EP2337810A1 - Polydialkylsiloxanverbrückte biphotochrome moleküle - Google Patents

Polydialkylsiloxanverbrückte biphotochrome moleküle

Info

Publication number
EP2337810A1
EP2337810A1 EP09784948A EP09784948A EP2337810A1 EP 2337810 A1 EP2337810 A1 EP 2337810A1 EP 09784948 A EP09784948 A EP 09784948A EP 09784948 A EP09784948 A EP 09784948A EP 2337810 A1 EP2337810 A1 EP 2337810A1
Authority
EP
European Patent Office
Prior art keywords
dms
photochromic
molecule according
photochromic molecule
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09784948A
Other languages
English (en)
French (fr)
Inventor
Steven Michael Partington
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
James Robinson Speciality Ingredients Ltd
Original Assignee
Vivimed Labs Europe Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vivimed Labs Europe Ltd filed Critical Vivimed Labs Europe Ltd
Publication of EP2337810A1 publication Critical patent/EP2337810A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • C08G77/382Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon
    • C08G77/388Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/06Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/04Compositions for glass with special properties for photosensitive glass
    • C03C4/06Compositions for glass with special properties for photosensitive glass for phototropic or photochromic glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/045Polysiloxanes containing less than 25 silicon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • C09K9/02Organic tenebrescent materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/685Compositions containing spiro-condensed pyran compounds or derivatives thereof, as photosensitive substances
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/72Photosensitive compositions not covered by the groups G03C1/005 - G03C1/705
    • G03C1/73Photosensitive compositions not covered by the groups G03C1/005 - G03C1/705 containing organic compounds
    • G03C1/733Photosensitive compositions not covered by the groups G03C1/005 - G03C1/705 containing organic compounds with macromolecular compounds as photosensitive substances, e.g. photochromic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/145Heterocyclic containing oxygen as the only heteroatom
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/72Photosensitive compositions not covered by the groups G03C1/005 - G03C1/705
    • G03C1/73Photosensitive compositions not covered by the groups G03C1/005 - G03C1/705 containing organic compounds

Definitions

  • the present invention relates to photochromic molecules, in particular bi-photochromic molecules comprising a polydialkylsiloxane oligomer linker, and to products comprising them.
  • Photochromism is a well known physical phenomenon, which is defined as "a reversible transformation of a single chemical species being induced in one or both directions by electromagnetic radiation between two states having different distinguishable absorption spectra".
  • a detailed discussion of this phenomenon can be found in "Photochromism : Molecules and Systems", revised edition, edited by H. Durr and H. Bouas-Laurent, Elsevier, 2003.
  • a review of the major classes of organic photochromic molecules can be found in Organic Photochromic and Thermochromic Compounds, Volume 1 , Main Photochromic Families", edited by J. Crano and R. Guglielmetti, Plenum Press, 1999.
  • a detailed review of photochromic naphthopyrans can be found in "Functional Dyes", edited by Sung-Hoon Kim, pages 85-137, Elsevier, Amsterdam, 2006.
  • Polymerisable groups have been attached to oxazines (US 5821287, National Science Council Taiwan). Polymerisable polyalkoxylated pyrans have been claimed by PPG (WO 00/15629) and Transitions (WO 03/56390).
  • Rodenstock (EP 0686685) have linked pyrans by means of a -CH 2 CH 2 - bridge which, it is taught, does not affect the photochromic properties of the photochromic moieties: it is therefore clear that this bridge does not give any advantages in terms of improved properties such as fade rate or colour intensity.
  • Zhao and Carreira JACS 2002, 124, 8, p1582 have prepared bis-naphthopyrans linked by a bis-thiophene, by phenyl groups (Organic Letters, 2006, VoI 8 No. 1 , p99) and by oligothiophenes (Chenn. Eur. J.
  • Coelho et al (Tetrahedron, 2005, 61 , p11730) have linked pyrans by means of phenyl, phenyl-O- phenyl, and phenyl-CH 2 CH 2 -phenyl bridges.
  • Great Lakes (WO 00/39245) claim a trimeric species where three oxazines are attached to a central triazine.
  • Great Lakes (WO 00/05325 and WO 00/21968) also claim compounds where two, three or four oxazines are linked to a central tetramethylcyclotetrasiloxane ring.
  • a bi- photochromic molecule comprising two photochromic moieties linked via a polydialkylsiloxane oligomer.
  • bi-photochromic molecule having the structure set out in claim 4.
  • an ophthalmic lens comprising a bi-photochromic molecule according to the invention.
  • the invention provides a polymeric host material comprising a bi- photochromic molecule according to the invention.
  • the molecules exhibit a considerable improvement in the rate of fade in polymer matrices compared to the parent photochromic molecules.
  • the compounds of the invention often exhibit increased strength of photochromic colour compared to the parent photochromic molecule, allowing for molecular weight and the number of photochromic units present.
  • the compounds of the invention are particularly useful for use in photochromic ophthalmic lenses. It has also unexpectedly been found that these molecules have improved heat stability when incorporated into polymers, compared to the individual photochromic molecules which are not linked by the bridging group. This allows the molecules of the invention to be incorporated into polymers which require higher processing temperatures than are compatible with the unlinked photochromic molecules.
  • the molecules of this invention also have the beneficial property of a lower yellowness index compared to the individual photochromic molecules which are not linked via a polydialkylsiloxane oligomer when processed at the same temperature in the same polymer.
  • the compounds of the invention have advantages of improved fade rate, improved photochromic colour strength, increased heat stability and reduced yellowness index when compared to the known bi-photochromic compounds comprising bridging groups.
  • two photochromic molecules are linked by means of a bridge which comprises a linking group at each end of a central polydialkylsiloxane (PDAS) chain to provide novel polydialkylsiloxane bridged bi- photochromic molecules.
  • PDAS polydialkylsiloxane
  • the bridge consists of a linking group at each end of a central PDAS chain.
  • the photochromic units may be the same or different, allowing for the possibility of different chromophores with different fade rates to be present in the same molecule.
  • the molecules of the invention comprise two photochromic moieties or molecules linked via a polydialkylsiloxane chain.
  • the polydialkylsiloxane bridge, or linker comprises a linking group at each end.
  • the bridge, or linker consists of a linking group at each end of a central polydialkylsiloxane chain. Any suitable polydialkylsiloxane chain and linking groups may be employed.
  • the compounds are of the general formula: PC-L-PDAS-U-PC wherein PC and PC represent a photochromic moiety; PDAS represents a polydialkylsiloxane chain; and L and L' represent linking groups.
  • PC and PC may be the same or different. It is particularly preferred that PC and PC independently represent photochromic moieties of general structure I to IV:
  • R1 and R2 independently represent hydrogen, linear or branched C 1-10 alkyl, linear or branched Ci- I0 alkoxy, C 1 . 10 hydroxyalkoxy, C-MO alkoxy(Ci_io)alkoxy, phenyl, Ci-io alkoxyphenyl, halogen, C 1 . 5 haloalkyl, C 1 - 5 alkylamino, Ci -5 dialkylamino, arylamino, diarylamino, aryl C 1 . 5 alkylamino, or a cyclic amino group;
  • R3 represents hydrogen, linear or branched C 1-10 alkyl, C 3 -C20 cycloalkyl, C 6 -C 2 O bicycloalkyl, linear or branched C 2- io alkenyl, linear or branched C 1-10 alkoxy, C 1-10 hydroxyalkyl, C 1-10 aminoalkyl, linear or branched Ci -20 alkoxycarbonyl, carboxyl, halogen, aryloxycarbonyl, formyl, acetyl or aroyl;
  • R4 represents phenyl, C 1- - I0 alkoxyphenyl, Ci- 10 dialkoxyphenyl, C 1 - I0 alkylphenyl, Ci- 10 dialkylphenyl, in addition to those groups specified for R3;
  • R5, R6, R7, R8, R9, R10, R14, R15, R16 are as defined above for R1 and R2;
  • R11 represents linear or branched Ci_ 2 o alkyl, C3-C2 0 cycloalkyl, C 6 -C2o bicycloalkyl, (Ci -5 alkyl)aryl, (Ci -5 alkyl)cycloalkyl, (Ci -5 alkyl) bicycloalkyl, Ci -5 haloalkyl, Ci -5 dihaloalkyl or Ci -5 trihaloalkyl;
  • R12 and R13 represent C-M O alkyl, Ci -5 alkyl alkoxycarbonyl, or together form a C 5-7 ring;
  • R17 and R18 represent linear or branched C-MO alkyl, Ci_i 0 hydroxyalkyl, or together form a C 5-7 ring.
  • L and L' which may be the same or different, represent a linking group. Any suitable linking group may be used. It is preferred that L and L' represent a linking group of the form
  • Y is independently oxygen or sulphur
  • R19 is hydrogen or C-i-io linear or branched alkyl
  • R20 is Ci-i 0 linear or branched alkyl
  • p is an integer from 1 to 15
  • r is an integer from 0 to 10
  • Q is linear or branched Ci-i 0 alkyl, C-M O alkenyl or 1 ,2-, 1 ,3, or 1 ,4-substituted aryl, or substituted heteroaryl.
  • Y is oxygen.
  • Particularly preferred linker groups L and L' are:
  • PDAS represents a polydialkylsiloxane chain.
  • PDAS represents an oligomer of the form
  • R19 is C-i.-to alkyl, and n is an integer of from 4 to 75.
  • Polydialkylsiloxane oligomers are commercially available, for example from Gelest Inc, Shin-Etsu Chemical Co. Ltd; Chisso Corp; Toshiba Silicone Co. Ltd; and Toray-Dow Corning Co. Ltd.
  • Suitable polydialkylsiloxane oligomers include, but are not limited to, polydimethylsiloxane oligomers, such that R19 is preferably methyl.
  • n is between 6 and 30 inclusively.
  • R19 is methyl and n is an integer of from 6 to 30.
  • Preferred polydimethylsiloxane oligomers include the oligomers DMS-B12, DMS-C15, DMS-C16, DMS-C21, DMS-A11, DMS-A12, DMS-A15, DMS-A21 , DMS-A211 and DMS-A214 available from Gelest Inc; KF-6001, KF-6002, KF-6003, KF-8010, X-22- 160AS, X-22-162A, X-22-161A, X-22-161B and X-22-162C from Shin-Etsu; and Silaplane FM-44 from Chisso.
  • oligomers DMS-B 12, DMS- C15, DMS-C16, DMS-C21, DMS-A11, DMS-A12, DMS-A15, DMS-A21 , DMS-A211 and DMS-A214 from Gelest are quoted as having the following structures and approximate molecular weight or molecular weight ranges.
  • the Gelest nomenclature is used to name the following polydimethylsiloxane oligomers, rather than the cumbersome (and not strictly accurate, as the oligomers are mixtures) systematic names.
  • DMS-A12 Molecular weight range 900 - 1000 NH 2 - (CH 2 ) 3 —Si- ⁇ -f-Si-o-h ⁇ ii-(CH 2 ) 3 — NH 2
  • polydimethylsiloxane oligomers are generally supplied either with an average molecular weight or a molecular weight range, and any number quoted as the number of repeat units of the dimethylsiloxane is to be interpreted as an average value.
  • the parent photochromic compounds may be prepared as described in US 5,650,098 (1 ,2-b naphthopyrans), US 5,623,005 (2,1-b naphthopyrans), US 5,446,151 (2,1-b naphthoxazines), and US 6,303,673 (1 ,2-b naphthoxazines).
  • linking group is attached to the commercially available oligomer, if required, and this reagent is then reacted with the parent photochromic compound to give the polydialkylsiloxane-bridged bi-photochromic molecule.
  • the linking group may also be attached to the parent photochromic compound, which is then reacted with the commercially available oligomer to give the polydialkylsiloxane-bridged bi-photochromic molecule. Suitable reaction conditions will be apparent to the skilled person.
  • polydimethylsiloxane oligomers are supplied either with an average molecular weight or a molecular weight range, and any number quoted as the number of repeat units of the dimethylsiloxane is to be interpreted as an average value. Accordingly, any yields quoted in the following Examples are inevitably approximate.
  • the oligomers DMS-B12, DMS-C15, DMS-C16 and DMS-A214 are available from Gelest Inc. and are quoted as having the following structures and approximate molecular weight or molecular weight ranges.
  • the reagent bis-phthaloyl-DMS-C15 was prepared in analogous fashion to bis-succinyl- DMS-C15 in Example 1 , using an equivalent quantity of phthalic anhydride in place of succinic anhydride.
  • Example 5 (1.3-Dihvdro-3,3-dimethyl-1-neopentyl-6'-(4"-N-ethyl, N- (succinvlethvl)anilino)spiror2H-indole-2,3'-3H-naphtho ⁇ ,2-biM ,41oxazine) ? - DMS-C 15
  • TLC thin layer chromatography
  • Example 7 (1.3-Dihvdro-3,3-dimethyl-1-isobutyl-9'-succinyl-spiror2H-indole-2,3'-3H- naphthor2,1-bi ⁇ ,41oxazine)g-DMS-C16
  • Dicyclohexyl carbodiimide (0.90 g) was added, and the mixture stirred for 2 hours at room temperature. TLC (5:1 toluene:EtOAc) indicated that the two starting material photochromies had been consumed. The mixture was filtered to remove dicyclohexyl urea, which was washed with toluene (5 ml). The solution was used for chromatography, eluting with a mixture of toluene and ethyl acetate.
  • Example 11 (1 ,3-Dihvdro-3,3-dimethyl-1 -neopentyl-9'-succinyl-spiror2H-indole-2,3'- 3H-naphthor2.1-biri .4loxazine1) ? -DMS-A214
  • 2,2-Bis(4'-methoxyphenyl)-5-hydroxymethyl-6-methyl-2H-naphtho[1 ,2-b]pyran was mixed with bis-succinyl-DMS-C15 (2.0 g), toluene (20 ml) and dimethylaminopyridine (0.05 g). This was stirred for 2 minutes, then dicyclohexyl carbodiimide (0.51 g) was added. The mixture was stirred for 45 minutes and TLC (3:1 toluene: EtOAc) indicated a main spot for polydialkylsiloxane-bridged bi-photochromic product, with effectively no starting material remaining. The mixture was cooled in an ice bath for 1 hour, then was filtered and the dicyclohexyl urea washed with toluene (5 ml).
  • the parameter "Adjusted Delta Abs” allows for the molecular weight of the polydialkylsiloxane-bridged bi-photochromic compound, the molecular weight of the unbridged comparative compound and the number of photochromic units present. This is calculated as follows:
  • Adjusted Delta Abs (Delta Abs Example compound x (MoI Wt example compound)/(Mol Wt comparative compound))/Number of photochromic units present in Example compound
  • Example 10 which has a different photochromic unit at each end of the chain, the absorptions from each photochromic unit are treated separately.
  • the Ti # values for the tailed dimers are between 29.4% and 65.4% of the T 1/2 values of the corresponding comparative compounds.
  • the T 3/ 4 values of the tailed dimers show even greater improvements, being between 13.9% and 40.0% of the T 3/4 values of the corresponding comparative compounds.
  • Samples of compounds of Example 7 and Example 12 and the corresponding comparative compounds C4 and C2 were incorporated at 250 ppm into polycarbonate, and polystyrene at different processing temperatures using a Boy 35M injection moulding machine, giving rectangular chips.
  • the chips were measured for absorption using the same equipment as was used for measuring lenses.
  • the chips were measured for yellowness index (as ASTM D1925) using a Datacolor Spectraflash SF450 colour spectrometer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Optical Filters (AREA)
  • Eyeglasses (AREA)
EP09784948A 2008-08-18 2009-08-18 Polydialkylsiloxanverbrückte biphotochrome moleküle Withdrawn EP2337810A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB0815109.4A GB0815109D0 (en) 2008-08-18 2008-08-18 Polydialkylsiloxane-bridged bi-photochromic molecules
PCT/GB2009/002010 WO2010020770A1 (en) 2008-08-18 2009-08-18 Polydialkylsiloxane-bridged bi-photochromic molecules

Publications (1)

Publication Number Publication Date
EP2337810A1 true EP2337810A1 (de) 2011-06-29

Family

ID=39812241

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09784948A Withdrawn EP2337810A1 (de) 2008-08-18 2009-08-18 Polydialkylsiloxanverbrückte biphotochrome moleküle

Country Status (6)

Country Link
EP (1) EP2337810A1 (de)
KR (1) KR101614824B1 (de)
CN (1) CN102171274A (de)
BR (1) BRPI0912910A2 (de)
GB (1) GB0815109D0 (de)
WO (1) WO2010020770A1 (de)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8647538B2 (en) * 2005-04-08 2014-02-11 Transitions Optical, Inc. Photochromic compounds having at least two photochromic moieties
US9028728B2 (en) 2005-04-08 2015-05-12 Transitions Optical, Inc. Photochromic materials that include indeno-fused naphthopyrans
US9139552B2 (en) 2005-04-08 2015-09-22 Transitions Optical, Inc. Indeno-fused naphthopyrans having ethylenically unsaturated groups
US8298453B2 (en) * 2010-01-06 2012-10-30 Korea University Research And Business Foundation Photochromic material
US8287775B2 (en) * 2010-02-17 2012-10-16 Korea University Research And Business Foundation Photochromic material
CN102965095B (zh) * 2011-09-01 2015-08-12 中国科学院福建物质结构研究所 一种无机/有机杂化光致变色材料及其制备方法与应用
US9605103B2 (en) * 2013-08-02 2017-03-28 Mitsui Chemicals, Inc. Process for producing photochromic optical material
CN105934458A (zh) 2014-02-03 2016-09-07 三井化学株式会社 光学材料用聚合性组合物、由该组合物得到的光学材料及塑料透镜
US9522921B2 (en) 2015-04-13 2016-12-20 Sabic Global Technologies, B.V. Photochromic spirooxazine compounds
CN107949584B (zh) 2015-09-16 2021-04-27 三井化学株式会社 光学材料用聚合性组合物、由该组合物得到的光学材料及塑料透镜
EP3351574B1 (de) * 2015-09-16 2022-12-21 Mitsui Chemicals, Inc. Polymerisierbare zusammensetzung für optische materialien, aus dieser zusammensetzung hergestelltes optisches material und kunststofflinse
CN107949583B (zh) 2015-09-16 2020-12-01 三井化学株式会社 聚合性组合物、使用该组合物的有机玻璃的制造方法及有机玻璃
US9693945B1 (en) * 2016-05-03 2017-07-04 Clifton Sanders Method of solubilizing a composition of a cleaned photochromic dye suitable for use on human skin
EP3521907A4 (de) 2016-09-30 2020-09-23 Mitsui Chemicals, Inc. Photochrome linse und polymerisierbare zusammensetzung
JP6833034B2 (ja) 2017-07-03 2021-02-24 三井化学株式会社 光学材料用重合性組成物および成形体
WO2019018625A1 (en) * 2017-07-19 2019-01-24 The Procter & Gamble Company FUNCTIONALIZED SILOXANE POLYMERS AND COMPOSITIONS COMPRISING THESE POLYMERS
EP3517573B1 (de) * 2018-01-25 2020-02-12 Nanogate SE Selbsttragender photochromer thermoplastischer polyurethanfilm mit eingebettetem keton
CN111587396B (zh) 2018-02-09 2022-08-05 三井化学株式会社 镜片及镜片的制造方法
JP7422067B2 (ja) 2018-02-23 2024-01-25 株式会社トクヤマ 機能性積層体、及び機能性積層体を用いた機能性レンズ
US20210155830A1 (en) 2018-04-05 2021-05-27 Tokuyama Corporation Photochromic adhesive composition, photochromic layered body, and optical article using said photochromic layered body
WO2019198664A1 (ja) 2018-04-12 2019-10-17 株式会社トクヤマ フォトクロミック光学物品及びその製造方法
US11866648B2 (en) 2019-01-30 2024-01-09 Mitsui Chemicals, Inc. Process for producing polymerizable composition for optical materials
AU2020250724A1 (en) 2019-04-03 2021-10-28 Tokuyama Corporation Photochromic optical article and method for manufacturing same
WO2020230016A1 (en) 2019-05-13 2020-11-19 Alcon Inc. Method for producing photochromic contact lenses
WO2020230882A1 (ja) 2019-05-16 2020-11-19 三井化学株式会社 光学材料用重合性組成物およびその用途
TW202140597A (zh) 2020-02-28 2021-11-01 日商德山股份有限公司 濕氣硬化型聚胺酯組成物及積層體
JP2023161056A (ja) 2020-08-31 2023-11-06 三井化学株式会社 光学材料用重合性組成物およびフォトクロミックレンズ
CN113388114A (zh) * 2021-01-11 2021-09-14 浙江赢科新材料股份有限公司 一种双端羧烃基封端含羧醚基结构的聚硅氧烷及其制备方法
CN113388115A (zh) * 2021-03-04 2021-09-14 浙江赢科新材料股份有限公司 一种双端含羧烃基结构的聚二甲基硅氧烷及其制备方法
WO2022202182A1 (ja) 2021-03-22 2022-09-29 三井化学株式会社 フォトクロミックレンズの製造方法、フォトクロミックレンズ
CN114031594B (zh) * 2021-09-10 2023-06-20 江苏视科新材料股份有限公司 一种双苯并色烯类化合物及其应用
WO2023163191A1 (ja) 2022-02-25 2023-08-31 三井化学株式会社 光学部材の製造方法及び光学部材
WO2023176153A1 (ja) 2022-03-18 2023-09-21 三井化学株式会社 ポリチオウレタンフィルム、メガネレンズ用資材、メガネレンズ及びメガネレンズの製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009146509A1 (en) * 2008-06-05 2009-12-10 Advanced Polymerik Pty Ltd Photochromic polymer and composition comprising photochromic polymer

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1250697B (it) 1991-07-24 1995-04-21 Enichem Sintesi Composti fotocromatici e termocromatici e loro applicazione in materiali polimerici.
GB9225347D0 (en) 1992-12-03 1993-01-27 Pilkington Plc Photo reactive material
US5322945A (en) 1993-02-19 1994-06-21 Yeda Research And Development Co. Ltd. Photochromic spirooxazine monomers and polysiloxanes
GB9306587D0 (en) 1993-03-30 1993-05-26 Pilkington Plc Photochromic compounds
US5650098A (en) 1993-12-09 1997-07-22 Transitions Optical, Inc. Substituted naphthopyrans
DE4420378C1 (de) 1994-06-10 1995-11-30 Rodenstock Optik G Photochrome Farbstoffe
US5821287A (en) 1996-08-08 1998-10-13 National Science Council Photochromic pigment
JPH10101802A (ja) 1996-09-26 1998-04-21 Toray Dow Corning Silicone Co Ltd フォトクロミックオルガノポリシロキサンおよびその製造方法
IL119781A0 (en) 1996-12-08 1997-03-18 Yeda Res & Dev Photochromic spirooxazine polysiloxanes
GB9722127D0 (en) 1997-10-20 1997-12-17 James Robinson Ltd Photochromic compounds
ITMI981690A1 (it) 1998-07-22 2000-01-22 Great Lakes Chemical Italia "composti fotocromatici procedimento per la loro preparazione e loro utilizzo in materiali polimerici"
ES2244213T3 (es) 1998-09-11 2005-12-01 Transitions Optical, Inc. Naftopiranos polialcoxilados polimerizables.
IT1302637B1 (it) 1998-10-09 2000-09-29 Great Lakes Chemical Italia Composti fotocromatici, procedimento per la loro preparazione e loroutilizzo in materiali polimerici.
IT1304507B1 (it) 1998-12-29 2001-03-19 Great Lakes Chemical Italia Composti fotocromatici, procedimento per la loro preparazione e loroutilizzo in materiali polimerici.
US20030141490A1 (en) 2001-12-21 2003-07-31 Walters Robert W. Photochromic polymer compositions and articles thereof
JP4476930B2 (ja) 2002-11-04 2010-06-09 アドバンスト・ポリメリック・プロプライエタリー・リミテッド フォトクロミック組成物および光透過性物品
US20070187656A1 (en) * 2004-04-30 2007-08-16 Polymers Australia Pty Limited Photochromic compositions and articles comprising siloxane, alkylene or substituted alkylene oligomers
CN101087862B (zh) 2004-09-02 2011-10-26 澳大利亚聚合物有限公司 包含聚合物取代基的光致变色化合物及其制备方法和用途

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009146509A1 (en) * 2008-06-05 2009-12-10 Advanced Polymerik Pty Ltd Photochromic polymer and composition comprising photochromic polymer

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Shin-Etsu Silicones for Personal Care (KSG21, KSG31)", 1 January 2007, COMPREHENSIVE ORGANOMETALLIC CHEMISTRY III,, PAGE(S) 651 - 697, ISBN: 978-0-08-044590-8, XP008127895 *
See also references of WO2010020770A1 *

Also Published As

Publication number Publication date
BRPI0912910A2 (pt) 2015-10-06
CN102171274A (zh) 2011-08-31
WO2010020770A1 (en) 2010-02-25
KR20110084496A (ko) 2011-07-25
GB0815109D0 (en) 2008-09-24
KR101614824B1 (ko) 2016-04-22

Similar Documents

Publication Publication Date Title
WO2010020770A1 (en) Polydialkylsiloxane-bridged bi-photochromic molecules
US20110190455A1 (en) Polydialkylsiloxane-bridged bi-photochromic molecules
EP1560893B1 (de) Photochrome zusammensetzungen und lichtdurchlässige artikel
AU2007208628B2 (en) Chromene compounds
US8801976B2 (en) Photochromic material
EP2113536B1 (de) Verwendung eines Polymermaterials mit UV-Absorber
JP4368679B2 (ja) ホトクロミックビス−ナフトピラン化合物およびそれらの製造方法
KR20020068539A (ko) 인덴 또는 디히드로나프탈렌-형태를 갖는 c5-c6이어닐링된 나프토피란 화합물, 이들의 조성물 및 이들을함유하는 매트릭스
AU2002332520A1 (en) Photochromic bis-naphthopyran compounds and methods for their manufacture
CN102741745B (zh) 光致变色材料
BRPI0407044A (pt) Composição para revestimento curável à temperatura ambiente
JP2020528941A (ja) シロールおよびゲルモール縮合環フォトクロミック化合物
JP2001508417A (ja) 2−アダマンチルベンゾピラン、それらを含有する組成物および(コ)ポリマーマトリクス
JP2007516961A (ja) カルバメート化または尿素化フェニルにより置換されたベンゾ−、ナフト−およびフェナントロクロメン、その調製およびそれを含有する組成物と製品
TW202212532A (zh) 光致變色化合物、光致變色硬化性組成物、硬化體、鏡片及眼鏡
WO2013138796A1 (en) Silicone material having a photochromic additive
CN103172878A (zh) 含萘酚吡喃有交联结构的硅基光致变色弹性体的合成方法
CN1242009A (zh) (苯并呋喃)萘并吡喃、含此类化合物的组合物及(共)聚合物基料
RU2278127C1 (ru) Окрашенные полисилоксан-поликарбонаты и способ их получения
CN117043168A (zh) 具有三烷基甲硅烷基和烯属不饱和基团的茚并萘并吡喃
AU2003277977A1 (en) Photochromic compositions and light transmissible articles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110316

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

17Q First examination report despatched

Effective date: 20110804

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140301