Fanwick, A. F. Hepp, Inorganic Chemistry 2003, 42, 7713-7715.
[7] H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata, S. Otsuka-Yao-Matsuo, M. Miyazaki, H. Maeda, Chem. Mater. 2006, 18, 3330-3335. [8] D. Pan, L. An, Z. Sun, W. Hou, Y. Yang, Z. Yang, Y. Lu, J. Am. Chem. Soc. 2008, 130, 5620-5621.
[9] Texier, I. et al., Proceedings of the SPIE 2005, 5704, 16-22.

Claims

REVENDICATIONS
1) Procédé de préparation d'un nanocristal comprenant un composé ternaire semi-conducteur constitué des éléments A, B et C avec A représentant un métal ou métalloïde à l'état d'oxydation +1, B représentant un métal ou métalloïde à l'état d'oxydation +III et C représentant un élément à l'état d'oxydation -II, caractérisé en ce que ledit procédé comprend les étapes successives consistant à : a) préparer un mélange comprenant au moins un précurseur de A, au moins un précurseur de B et au moins un précurseur de C à une température Ta ; b) maintenir le mélange obtenu à l'étape (a) à une température Tb supérieure ou égale à la température Ta ; c) porter le mélange obtenu à l'étape (b) de la température Tb à une température Tc supérieure à la température Tb ; di) éventuellement purifier les nanocristaux comprenant un composé ternaire semi-conducteur constitué des éléments A, B et C obtenus à l'étape (c) .
2) Procédé de préparation d'un nanocristal présentant (i) un cœur comprenant un composé ternaire semi-conducteur constitué des éléments A, B et C avec A représentant un métal ou métalloïde à l'état d'oxydation +1, B représentant un métal ou métalloïde à l'état d'oxydation +III et C représentant un élément à l'état d'oxydation -II, revêtu par (ii) une coquille dont la partie externe comprend un semi-conducteur de formule ZnSi_xFx, avec F représentant un élément à l'état d'oxydation -II et x étant un nombre décimal tel que 0 ≤ x < 1, caractérisé en ce que ledit procédé comprend les étapes consistant à : α) préparer un nanocristal comprenant un composé ternaire semi-conducteur constitué des éléments A, B et C, selon un procédé tel que défini à la revendication 1, β) revêtir le nanocristal préparé à l'étape (α) par une coquille dont la partie externe comprend un semi-conducteur de formule ZnSi_xFx, avec F représentant un élément à l'état d'oxydation -II et x étant un nombre décimal tel que 0 ≤ x < 1.
3) Procédé selon la revendication 2, caractérisé en ce que ledit procédé comprend les étapes successives consistant à : a) préparer un mélange comprenant au moins un précurseur de A, au moins un précurseur de B et au moins un précurseur de C à une température Ta ; b) maintenir le mélange obtenu à l'étape (a) à une température Tb supérieure ou égale à la température Ta ; c) porter le mélange obtenu à l'étape (b) de la température Tb à une température Tc supérieure à la température Tb ; cb) ajouter, au mélange obtenu à l'étape (c) et maintenu à la température Tc, au moins un précurseur de zinc, au moins un précurseur de soufre et éventuellement au moins un précurseur de F ; θ2) purifier les nanocristaux présentant un cœur comprenant un composé ternaire semi-conducteur constitué des éléments A, B et C, revêtu d'une coquille dont la couche externe comprend un semi-conducteur de formule ZnSi_xFx, obtenus à l'étape (cb) .
4) Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que ledit composé ternaire est de formule ABC2.
5) Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit précurseur de A est choisi dans le groupe constitué par un précurseur de cuivre, un précurseur d'argent, et leurs mélanges.
6) Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit précurseur de A est choisi parmi les sels de A, les halogénures de A, les oxydes de A et les composés organométalliques de A.
7) Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit précurseur de B est choisi dans le groupe constitué par un précurseur d' indium, un précurseur de gallium, un précurseur d'aluminium et leurs mélanges.
8) Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit précurseur de B est choisi parmi les sels de B, les halogénures de B, les oxydes de B et les composés organométalliques de B.
9) Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit précurseur de C est choisi dans le groupe constitué par un précurseur de soufre, un précurseur d'oxygène, un précurseur de sélénium, un précurseur de tellure et leurs mélanges.
10) Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit précurseur de C est choisi parmi le sélénium élémentaire dissous dans un solvant organique ; le tellure élémentaire dissous dans un solvant organique ; le soufre élémentaire dissous dans un solvant organique ; un thiol aliphatique ; un xanthate ; un aminé oxyde ; une phosphine séléniure ; un phosphine oxyde ; un composé de formule C (Si (Rn) 3) 2 dans laquelle C représente un élément choisi dans le groupe constitué par S, Se et Te et chaque Rn, identique ou différent, est un groupe alkyle linéaire, ramifié ou cyclique, éventuellement substitué, de 1 à 10 atomes de carbone .
11) Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit mélange préparé à l'étape (a) est effectué dans un solvant organique. 12) Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit mélange préparé à l'étape (a) contient un élément choisi dans le groupe constitué par un stabilisant pour la surface des nanocristaux et une aminé primaire.
13) Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que ladite température Ta lors de l'étape (a) est inférieure à 500C, notamment inférieure à 400C et, en particulier, inférieure à 300C.
14) Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que ladite température Tb lors de l'étape (b) est inférieure à 1000C, notamment comprise entre 30 et 800C, en particulier, comprise entre 40 et 600C.
15) Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que ladite température Tc est supérieure à 1500C, notamment supérieure à 1800C, en particulier comprise entre 1800C et 3000C, et, plus particulièrement, comprise entre 200°C et 270°C.
16) Procédé selon l'une quelconque des revendications 3 à 15, caractérisé en ce que ledit précurseur de zinc est choisi dans le groupe constitué par les sels de zinc, les halogénures de zinc, les oxydes de zinc et les composés organométalliques de zinc . 17) Procédé selon l'une quelconque des revendications 3 à 16, caractérisé en ce que ledit précurseur de F est choisi dans le groupe constitué par un précurseur d'oxygène, un précurseur de sélénium, un précurseur de tellure et leurs mélanges.
18) Procédé selon l'une quelconque des revendications 3 à 17, caractérisé en ce que ladite étape (cb) présente une durée comprise entre 5 min et 5 h, notamment entre 10 min et 3,5 h et, en particulier, entre 20 min et 2 h.
19) Nanocristal présentant un cœur comprenant un semi-conducteur comprenant du cuivre, de l'indium et du soufre, revêtu par une coquille dont la partie externe comprend un semi-conducteur comprenant du zinc et du soufre, susceptible d'être obtenu par un procédé selon l'une quelconque des revendications 2 à 18, caractérisé en ce que ledit nanocristal possède un rendement quantique supérieur à 5% à température ambiante, notamment supérieur à 10% à température ambiante, en particulier supérieur à 20% à température ambiante et, plus particulièrement, supérieur à 50%.
20) Nanocristal selon la revendication 19, caractérisé en ce qu' il émet dans la gamme spectrale de 500 à 900 nm et notamment, dans la gamme spectrale de 650 à 900 nm. 21) Composition comprenant au moins un nanocristal selon l'une quelconque des revendications 19 ou 20 dans un milieu aqueux.
22) Utilisation d'un nanocristal selon l'une quelconque des revendications 19 ou 20 dans une diode électroluminescente ou dans une cellule photovoltaïque .
23) Utilisation d'un nanocristal selon l'une quelconque des revendications 19 ou 20 ou d'une composition selon la revendication 21 pour le marquage fluorescent de molécules chimiques ou biologiques.
EP09745056A 2008-11-04 2009-11-03 Nanoparticules fluorescentes, leur procédé de préparation et leur application en marquage biologique Withdrawn EP2350229A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0857497A FR2937885B1 (fr) 2008-11-04 2008-11-04 Nanoparticules fluorescentes, leur procede de preparation et leur application en marquage biologique
PCT/EP2009/064558 WO2010052221A1 (fr) 2008-11-04 2009-11-03 Nanoparticules fluorescentes, leur procédé de préparation et leur application en marquage biologique

Publications (1)

Publication Number Publication Date
EP2350229A1 true EP2350229A1 (fr) 2011-08-03

Family

ID=40785380

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09745056A Withdrawn EP2350229A1 (fr) 2008-11-04 2009-11-03 Nanoparticules fluorescentes, leur procédé de préparation et leur application en marquage biologique

Country Status (5)

Country Link
US (1) US20120061627A1 (fr)
EP (1) EP2350229A1 (fr)
KR (1) KR20110083718A (fr)
FR (1) FR2937885B1 (fr)
WO (1) WO2010052221A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9371226B2 (en) 2011-02-02 2016-06-21 Battelle Energy Alliance, Llc Methods for forming particles
US8951446B2 (en) * 2008-03-13 2015-02-10 Battelle Energy Alliance, Llc Hybrid particles and associated methods
US8324414B2 (en) 2009-12-23 2012-12-04 Battelle Energy Alliance, Llc Methods of forming single source precursors, methods of forming polymeric single source precursors, and single source precursors and intermediate products formed by such methods
SG189578A1 (en) * 2011-10-19 2013-05-31 Bayer South East Asia Pte Ltd Synthesis of semiconductor nanoparticles using metal precursors comprising non- or weakly coordinating anions
WO2015017478A2 (fr) * 2013-07-29 2015-02-05 US Nano LLC Synthèse de nanofils semi-conducteur cœur/enveloppe cdse/zns
WO2017201465A1 (fr) * 2016-05-19 2017-11-23 Crystalplex Corporation Boîtes quantiques sans cadmium, boîtes quantiques accordables, polymère contenant des boîtes quantiques, articles, films, structure 3d les contenant et procédés de fabrication et d'utilisation de ceux-ci
EP3616244A4 (fr) * 2017-04-28 2021-02-17 Indian Institute Of Science Nanocristaux semi-conducteurs
FR3091274B1 (fr) 2018-12-26 2023-04-28 Commisssariat A Lenergie Atomique Et Aux Energies Alternatives Nanocristaux de semi-conducteurs dopés, leur procédé de préparation et leurs utilisations
JP2022539982A (ja) * 2019-07-11 2022-09-14 ナノシス・インク. 立方形及びフッ化不動態化を有する青色発光ナノクリスタル
CN110540235A (zh) * 2019-09-29 2019-12-06 济南大学 一种对甲醛有响应的Ni掺杂空心氧化铟管的制备方法
WO2021087409A1 (fr) * 2019-10-31 2021-05-06 Massachusetts Institute Of Technology Nanocristaux émettant de la lumière bleue composés d'éléments naturellement abondants/non toxiques

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5136877B2 (ja) * 2004-07-16 2013-02-06 独立行政法人産業技術総合研究所 蛍光体、及びその製造方法
JP2007169605A (ja) * 2005-11-24 2007-07-05 National Institute Of Advanced Industrial & Technology 蛍光体、及びその製造方法
US20080038558A1 (en) * 2006-04-05 2008-02-14 Evident Technologies, Inc. I-iii-vi semiconductor nanocrystals, i-iii-vi water stable semiconductor nanocrystals, and methods of making same
JP5187657B2 (ja) * 2007-08-31 2013-04-24 独立行政法人産業技術総合研究所 蛍光体、及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010052221A1 *

Also Published As

Publication number Publication date
US20120061627A1 (en) 2012-03-15
WO2010052221A1 (fr) 2010-05-14
FR2937885B1 (fr) 2011-05-06
KR20110083718A (ko) 2011-07-20
FR2937885A1 (fr) 2010-05-07

Similar Documents

Publication Publication Date Title
EP2350229A1 (fr) Nanoparticules fluorescentes, leur procédé de préparation et leur application en marquage biologique
EP1548431B1 (fr) Nanocristaux inorganiques à couche de revêtement organique, leur procédé de préparation
JP5425201B2 (ja) 半導体量子ドットの合成方法
Kim et al. Engineering InAs x P1-x/InP/ZnSe III− V Alloyed Core/Shell Quantum Dots for the Near-Infrared
Malik et al. A simple route to the synthesis of core/shell nanoparticles of chalcogenides
EP2297384B1 (fr) Procédé de préparation de nanocristaux luminescents
Ratnesh et al. Synthesis and optical properties of core-multi-shell CdSe/CdS/ZnS quantum dots: Surface modifications
FR3039531A1 (fr)
US9790425B2 (en) Synthesis of quantum dots
Kaur et al. Size tuning of MAA capped CdSe and CdSe/CdS quantum dots and their stability in different pH environments
WO2013057446A1 (fr) Procede de croissance en epaisseur de nanofeuillets colloïdaux et materiaux composes desdits nanofeuillets
WO2007060889A1 (fr) Substance fluorescente et son procede de fabrication
KR20140024236A (ko) 고 발광성 반도체 나노결정
Choi et al. Ligand-exchange-ready CuInS2/ZnS quantum dots via surface-ligand composition control for film-type display devices
Granada-Ramirez et al. Chemical synthesis and optical, structural, and surface characterization of InP-In2O3 quantum dots
JP2010031115A (ja) 半導体ナノ粒子の製造方法、および半導体ナノ粒子
Coto-García et al. The influence of surface coating on the properties of water-soluble CdSe and CdSe/ZnS quantum dots
US11077213B2 (en) Short-wavelength infrared (SWIR) fluorescence in vivo and intravital imaging with semiconductor nanocrystals
Wang et al. Optimizing the aqueous phase synthesis of CdTe quantum dots using mixed-ligands system and their applications for imaging of live cancer cells and tumors in vivo
US20210214611A1 (en) Scalable and safe nanocrystal precursor
CN110461991A (zh) 半导体发光纳米颗粒
WO2017041061A1 (fr) Synthèse de nanocristaux
JP2010105149A (ja) 半導体ナノ粒子及びその製造方法
KR100973945B1 (ko) 코어-다중쉘 구조의 양자점 나노 입자 및 이의 용도
Bhanoth et al. Synthesis, characterization and bio-evaluation of core-shell QDs with ZnSe, CdS and CdSe combinations

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110512

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: DAOU, TOUFIC JEAN

Inventor name: REISS, PETER

Inventor name: TEXIER-NOGUES, ISABELLE

Inventor name: LI, LIANG

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DAOU, TOUFIC JEAN

Inventor name: TEXIER-NOGUES, ISABELLE

Inventor name: REISS, PETER

Inventor name: LI, LIANG

RIN1 Information on inventor provided before grant (corrected)

Inventor name: TEXIER-NOGUES, ISABELLE

Inventor name: LI, LIANG

Inventor name: DAOU, TOUFIC JEAN

Inventor name: REISS, PETER

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150602