EP2323513B1 - Schweissaufnehmende schuheinlegesohle mit verbesserter schweissaufnahme - Google Patents

Schweissaufnehmende schuheinlegesohle mit verbesserter schweissaufnahme Download PDF

Info

Publication number
EP2323513B1
EP2323513B1 EP09779808.6A EP09779808A EP2323513B1 EP 2323513 B1 EP2323513 B1 EP 2323513B1 EP 09779808 A EP09779808 A EP 09779808A EP 2323513 B1 EP2323513 B1 EP 2323513B1
Authority
EP
European Patent Office
Prior art keywords
shoe insole
layer
insole according
amorphous silica
sweat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09779808.6A
Other languages
English (en)
French (fr)
Other versions
EP2323513A1 (de
Inventor
Juri Tschernjaew
Maya Krapfl
Patrik Stenner
Michael Beyer
Harald HÄGER
Dirk Heinrich
Martina Gottheis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Evonik Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Degussa GmbH filed Critical Evonik Degussa GmbH
Publication of EP2323513A1 publication Critical patent/EP2323513A1/de
Application granted granted Critical
Publication of EP2323513B1 publication Critical patent/EP2323513B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B17/00Insoles for insertion, e.g. footbeds or inlays, for attachment to the shoe after the upper has been joined
    • A43B17/10Insoles for insertion, e.g. footbeds or inlays, for attachment to the shoe after the upper has been joined specially adapted for sweaty feet; waterproof
    • A43B17/102Moisture absorbing socks; Moisture dissipating socks
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B1/00Footwear characterised by the material
    • A43B1/0045Footwear characterised by the material made at least partially of deodorant means

Definitions

  • the present invention relates to sweat-absorbent shoe insoles with improved perspiration absorption. It relates in particular to the use of particulate amorphous silica as an absorbent for sweat absorption in shoe insoles.
  • a comparatively high Storage capacity in contrast, have so-called "superabsorbent" polymers which are capable of absorbing and storing a multiple of their own weight or volume of liquid.
  • Superabsorbent salts are used, for example, in US Pat DE 691 08 004 T2 is used as the preferred absorbent in the cavities of the mid-layer of a shoe insert, with a membrane permitting the transfer of moisture from one cavity to the other.
  • the disadvantage here is the strong swelling of the polymer particles, which can also lead to further fluid absorption being prevented by the so-called "gel blocking".
  • the DE 35 16 653 A1 describes a footwear in which the shoe interior limiting Shoe moldings are preferably equipped with a molecular sieve. Although molecular sieves are not prone to swell upon absorption of moisture, because of the very uniform pore or channel structure, molecular sieves release the liquid once taken up only under difficult conditions.
  • the shoe insoles of the prior art thus have the disadvantage that they either have an insufficient welding absorption capacity or tend to swell at the direct location of the sweat absorption. However, in no case can they guarantee that the sweat can be diverted from the direct location of the sweat absorption and distributed evenly over the surface of the shoe insoles. Furthermore, the prior art shoe insoles have the disadvantage that when attempting to regenerate the insoles for further applications, the absorbed perspiration is insufficiently desorbed again, i. H. consistently long drying times and / or high drying temperatures are required.
  • the subject of the present invention is therefore an insole having the features of claim 1.
  • Particulate or particles in the sense of the present invention refers to a three-dimensional body with a defined outer shape, which-depending on the size of the particle-can be determined by means of microscopic methods (light microscope, electron microscopes, etc.).
  • the particles of the invention may be porous, d. H. Have pores and / or internal cavities.
  • amorphous silica is preferably completely amorphous. In the context of the invention, however, it may also have a smaller crystalline fraction which is for example at most 40%, at most 35%, at most 30%, at most 25%, at most 20%, at most 15, at most 10% or at most 5%.
  • the crystalline fraction is determined in a known manner by means of X-ray diffraction.
  • Suitable amorphous silicic acids are, for example, precipitated silicas and fumed silicas. Preference according to the invention is given to commercially available silicas from Evonik Degussa GmbH, which are available, for example, under the trade names Sipernat 2200, Sipernat 22, or Sipernat 50.
  • the silica used according to the invention has a specific surface area (N 2 ) according to ISO 5794-1 Annex D of between 5 and 500 m 2 per g.
  • the silica particularly preferably has a specific surface area of between 50 and 500 m 2 , very particularly preferably between 150 and 500 m 2 and particularly preferably between 185 and 475 m 2 per g.
  • the silica used according to the invention has a DBP absorption (according to DIN 53601) of at least 180 g per 100 g.
  • the DBP uptake of the silica is preferably in the range from 180 to 600 per 100 g, particularly preferably from 200 to 600 per 100 g, very particularly preferably from 200 to 500 per 100 g and particularly preferably from 250 to 400 per 100 g.
  • silicas are suitable whose product of the DBP absorption (according to DIN 53601) and tamped density according to ISO 787/11 at least 30,000 g / 100g * g / l, preferably at least 40,000 g / 100g * g / l, more preferably at least 50,000 g / 100g * g / l and most preferably at least 65,000 g / 100g * g / l.
  • the average particle size d 50 of the silica in the range of 5 .mu.m to 500 .mu.m, preferably from 20 .mu.m to 450 .mu.m, more preferably from 30 to 400 .mu.m, and most preferably from 45 to 350 microns is. If the particles are too small, unwanted dust formation can occur. In turn, particles that are too large have the disadvantage that they are often mechanically unstable and have too deep pores, so that the absorption and desorption rates can become too low or parts of the absorbed sweat can no longer be desorbed.
  • the shoe insoles according to the invention may contain antibacterial agents.
  • antibacterial active ingredients are understood as meaning chemical compounds or natural substances which are capable of inhibiting the growth of microorganisms, such as, for example, microorganisms.
  • microorganisms such as, for example, microorganisms.
  • bacteria yeasts or molds to prevent.
  • antimicrobial agents known preservatives can be used such.
  • organic acids sorbic acid, propionic acid, acetic acid, lactic acid, citric acid, malic acid, benzoic acid
  • PHB esters and their salts sodium sulfite and corresponding salts
  • nisin natamycin, formic acid, hexamethylenetetramine, sodium tetraborate, lysozyme
  • alcohols organohalogenated Compounds
  • parabens methyl, ethyl, propyl, butyl, isobutyl, propylparaben
  • isothiazolones benzisothiazolone, methylisothiazolone, octylisothiazolone
  • phenols salicylates, nitriles, fragrances, flavors and other herbal or synthetic active substances with antimicrobial activity.
  • the shoe insoles according to the invention may contain fragrances, flavors or odorants, which are referred to collectively below as fragrances.
  • fragrances Such materials are well known and commercially available. As used herein, they include natural (ie, substances extracted, for example, by extraction of plants such as flowers, herbs, leaves, roots, barks, woods, flowers, etc., or animal products), artificial (ie, a mixture of different natural oils or oil components ) and synthetic (ie synthetically produced) fragrant substances or mixtures of these substances.
  • Such materials are often used in conjunction with other compounds such as fixatives, extenders, stabilizers and solvents. These auxiliaries or additives are used in the context of of the meaning of the term "perfume”.
  • the proportion of antibacterial agents and / or perfumes is between 0.01 to 10 wt .-% based on the total weight of all particles.
  • the ideal ratio depends on the chemical nature and physicochemical properties of the antibacterial agents and fragrances as well as the silicic acid and can be determined for each material combination by simple series of experiments. Higher silica loading can cause insufficient sweat to be absorbed into the pores.
  • the proportion of antibacterial agents and / or perfumes based on the total weight of all particles is in the range from 0.01 to 5% by weight, very particularly preferably in the range between 0.05 and 3 wt .-% and particularly preferably in the range between 0.5 and 3 wt .-%.
  • silica according to the invention is present as a carrier for the antibacterial agents and / or perfumes.
  • the proportion of silica particles present as carriers for the antibacterial agents and / or the fragrances is preferably between 5 and 40% by weight, based on the total weight of all particles, more preferably between 5 and 30% by weight, very particularly preferably between 5 and 20% by weight.
  • the shoe insoles according to the invention may additionally contain particulate superabsorbent polymers.
  • superabsorbent polymers are polymers (superabsorbent polymers, SAP) which are capable of absorbing a multiple of their own weight - up to 1000 times - of liquids (usually water or aqueous solutions).
  • SAP superabsorbent polymers
  • Particularly suitable as superabsorbent polymers are polymers of (co) polymerized hydrophilic monomers, (graft) polymers of one or more hydrophilic monomers onto a suitable grafting base such as crosslinked cellulose or starch ethers, crosslinked carboxymethylcellulose, partially crosslinked polyalkylene oxide or natural products swellable in aqueous liquids such as guar derivatives, alginates and carragenans.
  • a suitable grafting base such as crosslinked cellulose or starch ethers, crosslinked carboxymethylcellulose, partially crosslinked polyalkylene oxide or natural products swellable in aqueous liquids such as guar derivatives, alginates and carragenans.
  • Preference is given to polymers which are obtained by crosslinked polymerization or copolymerization of acid-group-carrying monoethylenically unsaturated monomers or derivatives thereof, in particular salts, esters or anhydrides.
  • Such acid group-carrying monomers are, for example, monoethylenically unsaturated C 3 -C 25 -carboxylic acid, its salts or anhydrides.
  • Preferably used monomers are acrylic acid, methacrylic acid, vinylsulfonic acid, acrylamidopropanesulfonic acid or mixtures of these acids. Particularly preferred are acrylic acid and methacrylic acid.
  • additional monoethylenically unsaturated compounds which do not carry any acid group but are polymerizable with the acid group-carrying monomers. These include, for example, the amides and nitriles of monoethylenically unsaturated carboxylic acids.
  • Crosslinkers may be compounds which have at least two ethylenically unsaturated double bonds.
  • Examples of compounds of this type are N, N-methylenebisacrylamide, polyethylene glycol diacrylates and polyethylene glycol dimethacrylates.
  • Suitable superabsorbent polymers are described, for example, in the following reference: FL Buchholz, AT Graham (Ed.), Modern Superabsorbent Polymer Technology, Wiley-VCH, New York 1998 ,
  • the superabsorbent polymers can be used in combination with copolymers of C 2 to C 8 olefins or styrenes with anhydrides to improve the odor-binding properties.
  • the particles of the superabsorbent polymers prefferably have an average particle size d 50 in the range from 5 ⁇ m to 300 ⁇ m, preferably from 20 ⁇ m to 150 ⁇ m, particularly preferably from 50 to 150 ⁇ m, and very particularly preferably from 50 ⁇ m 100 microns have.
  • the proportion of all particles is preferably at least 20% by volume, based on the total volume of the shoe insole according to the invention, more preferably at least 30% by volume and very particularly preferably at least 35% by volume.
  • the shoe insole comprises at least two layers, one of which is water and water permeable to water vapor and the other layer is impermeable to water and water vapor, the water- and water-vapor-impermeable layer contains recesses on its side inclined towards the water and water vapor permeable layer, both layers are firmly connected to one another such that the water and water vapor permeable layer forms the recesses on the surface thereof covered side of the water and water vapor-impermeable layer, the wells of the water-vapor-impermeable layer within this layer are interconnected by open channels, and the wells of the water and water vapor-impermeable layer containing a particulate amorphous silica to be used according to the invention.
  • This embodiment is advantageous because the sole structure optimally supports the transport of perspiration within the absorbent and the sweat exchange (uptake and release) with the environment.
  • the present invention furthermore relates to the use of the shoe insole according to the invention in sports shoes, work boots or military shoes or boots.
  • Figure 1 schematic representation of a shoe insole according to the invention
  • illustration 1 shows a shoe insole according to the invention in cross-section, comprising at least two layers 1 and 2, wherein layer 1 is water and water vapor permeable and layer 2 is impermeable to water and water vapor.
  • Layer 2 contains 3 wells on surface. The layers 1 and 2 are connected together so firmly that surface 4 of layer 1 covers the depressions on surface 3 of layer 2. The recesses on surface 3 of layer 2 are interconnected within layer 2 by open channels. The depressions on surface 3 of layer 2 contain the absorbent 5 to be used according to the invention.
  • the DBP image is defined for anhydrous, dried materials.
  • the correction value K must be taken into account for the calculation of the DBP absorption. This value can be determined from the following correction table. For example, a 5.8% water content of the material would mean a 33 g / 100 g supplement for DBP uptake.
  • the moisture content of the material is determined according to the following method "Determination of moisture or dry loss".
  • the moisture or even the dry loss (TV) of materials is determined following ISO 787-2 after 2 hours of drying at 105 ° C. This drying loss consists predominantly of water moisture.
  • the determination of the mean particle size d 50 of the silica is carried out according to the principle of laser diffraction on a laser diffractometer (Horiba, LA-920).
  • a dispersion having a weight fraction of about 1% by weight of SiO 2 is prepared by stirring the powder in water.
  • the particle size distribution is determined from a partial sample of the dispersion with the laser diffractometer (Horiba LA-920).
  • a relative refractive index of 1.09 has to be chosen. All measurements are carried out at 25 ° C.
  • the particle size distribution as well as the relevant variables such. B. the average particle size d 50 are automatically calculated by the device and graphically displayed. The instructions in the operating instructions must be observed.
  • the tamped density or bulk density is determined according to ISO 787-11.
  • the determination of the SiO 2 content is carried out according to ISO 3262-19.
  • Average particle size d 50 microns 110 8th 11.5 320 40 16 6 20 4.5 18 tapped density g / l 280 70 90 260 180 90 75 175 110 210 loss on drying % 6 6 6 5 6 3 6 5 6 PH value 6.5 6.2 6.5 6 6 6 6 6.3 9 9 DBP absorption g / 100 g 260 265 265 250 335 325 325 225 210 245 SiO 2 content % 98 98 98 98 98.5 98.5 98.5 98 98.5 98 Tamped density * DBP Abs.

Landscapes

  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

  • Die vorliegende Erfindung betrifft schweißaufnehmende Schuheinlegesohlen mit verbesserter Schweißaufnahme. Sie betrifft dabei insbesondere die Verwendung partikulärer amorpher Kieselsäure als Absorbens zur Schweißaufnahme in Schuheinlegesohlen.
  • Es ist bekannt, dass der Mensch über die Füße etwa 100 l Schweiß pro Jahr absondert, d. h. etwa 137 ml pro Tag und pro Fuß. Wenn man bedenkt, dass ein Mensch im Arbeitsalltag oder aber auch in seiner Freizeit, beispielsweise beim Skifahren, bis zu 10 Stunden ununterbrochen dasselbe Schuhwerk trägt, wird in dieser Zeit pro Fuß etwa 60 ml Schweiß an das Schuhwerk abgegeben. Für den Menschen ist es aber nicht nur unkomfortabel, ein ständiges Gefühl feuchter Füße zu haben. Das feucht-warme Klima im Schuhwerk begünstigt darüber hinaus auch das Wachstum von Bakterien sowie die Freisetzung unangenehmer Gerüche.
  • Es hat daher in der Vergangenheit nicht an Bemühungen gefehlt, Wege zu finden, den geschilderten Problemen des sogenannten "Schweißfusses" abzuhelfen. Fast alle Lösungsansätze bedienen sich dabei einer Einlegesohle, die den absorbierten Schweiß bevorzugt aufnehmen und speichern soll. Zu diesem Zweck werden oftmals Mehrschichtsysteme verwendet, wobei eine obere, in Kontakt mit dem Fuß stehende Schicht den Transport des Schweißes in das Innere der Sohle gewährleisten soll, eine Mittelschicht den Schweiß speichern soll, und eine untere, in Kontakt mit der Schuhsohle stehende Schicht den absorbierten Schweiß zurückhalten soll. Um die hohen Mengen abgesonderten Schweißes bewältigen zu können, wird das Material für die mittlere Schicht einer Schuheinlegesohle in der Regel nach seiner Fähigkeit ausgewählt, wässrige Flüssigkeiten aufnehmen und speichern zu können. Aktivkohle als kostengünstiges Absorbens weist jedoch nur eine vergleichsweise geringe Speicherkapazität auf. Eine vergleichsweise hohe Speicherkapazität weisen dagegen sogenannte "superabsorbierende" Polymere auf, die in der Lage sind, ein Vielfaches ihres Eigengewichtes bzw. -volumens an Flüssigkeit aufzunehmen und zu speichern. Superabsorbierende Salze werden beispielweise in der DE 691 08 004 T2 als bevorzugtes Absorbens in den Hohlräumen der Mittelschicht einer Schuheinlage verwendet, wobei eine Membran die Übertragung der Feuchtigkeit von einem Hohlraum zum anderen erlaubt. Nachteilig ist dabei jedoch das starke Aufquellen der Polymerpartikel, was auch dazu führen kann, dass über das sogenannte "gel blocking" weitere Flüssigkeitsaufnahme verhindert wird.
  • Die DE 35 16 653 A1 beschreibt ein Schuhwerk, bei dem den Schuhinnenraum begrenzende Schuhformteile vorzugsweise mit einem Molekularsieb ausgerüstet sind. Zwar neigen Molekularsiebe nicht dazu, bei Feuchtigkeitsaufnahme aufzuquellen, durch die sehr uniforme Poren- bzw. Kanalstruktur geben Molekularsiebe die einmal aufgenommene Flüssigkeit jedoch nur unter erschwerten Bedingungen wieder ab.
  • Die Schuheinlegesohlen des Standes der Technik haben also den Nachteil, dass sie entweder über eine nur unzureichende Schweißaufnahmekapazität verfügen oder aber an dem direkten Ort der Schweißaufnahme zu starker Quellung neigen. In keinem Fall können sie jedoch bisher gewährleisten, dass der Schweiß vom direkten Ort der Schweißaufnahme abgeleitet und gleichmäßig über die Fläche der Schuheinlegesohlen verteilt werden kann. Weiterhin haben die Schuheinlegesohlen des Standes der Technik den Nachteil, dass beim Versuch, die Einlegesohlen für weitere Anwendungen zu regenerieren, der absorbierte Schweiß nur unzureichend wieder desorbiert wird, d. h. es sind durchweg lange Trocknungszeiten und/oder hohe Trocknungstemperaturen erforderlich.
  • Aufgabe der vorliegenden Erfindung war es daher, eine Schuheinlegesohle bereitzustellen, die über eine ausreichende Schweißaufnahmekapazität verfügt, durch Schweißaufnahme jedoch nicht quillt und darüber hinaus gewährleistet, dass sich der absorbierte Schweiß effektiv über das gesamte Schuhsohlenvolumen verteilen und genauso effektiv bei der Regeneration wieder an die Umgebung abgegeben werden kann.
  • Überraschenderweise wurde nun gefunden, dass eine Schuheinlegesohle, welche partikuläre amorphe Kieselsäure enthält, die zuvor genannten Anforderungen erfüllt.
  • Gegenstand der vorliegenden Erfindung ist daher eine Einlegesohle mit den Merkmalen von Anspruch 1.
  • Partikulär bzw. Partikel im Sinne der vorliegenden Erfindung bezeichnet einen dreidimensionalen Körper mit definierter äußerer Form, welche -je nach Größe des Partikels - mittels mikroskopischer Verfahren (Lichtmikroskop, Elektronenmikroskope etc.) festgestellt werden kann. Die erfindungsgemäßen Partikel können porös sein, d. h. Poren und/oder innere Hohlräume aufweisen.
  • Im Sinne der vorliegenden Erfindung können alle handelsüblichen partikulären amorphen Kieselsäuren verwendet werden. Die amorphe Kieselsäure ist vorzugsweise vollständig amorph. Im Rahmen der Erfindung kann sie jedoch auch einen kleineren kristallinen Anteil besitzen, der beispielsweise maximal 40 %, maximal 35 %, maximal 30 %, maximal 25 %, maximal 20 %, maximal 15, maximal 10 % oder maximal 5 % beträgt. Der kristalline Anteil wird auf bekannte Weise mittels Röntgenbeugung bestimmt. Geeignete amorphe Kieselsäuren sind beispielsweise Fällungskieselsäuren und pyrogene Kieselsäuren. Erfindungsgemäß bevorzugt sind die im Handel erhältlichen Kieselsäuren der Fa. Evonik Degussa GmbH, die beispielsweise unter den Handelnamen Sipernat 2200, Sipernat 22, oder Sipernat 50 erhältlich sind.
  • Es hat sich als vorteilhaft erwiesen, dass die erfindungsgemäß verwendete Kieselsäure eine spezifische Oberfläche (N2) gemäß ISO 5794-1 Annex D zwischen 5 und 500 m2 pro g aufweist. Besonders bevorzugt weist die Kieselsäure eine spezifische Oberfläche zwischen 50 und 500 m2, ganz besonders bevorzugt zwischen 150 und 500 m2 und insbesondere bevorzugt zwischen 185 und 475 m2 pro g auf.
  • Es hat sich weiterhin als vorteilhaft erwiesen, dass die erfindungsgemäß verwendete Kieselsäure eine DBP-Absorption (gemäß DIN 53601) von mindestens 180 g pro 100 g aufweist. Die DBP-Aufnahme der Kieselsäure liegt vorzugsweise im Bereich von 180 bis 600 pro 100 g, besonders bevorzugt von 200 bis 600 pro 100 g, ganz besonders bevorzugt von 200 bis 500 pro 100 g und insbesondere bevorzugt von 250 bis 400 pro 100 g.
  • Insbesondere sind Kieselsäuren geeignet, deren Produkt der DBP-Absorption (gemäß DIN 53601) und Stampfdichte gemäß ISO 787/11 mindestens 30.000 g/100g*g/l, bevorzugt mindestens 40.000 g/100g*g/l, besonders bevorzugt mindestens 50.000 g/100g*g/l und am meisten bevorzugt mindestens 65.000 g/100g*g/l beträgt.
  • Es hat sich darüber hinaus auch als vorteilhaft erwiesen, dass die mittlere Partikelgröße d50 der Kieselsäure im Bereich von 5 µm bis 500 µm, bevorzugt von 20 µm bis 450 µm, besonders bevorzugt von 30 bis 400 µm, und ganz besonders bevorzugt von 45 bis 350 µm liegt. Sind die Partikel zu klein, kann es zu unerwünschter Staubbildung kommen. Zu große Partikel wiederum haben den Nachteil, dass diese oft mechanisch instabil sind und zu tiefe Poren besitzen, so dass die Absorptions- und Desorptionsgeschwindigkeiten zu gering werden können bzw. Teile des absorbierten Schweißes nicht mehr desorbiert werden können.
  • Die erfindungsgemäßen Schuheinlegesohlen können antibakterielle Wirkstoffe enthalten. Unter antibakteriellen Wirkstoffen werden in der vorliegenden Erfindung chemische Verbindungen bzw. Naturstoffe verstanden, die in der Lage sind, ein Wachstum von Mikroorganismen wie z. B. Bakterien, Hefen oder Schimmelpilzen zu verhindern. Als antimikrobielle Wirkstoffe können bekannte Konservierungsmittel eingesetzt werden wie z. B. organische Säuren (Sorbinsäure, Propionsäure, Essigsäure, Milchsäure, Citronensäure, Äpfelsäure, Benzoesäure) und deren Salze, PHB-Ester und deren Salze, Natriumsulfit und entsprechende Salze, Nisin, Natamycin, Ameisensäure, Hexamethylentetramin, Natriumtetraborat, Lysozym, Alkohole, halogenorganische Verbindungen, Parabene (Methyl-, Ethyl-, Propyl-, Butyl-, Isobutyl-, Propylparaben), Isothiazolone (Benzisothiazolon, Methylisothiazolon, Octylisothiazolon), Phenole, Salicylate, Nitrile, Duftstoffe, Aromastoffe sowie andere pflanzliche oder synthetische Wirkstoffe mit antimikrobieller Wirksamkeit.
  • Die erfindungsgemäßen Schuheinlegesohlen können Duft-, Aroma- bzw. Geruchsstoffe enthalten, die im Folgenden zusammenfassend als Duftstoffe bezeichnet werden. Derartige Stoffe sind allgemein bekannt und kommerziell erhältlich. Wie hierin verwendet, umfassen sie natürliche (d.h. beispielsweise durch Extraktion von Pflanzen, wie beispielsweise Blumen, Kräutern, Blättern, Wurzeln, Rinden, Hölzern, Blüten usw., oder tierischen Produkten gewonnene Stoffe), künstliche (d.h. eine Mischung von unterschiedlichen Naturölen oder Ölbestandteilen) und synthetische (d.h. synthetisch hergestellte) wohlriechende Substanzen oder Mischungen dieser Substanzen. Solche Materialien werden häufig zusammen mit weiteren Verbindungen, wie Fixiermitteln, Extendern, Stabilisatoren und Lösungsmitteln, verwendet. Diese Hilfs- oder Zusatzstoffe werden im Rahmen der vorliegenden Erfindung von der Bedeutung des Begriffes "Duftstoff" eingeschlossen.
  • Gewöhnlich sind Duftstoffe daher komplexe Mischungen einer Vielzahl von organischen Verbindungen. Zu den natürlichen Verbindungen gehören nicht nur leichtflüchtige Stoffe; diese umfassen auch mittelflüchtige und mäßigflüchtige Stoffe. Eine beispielhafte Zusammenstellung von Duftstoffen umfasst unter anderem folgende Verbindungen:
    • Naturstoffe, wie Baummoos absolut, Basilikumöl, Zitrusfruchtöle (wie Bergamottenöl, Mandarinenöl, etc.), Mastix absolut, Myrtenöl, Palmarosaöl, Öle der Patschulipflanze, Petitgrainöl, insbesondere aus Paraguay, Wermutöl; Alkohole, wie Farnesol, Geraniol, Linalool, Nerol, Phenylethylalkohol, Rhodinol, Zimtalkohol; Aldehyde, wie Citral, Helional, α-Hexylzimtaldehyd, Hydroxycitronellal, Lilial (p-tert.-Butyl-α-methyldihydrozimtaldehyd), Methylnonylacetaldehyd; Ketone, wie Allylionon (1-(2,6,6-Trimethyl-2-cyclohexen-1-yl)-1,6-heptadien-3-on), α-Ionon, β-Ionon, Isomethyl-α-ionon, Methylionon; Ester, wie Allylphenoxyacetat, Benzylsalicylat, Cinnamylpropionat, Citronellyl-acetat, Citronellylethoxolat, Decylacetat, Di-methylbenzylcarbinylacetat, Dimethylbenzylcarbinylbutyrat, Ethylacetoacetat, Ethylacetylacetat, Hexenylisobutyrat, Linalylacetat, Methyldihydrojasmonat, Styrallylacetat, Vetiverylacetat, etc.; Lactone, wie γ-Undecalacton; verschiedene Bestandteile, die häufig zur Herstellung von Parfümen eingesetzt werden, wie Moschusketon, Indol, p-Menthan-8-thiol-3-on und Methyleugenol; und Acetale und Ketale wie Methyl- und Ethylacetale und -ketale, sowie die Acetale oder Ketale, die auf Benzaldehyd basieren, die Phenylethyl-Gruppen enthalten, oder Acetale und Ketale der Oxotetraline und Oxoindane.
  • Darüber hinaus kommen in Frage: Geranylacetat, Dihydromyrcenylacetat (2,6-Dimethyl-oct-7-en-2-yl-acetat), Terpinylacetat, Tricyclodecenylacetat, Tricyclode-cenylpropionat, 2-Phenylethylacetat, Benzyl-acetat, Benzylbenzoat, Styrallylace-tat, Amylsalicylat, Phenoxyethyl-isobutyrat, Nerylacetat, Trichloromethylphenyl-carbinylacetat, p-tert.-Butyl-cyclohexylacetat, Isononylacetat, Cedrylacetat, Benzylalcohol, Tetrahydrolinalool, Citronellol, Dimethylbenzylcarbinol, Dihydromyrcenol, Tetrahydromyrcenol, Terpineol, Eugenol, Vetiverol, 3-Isocamphylcyclohexanol, 2-Methyl-3-(p-tert.-butylphenyl)-propanol, 2-Methyl-3-(p-isopropylphenyl)-propanol, 3-(p-tert.-Butylphenyl)-propanol, α-n-Amylzimtaldehyd, 4-(4-Hydroxy-4-methylpentyl)-3-cyclohexen-carbaldehyd, 4-(4-Methyl-3-pentenyl)-3-cyclohexencarbaldehyd, 4-Acetoxy-3-pentyltetrahydropyran, 2-n-Heptylcyclopentanon, 3-Methyl-2-pentyl-cyclopentanon, n-Decanal, n-Dodecanal, Hydroxycitronellal, Phenylacetaldehyd-dimethylacetal, Phenylacetaldehyddiethy-lacetal, Geranonitril, Citronellonitril, Cedrylmethylether, Isolongifolanon, Aubepine Nitrile, Aubepine, Heliotropin, Coumarin, Vanillin, Diphenyloxid, Ionon, Methylionon, Isomethylionon, cis-3-Hexenol und cis-3-Hexenol-Ester, MoschusVerbindungen, die unter anderem eine Indan-, Tetralin- oder Isochroman-Struktur aufweisen können, macrocyclische Ketone, Macrolacton-Moschusverbindungen, Ethylenbrassylat, aromatische Nitromuschusverbindungen, Wintergreen Oil, Ore-ganoöl, Lorbeerblattöl, Pfefferminzöl, Minzeöl, Nelkenöl, Salbeiöl, Sassafrasöl, Zitronenöl, Orangenöl, Anisöl, Benzaldehyd, Bittermandelöl, Kampfer, Zederblatt-öl, Majoranöl, Zitronengrasöl, Lavendelöl, Senföl, Kieferöl, Kiefernadelöl, Rosmarinöl, Thymianöl, Zimtblattöl sowie Mischungen dieser Substanzen. Die genannten Duftstoffe können einzeln oder als Mischung eingesetzt werden.
  • Es hat sich als vorteilhaft erwiesen, dass der Anteil der antibakteriellen Wirkstoffe und/oder der Duftstoffe zwischen 0,01 bis 10 Gew.-% bezogen auf das Gesamtgewicht aller Partikel beträgt. Das ideale Verhältnis hängt von der chemischen Natur und den physikalisch-chemischen Eigenschaften der antibakteriellen Wirkstoffe und der Duftstoffe sowie der Kieselsäure ab und kann für jede Materialkombination durch einfache Versuchsreihen bestimmt werden. Eine höhere Beladung der Kieselsäure kann dazu führen, dass nicht mehr genügend Schweiß in die Poren aufgenommen werden kann. Besonders bevorzugt liegt der Anteil der antibakteriellen Wirkstoffe und/oder der Duftstoffe bezogen auf das Gesamtgewicht aller Partikel im Bereich zwischen 0,01 und 5 Gew.-%, ganz besonders bevorzugt im Bereich zwischen 0,05 und 3 Gew.-% und insbesondere bevorzugt im Bereich zwischen 0,5 und 3 Gew.-%.
  • Es hat sich auch als vorteilhaft erwiesen, dass mindestens ein Teil der erfindungsgemäßen Kieselsäure als Träger für die antibakteriellen Wirkstoffe und/oder die Duftstoffe vorliegt. Der Anteil der Kieselsäurepartikel, die als Träger für die antibakteriellen Wirkstoffe und/oder die Duftstoffe vorliegen, beträgt bevorzugt zwischen 5 und 40 Gew.-% bezogen auf das Gesamtgewicht aller Partikel, besonders bevorzugt zwischen 5 und 30 Gew.-%, ganz besonders bevorzugt zwischen 5 und 20 Gew.-%.
  • Die erfindungsgemäßen Schuheinlegesohlen können zusätzlich noch partikuläre superabsorbierende Polymere enthalten. Unter superabsorbierenden Polymeren werden im Sinne der vorliegenden Erfindung Polymere (Superabsorbent Polymers, SAP) verstanden, die in der Lage sind, ein Vielfaches ihres Eigengewichts - bis zum 1000-fachen - an Flüssigkeiten (meist Wasser bzw. wässrige Lösungen) aufzusaugen. Das Produkt kommt als weißes, grobkörniges Pulver mit Partikelgrößen von 100 - 1.000 µm (= 0,1 - 1,0 mm) zum Einsatz.
  • Als superabsorbierende Polymere eignen sich insbesondere Polymere aus (co-)polymerisierten hydrophilen Monomeren, (Pfropfco-)Polymere von einem oder mehreren hydrophilen Monomeren auf eine geeignete Pfropfgrundlage wie etwa vernetzte Cellulose oder Stärkeether, vernetzte Carboxymethylcellulose, teilweise vernetztes Polyalkylenoxid oder in wässrigen Flüssigkeiten quellbare Naturprodukte wie beispielsweise Guarderivate, Alginate und Carragenane. Bevorzugt sind Polymere, die durch vernetzte Polymerisation oder Copolymerisation von säuregruppentragenden monoethylenisch ungesättigten Monomeren oder deren Derivaten, insbesondere Salzen, Estern oder Anhydriden erhalten werden. Solche säuregruppentragenden Monomere sind beispielsweise monoethylenisch ungesättigte C3 - C25 -Carbonsäure, deren Salze oder Anhydride. Bevorzugt eingesetzte Monomere sind Acrylsäure, Methacrylsäure, Vinylsulfonsäure, Acrylamidopropansulfonsäure oder Mischungen dieser Säuren. Besonders bevorzugt sind Acrylsäure und Methacrylsäure. Zur Optimierung von Eigenschaften können zusätzliche monoethylenisch ungesättigte Verbindungen eingesetzt werden, die keine Säuregruppe tragen, aber mit den säuregruppetragenden Monomeren polymerisierbar sind. Hierzu gehören beispielsweise die Amide und Nitrile von monoethylenisch ungesättigten Carbonsäuren.
  • Als Vernetzer können Verbindungen fungieren, die mindestens zwei ethylenisch umgesättigte Doppelbindungen aufweisen. Beispiele für Verbindungen dieses Typs sind N,N-Methylenbisacrylamid, Polyethylenglycoldiacrylate und Polyethylenglycoldimethacrylate.
  • Geeignete superabsorbierende Polymere sind beispielsweise in folgender Literaturstelle beschrieben: F. L. Buchholz, A. T. Graham (Ed.), Modern Superabsorbent Polymer Technology, Wiley-VCH, New York 1998.
  • Darüber hinaus können die superabsorbierenden Polymere in Kombination mit Copolymeren aus C2- bis C8-Olefinen oder Styrolen mit Anhydriden eingesetzt werden, um die geruchsbindenden Eigenschaften zu verbessern.
  • Es hat sich als vorteilhaft erwiesen, dass die Partikel der superabsorbierenden Polymere eine mittlere Partikelgröße d50 im Bereich von 5 µm bis 300 µm, bevorzugt von 20 µm bis 150 µm, besonders bevorzugt von 50 bis 150 µm, und ganz besonders bevorzugt von 50 bis 100 µm aufweisen.
  • Der Anteil aller Partikel beträgt bevorzugt mindestens 20 Vol.-% bezogen auf das Gesamtvolumen der erfindungsgemäßen Schuheinlegesohle, besonders bevorzugt mindestens 30 Vol.-% und ganz besonders bevorzugt mindestens 35 Vol.-%.
  • Die Schuheinlegesohle umfasst wenigstens zwei Schichten, von denen die eine Schicht wasser- und wasserdampfdurchlässig und die andere Schicht wasser- und wasserdampfundurchlässig ist, die wasser- und wasserdampfundurchlässige Schicht auf ihrer der wasser- und wasserdampfdurchlässigen Schicht zugeneigten Seite Vertiefungen enthält, beide Schichten derart fest miteinander verbunden sind, dass die wasser- und wasserdampfdurchlässige Schicht die Vertiefungen auf der ihr zugeneigten Seite der wasser- und wasserdampfundurchlässigen Schicht bedeckt, die Vertiefungen der wasserdampfundurchlässigen Schicht innerhalb dieser Schicht durch offene Kanäle miteinander verbunden sind, und die Vertiefungen der wasser- und wasserdampfundurchlässigen Schicht eine erfindungsgemäß zu verwendende partikuläre amorphe Kieselsäure enthalten. Diese Ausführungsform ist deshalb vorteilhaft, weil durch die Sohlenstruktur der Schweißtransport innerhalb des Absorbens und der Schweißaustausch (Aufnahme sowie Abgabe) mit der Umgebung optimal unterstützt wird.
  • Gegenstand der vorliegenden Erfindung ist weiterhin die Verwendung der erfindungsgemäßen Schuheinlegesohle in Sport-, Arbeits- oder Militärschuhen oder -stiefeln.
  • Abbildungen Abbildung 1: schematische Darstellung einer erfindungsgemäßen Schuheinlegesohle
  • Abbildung 1 zeigt eine erfindungsgemäße Schuheinlegesohle im Querschnitt, die wenigstens zwei Schichten 1 und 2 umfasst, wobei Schicht 1 wasser- und wasserdampfdurchlässig und Schicht 2 wasser- und wasserdampfundurchlässig ist. Schicht 2 enthält auf Oberfläche 3 Vertiefungen. Die Schichten 1 und 2 sind derart fest miteinander verbunden, dass Oberfläche 4 von Schicht 1 die Vertiefungen auf Oberfläche 3 von Schicht 2 bedeckt. Die Vertiefungen auf Oberfläche 3 von Schicht 2 sind innerhalb von Schicht 2 durch offene Kanäle miteinander verbunden. Die Vertiefungen auf Oberfläche 3 von Schicht 2 enthalten das erfindungsgemäß zu verwendende Absorbens 5.
  • Nachfolgend wird die vorliegende Erfindung anhand von Beispielen näher erläutert.
  • Meßmethoden Bestimmung der DBP-Zahl:
  • Die DBP-Aufnahme (DBP-Zahl), die ein Maß für die Saugfähigkeit eines porösen Materials ist, wird entsprechend der Norm DIN 53601 wie folgt bestimmt: 12.5 g des pulverförmigen oder kugelförmigen Materials mit 0 - 10 % Feuchtegehalt (gegebenenfalls wird der Feuchtegehalt durch Trocknen bei 105 °C im Trockenschrank eingestellt) werden in die Kneterkammer (Artikel Nummer 279061) des Brabender-Absorptometer "E" gegeben (ohne Dämpfung des Ausgangsfilters des Drehmomentaufnehmers). Im Falle von Granulaten wird die Siebfraktion von 3.15 bis 1 mm (Edelstahlsiebe der Fa. Retsch) verwendet (durch sanftes Drücken der Granulate mit einem Kunststoffspatel durch das Sieb mit 3.15 mm Porenweite). Unter ständigem Mischen (Umlaufgeschwindigkeit der Kneterschaufeln 125 U/min) tropft man bei 25 °C durch den "Dosimaten Brabender T 90/50" DBP mit einer Geschwindigkeit von 4 ml pro min in die Mischung. Das Einmischen erfolgt mit nur geringem Kraftbedarf und wird anhand der Digitalanzeige verfolgt. Gegen Ende der Bestimmung wird das Gemisch pastös, was mittels eines steilen Anstieges des Kraftbedarfs angezeigt wird. Bei einer Anzeige von 600 digits (Drehmoment von 0.6 Nm) wird durch einen elektrischen Kontakt sowohl der Kneter als auch die DBP-Dosierung abgeschaltet. Der Synchronmotor für die DBP-Zufuhr ist mit einem digitalen Zählwerk gekoppelt, so dass der Verbrauch an DBP in ml abgelesen werden kann. Die DBP-Aufnahme wird in der Einheit [g/100g] ohne Nachkommastellen angegeben und anhand der folgenden Formel berechnet: DBP = V * D * 100 / E * g / 100 g + K
    Figure imgb0001

    mit
    • DBP = DBP-Aufnahme in g/100g
    • V = Verbrauch an DBP in ml
    • D = Dichte von DBP in g/ml (1,047 g/ml bei 20 °C)
    • E = Einwaage an Kieselsäure in g
    • K = Korrekturwert gemäß Feuchtekorrekturtabelle in g/100g
  • Die DBP-Aufnahme ist für wasserfreie, getrocknete Materialien definiert. Bei Verwendung von feuchten Materialien, insbesondere Fällungskieselsäuren oder Silicagelen, ist der Korrekturwert K für die Berechnung der DBP-Aufnahme zu berücksichtigen. Dieser Wert kann anhand der folgenden Korrekturtabelle ermittelt werden. Z. B. würde ein Wassergehalt des Materials von 5.8 % einen Zuschlag von 33 g/100 g für die DBP-Aufnahme bedeuten. Die Feuchte des Materials wird gemäß der nachfolgend beschriebenen Methode "Bestimmung der Feuchte bzw. des Trockenverlusts" ermittelt. Tabelle 1: Feuchtekorrekturtabelle für Dibutylphthalataufnahme -wasserfrei-
    % Feuchte .0 .2 .4 .6 .8
    0 0 2 4 5 7
    1 9 10 12 13 15
    2 16 18 19 20 22
    3 23 24 26 27 28
    4 28 29 29 30 31
    5 31 32 32 33 33
    6 34 34 35 35 36
    7 36 37 38 38 39
    8 39 40 40 41 41
    9 42 43 43 44 44
    10 45 45 46 46 47
  • Bestimmung der Feuchte bzw. des Trockenverlusts
  • Die Feuchte oder auch der Trockenverlust (TV) von Materialien wird in Anlehnung an ISO 787-2 nach 2-stündiger Trocknung bei 105 °C bestimmt. Dieser Trocknungsverlust besteht überwiegend aus Wasserfeuchtigkeit.
  • Durchführung
  • In ein trockenes Wägeglas mit Schliffdeckel (Durchmesser 8 cm, Höhe 3 cm) werden 10 g des pulverförmigen, kugelförmigen oder granulären Materials auf 0.1 mg genau eingewogen (Einwaage E). Die Probe wird bei geöffnetem Deckel 2 h bei 105 ± 2 °C in einem Trockenschrank getrocknet. Anschließend wird das Wägeglas verschlossen und in einem Exsikkatorschrank mit Kieselgel als Trocknungsmittel auf 25 °C abgekühlt. Das Wägeglas wird zur Bestimmung der Auswaage A auf der Präzisionswaage auf 0,1 mg genau ausgewogen. Man bestimmt die Feuchte (TV) in % gemäß TV = 1 - A / E * 100 ,
    Figure imgb0002

    wobei A = Auswaage in g und E = Einwaage in g bedeuten.
  • Mittlere Partikelgröße d50
  • Die Bestimmung der mittleren Partikelgröße d50 der Kieselsäure erfolgt nach dem Prinzip der Laserbeugung auf einem Laserdiffraktometer (Fa. Horiba, LA-920). Zur Bestimmung der Partikelgröße von Pulvern wird eine Dispersion mit einem Gewichtsanteil von ca. 1 Gew.-% SiO2 durch Einrühren des Pulvers in Wasser hergestellt. Unmittelbar im Anschluss an die Dispergierung wird von einer Teilprobe der Dispersion mit dem Laserdiffraktometer (Horiba LA-920) die Partikelgrößenverteilung bestimmt. Für die Messung ist ein relativer Brechungsindex von 1,09 zu wählen. Alle Messungen erfolgen bei 25 °C. Die Partikelgrößenverteilung sowie die relevanten Größen wie z. B. die mittlere Partikelgröße d50, werden vom Gerät automatisch berechnet und grafisch dargestellt. Es sind die Hinweise in der Bedienungsanleitung zu beachten.
  • Stampfdichte
  • Die Stampfdichte oder auch Schüttdichte wird nach ISO 787-11 bestimmt.
  • SiO2-Gehalt
  • Die Bestimmung des SiO2-Gehaltes erfolgt nach ISO 3262-19.
    Merkmal Kieselsäure Nr.*
    Einheit 1 2 3 4 5 6 7 8 9 10
    Spezifische Oberfläche m2/g 190 175 190 185 450 450 450 175 50 50
    Mittlere Partikelgröße d50 µm 110 8 11,5 320 40 16 6 20 4,5 18
    Stampfdichte g/l 280 70 90 260 180 90 75 175 110 210
    Trocknungsverlust % 6 6 6 5 6 6 3 6 5 6
    pH-Wert 6,5 6,2 6,5 6 6 6 6 6,3 9 9
    DBP-Absorption g/100 g 260 265 265 250 335 325 325 225 210 245
    SiO2-Gehalt % 98 98 98 98 98,5 98,5 98,5 98 98,5 98
    Stampfdichte * DBP-Abs. g/100g*g/l 72800 18550 23850 65000 60300 29250 24375 39375 23100 51450
    * Kieselsäure Nr. 1: "Sipernat 22" der Fa. Evonik Degussa GmbH
    Kieselsäure Nr. 2: "Sipernat 22 LS" der Fa. Evonik Degussa GmbH
    Kieselsäure Nr. 3: "Sipernat 22 S" der Fa. Evonik Degussa GmbH
    Kieselsäure Nr. 4: "Sipernat 2200" der Fa. Evonik Degussa GmbH
    Kieselsäure Nr. 5: "Sipernat 50" der Fa. Evonik Degussa GmbH
    Kieselsäure Nr. 6: "Sipernat 50 S" der Fa. Evonik Degussa GmbH
    Kieselsäure Nr. 7: "Sipernat 500 LS" der Fa. Evonik Degussa GmbH
    Kieselsäure Nr. 8: "Sipernat 320" der Fa. Evonik Degussa GmbH
    Kieselsäure Nr. 9: "Sipernat 350" der Fa. Evonik Degussa GmbH
    Kieselsäure Nr. 10: "Sipernat 360" der Fa. Evonik Degussa GmbH
  • Versuchsreihen
  • Für die Durchführung der Versuche wurde eine Sohle aus einer wasser- und wasserdampfundurchlässigen PVC-Schicht (Schicht 2), d. h. ohne wasser- und wasserdampfdurchlässige Schicht (Schicht 1) in Schuhgröße 46 (ca. 30 cm Länge) verwendet. Es wurden zwei Versuchsreihen durchgeführt, wobei als Absorbens zum einen Kieselsäure Nr. 4 (Beispiel 1), zum anderen Kieselsäure Nr. 4 und Kieselsäure Nr. 5 im Verhältnis 95 zu 5 Gew.-% (Beispiel 2) eingesetzt wurden. Zum Vergleich wurde in Anlehnung an DE 3516653 A1 eine Schuheinlegesohle mit Molekularsieb befüllt (Beispiel 3; nicht erfindungsgemäß). Es handelte sich dabei um ein Molekularsieb der Fa. Merck KGaA mit einem Porendurchmesser von 0,5 nm und einer mittleren Partikelgröße von ca. 2 mm (Natrium-Aluminium-Silicat, Bestellnummer 195705). Das Absorbens wurde immer in der gleichen Menge (15 g) in die Vertiefungen der PVC-Schicht gegeben. Um menschlichen Schweiß zu simulieren, wurde eine Kochsalz-Lösung bestehend aus 99 Gew.-% Wasser und 1 Gew.-% Kochsalz (NaCl) hergestellt. Von dieser Lösung wurden jeweils 60 ml auf das Absorbens gegeben. Die Zugabe der Lösung zum Absorbens erfolgte bei den Versuchen mit konstanter Geschwindigkeit (0,2 ml/min). Die Lösung wurde dabei an einem Punkt, und zwar im Zehenbereich, zugetropft und die Ausbreitung über die Zeit bestimmt. Die beladenen Schuhsohlen wurden zusätzlich visuell beurteilt. Dabei wurde bewertet, wie gut die Lösung vom jeweiligen Absorbens aufgenommen wurde. Bewertet wurde mit einer Notenskala von 1 bis 6, wobei die Note 1 vollständige Aufnahme, und die Note 6 keinerlei Aufnahme bedeutet. In Tabelle 3 sind die Ergebnisse zusammengefasst. Tabelle 3: Ausbreitungskinetik und visuelle Beurteilung
    Beispiel Nr.
    1 2 3
    Zeit / min Ausbreitung / cm
    0 0,0 0,0 0,0
    10 2,0 2,0 2,5
    20 2,8 3,0 3,2
    30 3,8 3,7 4,0
    60 6,6 5,2 6,2
    90 8,6 7,0 8,2
    120 10,2 9,5 11,2
    150 12,3 11,5 13,7
    180 16,0 14,2 18,0
    210 21,0 18,0 21,6
    240 23,0 22,0 25,0
    270 25,5 26,0 25,6
    300 25,5 26,0 25,6
    visuelle Beurteilung 2 1 5
  • Die Ausbreitungsgeschwindigkeiten bei Verwendung von Molekularsieb (Beispiel 3) und amorphen partikulären Kieselsäuren (Beispiele 1 und 2) sind zunächst einmal vergleichbar. Während jedoch bei der Verwendung von amorphen partikulären Kieselsäuren die Flüssigkeit nahezu vollständig vom Absorbens aufgenommen wurde, lag hingegen bei der Verwendung von Molekularsieb die Flüssigkeit zum großen Teil als "freie" Flüssigkeit zwischen den Partikeln vor. Dieser Befund zeigt eindeutig, dass sowohl die Absorptionskapazitäten (bestimmt durch Porenvolumen) als auch die tatsächlichen Absorptionsgeschwindigkeiten (bestimmt durch Benetzungseigenschaften und Porengrößen) bei amorphen partikulären Kieselsäuren im Vergleich zu Molekularsieben wesentlich vorteilhafter sind.
  • Zusätzlich wurde geprüft, ob die auf die oben beschriebene Weise beladenen Sohlen über Nacht regeneriert bzw. getrocknet werden können. Dafür wurden die Sohlen über Nacht in einen Trockenschrank mit einer Temperatur von 50 °C gelegt (dies entspricht in etwa den Bedingungen der Trocknung auf einem Heizkörper) und die Gewichtsabnahme gemessen.
  • Bei der mit Molekularsieb beladenen Sohle (Beispiel 3) wurde trotz "frei" vorliegender Lösung nach 12 h immer noch eine deutliche Restfeuchtigkeit von 17 Gew.-% festgestellt. Die Restfeuchtigkeit wurde gravimetrisch bestimmt.
  • Die mit amorphen partikulären Kieselsäuren als Absorbens beladenen Sohlen (Beispiele 1 und 2) waren unter gleichen Bedingungen (T=50 °C) bereits nach fünf Stunden komplett trocken.
  • Die Ergebnisse bestätigen die Vorteile bei der Verwendung amorpher partikulärer Kieselsäure als Absorbens in hygienischen Einlegesohlen sowohl in Bezug auf die Schweißaufnahme (Schweißabsorption, Umverteilung bei asymmetrischer Schweißentwicklung) als auch in Bezug auf die Trocknung (Regenerierbarkeit).

Claims (13)

  1. Schuheinlegesohle enthaltend partikuläre amorphe Kieselsäure als Adsorbens,
    wobei
    die Schuheinlegesohle wenigstens zwei Schichten (1, 2) umfasst, wobei die erste Schicht (1) wasser- und wasserdampfdurchlässig und die zweite Schicht
    (2) wasser- und wasserdampfundurchlässig ist, wobei die zweite Schicht (2) auf ihrer Oberfläche (3) Vertiefungen enthält, wobei beide Schichten (1, 2) derart fest miteinander verbunden sind, dass die Oberfläche (4) der ersten Schicht (1) die Vertiefungen auf der Oberfläche (3) der zweiten Schicht (2) bedeckt, wobei die Vertiefungen auf der Oberfläche (3) der zweiten Schicht (2) innerhalb der zweiten Schicht (2) durch offene Kanäle miteinander verbunden sind, und wobei die Vertiefungen auf der Oberfläche (3) der zweiten Schicht (2) partikuläre amorphe Kieselsäure enthalten.
  2. Schuheinlegesohle gemäß Anspruch 1,
    dadurch gekennzeichnet,
    dass die partikuläre amorphe Kieselsäure eine spezifische Oberfläche zwischen 5 und 500 m2 pro g gemäß ISO 5794-1 Annex D aufweist.
  3. Schuheinlegesohle gemäß einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die partikuläre amorphe Kieselsäure eine DBP-Absorption gemäß DIN 53601 von mindestens 180 g pro 100 g aufweist.
  4. Schuheinlegesohle gemäß einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die mittlere Partikelgröße (d50) der partikulären amorphen Kieselsäure zwischen 5 und 500 µm liegt.
  5. Schuheinlegesohle gemäß einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass bei der partikulären amorphen Kieselsäure das Produkt aus DBP-Absorption gemäß DIN 53601 und Stampfdichte gemäß ISO 787/11 mindestens 30.000 g/100g*g/l beträgt.
  6. Schuheinlegesohle gemäß einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass das Absorbens zusätzlich antibakterielle Wirkstoffe und/oder Duftstoffe enthält.
  7. Schuheinlegesohle gemäß Anspruch 6,
    dadurch gekennzeichnet,
    dass der Anteil der antibakteriellen Wirkstoffe und/oder der Duftstoffe zwischen 0,01 und 10 Gew.-% bezogen auf das Gesamtgewicht aller Partikel beträgt.
  8. Schuheinlegesohle gemäß einem der Ansprüche 6 und 7,
    dadurch gekennzeichnet,
    dass mindestens ein Teil der partikulären amorphen Kieselsäure als Träger für die antibakteriellen Wirkstoffe und/oder die Duftstoffe vorliegt.
  9. Schuheinlegesohle gemäß Anspruch 8,
    dadurch gekennzeichnet,
    dass der Anteil der Kieselsäurepartikel, die als Träger für die antibakteriellen Wirkstoffe und/oder Duftstoffe vorliegen, zwischen 5 und 40 Gew.-% bezogen auf das Gesamtgewicht aller Partikel beträgt.
  10. Schuheinlegesohle gemäß einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass das Absorbens zusätzlich partikuläre superabsorbierende Polymere enthält.
  11. Schuheinlegesohle gemäß Anspruch 10,
    dadurch gekennzeichnet,
    dass die mittlere Partikelgröße (d50) der partikulären superabsorbierenden Polymere zwischen 5 und 300 µm liegt.
  12. Schuheinlegesohle gemäß einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass der Anteil aller Partikel mindestens 20 Vol.-% bezogen auf das Gesamtvolumen der Einlegesohle beträgt.
  13. Verwendung einer Schuheinlegesohle gemäß einem der vorhergehenden Ansprüche in Sport-, Arbeits- oder Militärschuhen oder -stiefeln.
EP09779808.6A 2008-07-09 2009-06-17 Schweissaufnehmende schuheinlegesohle mit verbesserter schweissaufnahme Not-in-force EP2323513B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008040264A DE102008040264A1 (de) 2008-07-09 2008-07-09 Schweißaufnehmende Schuheinlegesohle mit verbesserter Schweißaufnahme
PCT/EP2009/057516 WO2010003789A1 (de) 2008-07-09 2009-06-17 Schweissaufnehmende schuheinlegesohle mit verbesserter schweissaufnahme

Publications (2)

Publication Number Publication Date
EP2323513A1 EP2323513A1 (de) 2011-05-25
EP2323513B1 true EP2323513B1 (de) 2015-09-30

Family

ID=41011871

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09779808.6A Not-in-force EP2323513B1 (de) 2008-07-09 2009-06-17 Schweissaufnehmende schuheinlegesohle mit verbesserter schweissaufnahme

Country Status (10)

Country Link
US (1) US20110078920A1 (de)
EP (1) EP2323513B1 (de)
JP (1) JP5528442B2 (de)
KR (1) KR101636094B1 (de)
CN (1) CN102088880B (de)
CA (1) CA2729877A1 (de)
DE (1) DE102008040264A1 (de)
HK (1) HK1154762A1 (de)
TW (1) TWI574641B (de)
WO (1) WO2010003789A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006024590A1 (de) 2006-05-26 2007-11-29 Degussa Gmbh Hydrophile Kieselsäure für Dichtungsmassen
DE102007052269A1 (de) * 2007-11-02 2009-05-07 Evonik Degussa Gmbh Fällungskieselsäuren für lagerstabile RTV-1 Siliconkautschukformulierungen ohne Stabilisator
ITFE20080025A1 (it) * 2008-07-31 2010-02-01 Antonio Macino Coposizione ad effetto rinfrescante per utilizzo in articoli di vario genere da indossare
US11078343B2 (en) 2017-10-06 2021-08-03 Evonik Operations Gmbh Absorbent polymeric foam for shoe insoles
US20190289952A1 (en) * 2018-03-20 2019-09-26 Axis Sally, Inc. Desiccant Shoe
WO2019207569A1 (en) * 2018-04-22 2019-10-31 Insand Ltd. Insole, insert, sole, and shoes and footwear having such components
KR102141766B1 (ko) 2019-10-29 2020-08-05 최영숙 다 기능성을 갖는 구두
CN115418095A (zh) * 2022-07-27 2022-12-02 晋江立成祥机械科技有限公司 一种改进型爆米花鞋材的成型工艺

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4192086A (en) * 1978-09-29 1980-03-11 Scholl, Inc. Deodorizing insole
DE3516653A1 (de) 1985-05-09 1986-11-13 Emsold-Gesellschaft Gert Helmers, 2902 Rastede Schuhwerk
FR2628946B1 (fr) * 1988-03-28 1990-12-14 Mauger Jean Semelle ou premiere de chaussure avec circulation d'un fluide incorpore
IT9019309A1 (it) * 1990-02-08 1991-08-09 Aboca Snc Di Mercati Valentino & C Prodotto per la sanitizzazione, l'assorbimento dell'umidita' e/o la profumazione di calzature, e relativo metodo d'uso
FR2672477B1 (fr) 1991-02-11 1994-12-02 Salomon Sa Premiere de proprete pour chaussures capable d'absorber la transpiration.
US5261169A (en) * 1991-10-11 1993-11-16 Advanced Polymer Systems, Inc. System and method for deodorant delivery in footwear
US5727336A (en) * 1992-01-31 1998-03-17 Ogden, Inc. Footwear insole with a moisture absorbent inner layer
US5413795A (en) * 1992-08-14 1995-05-09 Buckman Laboratories, International, Inc. TCMTB on a solid carrier in powdered form, method of manufacture and method of use
IT1265720B1 (it) * 1992-09-25 1996-12-02 Edmondo Zaroli Calzatura con suola ad effetto rinfrescante
NO942678L (no) * 1994-07-15 1996-01-16 Svein Froeyna Anvendelse av silikagel som fuktabsorberende materiale
FR2731326B1 (fr) * 1994-12-08 1997-04-30 Lhuillier Olivier Michel Matelas hygieniques jetables a coussin absorbeur de tranpiration en forme de semelles, de mules ou de ballerines
IN188702B (de) * 1995-06-01 2002-10-26 Degussa
DE19616224C1 (de) * 1996-04-12 1997-11-20 Daramic Inc Verwendung von mikroporösem Polyolefin zur Absorption von Schweiß und anderen Körperausdünstungen
US5921003A (en) * 1996-11-18 1999-07-13 Kim; Insop Shoe with replaceable hygienic cartridge
JP3208443B2 (ja) * 1998-01-26 2001-09-10 小林製薬株式会社 パウダー加工インソール
JP2004194817A (ja) * 2002-12-17 2004-07-15 Toyobo Co Ltd 靴中敷用積層体
US6922918B2 (en) * 2003-01-29 2005-08-02 H. H. Brown Shoe Technologies Inc. Method and apparatus for a shoe having an odor and moisture absorbent pad
JP4739682B2 (ja) * 2003-02-10 2011-08-03 株式会社日本触媒 吸水剤
AU2003265146A1 (en) * 2003-08-27 2005-03-16 Rosho Corporation S.R.L. Self-modeling thermoregulating shoe arch-support
US20060168846A1 (en) * 2005-02-03 2006-08-03 Edward Juan Insole with improved internal air circulation
US20070073255A1 (en) * 2005-09-29 2007-03-29 Kimberly-Clark Worldwide, Inc. Absorbent personal care article with a wrap member having distinct component layers
US7767180B2 (en) * 2006-05-26 2010-08-03 Degussa Gmbh Precipitated silicas having special surface properties
DE102006024590A1 (de) * 2006-05-26 2007-11-29 Degussa Gmbh Hydrophile Kieselsäure für Dichtungsmassen
DE102007052269A1 (de) * 2007-11-02 2009-05-07 Evonik Degussa Gmbh Fällungskieselsäuren für lagerstabile RTV-1 Siliconkautschukformulierungen ohne Stabilisator
DE102008000290A1 (de) * 2008-02-13 2009-08-20 Evonik Degussa Gmbh Lagerstabile Produktsyteme für Prämixformulierungen
WO2010037705A1 (de) * 2008-09-30 2010-04-08 Evonik Degussa Gmbh Verfahren zur herstellung von hochreinem sio2 aus silikatlösungen
US20110236288A1 (en) * 2008-09-30 2011-09-29 Christian Panz Method for producing high-purity sio2 from silicate solutions
DE102010001135A1 (de) * 2010-01-22 2011-07-28 Evonik Degussa GmbH, 45128 Stabile wässrige Dispersionen aus gefällter Kieselsäure

Also Published As

Publication number Publication date
HK1154762A1 (en) 2012-05-04
TWI574641B (zh) 2017-03-21
DE102008040264A1 (de) 2010-01-14
CN102088880B (zh) 2013-01-02
TW201023779A (en) 2010-07-01
CN102088880A (zh) 2011-06-08
KR20110043584A (ko) 2011-04-27
WO2010003789A1 (de) 2010-01-14
US20110078920A1 (en) 2011-04-07
JP5528442B2 (ja) 2014-06-25
CA2729877A1 (en) 2010-01-14
JP2011527206A (ja) 2011-10-27
KR101636094B1 (ko) 2016-07-04
EP2323513A1 (de) 2011-05-25

Similar Documents

Publication Publication Date Title
EP2323513B1 (de) Schweissaufnehmende schuheinlegesohle mit verbesserter schweissaufnahme
EP1280834B1 (de) Pulverförmige, an der oberfläche vernetzte polymerisate
DE4206857C2 (de) Polymerzusammensetzung, Absorptionsmaterialzusammensetzung, deren Herstellung und Verwendung
EP1315528B1 (de) Pulverformige, vernetzte, wässrige flüssigkeiten sowie blut absorbierende polymere
DE60032941T2 (de) Superabsorbierende polymere mit verzögerter wasserabsorption
EP2307486B2 (de) Farbstabiler superabsorber
CA1231058A (en) Body powder compositions
DE102011086516A1 (de) Superabsorbierende Polymere mit schnellen Absorptionseigenschaften sowieVerfahren zu dessen Herstellung
DE102010043113A1 (de) Verfahren zur Herstellung von verbesserten absorbierenden Polymeren mittels kryogenem Mahlen
DE2844956A1 (de) In wasser quellbares teilchenfoermiges absorptionsmaterial und verfahren zu seiner herstellung
DE102005018922A1 (de) Mit Polykationen oberflächenbehandeltes wasserabsorbierendes Polymergebilde
DE10330971A1 (de) Haut- oder Wundauflage mit verkapselten, wundheilungsfördernden und/oder hautpflegenden Substanzen
EP0909237B1 (de) Saugfähige einlagen, verfahren zu ihrer herstellung und ihre verwendung
DE10330960B4 (de) Wirkstoffdotierte absorbierende Polymerteilchen , Zusammensetzung beinhaltend Polykondensatmatrix und absorbierendes Polymer zur Freisetzung einer Wundheilsubstanz
EP2863868A2 (de) Durchscheinende zusammensetzung mit silica-aerogelpartikeln
KR101466379B1 (ko) 송이 분체를 이용한 색조 화장료 조성물
DE4206856C2 (de) Polymerzusammensetzung, Absorptionsmaterialzusammensetzung, deren Herstellung und Verwendung
DE4206850C2 (de) Polymerzusammensetzungen, Herstellgung von Polymerzusammensetzungen, insbesondere Absorptionsmaterialien und deren Verwendung
WO2001013965A1 (de) Wasserabsorbierende polymere mit hohlraumverbindungen
WO1994025521A1 (de) Polymerzusammensetzungen, herstellung von polymerzusammensetzungen, insbesondere absorptionsmaterialien und deren verwendung
KR20090129173A (ko) 표면 개질 분체 및 이를 함유하는 화장료 조성물
DE102016217954A1 (de) Thermopartikel in topisch applizierbaren Zubereitungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101207

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: A43B 1/00 20060101ALI20150421BHEP

Ipc: A43B 17/10 20060101AFI20150421BHEP

INTG Intention to grant announced

Effective date: 20150527

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 751846

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009011648

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151231

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20150930

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160130

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160201

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009011648

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20160620

Year of fee payment: 8

Ref country code: GB

Payment date: 20160621

Year of fee payment: 8

Ref country code: DE

Payment date: 20160621

Year of fee payment: 8

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160627

Year of fee payment: 8

Ref country code: AT

Payment date: 20160621

Year of fee payment: 8

26N No opposition filed

Effective date: 20160701

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160628

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160617

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009011648

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 751846

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170617

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170617

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180103

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170617

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090617

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160617

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930