EP2316584B1 - Elektrochemisches Antifoulingsystem für seewasserbenetzte Bauwerke - Google Patents

Elektrochemisches Antifoulingsystem für seewasserbenetzte Bauwerke Download PDF

Info

Publication number
EP2316584B1
EP2316584B1 EP10075718A EP10075718A EP2316584B1 EP 2316584 B1 EP2316584 B1 EP 2316584B1 EP 10075718 A EP10075718 A EP 10075718A EP 10075718 A EP10075718 A EP 10075718A EP 2316584 B1 EP2316584 B1 EP 2316584B1
Authority
EP
European Patent Office
Prior art keywords
grid structure
electrode
structure electrode
grid
fouling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10075718A
Other languages
English (en)
French (fr)
Other versions
EP2316584A1 (de
Inventor
Roland Krone
Markus Paster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alfred Wegener Insitut fuer Polar und Meeresforschung
Original Assignee
Alfred Wegener Insitut fuer Polar und Meeresforschung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43466682&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2316584(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Alfred Wegener Insitut fuer Polar und Meeresforschung filed Critical Alfred Wegener Insitut fuer Polar und Meeresforschung
Publication of EP2316584A1 publication Critical patent/EP2316584A1/de
Application granted granted Critical
Publication of EP2316584B1 publication Critical patent/EP2316584B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B17/00Methods preventing fouling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B59/00Hull protection specially adapted for vessels; Cleaning devices specially adapted for vessels
    • B63B59/04Preventing hull fouling
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B17/0017Means for protecting offshore constructions

Definitions

  • the invention relates to an electrochemical antifouling system, which serves to control the attachment of fouling organisms to sea water-wetted structures, with a DC circuit for generating electrolysis in seawater with a grid structure electrode, at least one spaced apart, opposite polarity counter electrode and an adjustable DC power source.
  • fouling or “biofouling” (biological growth) refers to the undesirable attachment of solids (marine organisms: bacteria, algae, shells, barnacles, etc.) at rigid interfaces.
  • Anti-fouling measures are used to prevent fouling of buildings that are surrounded by marine or saline waters or liquid saline media ("seawater”) or at least temporarily or permanently wetted.
  • Offshore structures are usually constructed of steel or concrete, and are usually affected by fouling, especially in the tidal area. As a result, the surface for attacking the wave energy is increased, the surface of such structures permanently hidden and, if necessary. Attacked or corroded and locally increases the biological mass through the growth itself. Inspection work is made more difficult.
  • anti-fouling measures serve the protection of wooden parts in the water, such.
  • Wooden components can be colonized by different organisms, which can lead to a complete coverage and thus to a restriction of the function of the components.
  • fouling can thus destroy the surface of a building by adhering or seated organisms, so that more and more anti-fouling measures are taken.
  • electrochemical antifouling systems have also been developed, the major advantage of which is the non-toxicity.
  • Electrochemical antifouling systems are based on electrolysis in seawater. Under DC flow between anode and cathode arise dissociation products (cathode H + , anode OH - ), which lead to a local increase in the pH values at the interface between the electrode and seawater (cathode basic, anode acidic).
  • cathode H + dissociation products
  • anode OH - dissociation products
  • cathode basic, anode acidic cathode basic, anode acidic
  • a described method is a well-known method for disinfecting water according to the principle of salt water electrolysis for the production of chlorine, which does not occur in elemental state in nature, and of hypochlorous acid, which is stable only in solution. Throughout the production of these antifouling substances is turned off.
  • the principle used to protect sensors inside a seawater-filled sensor container is the arrangement of two electrodes at the seawater inlet of the sensor container, which serve for salt water electrolysis to produce the antifouling substances. In this case, the electrodes are grid-shaped in order to avoid the penetration of larger foreign bodies in the sensor container.
  • the distribution of the antifouling substances produced in the sensor container is carried out by wave or Tidenterrorism.
  • the concentration of antifouling substances in the sensor container is monitored by densitometer.
  • the concentration of chlorine and Hypochlorous acid in the sensor container must be above a concentration limit.
  • unwanted deposits in the form of brucite and aragonite settle on the electrodes.
  • the electrodes are reversible to remove this undesirable coating on the electrodes.
  • the known method is based on the production of chlorine-based antifouling substances and thus has a relatively small range of action. Therefore, smaller areas within a closed container are preferably protected.
  • the electrodes themselves are not assigned to these surfaces and therefore not electrically isolated from them.
  • the polarity reversal of the electrodes is done to remove pads that are expressly desired in the present invention.
  • U.S.P. JP 07-268252 discloses an antifouling electronic system according to the preamble of claim 1.
  • Described is a generic antifouling system with a current-carrying, pliable mesh for a water inlet channel.
  • the net is stretched as a safety net across the canal and along the canal walls. It forms the grid electrode and is connected as an anode.
  • the cathode is rod-shaped and is arranged at a distance from the anode in the seawater.
  • the cathode is not subject to any decomposition process and therefore consists of a non-corrosion resistant material, eg iron.
  • the mains cable is specially constructed. It consists of three cores, each consisting of non-conductive monofilaments around one conductive metal foil of titanium or a titanium-aluminum-plated material are constructed as a core. All three cores are embedded in an electrically conductive plastic sheath by the addition of platinum or titanium powder.
  • the channel wall In order to protect the channel wall against fouling by anodic protection, the channel wall must be electrically conductive. The supply of the current into the network, especially in the metal foil in the core of the wires, via the electrically conductive channel wall. Removal of the network from the water inlet duct is only possible by manual dismantling, which requires deployment of on-site personnel.
  • the TASK for the present invention is seen in the further development of the antifouling system of the generic type so that the structure of the grid electrode is as simple as possible and undergoes no corrosion in normal operation. It should not be a mandatory requirement of an electrically conductive surface of the structure to be protected, nevertheless, a particularly effective fouling protection is to be achieved. Furthermore, a degradation of the lattice electrode without the use of local personnel should be possible.
  • the solution according to the invention for this task can be found in claim 1, advantageous developments of the invention are shown in the subclaims and explained in more detail below in connection with the invention.
  • the lattice structural electrode is dimensionally stable formed from a single metal component and thus extremely simple, robust and inexpensive in their construction.
  • the grid structure electrode is self-supporting and remains in the selected form. It is arranged in such a distance range in front of the surface of the structure to be protected, that the surface is in the area of influence of a caused by the electrolysis pH increase of seawater, wherein the pH is a field size. Anodic protection of the surface of the structure is not required.
  • the counter electrode is made of a material in which no decomposition takes place in any mode, for example, a titanium-containing material.
  • the grid structure electrode is electrically insulated from the surface of the structure. This ensures that the current flows only through the grid structure electrode and not through the surface of the structure.
  • the structure may be formed on its surface both electrically conductive and electrically non-conductive.
  • a device for alternative switching of the grid structure electrode is provided, which makes the handling of the system particularly versatile and simple.
  • two different modes of use for the antifouling system according to the invention can be set with this switching device.
  • a permanent operating mode with a circuit of the grid structure electrode can be selected as the cathode.
  • the cathode circuit By the cathode circuit, the grid electrode is protected from decomposition by electrolysis and thus from corrosion. There are no signs of wear, installation costs are only once.
  • the pH value has a far-reaching influence and thus also protects the surface of the structure lying behind the grid structure electrode from colonization. Fouling organisms are from the settlement was held.
  • the application of direct current induces an electrolytic process, as a result of which the pH at the metal-water interface is greatly increased.
  • the barrier thus constructed can not or only with difficulty penetrate organisms and their larvae when using adapted lattice structures. In this example, preference should be given to using narrow mesh sizes of, for example, 0.4 cm, since this further increases the pH increase per area.
  • brucite Mohs hardness 2 to 2.5
  • a high current density in a range of 30 A / m 2 with respect to the effective surface area of the lattice electrode and higher is set.
  • a side effect here is the partly strong development and release of hydrogen, which occurs at high current densities due to the reduction of the cations at the lattice structure.
  • This hydrogen evolution also has a positive effect on antifouling due to the incompatibility with organisms to be settled in the immediate vicinity.
  • the second mode of use in the permanent mode I mode of the invention is a temporary disassembly mode with a grid electrode array as anode having means for adjusting a current density between 40 and 45 A / m2 per effective surface area of the grid electrode through the DC source, such that a decomposing oxidation occurs complete dissolution of the grid structure electrode takes place.
  • the grid structure electrode becomes the anode and is subject to degradation during electrolysis.
  • the construction of a single metal component of the lattice structure complete degradation is possible quickly and easily.
  • the grating structure electrode can be completely removed without requiring on-site personnel.
  • Removal may be required, for example, in the case of - at least partially complete destruction, eg by destruction or excessive occupation of growth organisms of the lattice structural electrode - or in the removal of the structure itself. Then the grid electrode can be easily dissolved by reversing polarity and then - if the structure remains - be replaced by a new one. If necessary. existing electrical insulation of the grid structure electrode relative to the structure, such as insulators, remain on the building and can then be used again. If the metal component contains iron, no negative effects can be expected during the degradation or dissolution of the lattice structure (of any size), since iron is limited as an essential plant nutrient in the marine environment. A toxic load during degradation is avoided at all times. The amount of iron release can be controlled by the current density and the resulting surface potential of the connected as an anode grid electrode and thus metered at any time.
  • the grid structure electrode is electrically isolated from the surface of the structure to be protected.
  • this can be realized by the fact that already the surface of the structure is electrically non-conductive.
  • These may be, for example, wooden structures - eg wooden harbor pillars - or concrete - eg foundation pillars of wind turbines.
  • an electrically conductive surface of the structure - eg shut-off - can advantageously insulators, for example made of plastic or ceramic, or an insulating mat, for example made of plastic or mineral fiber, for electrical insulation of Grid structure electrode may be provided opposite to an electrically conductive surface of the structure.
  • the grid electrode may preferably be placed directly on the surface of the structure.
  • the grid electrode may preferably be placed directly on the surface of the structure.
  • the grid structure electrode in the invention is formed in a simple form of a single metal component.
  • this can be a simple uninsulated steel or wire mesh, in particular even simple wire mesh can be used from a thin uninsulated steel wire.
  • the counter electrode may be formed as a rod electrode and arranged in the seawater at a distance from the cathode.
  • the counterelectrode can also be formed as a grid electrode.
  • it may be formed as a flat band electrode, which extends in front of the flat grid structure electrode.
  • the counter electrode is advantageously formed rigid and remains in a curved shape.
  • a particular advantage of the antifouling system according to the invention is its subsequent mounting on existing structures. Known systems generally do not have this advantage.
  • a modular extension of the antifouling system according to the invention by connecting a plurality of grid structure electrodes and counter electrodes is also advantageously possible. This can be advantageous in the case of alteration or expansion of the structure to be protected or in the case of an initially only partial covering of the structure with the antifouling system. In principle, it is very advantageous for mountability if the lattice structure electrode and / or the counterelectrode are bendable. Due to the dimensional stability of the lattice structure electrode, this remains in any position, so it can be arranged self-supporting.
  • the grid electrode can also be optimally adapted to the shape of the structure to be protected. Even critical areas can be covered with the grid structure electrode. The same applies to the counter electrode, if this is also formed bendable. The bending is reversible, so that changes in shape during operation or even multiple applications - if no degradation of the grid electrode is provided by polarity reversal - are possible. Furthermore, especially when using simple wire mesh for the design of the grid electrode, its dimensional stability is not very pronounced. Then it may be advantageous if the grid structure electrode made of steel or wire mesh has a static pleating. According to the nature of a lightweight construction, this measure achieves a substantial increase in the rigidity and thus the mechanical stability.
  • the primary conductive grid electrode can be kept very thin and thus the entry of foreign material in the surrounding environment very low.
  • the dimensionally stable, but bendable grid structure electrode can be adapted to curved surfaces of the structure to be protected.
  • the counter electrode advantageously, a cylindrical configuration of the grid structure electrode and / or an annular formation of the counter electrode can be provided, wherein the counter electrode is arranged concentrically to the grid structure electrode.
  • both electrodes can advantageously be adapted to the round shape of a foundation pillar of a wind power plant.
  • a concentric arrangement of grid structure electrode and counter electrode is possible: the grid structure electrode is placed around the foundation pillar, the counter electrode is then attached as a flat band ring with a slightly larger diameter above.
  • a plurality of counterelectrodes may be provided at a corresponding distance from one another above the height of the foundation pier.
  • a photovoltaic-powered DC power source can be used in the invention.
  • the arrangement of photovoltaic elements in the overwater area of the wind turbine is easily possible. Often there are already such systems for powering other units.
  • a power supply from another regenerative source for example via the transformer of the wind generator, easily possible and leads to the delivery of the controllable required direct current.
  • the components to be used in the anti-fouling system according to the invention are relatively inexpensive compared with the other antifouling solutions and represent with the low power consumption (low-voltage current) is a relatively inexpensive alternative.
  • the antifouling system according to the invention is virtually wear-free, it does not have to be renewed regularly, as is the case with known antifouling paints. If necessary, the anti-fouling system can be easily removed on site with no staff costs.
  • the temporary repair mode partial damage to the grid structure electrode, which occurs, for example, as a result of the action of force or else by dismantling the grid electrode as the anode, can be repaired.
  • the repair is carried out by deliberate addition of aragonite, which is electrically non-conductive and thus increases the electrical resistance in the circuit. Such a repair is therefore to be regarded as a temporary measure that the antifouling system before larger Damage up to the arrival of maintenance personnel protects.
  • the aragonite can be easily removed by switching on the second mode for a short time.
  • a current flow through the grid electrode is required so that only incipient damage can be repaired. Such damage can be detected for example by simple current measurements in the circuit.
  • An increasing operating current is an indication of an increasing resistance and thus of incipient damage.
  • the grid electrode is connected as a cathode with means for setting a current density of 30 A / m 2 per effective surface of the grid electrode by the DC source, so that an accretion of hard aragonite with Mohs hardness 3.5 to 4.5 at the grid electrode for protection the damaged areas occurs. Mechanical weak points are thus temporarily stabilized by the addition of hard lime.
  • the increased resistance by the non-conductive lime is compensated by dissolution of the aragonite in the second mode of use after the actual repair.
  • the FIGURE 1 is a view showing the electrochemical antifouling system 01 according to the invention for the control of fouling organisms of adhering to a seewasserbenetzten Structure 02. These are in the selected embodiment to a foundation pillar 03, for example, a wind turbine, which is placed offshore in seawater 04 .
  • the antifouling system 01 has a grid structure electrode 05 and two counterelectrodes 06 and an adjustable DC source 07 in a DC circuit 23.
  • the grid structure electrode 05 is dimensionally stable and constructed of a single metal component. There are no material combinations, for example, from individual wires, conductive foil cores, electrically insulating fillers and electrically conductive sheaths used.
  • the grid structure electrode 05 consists of a simple uninsulated steel or wire mesh 08 made of a ferrous steel wire.
  • the counter electrodes 06 are made of a corrosion-resistant material, for example of titanium or a titanium alloy.
  • the grid structure electrode 05 is bendable and adapted in the embodiment shown, the shape of the structure to be protected 02 .
  • the grating structure electrode 05 encloses the foundation pillar 03 (diameter, for example, in a range of 1.5 m) from the waterline 09 downwards, for example over a height in a range of 3 m. This area is partially ventilated by the wave motion and therefore is particularly subject to fouling.
  • the counterelectrodes 06 are likewise adapted to the shape of the foundation pillar 03 and designed as ring-shaped flat-band electrodes 10 concentrically enclosing the foundation pillar 03 .
  • the counter electrode 06 may for example consist of a titanium-containing material and thus be corrosion resistant to the electrolysis. Further construction details of the antifouling system 01 according to the invention are the FIGURE 2 refer to.
  • FIGURE 1 Furthermore, a device 11 for alternative switching of the antifouling system 01 is shown in different modes of use.
  • This device 11 is connected to the power source 07 and changes their current or polarity.
  • the arrangement of the device 11 is shown only schematically. It can also be located further above on the structure 02 . Operation can be telemetric from far away via a transmitter.
  • the current source 07 can be fed, for example, from a photovoltaic module using regenerative solar energy on the structure 02 .
  • the grating structure electrode 05 is connected as the cathode (-) and the counter electrodes 06 as the anode ( + ).
  • a high current J (unit mark A) is set so that a strong increase in the pH value occurs in the vicinity of the grid electrode 05 connected as cathode (-), which exceeds the pH tolerance limit of potential fouling organisms, so that they are repelled become.
  • the current density J with respect to the surface of the grid electrode 05 connected as cathode (-) is selected to be so high that soft, shear-able brucite precipitates at the grid structure electrode 05 on which the organisms can not attach or slide together (parameter values) exemplary in the FIGURE 1 shown). In operation mode, therefore, a particularly effective double fouling protection is achieved.
  • the grid electrode 05 is connected as the anode ( + ) and the counter electrodes 06 as the cathode (-).
  • the current source 07 is reversed, the current flow reverses.
  • decomposition oxidation takes place at the grid structure electrode 05 connected as anode ( + ).
  • the single metal component constituting the grid pattern electrode 05 is completely dissolved, so that the grid pattern electrode 05 is completely removed.
  • Their disassembly is thus possible without staff on site.
  • the speed of decomposition depends on the chosen magnitude of the current J and increases with it. With higher current J , in turn, a higher pH is achieved, which leads to a fouling protection, but which is no longer of importance in the disassembly of the lattice electrode 05 .
  • This mode can only be selected temporarily.
  • the above-described operations take place in the disassembly mode.
  • a decomposition of the counterelectrodes 06 does not take place due to the choice of material in any mode, so that the counterelectrodes 06 remain on the structure 02 after the disassembly of the structure electrode 05 . But as they usually do not have a large extent, their whereabouts is not disturbing. In the case of mounting a new grid electrode 05 , the counter electrodes 06 can be easily used again, so that their retention is even advantageous. The same applies to remaining insulation elements for the grid electrode 05
  • Damage to the grating structure electrode 05 which has not led to an interruption of the circuit, can be compensated constructively in this mode.
  • Advantage here is a temporary stabilization of the grid electrode 05 until the arrival of maintenance personnel who the Then repair damage, for example with replacement grille.
  • the strength of the current J or the current density j is reduced so far in the repair mode III until hard aragonite precipitates and stabilizes again at the grid electrode 05 connected as the cathode (-).
  • the pH drops, so that no more effective fouling protection is guaranteed. Therefore, this mode is only temporary to choose and is used to repair the cathode (-) connected grid electrode 05 without staff on site. Subsequently, by temporarily driving the use mode II deposited aragonite can be removed again.
  • the FIGURE 2 shows the antifouling system 01 in cross section through the structure 02 , the foundation pier 03 , in detail.
  • the grating structure electrode 05 is arranged in such a distance region 12 in front of the surface 13 of the foundation pillar 03 , that the surface 13 is in the area of influence 14 caused by the electrolysis pH increase of the seawater 04 , so due to the strong pH increase under electrolysis, attachment of fouling organisms with a lower pH tolerance is prevented.
  • the grid structure electrode 05 has an electrical insulation 24 with respect to the surface 13 of the foundation pier 03 .
  • the foundation pier 03 consists of an electrically conductive material, so that the grid structure electrode 05 is arranged on insulators 15 (compare section A in FIG FIGURE 2 ).
  • the insulators 15 can also be an insulating mat 16 (see section B in FIGURE 2 ) are used, to which the grid electrode 05 is placed directly.
  • the grid structure electrode 05 can be placed directly on the surface 13 of the structure 02 (see section C in FIG FIGURE 2 ).
  • the distance range 12 then approaches zero, so that the pH increase in the area of influence 14 in any case covers the surface 13 of the foundation pillar 03 and protects it from fouling.
  • the counter electrodes 06 are ring-shaped and with a field-building Distance 17 to the grid electrode 05 arranged on further insulators 18 .
  • FIG. 3 shows the arrangement of the antifouling system 01 according to the invention in a particularly exposed fouling area 19 on a plurality of buttresses 20 and buttresses 21, for example, a drilling platform.
  • the modular structure of the antifouling system 01 with a plurality of grid structure electrodes 05 and counter electrodes 06 and their adaptation to the respective shape of the pillars 20 and buttresses 21st
  • a direct connection 22 of two grid structure electrodes 05 is shown.
  • a single arrangement is shown. All electrodes shown can be integrated in a common circuit or supplied in separate circuits.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Catching Or Destruction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Prevention Of Electric Corrosion (AREA)

Description

  • Die Erfindung bezieht sich auf ein elektrochemisches Antifoulingsystem, das der Bekämpfung des Anheftens von Foulingorganismen an seewasserbenetzten Bauwerken dient, mit einem Gleichstromkreis zur Erzeugung von Elektrolyse im Seewasser mit einer Gitterstrukturelektrode, zumindest einer dazu beabstandeten, gegenpolig geschalteten Gegenelektrode und einer einstellbaren Gleichstromquelle.
  • Allgemein bezeichnet der Begriff "Fouling" oder "Biofouling" (biologischer Be- und Aufwuchs) die unerwünschte Anlagerung von Feststoffen (marine Organismen: Bakterien, Algen, Muscheln, Seepocken etc.) an starren Grenzflächen. Antifoulingmaßnahmen dienen der Vermeidung von Fouling an Bauwerken, die von marinen oder salzhaltigen Wässern oder flüssigen salzhaltigen Medien ("Seewasser") umgeben oder zumindest zeitweise oder dauerhaft benetzt sind. Offshore- Bauwerke werden in der Regel aus Stahl oder Beton gebaut und meist flächendeckend, besonders im Gezeitenbereich, von Fouling befallen. Dadurch wird die Angriffsfläche für die Wellenenergie vergrößert, die Oberfläche solcher Bauwerke dauerhaft verdeckt und ggfs. angegriffen oder korrodiert und lokal die biologische Masse durch den Aufwuchs selbst erhöht. Inspektionsarbeiten werden erschwert. Außerdem kann der herabfallende Aufwuchs besonders in strömungsberuhigten Seegebieten zu einer Sauerstoffzehrung am Meeresboden führen und hat einen negativen Einfluss auf marine Tiergemeinschaften. Weiterhin dienen Antifoulingmaßnahmen dem Schutz hölzerner Teile im Wasser, wie z. B. Hafenpfeilern in Yachthäfen, vor anheftenden und bohrenden Organismen. Hölzerne Bauteile können von verschiedenen Organismen besiedelt werden, die zu einer vollständigen Überdeckung und somit zu einer Einschränkung der Funktion der Bauteile führen können. Grundsätzlich kann Fouling somit durch anhaftende oder aufsitzende Organismen die Oberfläche eines Bauwerks zerstören, sodass verstärkt Maßnahmen der Foulingbekämpfung - Antifouling - ergriffen werden. Neben mechanischen Reinigungsmaßnahmen und speziellen Antifoulinganstrichen oder -beschichtungen wurden auch elektrochemische Antifoulingsysteme entwickelt, deren bedeutender Vorteil die Untoxizität ist.
  • STAND DER TECHNIK
  • Elektrochemische Antifoulingsysteme basieren auf der Elektrolyse in Seewasser. Unter Gleichstromfluss zwischen Anode und Kathode entstehen Dissoziationsprodukte (Kathode H+, Anode OH-), die zu einer lokalen Anhebung der pH-Werte an der Grenzfläche zwischen Elektrode und Seewasser führen (Kathode basisch, Anode sauer). In der US 4 440 611 wird ausführlich ein geeignetes Stromregime zur Erzeugung von Elektrolyse an der Kathode beschrieben, um mikrobiologisches oder kalkhaltiges Fouling an seewasserbenetzten leitenden oder halbleitenden Oberflächen zu verhindern.
  • Aus der DE 41 09 198 C2 ist es bekannt, die zu schützende Oberfläche mit einer Beschichtung aus einem Bindemittel und Makromolekülen mit freien anionischen oder kationischen Gruppen am Molekül aufzubringen. Durch Steuerung der Gleichspannung lagern sich die Dissoziationsprodukte aus dem Seewasser entsprechend an und führen zur Ausbildung eines spezifischen pH-Wertes an der Oberfläche. Durch die Protonierung an der Kathode kann bei Anlegen einer Spannung von 0,3 V/cm2 der pH-Wert auf basische Werte von pH 9-10 angehoben werden. Als Antifoulingschutz ist aus der DE 41 09 197 C2 bekannt, die Polarität der Gleichspannung nach einem Zufallsprinzip ständig umzuschalten, sodass die pH-Werte zwischen sauer und basisch wechseln.
  • Dadurch werden auch Organismen, die konstant hohe basische oder saure pH-Werte tolerieren können, abgestoßen.
  • Aus der DE 698 02 979 T2 ist ein ähnliches Antifoulingsystem bekannt, bei dem unterhalb einer durchgängigen Leitschicht mit einem anderen Widerstandsverhalten noch eine streifig strukturierte Schicht oder dünne Metalllamellen aufgebracht werden, um die auftretende Stromdichte in Abhängigkeit vom Bewuchs gezielt einstellen zu können. Aus der JP 2004-278161 A ist ein Antifoulingsystem mit der zu schützenden Oberfläche vorgelagerten Elektrodenplatten bekannt. Aus der JP 2004-270164 A ist es weiterhin bekannt, diese Elektrodenplatten zur Befestigung in Schienen zu lagern.
  • Als weitere Folge der Elektrolyse in Seewasser schlagen sich an der Kathode auch Mineralien nieder (Mineralakkretion). Dies wird umfassend in der US 5 543 034 beschrieben. Insbesondere handelt es sich um hartes Aragonit (Polymorph von Calcit, Kalziumkarbonat CaCO3, Mohshärte 3,5 bis 4,5, bemerkbare Spaltbarkeit in einer Richtung) und weiches Brucit (Magnesiumhydroxid Mg(OH)2, Mohshärte 2 bis 2,5, leichte Spaltbarkeit in einer Richtung). Insbesondere die Ablagerung von hartem Aragonit kann zur Erzeugung von künstlichen Riffen genutzt werden (Biorock-Technologie), auf denen dann gezielt das Wachstum von aquatischen Organismen gefördert wird. Die bei der Ablagerung von Aragonit beobachtete pH-Wert-Erhöhung von 0,1 gegenüber dem Gleichgewicht (mittlerer pH-Wert 8,2) führt dabei zu einem verstärkten Wachstum der anzusiedelnden Organismen. Durch Kalkablagerungen wird die Kathode außerdem vor Korrosion geschützt.
  • Aufbauend auf der Biorock-Technologie ist es aus den EAT-Berichten (2001 NOMATEC Project, Thema "Electrochemical Accretion Technology" (EAT), Einführung und Fortschrittsberichte 1. und 2. Projektjahr, Stand 29.12.2004, abrufbar im Internet unter der URL http://www.uni-due.de/nomatec/index_ de.html, Stand 29.09.2009) bekannt, zur Erzeugung eines künstlichen Riffs als kathodische Matrix für die elektrolytische Kalkabscheidung ein Grundgerüst aus Stahl, vorzugsweise aus dünnem Maschendraht-Gewebe, zu verwenden. Als Anode wird ein Titangitter eingesetzt. Es wird erkannt, dass die Akkretion von relativ weichem Brucit, welches beim Riffaufbau stört, ein Hinweis auf hohe Stromdichten in der Kathode ist. Durch größere kathodische Oberflächen kann der Brucitablagerung aber entgegen gewirkt werden.
  • Weiterhin ist aus der DE 10 2004 039 593 B4 ein Verfahren zur elektrolytischen Extraktion von Brucit aus Seewasser bekannt, bei dem die Akkretion von Brucit durch Zusetzen einer Magnesiumsalzlösung gezielt unterstützt wird. Zur Akkretion von Brucit ist eine solche Stromdichte an der Kathode einzustellen, dass ein pH-Wert von mindestens 9,7 (bei normalem Meerwasser) erreicht wird. Dabei wurde festgestellt, dass eine relativ niedrige Stromdichte an der Kathode zu dem Akkretionsprodukt Brucit in seiner kristallinen Form führt, während bei Anwendung einer höheren Stromdichte Brucit in der weichen, seifenartigen Form ausfällt.
  • Bei dem in der US 5 633 460 A beschriebenen Verfahren handelt es sich um ein allgemein bekanntes Verfahren zur Desinfektion von Wasser nach dem Prinzip der Salzwasser-Elektrolyse zur Herstellung von Chlor, das in der Natur nicht in elementarem Zustand auftritt, und von unterchloriger Säure, die nur in Lösung stabil ist. Durchgängig wird auf die Erzeugung dieser Antifoulingsubstanzen abgestellt. Das angewandte Prinzip zum Schutz von Sensoren im Inneren eines seewassergefüllten Sensorbehälters ist die Anordnung von zwei Elektroden am Seewassereinlass des Sensorbehälters, die der Salzwasser-Elektrolyse zur Erzeugung der Antifoulingsubstanzen dienen. Dabei sind die Elektroden gitterförmig ausgebildet, um das Eindringen von größeren Fremdkörpern in den Sensorbehälter zu vermeiden. Die Verteilung der erzeugten Antifoulingsubstanzen im Sensorbehälter erfolgt durch Wellen- oder Tidenbewegung. Die Konzentration der Antifoulingsubstanzen im Sensorbehälter wird durch Dichtemesser überwacht. Die Konzentration an Chlor und unterchloriger Säure im Sensorbehälter muss oberhalb eines Konzentrationsgrenzwerts liegen. Auf den Elektroden setzt sich während der Betriebszeit unerwünschter Belag in Form von Brucit und Aragonit ab. Die Elektroden sind umpolbar, um diesen unerwünschten Belag auf den Elektroden zu entfernen. Das bekannte Verfahren basiert auf der Erzeugung von Antifoulingsubstanzen auf Chlorbasis und hat damit einen relativ kleinen Wirkungsbereich. Bevorzugt werden deshalb kleinere Flächen innerhalb eines geschlossenen Behälters geschützt. Die Elektroden selbst sind diesen Flächen nicht zugeordnet und somit auch nicht diesen gegenüber elektrisch isoliert. Die Umpolung der Elektroden erfolgt, um Beläge zu entfernen, die bei der vorliegenden Erfindung ausdrücklich erwünscht sind.
  • In der EP 0 550 766 A1 wird in jeder Ausführungsform zum Foulingschutz ein metallischer Überzug aus Eisen, Aluminium, Magnesium oder einer Legierung daraus aufgelöst. Hierbei handelt es sich um eine eindeutig toxische Maßnahme, die insbesondere für Großflächen nicht geeignet ist. Die getaktete Umpolung dient dem gleichmäßigen Abtrag beider Elektroden. Den Figuren ist zu entnehmen, dass die Menge an Ablagerungen erst abnimmt ab einer Anodenstromdichte von ca. 40 mA/m2. Ab diesem Wert nimmt auch die Anodenkorrosion stark zu.
  • Der nächstliegende Stand der Technik, von dem die vorliegende Erfindung ausgeht, wird in der JP 07-268252 , die ein elektromischen Antifoulingsystem gemäß dem Oberbegriff des Anspruchs 1 offenbart, beschrieben. Beschrieben wird ein gattungsgemäßes Antifoulingsystem mit einem stromdurchflossenen, biegeschlaffen Netz für einen Wassereinlasskanal. Das Netz ist als Fangnetz quer durch den Kanal und entlang der Kanalwände gespannt. Es bildet die Gitterstrukturelektrode und ist als Anode geschaltet. Die Kathode ist stabförmig ausgebildet und ist in einem Abstand zur Anode im Meerwasser angeordnet. Die Kathode unterliegt keinem Zersetzungsprozess und besteht daher aus einem nicht korrosionsfesten Material, z.B. Eisen. Um jedoch ein Abtragen der Anode während der Elektrolyse zu verhindern, ist das Netzseil speziell aufgebaut. Es besteht aus drei Adern, die jeweils aus nichtleitenden Monofilamenten um eine leitende Metallfolie aus Titan oder einem titan-aluminiumplattierten Material als Kern aufgebaut sind. Alle drei Adern sind in einen durch Zugabe von Platin- oder Titanpulver elektrisch leitfähigen Kunststoffmantel eingebettet. Um die Kanalwand durch einen anodischen Schutz vor Fouling zu schützen, muss die Kanalwand elektrisch leitfähig sein. Die Einspeisung des Stroms in das Netz, speziell in die Metallfolie im Kern der Adern, erfolgt über die elektrisch leitfähige Kanalwand. Eine Entfernung des Netzes aus dem Wassereinlasskanal ist nur durch manuellen Abbau möglich, der einen Einsatz von Personal vor Ort nötig macht.
  • AUFGABENSTELLUNG
  • Die AUFGABE für die vorliegende Erfindung ist darin zu sehen, das Antifoulingsystem der gattungsgemäßen Art so weiterzubilden, dass der Aufbau der Gitterstrukturelektrode möglichst einfach ist und im normalen Betrieb keine Korrosion erfährt. Es soll kein zwingendes Erfordernis einer elektrisch leitfähigen Oberfläche des zu schützenden Bauwerks bestehen, trotzdem soll ein besonders effektiver Foulingschutz erreicht werden. Weiterhin soll ein Abbau der Gitterstrukturelektrode ohne einen Einsatz von Personal vor Ort möglich sein. Die erfindungsgemäße LÖSUNG für diese Aufgabe ist dem Anspruch 1 zu entnehmen, vorteilhafte Weiterbildungen der Erfindung werden in den Unteransprüchen aufgezeigt und im Folgenden im Zusammenhang mit der Erfindung näher erläutert.
  • Bei dem erfindungsgemäßen Antifoulingsystem ist die Gitterstrukturelektrode formstabil aus einer einzelnen Metallkomponente ausgebildet und damit äußerst einfach, robust und preiswert in ihrem Aufbau. Die Gitterstrukturelektrode ist selbsttragend und verharrt in der gewählten Form. Sie ist in einem solchen Abstandsbereich vor der Oberfläche des zu schützenden Bauwerks angeordnet, dass die Oberfläche im Einflussgebiet einer durch die Elektrolyse hervorgerufenen pH-Wert-Erhöhung des Seewassers liegt, wobei der pH-Wert eine Feldgröße ist. Ein anodischer Schutz der Oberfläche des Bauwerks ist nicht erforderlich. Die Gegenelektrode besteht aus einem Material, bei dem in keinem Modus eine Zersetzung stattfindet, beispielsweise aus einem titanhaltigen Material. Weiterhin ist die Gitterstrukturelektrode elektrisch gegenüber der Oberfläche des Bauwerks isoliert. Somit ist gewährleistet, dass der Strom nur durch die Gitterstrukturelektrode und nicht durch die Oberfläche des Bauwerks fließt. Somit kann das Bauwerk auf seiner Oberfläche sowohl elektrisch leitend als auch elektrisch nichtleitend ausgebildet sein.
  • Weiterhin ist bei dem erfindungsgemäßen Antifoulingsystem eine Vorrichtung zur alternativen Schaltung der Gitterstrukturelektrode vorgesehen, die die Handhabung des Systems besonders vielseitig und einfach gestaltet. Mit dieser Schaltvorrichtung können prinzipiell zwei unterschiedliche Gebrauchsmodi für das erfindungsgemäße Antifoulingsystem eingestellt werden. Zum einen kann ein dauerhafter Betriebsmodus mit einer Schaltung der Gitterstrukturelektrode als Kathode gewählt werden. Durch die Kathodenschaltung ist die Gitterstrukturelektrode vor Zersetzung durch Elektrolyse und damit vor Korrosion geschützt. Es treten keine Verschleißerscheinungen auf, Montagekosten fallen nur einmal an. Dabei wird mit Mitteln eine Einstellung einer erzeugten Stromdichte an der Gitterstrukturelektrode in einem Bereich zwischen 35 und 42 A/m2 pro effektiver Oberfläche eine Akkretion von weichem Brucit mit der Mohshärte 2 bis 2,5 an der Gitterstrukturelektrode und ein pH-Wert oberhalb von 9,7 als pH-Wert-Toleranzgrenze von zu bekämpfenden Foulingorganismen im Seewasser auftreten. In dieser Betriebsstellung wird also ein doppelter Antifoulingschutz erreicht. Zum einen durch die Erzielung eines hohen pH-Werts im Seewasser, der oberhalb der Toleranzgrenze der abzuwehrenden Foulingorganismen liegt. Hier sind z. B. die Entenmuscheln (Pollicipes pollicipes) als Hartsubstratbesiedler zu nennen, die bei einem pH-Wert von etwa 8,9 sich selten oder nicht mehr an Oberflächen ansiedeln. Als Feldgröße hat der pH-Wert einen weit reichenden Einfluss und schützt somit auch die hinter der Gitterstrukturelektrode liegende Oberfläche des Bauwerks vor Besiedelung. Foulingorganismen werden von der Besiedelung abgehalten. Die Beaufschlagung mit Gleichstrom induziert einen elektrolytischen Prozess, in dessen Folge sich der pH-Wert an der Metall-Wassergrenzschicht stark erhöht. Die so aufgebaute Barriere können Organismen und deren Larven bei der Verwendung von angepassten Gitterstrukturen nicht oder nur schwer durchdringen. In diesem Beispiel ist eine Verwendung von engen Maschenweiten mit z.B. 0,4 cm zu präferieren, da sich hierdurch die pH-Wert - Erhöhung pro Fläche noch verstärkt.
  • Zum anderen bildet sich auf der Gitterstrukturelektrode mit örtlich begrenztem Einfluss ein weicher Belag aus Brucit. Brucit weist eine perfekte Spaltbarkeit in einer Richtung auf und ist somit leicht abscherbar. Foulingorganismen, deren pH-Wert-Toleranz außergewöhnlich hoch ist oder die sich in Ausnahmefällen an eine konstante pH-Wert-Erhöhung gewöhnen können, werden somit kurz nach der Besiedlung der Gitterstrukturelektrode zusammen mit dem weichen Brucit durch die Seewasserbewegung einfach abgewaschen. Ab einem pH-Wert von 9,7 wird bei Elektrolyse Brucit (Mohshärte 2 bis 2,5) abgeschieden. Insbesondere zur Erzeugung von hohen pH-Werten und von Brucit ist eine hohe Stromdichte in einem Bereich von 30 A/m2 bezogen auf die effektive Oberfläche der Gitterstrukturelektrode und höher einzustellen. Als Nebeneffekt ist hier noch die teils starke Entwicklung und Freisetzung von Wasserstoff zu nennen, der bei hohen Stromdichten durch die Reduktion der Kationen an der Gitterstruktur entsteht. Diese Wasserstoffentwicklung wirkt sich aufgrund der Unverträglichkeit mit anzusiedelnden Organismen im näheren Umfeld ebenfalls positiv für das Antifouling aus.
  • Der zweite Gebrauchsmodus bei der Erfindung nach dem dauerhaften Betriebsmodus I ist ein temporärer Demontagemodus mit einer Schaltung der Gitterstrukturelektrode als Anode mit Mitteln zur Einstellung einer Stromdichte zwischen 40 und 45 A/m2 pro effektiver Oberfläche der Gitterstrukturelektrode durch die Gleichstromquelle, sodass eine zersetzende Oxidation zur vollständigen Auflösung der Gitterstrukturelektrode stattfindet. Durch eine einfache Umpolung der Stromquelle wird die Gitterstrukturelektrode zur Anode und unterliegt dadurch während der Elektrolyse dem Abbau. Durch den Aufbau aus einer einzelnen Metallkomponente der Gitterstruktur ist ein vollständiger Abbau schnell und problemlos möglich. Somit kann die Gitterstrukturelektrode durch einfaches Umpolen der Gleichstromquelle vollständig entfernt werden, ohne dass Personal vor Ort erforderlich wäre. Insbesondere bei Anordnungen in unzugänglichen Offshore-Gebieten bedeutet dies einen großen Vorteil. Eine Entfernung kann beispielsweise bei einer - zumindest teilweise vollständige Zerstörung, z.B. durch Zerstörung oder übermäßigen Besetzung von Aufwuchsorganismen der Gitterstrukturelektrode - oder bei einer Entfernung des Bauwerks selbst, erforderlich werden. Dann kann die Gitterstrukturelektrode durch Umpolung einfach aufgelöst und anschließend - bei einem Verbleib des Bauwerks - durch eine neue ersetzt werden. Ggfs. vorhandene elektrische Isolationen der Gitterstrukturelektrode gegenüber dem Bauwerk, beispielsweise Isolatoren, verbleiben am Bauwerk und können dann erneut genutzt werden. Ist die Metallkomponente eisenhaltig, können beim Abbau bzw. bei der Auflösung der Gitterstruktur (jeglicher Größe) keine negativen Auswirkungen erwartet werden, da Eisen als essenzieller Pflanzennährstoff im marinen Milieu limitiert ist. Eine toxische Belastung beim Abbau ist zu jedem Zeitpunkt vermieden. Die Menge der Eisenfreisetzung kann durch die Stromdichte und das hierdurch induzierte Oberflächenpotenzial der als Anode geschalteten Gitterstrukturelektrode gesteuert und damit jederzeit dosiert werden.
  • Bei dem Antifoulingsystem nach der Erfindung ist die Gitterstrukturelektrode elektrisch isoliert gegenüber der Oberfläche des zu schützenden Bauwerks. Dies kann einerseits dadurch realisiert sein, dass bereits die Oberfläche des Bauwerks elektrisch nichtleitend ausgebildet ist. Hierbei kann es sich beispielsweise um Bauwerke aus Holz - z.B. hölzerne Hafenpfeiler - oder aus Beton - z.B. Gründungspfeiler von Windkrafträdern - handeln. Bei einer elektrisch leitenden Oberfläche des Bauwerks - z.B. Absperranlagen - können vorteilhaft Isolatoren, beispielsweise aus Kunststoff oder Keramik, oder eine Isoliermatte, beispielsweise aus Kunststoff oder Mineralfaser, zur elektrischen Isolation der Gitterstrukturelektrode gegenüber einer elektrischen leitenden Oberfläche des Bauwerks vorgesehen sein. Im Falle einer nicht leitenden Oberfläche, beispielsweise bei Bauwerken aus Beton oder Holz, kann die Gitterstrukturelektrode bevorzugt auch direkt auf die Oberfläche des Bauwerks aufgelegt werden. Somit wird nicht das gesamte Bauwerk mit seiner elektrisch leitenden Oberfläche bestromt, sondern nur die vorgelagerte Gitterstrukturelektrode, was sich positiv durch einen geringen Stromverbrauch (Niedervoltstrom) auswirkt.
  • Die Gitterstrukturelektrode bei der Erfindung ist in einfacher Form aus einer einzelnen Metallkomponente ausgebildet. Vorteilhaft kann es sich dabei um ein einfaches unisoliertes Stahl- oder Drahtgitter handeln, insbesondere kann sogar einfacher Maschendraht aus einem dünnen unisolierten Stahldraht verwendet werden. Die Gegenelektrode kann als Stabelektrode ausgebildet und im Seewasser in einiger Entfernung zur Kathode angeordnet sein. Vorteilhaft kann auch die Gegenelektrode als Gitterelektrode ausgebildet sein. Ebenso kann sie als Flachbandelektrode ausgebildet sein, die vor der flächigen Gitterstrukturelektrode verläuft. Auch die Gegenelektrode ist vorteilhaft biegesteif ausgebildet und verbleibt in einer gebogenen Form.
  • Ein besonderer Vorteil des Antifoulingsystems nach der Erfindung ist seine nachträgliche Montierbarkeit an bestehenden Bauwerken. Bekannte Systeme weisen diesen Vorteil in der Regel nicht auf. Auch eine modulartige Erweiterung des Antifoulingsystems nach der Erfindung durch Verbindung mehrerer Gitterstrukturelektroden und Gegenelektroden ist vorteilhaft ebenfalls möglich. Dies kann bei Veränderung oder Erweiterung des zu schützenden Bauwerks oder bei einer zunächst nur teilweisen Bedeckung des Bauwerks mit dem Antifoulingsystem von Vorteil sein. Dabei ist es grundsätzlich für die Montierbarkeit sehr vorteilhaft, wenn die Gitterstrukturelektrode und/oder die Gegenelektrode biegbar ausgebildet sind. Aufgrund der Formstabilität der Gitterstrukturelektrode verbleibt diese in jeder Position, kann also selbsttragend angeordnet werden. Durch die Biegbarkeit kann die Gitterelektrode darüber hinaus optimal an die Form des zu schützenden Bauwerks angepasst werden. Auch kritische Stellen können so mit der Gitterstrukturelektrode bedeckt werden. Gleiches gilt für die Gegenelektrode, wenn diese ebenfalls biegbar ausgebildet ist. Dabei ist die Biegung reversibel, sodass Formveränderungen im Betrieb oder auch Mehrfachanwendungen - wenn kein Abbau der Gitterelektrode durch Umpolung vorgesehen ist - möglich sind. Weiterhin ist insbesondere bei der Verwendung von einfachem Maschendraht zur Ausgestaltung der Gitterelektrode deren Formstabilität nicht sehr stark ausgeprägt. Dann kann es vorteilhaft sein, wenn die Gitterstrukturelektrode aus Stahl- oder Drahtgitter eine statische Fältelung aufweist. Nach der Art einer Leichtbaukonstruktion wird durch diese Maßnahme eine wesentliche Erhöhung der Steifigkeit und damit der mechanischen Stabilität erreicht. Dadurch kann die primäre leitende Gitterstrukturelektrode sehr dünn und somit der Eintrag von Fremdmaterial in das umgebene Milieu sehr gering gehalten werden. Weiterhin kann die formstabile, aber biegbare Gitterstrukturelektrode an gekrümmte Oberflächen des zu schützenden Bauwerks angepasst werden. Eine Anpassung von biegbarem, aber formstabilen Maschendraht an gebogene Formen, z.B. ein Wellenbrecher, ist problemlos möglich. Gleiches gilt für die Gegenelektrode. Weiterhin können vorteilhaft eine zylinderförmige Ausbildung der Gitterstrukturelektrode und/oder eine ringförmige Ausbildung der Gegenelektrode vorgesehen sein, wobei die Gegenelektrode konzentrisch zur Gitterstrukturelektrode angeordnet ist. Damit können beide Elektroden beispielsweise vorteilhaft an die runde Form eines Gründungspfeilers einer Windkraftanlage angepasst werden. Möglich ist dabei eine konzentrische Anordnung von Gitterstrukturelektrode und Gegenelektrode: die Gitterstrukturelektrode wird um den Gründungspfeiler herumgelegt, die Gegenelektrode wird dann als Flachbandring mit einem etwas größeren Durchmesser darüber befestigt. Bei einem tief im Wasser stehenden Gründungspfeiler können dabei mehrere Gegenelektroden in einem entsprechenden Abstand zueinander über der Höhe des Gründungspfeilers vorgesehen sein.
  • Insbesondere bei einer Anordnung des Antifoulingsystems nach der Erfindung an einem Gründungspfeiler einer Windkraftanlage in einem unzugänglichen Offshore-Gebiet ist eine autarke Stromversorgung der Elektroden von besonderem Vorteil. Vorteilhaft kann bei der Erfindung daher eine photovoltaisch gespeiste Gleichstromquelle verwendet werden. Die Anordnung von Photovoltaikelementen im Überwasserbereich der Windkraftanlage ist problemlos möglich. Oft befinden sich bereits dort derartige Anlagen zur Stromversorgung anderer Aggregate. Ebenso ist aber auch eine Stromversorgung aus einer anderen regenerativen Quelle, beispielsweise über den Transformator des Windgenerators, problemlos möglich und führt zur Lieferung des regelbaren erforderlichen Gleichstroms.
  • Die zu verwendenden Bauteile bei dem Antifoulingsystem nach der Erfindung sind im Vergleich der anderen Antifouling-Lösungen relativ preiswert und stellen mit dem geringen Stromverbrauch (Niedervoltstrom) eine relativ kostengünstige Alternative dar. Es werden keine Chemikalien oder andere schädliche Stoffe, insbesondere Toxine, eingesetzt. Das Antifoulingsystem nach der Erfindung ist nahezu verschleißfrei, es muss nicht - wie es bei bekannten Antifoulinganstrichen der Fall ist - regelmäßig erneuert werden. Bei Bedarf kann das Antifoulingsystem ohne Personalaufwand vor Ort einfach entfernt werden.
  • Mechanische Schäden können einfach repariert werden. Eine lokale Ausbesserung von beispielsweise Kurzschlüssen ist durch Wartungspersonal ohne weiteres durchführbar. Bei herkömmlichen Antifoulinganstrichen auf einer Isolationsschicht auf einem metallischen Schiffsrumpf sind solche Beschädigungen nur durch eine vollständige Erneuerung des Anstrichs heilbar. Optional können in einem dritten Modus, dem temporären Reparaturmodus, teilweise Beschädigungen der Gitterstrukturelektrode, die beispielsweise durch Krafteinwirkung oder auch durch Abbau der Gitterstrukturelektrode als Anode auftreten, repariert werden. Die Reparatur erfolgt durch bewusste Anlagerung von Aragonit, das jedoch elektrisch nichtleitend ist und damit den elektrischen Widerstand im Stromkreis erhöht. Eine derartige Ausbesserung ist also als temporäre Maßnahme anzusehen, die das Antifoulingsystem vor größeren Beschädigungen bis zum Eintreffen von Wartungspersonal schützt. Nach der Ausbesserung kann das Aragonit durch kurzfristige Einschaltung des zweiten Modus dann wieder einfach entfernt werden. Zur temporärem Stabilisierung durch Aragonit ist noch ein Stromfluss durch die Gitterstrukturelektrode erforderlich, sodass nur beginnende Beschädigungen repariert werden können. Derartige Beschädigungen können beispielsweise durch einfache Strommessungen im Stromkreis detektiert werden. Ein ansteigender Betriebsstrom ist ein Anzeichen für einen größer werdenden Widerstand und damit für eine beginnende Beschädigung. Im Reparaturmodus wird die Gitterstrukturelektrode als Kathode mit Mitteln zur Einstellung einer Stromdichte von 30 A/m2 pro effektiver Oberfläche der Gitterstrukturelektrode durch die Gleichstromquelle geschaltet, sodass eine Akkretion von hartem Aragonit mit der Mohshärte 3,5 bis 4,5 an der Gitterstrukturelektrode zum Schutz der beschädigten Bereiche auftritt. Mechanische Schwachstellen werden somit durch die Anlagerung von hartem Kalk temporär wieder stabilisiert. Der erhöhte Widerstand durch den nichtleitenden Kalk wird durch Auflösung des Aragonits im zweiten Gebrauchsmodus nach der eigentlichen Reparatur wieder kompensiert.
  • Schließlich ist noch anzumerken, dass die Wirkung des hier beschriebenen Antifoulingsystems nach der Erfindung örtlich stark begrenzt ist und daher keine Gefahr für angrenzende eventuell empfindliche Materialien, wie z. B. an Booten in Hafengebiete, oder für Menschen, die sich im Wasser aufhalten, bedeutet. Toxische Komponenten sind zudem bei der Erfindung vollständig vermieden. Weitere Details zu dem Antifoulingsystem nach der Erfindung sind dem nachfolgenden speziellen Beschreibungsteil zu entnehmen.
  • AUSFÜHRUNGSBEISPIELE
  • Ausbildungsformen des elektrochemischen Antifoulingsystems nach der Erfindung werden nachfolgend anhand der schematischen Figuren zum weiteren Verständnis der Erfindung näher erläutert. Dabei zeigt:
  • FIGUR 1
    eine Ansicht auf das elektrochemische Antifoulingsystem bei einer Anordnung an einem Gründungspfeiler,
    FIGUR 2
    einen Querschnitt durch die Anordnung gemäß Figur 1 und
    FIGUR 3
    eine Ansicht auf einen Modulaufbau des elektrochemischen Antifoulingsystems an mehreren Pfeilern.
  • Die FIGUR 1 zeigt in der Ansicht das elektrochemische Antifoulingsystem 01 nach der Erfindung zur Bekämpfung des Anheftens von Foulingorganismen an einem seewasserbenetzten Bauwerk 02. Dabei handelt es sich im gewählten Ausführungsbeispiel um einen Gründungspfeiler 03 beispielsweise eines Windkraftrades, der offshore im Seewasser 04 aufgestellt ist. Das Antifoulingsystem 01 weist eine Gitterstrukturelektrode 05 und zwei Gegenelektroden 06 sowie eine einstellbare Gleichstromquelle 07 in einem Gleichstromkreis 23 auf. Die Gitterstrukturelektrode 05 ist formstabil und aus einer einzelnen Metallkomponente aufgebaut. Es werden keine Materialkombinationen, beispielsweise aus einzelnen Adern, leitenden Folienkernen, elektrisch isolierenden Füllstoffen und elektrisch leitenden Umhüllungen, verwendet. Im Ausführungsbeispiel besteht die Gitterstrukturelektrode 05 aus einem einfachen unisolierten Stahl- oder Drahtgitter 08 aus einem eisenhaltigen Stahldraht. Die Gegenelektroden 06 bestehen aus einem korrosionsbeständigen Material, beispielsweise aus Titan oder einer Titanlegierung.
  • Die Gitterstrukturelektrode 05 ist biegbar und im gezeigten Ausführungsbeispiel der Form des zu schützenden Bauwerks 02 angepasst. Die Gitterstrukturelektrode 05 umschließt den Gründungspfeiler 03 (Durchmesser beispielsweise in einem Bereich von 1,5 m) ab der Wasserlinie 09 abwärts, beispielsweise über eine Höhe in einem Bereich von 3 m. Dieser Bereich ist durch die Wellenbewegung teilweise auch belüftet und unterliegt daher besonders dem Fouling. Die Gegenelektroden 06 sind ebenfalls der Form des Gründungspfeilers 03 angepasst und als den Gründungspfeiler 03 konzentrisch umschließende, ringförmige Flachbandelektroden 10 ausgebildet. Die Gegenelektrode 06 kann beispielsweise aus einem titanhaltigen Material bestehen und damit korrosionsbeständig gegenüber der Elektrolyse sein. Weitere Konstruktionsdetails des Antifoulingsystems 01 nach der Erfindung sind der FIGUR 2 zu entnehmen.
  • In der FIGUR 1 ist weiterhin eine Vorrichtung 11 zur alternativen Schaltung des Antifoulingsystems 01 in unterschiedliche Gebrauchsmodi dargestellt. Diese Vorrichtung 11 ist mit der Stromquelle 07 verbunden und verändert deren Stromstärke bzw. Polung. Dabei ist die Anordnung der Vorrichtung 11 nur schematisch dargestellt. Sie kann sich auch weiter oberhalb auf dem Bauwerk 02 befinden. Die Bedienung kann über einen Sender telemetrisch von weit außerhalb erfolgen. Die Stromquelle 07 kann beispielsweise von einem Photovoltaikmodul unter Ausnutzung regenerativer Sonnenenergie am Bauwerk 02 gespeist werden.
  • Folgende Gebrauchsmodi werden bei dem Antifoulingsystem 01 nach der Erfindung gewählt und durch die Einstellung des Stroms erreicht:
  • I DAUERHAFTER BETRIEBSMODUS
  • In diesem Modus ist die Gitterstrukturelektrode 05 als Kathode (-) und die Gegenelektroden 06 als Anode (+) geschaltet. Es wird ein so hoher Strom J (Einheitszeichen A) eingestellt, dass sich im Umfeld der als Kathode (-) geschalteten Gitterstrukturelektrode 05 eine starke pH-Wert-Erhöhung ergibt, die die pH-Wert-Toleranzgrenze von potenziellen Foulingorganismen überschreitet, sodass diese abgewehrt werden. Weiterhin ist die Stromdichte J bezogen auf die Oberfläche der als Kathode (-) geschalteten Gitterstrukturelektrode 05 so hoch gewählt, dass weiches, abscherfähiges Brucit an der Gitterstrukturelektrode 05 ausfällt, auf dem die Organismen sich nicht anheften können bzw. zusammen mit diesem abgleiten (Parameterwerte sind beispielhaft in der FIGUR 1 aufgezeigt). Im Betriebsmodus wird also ein besonders effektiver doppelter Foulingschutz erreicht.
  • II TEMPORÄRER DEMONTAGEMODUS
  • In diesem Modus ist die Gitterstrukturelektrode 05 als Anode (+) und die Gegenelektroden 06 als Kathode (-) geschaltet. Die Stromquelle 07 wird umgepolt, der Stromfluss kehrt sich um. In diesem Modus findet eine zersetzende Oxidation an der als Anode (+) geschalteten Gitterstrukturelektrode 05 statt. Dabei wird die einzelne Metallkomponente, aus der die Gitterstrukturelektrode 05 besteht, völlig aufgelöst, sodass die Gitterstrukturelektrode 05 völlig entfernt wird. Deren Demontage ist somit ohne Personaleinsatz vor Ort möglich. Die Schnelligkeit der Zersetzung ist abhängig von der gewählten Stärke des Stroms J und steigt mit dieser an. Mit höherem Strom J wird wiederum ein höherer pH-Wert erreicht, der zwar zu einem Foulingschutz führt, der aber bei der Demontage der Gitterstrukturelektrode 05 nicht mehr von Bedeutung ist. Auch dieser Modus kann nur temporär gewählt werden.
  • An den Gegenelektroden 06 finden im Demontagemodus die oben beschriebenen Vorgänge statt. Eine Zersetzung der Gegenelektroden 06 findet aufgrund der Materialwahl in keinem Modus statt, sodass die Gegenelektroden 06 nach der Demontage der Strukturelektrode 05 am Bauwerk 02 verbleiben. Da sie aber in der Regel keine große Ausdehnung aufweisen, ist ihr Verbleib nicht störend. Im Fall der Montage einer neuen Gitterstrukturelektrode 05 können die Gegenelektroden 06 problemlos wieder verwendet werden, sodass ihr Verbleiben sogar von Vorteil ist. Gleiches gilt für verbleibende Isolationselemente für die Gitterstrukturelektrode 05
  • Optional kann bei dem Antifoulingsystem 01 nach der Erfindung noch ein weiterer Gebrauchsmodus vorgesehen sein:
  • III TEMPORÄRER REPARATURMODUS
  • In diesem Modus können Beschädigungen der Gitterstrukturelektrode 05, die aber nicht zu einer Unterbrechung des Stromkreises geführt haben, konstruktiv ausgeglichen werden. Vorteil ist hierbei eine zeitweise Stabilisierung der Gitterstrukturelektrode 05 bis zum Eintreffen von Wartungspersonal, die die Beschädigung dann beispielsweise durch Ersatzgitter beheben. Die Stärke des Stroms J bzw. die Stromdichte j wird im Reparaturmodus III so weit reduziert, bis hartes Aragonit an der weiterhin als Kathode (-) geschalteten Gitterstrukturelektrode 05 ausfällt und diese wieder stabilisiert. Der pH-Wert sinkt dabei, sodass kein effektiver Foulingschutz mehr gewährleistet ist. Dieser Modus ist daher nur temporär zu wählen und dient der Reparatur der als Kathode (-) geschalteten Gitterstrukturelektrode 05 ohne Personaleinsatz vor Ort. Anschließend kann durch temporäres Fahren des Gebrauchsmodus II abgelagertes Aragonit wieder entfernt werden.
  • Die FIGUR 2 zeigt das Antifoulingsystem 01 im Querschnitt durch das Bauwerk 02, dem Gründungspfeiler 03, im Detail. Dabei ist die Gitterstrukturelektrode 05 in einem solchen Abstandsbereich 12 vor der Oberfläche 13 des Gründungspfeilers 03 angeordnet, dass die Oberfläche 13 im Einflussgebiet 14 der durch die Elektrolyse hervorgerufenen pH-Wert-Erhöhung des Seewassers 04 liegt, sodass aufgrund der starken pH-Wert-Erhöhung unter Elektrolyse ein Anheften von Foulingorganismen mit einer geringeren pH-Wert-Toleranz verhindert wird. Weiterhin weist die Gitterstrukturelektrode 05 eine elektrische Isolation 24 gegenüber der Oberfläche 13 des Gründungspfeilers 03 auf. Im gezeigten Ausführungsbeispiel besteht der Gründungspfeiler 03 aus einem elektrisch leitenden Material, sodass die Gitterstrukturelektrode 05 auf Isolatoren 15 angeordnet ist (vergleiche Ausschnitt A in FIGUR 2 ). Anstelle der Isolatoren 15 kann auch eine Isoliermatte 16 (vergleiche Ausschnitt B in FIGUR 2 ) verwendet werden, auf die die Gitterstrukturelektrode 05 direkt aufgelegt ist. Im Falle einer elektrisch isolierenden Oberfläche 25 kann die Gitterstrukturelektrode 05 direkt auf die Oberfläche 13 des Bauwerks 02 aufgelegt werden (vergleiche Ausschnitt C in FIGUR 2 ). Der Abstandsbereich 12 geht dann gegen Null, sodass die pH-Wert-Erhöhung im Einflussgebiet 14 auf jeden Fall die Oberfläche 13 des Gründungspfeilers 03 erfasst und diesen vor Fouling schützt. Die Gegenelektroden 06 sind ringförmig ausgebildet und mit einem feldaufbauenden Abstand 17 zur Gitterstrukturelektrode 05 auf weiteren Isolatoren 18 angeordnet.
  • Die FIGUR 3 zeigt die Anordnung des Antifoulingsystems 01 nach der Erfindung im besonders exponierten Foulingbereich 19 an mehreren Stützpfeilern 20 und Strebepfeilern 21 beispielsweise einer Bohrplattform. Zu erkennen ist der modulartige Aufbau des Antifoulingsystems 01 mit mehreren Gitterstrukturelektroden 05 und Gegenelektroden 06 und deren Anpassung an die jeweilige Form der Stützpfeiler 20 und Strebepfeiler 21. Im rechten Teil der FIGUR 3 ist eine direkte Verbindung 22 von zwei Gitterstrukturelektroden 05 gezeigt. Im linken Teil der FIGUR 3 ist eine einzelne Anordnung gezeigt. Alle gezeigten Elektroden können in einem gemeinsamen Stromkreis eingebunden sein oder in getrennten Stromkreisen versorgt werden.
  • Abschließend sind die Werte für die einzustellende Stromdichte bei dem Antifoulingsystem nach der Erfindung angegeben.
    Gebrauchsmodus Stromdichte j (A/m2) pro effektiver Gitterfläche
    (abhängig von den verwendeten Gitterstärken)
    I - Betriebsmodus 35 - 42
    Bemerkung: bei diesen Stromdichten erfolgt eine Brucitabscheidung. Eine reine pH-Wert-Erhöhung erfolgt bereits bei Stromdichten in einem Bereich von 22 bis 28 A/m2.
    II - Demontagemodus 40 - 45
    III - Reparaturmodus 30
  • BEZUGSZEICHENLISTE
  • 01
    elektrochemisches Antifoulingsystem
    02
    seewasserbenetztes Bauwerk
    03
    Gründungspfeiler
    04
    Seewasser
    05
    Gitterstrukturelektrode
    06
    Gegenelektrode
    07
    einstellbare Gleichstromquelle
    08
    unisolierter Maschendraht
    09
    Wasserlinie
    10
    Ringelektrode
    11
    Vorrichtung zur alternativen Schaltung von 01
    12
    Abstandsbereich zwischen 05 - 13
    13
    Oberfläche von 02, 03
    14
    Einflussgebiet Elektrolyse mit pH-Wert-Erhöhung
    15
    Isolator
    16
    Isoliermatte
    17
    Abstand zwischen 06 - 05
    18
    weiterer Isolator
    19
    Foulingbereich
    20
    Stützpfeiler
    21
    Strebepfeiler
    22
    Verbindung von 05 - 05
    23
    Gleichstromkreis
    24
    elektrische Isolation
    25
    elektrisch isolierende Oberfläche

Claims (11)

  1. Elektrochemisches Antifoulingsystem (1), geeignet zur Bekämpfung des Anheftens von Foulingorganismen an seewasserbenetzten Bauwerken (02, 03), mit einem Gleichstromkreis (23) zur Erzeugung von Elektrolyse im Seewasser (04) mit einer Gitterstrukturelektrode (05), zumindest einer dazu beabstandeten, gegenpolig geschalteten Gegenelektrode (06) und einer einstellbaren Gleichstromquelle (07),
    GEKENNZEICHNET DURCH
    • eine selbsttragende und in einer gewählten Form verharrende Ausbildung zumindest der Gitterstrukturelektrode (05) aus einer einzelnen Metallkomponente für die Gitterstruktur,
    • eine Ausbildung der Gegenelektrode (06) aus einem Material, bei dem in keinem Modus eine Zersetzung stattfindet,
    • Mittel zur Anordnung der Gitterstrukturelektrode (05) in einem solchen Abstandsbereich (12) vor der Oberfläche (13) eines zu schützenden Bauwerks (02), dass die Oberfläche (13) im Einflussgebiet (14) einer durch die Elektrolyse hervorgerufenen pH-Wert-Erhöhung des Seewassers (04) liegt, wobei der pH-Wert eine Feldgröße ist,
    • Mittel zur elektrischen isolation (24) der Gitterstrukturelektrode (05) gegenüber der Oberfläche (13) des Bauwerks (02, 03) und
    • eine Vorrichtung (11) zur alternativen Schaltung der Gitterstrukturelektrode (05) in einen
    I. dauerhaften Betriebsmodus mit Mittel zur Schaltung der Gitterstruktur-elektrode (05) als Kathode und Mitteln zur Einstellung einer Stromdichte in einem Bereich zwischen 35 und 42 A/m2 pro effektiver Oberfläche der Gitterstrukturelektrode (05) durch die Gleichstromquelle (07), sodass eine Akkretion von weichem Brucit mit der Mohshärte 2 bis 2,5 an der Gitterstrukturelektrode (05) und ein pH-Wert oberhalb von 9,7 als pH-Wert-Toleranzgrenze von zu bekämpfenden Foulingorganismen im Seewasser (04) auftreten,
    und nach dem dauerhaften Betriebsmodus I in einen
    II. temporären Demontagemodus mit Mittel zur Schaltung der Gitterstruktur-elektrode (05) als Anode und Mitteln zur Einstellung einer Stromdichte zwischen 40 und 45 A/m2 pro effektiver Oberfläche der Gitterstrukturelektrode (05) durch die Gleichstromquelle (07), sodass eine zersetzende Oxidation zur vollständigen Auflösung der Gitterstrukturelektrode (05) stattfindet.
  2. Elektrochemisches Antifoulingsystem nach Anspruch 1,
    GEKENNZEICHNET DURCH
    Isolatoren (15) oder eine Isoliermatte (16) zur elektrischen Isolation (23) der Gitterstrukturelektrode (05) gegenüber einer elektrischen leitenden Oberfläche (13) des Bauwerks (02).
  3. Elektrochemisches Antifoulingsystem nach Anspruch 1 oder 2, GEKENNZEICHNET DURCH
    eine Ausbildung der Gitterstrukturelektrode (05) aus einem unisoliertem Stahl- oder Drahtgitter (08) als Metallkomponente.
  4. Elektrochemisches Antifoulingsystem nach einem oder mehreren der vorangehenden Ansprüche,
    GEKENNZEICHNET DURCH
    eine Ausbildung der Gegenelektrode (06) als Gitter- oder Flachbandelektrode (10).
  5. Elektrochemisches Antifoulingsystem nach einem oder mehreren der vorangehenden Ansprüche,
    GEKENNZEICHNET DURCH
    eine biegbare Ausbildung von Gitterstrukturelektrode (05) und Gegenelektrode (06).
  6. Elektrochemisches Antifoulingsystem nach Anspruch 5,
    GEKENNZEICHNET DURCH
    eine Fältelung zumindest der Gitterstrukturelektrode (05) aus unisoliertem Stahl- oder Drahtgitter (08).
  7. Elektrochemisches Antifoulingsystem nach einem der Ansprüche 3 bis 5,
    GEKENNZEICHNET DURCH
    eine Formanpassbarkeit der Gitterstrukturelektrode (05) und der Gegen-elektrode (05) an gekrümmte Oberflächen (13) eines zu schützenden Bauwerks (02, 03).
  8. Elektrochemisches Antifoulingsystem nach Anspruch 7,
    GEKENNZEICHNET DURCH
    eine zylinderförmige Ausbildung der Gitterstrukturelektrode (05) und eine ringförmige Ausbildung der Gegenelektrode (06), wobei die Gegenelektrode (06) konzentrisch zur Gitterstrukturelektrode (05) angeordnet ist.
  9. Elektrochemisches Antifoulingsystem nach einem oder mehreren der vorangehenden Ansprüche,
    GEKENNZEICHNET DURCH
    eine modulartige Erweiterbarkeit durch Verbindung (22) mehrerer Gitterstrukturelektroden (05) und Gegenelektroden (06).
  10. Elektrochemisches Antifoulingsystem nach einem oder mehreren der vorangehenden Ansprüche,
    GEKENNZEICHNET DURCH
    eine photovoltaisch oder anderweitig regenerativ gespeiste Gleichstromquelle (07).
  11. Elektrochemisches Antifoulingsystem nach einem oder mehreren der vorangehenden Ansprüche,
    GEKENNZEICHNET DURCH
    eine Vorrichtung (11) zur alternativen Schaltung der Gitterstrukturelektrode (05) als Kathode in einen
    III. einen temporären Reparaturmodus für beschädigte Bereiche der Gitterstrukturelektrode (05) mit Mitteln zur Einstellung einer Stromdichte von 30 A/m2 pro effektiver Oberfläche der Gitterstrukturelektrode (05) durch die Gleichstromquelle (07), sodass eine Akkretion von hartem Aragonit mit der Mohshärte 3,5 bis 4,5 an der Gitterstrukturelektrode (05) zum Schutz der beschädigten Bereiche auftritt.
EP10075718A 2009-10-30 2010-10-24 Elektrochemisches Antifoulingsystem für seewasserbenetzte Bauwerke Not-in-force EP2316584B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009051768A DE102009051768B4 (de) 2009-10-30 2009-10-30 Elektrochemisches Antifoulingsystem für seewasserbenetzte Bauwerke

Publications (2)

Publication Number Publication Date
EP2316584A1 EP2316584A1 (de) 2011-05-04
EP2316584B1 true EP2316584B1 (de) 2013-03-27

Family

ID=43466682

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10075718A Not-in-force EP2316584B1 (de) 2009-10-30 2010-10-24 Elektrochemisches Antifoulingsystem für seewasserbenetzte Bauwerke

Country Status (3)

Country Link
US (1) US8361285B2 (de)
EP (1) EP2316584B1 (de)
DE (1) DE102009051768B4 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2317123A1 (de) * 2009-10-28 2011-05-04 BARD Holding GmbH Anodenhalterung für kathodische Korrosionsschutzeinrichtungen von Gründungspfählen von Offshore-Windenergieanlagen, Gründungspfahl einer Offshore-Windenergieanlage und Verbindungsstruktur zwischen denselben, kathodische Korrosionsschutzvorrichtung für Gründungsrohre von Offshore-Windenergieanlagen sowie Offshore-Windenergieanlage
US9650211B1 (en) 2011-01-31 2017-05-16 Span Tech Llc Conveyor with enhanced cleaning capability
CA2763877A1 (en) * 2012-01-11 2013-07-11 Douglas Goei A tire assembly and a method of building a support structure in a marine environment using used tires
DE102012019554A1 (de) 2012-10-05 2014-04-10 Kme Germany Gmbh & Co. Kg Bootsanleger
CN103623688B (zh) * 2013-11-26 2016-04-13 华南理工大学 一种海水和生物法烟气脱硫脱硝一体化装置
JP5931111B2 (ja) * 2014-03-31 2016-06-08 ミネベア株式会社 検出装置
RU2596514C2 (ru) * 2014-08-05 2016-09-10 Александр Алексеевич Буслаев Способ катодной защиты рабочего колеса с лопастями турбины гидроагрегата от коррозионных и кавитационных разрушений
DE102015218512A1 (de) 2015-09-25 2017-03-30 Mtu Friedrichshafen Gmbh Wärmetauschereinrichtung für eine Brennkraftmaschine, Brennkraftmaschine mit einer solchen Wärmetauschereinrichtung, und Schifffahrzeug mit einer Brennkraftmaschine und/oder einer Wärmetauschereinrichtung
WO2020102864A1 (pt) 2018-11-22 2020-05-28 Kessel Roberto Método para coibição de bioincrustação em ambientes marinhos
US20220400656A1 (en) * 2021-06-22 2022-12-22 John Ferguson Coral Reef Float
CN114774947B (zh) * 2022-05-05 2023-05-26 青岛双瑞海洋环境工程股份有限公司 海洋钢结构电解防污装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3520790A (en) * 1966-08-02 1970-07-14 Nippon Kokan Kk Device for preventing marine creatures from sticking
US4440611A (en) 1981-12-09 1984-04-03 The Texas A & M University System Cathodic electrochemical process for preventing or retarding microbial and calcareous fouling
JPH0724822B2 (ja) * 1990-07-23 1995-03-22 大機ゴム工業株式会社 防汚方法および防汚装置
DE4109198C2 (de) 1991-03-18 1995-06-01 Stefan Dr Rer Nat Sandrock Verfahren zur Beeinflussung des pH-Wertes an Oberflächen von Festkörpern in flüssigen Medien
DE4109197C2 (de) 1991-03-18 1995-02-09 Stefan Dr Rer Nat Sandrock Verfahren zur Verhinderung von Bewuchs an untergetauchten Oberflächen durch sporadische, gesteuerte Veränderung deren physikalischer Eigenschaften
KR100187600B1 (ko) * 1991-07-24 1999-06-01 쿠니야스 테루히사 수중생물의 착색방지방법 및 그 장치
JPH07268252A (ja) 1994-03-31 1995-10-17 Mitsubishi Heavy Ind Ltd 海水浸漬網状構造物
US5633460A (en) * 1994-07-14 1997-05-27 Nec Corporation Ocean environment monitoring system and method for controlling the same
FI103190B1 (fi) * 1994-11-01 1999-05-14 Savcor Marine Oy Menetelmä eliöstön kasvun estämiseksi nesteupotuksessa olevien rakenteiden pinnoilla
US5543034A (en) 1995-01-19 1996-08-06 Hilbertz; Wolf H. Method of enhancing the growth of aquatic organisms, and structures created thereby
FR2760525B1 (fr) 1997-03-07 1999-04-16 Livbag Snc Initiateur electro-pyrotechnique constitue autour d'un circuit imprime complet
DE10238981A1 (de) 2002-08-20 2004-04-08 bioplan GmbH Institut für angewandte Biologie und Landschaftsplanung Beschichtung von Oberflächen, die mit einer Flüssigkeit in Kontakt kommen, zur Verhinderung von biologischem Bewuchs
JP2004270164A (ja) 2003-03-05 2004-09-30 Mitsubishi Heavy Ind Ltd 陰極防汚システムにおける電極パネルの設置方法および陰極防汚システム
JP2004278161A (ja) 2003-03-17 2004-10-07 Mitsubishi Heavy Ind Ltd 陰極防汚システム
DE102004039593B4 (de) 2004-08-13 2007-07-12 Hilbertz, Wolf H. Verfahren und Vorrichtung zur Extraktion von Magnesiumhydroxid aus Salzlösungen, insbesondere Meerwasser, konzentriertem Meerwasser oder Solen
JP2007268252A (ja) 2006-03-07 2007-10-18 Univ Of Ryukyus 滅菌装置及びそれを用いた滅菌方法

Also Published As

Publication number Publication date
US8361285B2 (en) 2013-01-29
EP2316584A1 (de) 2011-05-04
DE102009051768A1 (de) 2011-05-12
US20110100804A1 (en) 2011-05-05
DE102009051768B4 (de) 2013-12-12

Similar Documents

Publication Publication Date Title
EP2316584B1 (de) Elektrochemisches Antifoulingsystem für seewasserbenetzte Bauwerke
DE2900505A1 (de) Eintauchbarer oder halb eintauchbarer gegenstand und verfahren zum beschichten eines eintauchbaren oder halb eintauchbaren gegenstands
DE19704692A1 (de) Reinigungsverfahren und Reinigungssystem für Seen und Sümpfe
DE3324853A1 (de) Mechanisch-biologische klaeranlage zum reinigen von abwaessern
EP2134902B2 (de) Verfahren zur sedimentverfrachtung in staugewässern
DE60023958T2 (de) Elektrode
EP3693261B1 (de) Offshore-solaranlagenfeld und ein verfahren zu dessen aufbau
EP2003332A1 (de) Wasserkraftanlage
DE20310089U1 (de) Windenergieanlage
EP2383230B1 (de) Vorrichtung und verfahren zur phosphationenbindung durch anodische metallauflösung
DE19852956C1 (de) Vorrichtung zur Behandlung von Wasser gegen Kalkablagerungen
DE4109197C2 (de) Verfahren zur Verhinderung von Bewuchs an untergetauchten Oberflächen durch sporadische, gesteuerte Veränderung deren physikalischer Eigenschaften
DE2261744A1 (de) Verfahren zur elektrolytischen behandlung von schmutzwasser
DE2617538A1 (de) Meerwasseransaugstutzen
DE2617539A1 (de) Meerwasseransaugstutzen
DE2503670A1 (de) Verfahren zur beschleunigung oder unterbindung und umkehr der natuerlichen bewegung von fluessigkeiten in feststoffen mit poroeser und/oder semipermeabler struktur und elektroden zur durchfuehrung des verfahrens
DE408799C (de) Einrichtung zum Schutz von eisernen, mit Kupfertresse ueberspannten Filterrohren gegen elektrolytische Zerstoerungen und Verkrustungen
DE102016102881A1 (de) Verfahren zum Reinigen von Kühltürmen und/oder Rieselpaketen in Kühltürmen von Belägen
EP2100856A1 (de) Verfahren zur mikrobiologischen Behandlung von Wasser aus fliessenden und/oder stehenden Gewässern
DE202009003919U1 (de) Filtervorrichtung
CH649976A5 (de) Vorrichtung zur kalksteinverhinderung in wasserbehaeltern.
DE102021112508A1 (de) Gehegemodul, Fischzuchtanlage und Verwendung von Gehegemodulen
DE2419191A1 (de) Einrichtung zur anreicherung natuerlicher stehender gewaesser mit sauerstoff
DE102006028082A1 (de) Verfahren und Vorrichtung zur Bodenpufferung
DE102004039593A1 (de) Verfahren und Vorrichtung zur Extraktion von Magnesiumhydroxyd aus Meerwasser, Solen und konzentriertem Salzwasser

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

TPAC Observations by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

17P Request for examination filed

Effective date: 20110916

17Q First examination report despatched

Effective date: 20111114

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: STIFTUNG ALFRED-WEGENER-INSTITUT FUER POLAR- UND M

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B08B 17/00 20060101AFI20121102BHEP

Ipc: E02B 17/00 20060101ALI20121102BHEP

Ipc: C23F 13/06 20060101ALI20121102BHEP

Ipc: B63B 59/04 20060101ALI20121102BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 603033

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010002685

Country of ref document: DE

Effective date: 20130523

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: BIOPLAN GMBH INSTITUT FUER ANGEWANDTE BIOLOGIE UND

Effective date: 20130507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130627

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130627

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502010002685

Country of ref document: DE

Effective date: 20130507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130628

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130708

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130729

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130727

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20130819

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010002685

Country of ref document: DE

Owner name: ALFRED-WEGENER-INSTITUT HELMHOLTZ-ZENTRUM FUER, DE

Free format text: FORMER OWNER: STIFTUNG ALFRED-WEGENER-INSTITUT FUER POLAR- UND MEERESFORSCHUNG, 27570 BREMERHAVEN, DE

Effective date: 20140103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

BERE Be: lapsed

Owner name: STIFTUNG ALFRED-WEGENER-INSTITUT FUR POLAR- UND M

Effective date: 20131031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

PLBG Opposition deemed not to have been filed

Free format text: ORIGINAL CODE: 0009274

26D Opposition deemed not to have been filed

Opponent name: BIOPLAN GMBH INSTITUT FUER ANGEWANDTE BIOLOGIE UND

Effective date: 20140516

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131024

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130627

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: ALFRED-WEGENER-INSTITUT, HELMHOLTZ-ZENTRUM FUE, DE

Effective date: 20151119

REG Reference to a national code

Ref country code: NL

Ref legal event code: HC

Owner name: ALFRED-WEGENER-INSTITUT HELMHOLTZ-ZENTRUM FUER PO

Free format text: DETAILS ASSIGNMENT: VERANDERING VAN EIGENAAR(S), VERANDERING VAN NAAM VAN DE EIGENAAR(S); FORMER OWNER NAME: STIFTUNG ALFRED-WEGENER-INSTITUT FUER POLAR- UND MEERESFORSCHUNG

Effective date: 20150908

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 603033

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151024

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20170828

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170825

Year of fee payment: 8

Ref country code: FR

Payment date: 20170823

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170828

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010002685

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20181101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181101

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181024