EP2310538B1 - Procédés et dispositifs pour la régulation de la vitesse d'écoulement et pour le ralentissement de liquides et matières en fusion électroconducteurs non ferromagnétiques - Google Patents
Procédés et dispositifs pour la régulation de la vitesse d'écoulement et pour le ralentissement de liquides et matières en fusion électroconducteurs non ferromagnétiques Download PDFInfo
- Publication number
- EP2310538B1 EP2310538B1 EP20090781564 EP09781564A EP2310538B1 EP 2310538 B1 EP2310538 B1 EP 2310538B1 EP 20090781564 EP20090781564 EP 20090781564 EP 09781564 A EP09781564 A EP 09781564A EP 2310538 B1 EP2310538 B1 EP 2310538B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- melt stream
- magnetic field
- melt
- control device
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D3/00—Charging; Discharging; Manipulation of charge
- F27D3/15—Tapping equipment; Equipment for removing or retaining slag
- F27D3/1509—Tapping equipment
- F27D3/1536—Devices for plugging tap holes, e.g. plugs stoppers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D39/00—Equipment for supplying molten metal in rations
- B22D39/003—Equipment for supplying molten metal in rations using electromagnetic field
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D41/00—Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
- B22D41/14—Closures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D41/00—Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
- B22D41/50—Pouring-nozzles
- B22D41/60—Pouring-nozzles with heating or cooling means
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B7/00—Blast furnaces
- C21B7/12—Opening or sealing the tap holes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D3/00—Charging; Discharging; Manipulation of charge
- F27D3/15—Tapping equipment; Equipment for removing or retaining slag
- F27D3/1509—Tapping equipment
- F27D3/1518—Tapholes
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/28—Manufacture of steel in the converter
- C21C5/42—Constructional features of converters
- C21C5/46—Details or accessories
- C21C5/4653—Tapholes; Opening or plugging thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/0318—Processes
- Y10T137/0391—Affecting flow by the addition of material or energy
Definitions
- the invention relates to methods and devices for controlling the flow rate and for braking non-ferromagnetic, electrically conductive liquids and melts by electric magnetic fields when flowing through a channel or tubular guide element, in particular during the tapping of metallurgical containers such as blast furnaces and furnaces
- the DE 2 023 901 as well as the DE 2 101 547 describe an electromagnetic valve or an electromagnetic pump which surrounds an obliquely upward directed bleed pipe connected to an outflow opening in the bottom region of a container for receiving a melt.
- the pump consists of one or more multiphase electromagnetic coils which generate in the melt flow flowing through the bleed tube a magnetic traveling field with a phase sequence dependent direction which exerts a force on the melt flow in or against its flow direction to regulate the outflow velocity of the melt stream.
- an electromagnetic conveyor trough for the removal of liquid metal from a melting or holding furnace which has a sloping gutter body, which opens with its lower end in the furnace.
- an inductor which is formed for example by the stator winding of a three-phase linear motor, arranged to generate an electromagnetic traveling field, which causes an open flow of liquid metal against the force of gravity in the channel body of the conveyor trough.
- melt streams work with electromagnetic traveling fields, which are generated by electrical coil assemblies that enclose closed, for example designed as pipes drainage channels and at Use of open troughs for the melt streams are arranged under the conveyor troughs.
- electromagnetic traveling fields To generate such electromagnetic traveling fields requires a complex arrangement of a plurality of electric coils over a greater length of the drainage channels or the conveyor troughs for the melt streams.
- the DE 1 949 053 discloses an electromagnetic valve for influencing the flow velocity and the flow direction of a metal or metal alloy melt in a tubular groove.
- the mode of operation of the valve is based on the fact that an external electric current is conducted through the melt flow flowing through the channel and the Melt flow is simultaneously penetrated by an external magnetic field, such that on the in-trough and penetrated by the magnetic field portion of the melt stream, a force is exerted in or opposite to the flow direction of the melt stream.
- This electromagnetic metering valve is only intended for induction troughs in ring furnaces and discharge troughs of melting furnaces and ladles.
- Another disadvantage of this metering valve is that for the introduction of the electrical current in the melt stream electrodes are needed, which are in direct contact with the melt and thus subject to considerable wear.
- the DE 2 110 401 describes the continuous removal of pig iron from a blast furnace by means of an AC magnetic pump, which is arranged around a tubular drainage channel downstream of the branch channel.
- an AC magnetic pump With the magnetic pump, a magnetic traveling field is generated in the pig iron outflow channel, which moves axially linearly in one direction or in the opposite direction.
- a pulling effect is exerted on the molten pig iron in the spillway.
- the flow of the pig iron can be accelerated, throttled or shut off by means of the AC magnetic pump.
- the turns of the induction coils are guided concentrically around the drainage channel.
- this coil arrangement offers advantages in the promotion of electrically conductive media based on the resulting volume flow, but is unfavorable for the stopping of a melt stream, because inevitably the magnetic field strength and thus the resulting holding forces in the center of the drainage channel are weaker, that is, just there , where hydrodynamically the pressure of the melt stream is greatest.
- the WO 00/71761 A1 shows a method for controlling a flow rate of a conductive melt stream of a blast furnace at the tap.
- a stationary magnetic field penetrates the melt stream flowing in an outlet channel transversely over its entire cross section.
- a current is impressed on two electrodes laterally of the outlet channel, which continues perpendicular to the flow direction of the melt stream in this.
- the disclosed method does not show formation and utilization of eddy currents.
- the US 5 681 527 A discloses a method of controlling a flow rate of a conductive melt stream in which the melt stream is generated by applying a stationary alternating magnetic field which may be superimposed by a DC magnetic field and which substantially penetrates the melt stream transversally across its entire cross section, in a vertical channel or channel tube-like guide can be stopped.
- the force effect is based on the interaction between the magnetic field formed by induced currents and the externally applied magnetic (alternating) field.
- the invention has for its object to develop methods and apparatus for controlling the flow rate and braking a melt stream by magnetic fields, especially when tapping metallurgical containers such as blast furnaces and furnaces, which avoid the aforementioned disadvantages of known methods and devices for controlling the flow rate of melt streams and which make it possible to produce a braking effect by the action of magnetic force, which acts directly on a melt flow over its entire flow cross-section until the melt flow stops. It should be worked exclusively with induced eddy currents, so that the devices work completely contactless and wear-prone contacts for the introduction of electrical current can be avoided.
- the dependent claims include advantageous and expedient developments of the method according to claim 1 and claim 3 and the control devices according to claim 12 and claim 29.
- the first method according to the invention for regulating the flow velocity and for braking non-ferromagnetic, electrically conductive liquids and melts by electric magnetic fields during flow through a channel-like or tubular guide element, in particular during the tapping of metallurgical containers such as blast furnaces and Melting furnaces is characterized in that the liquid or melt stream is passed in a closed guide element by at least one stationary magnetic field with constant polarity, such that the magnetic field lines transversely through the melt stream over its entire cross-section, that within the magnetic field at right angles to the magnetic field lines voltages whose height is proportional to the local flow velocity of the melt stream and the local strength of the magnetic field, that the voltages across the flow cross section of the melt stream generate locally different strong electrical eddy currents, which are directed radially and axially to the flow direction of the melt stream, wherein by the interaction of Magnetic field and eddy currents locally different strong forces are generated, which influence the flow velocity of the melt stream, and that the flow profile of the melt troms is equalized and s
- the second method according to the invention for regulating the flow velocity and for braking non-ferromagnetic, electrically conductive liquids and melt streams by electric magnetic fields when flowing through a channel-like or tubular guide element in particular when tapping metallurgical containers such as blast furnaces and furnaces based on the fact that the liquid or Melting stream in a closed guide element by a stationary alternating magnetic field or by a multipolar Electromagnetic traveling field is passed with alternating polarity, such that the magnetic field lines transversely penetrate the melt stream over its entire cross-section and in the melt stream, a voltage is generated by the in the melt stream axial eddy currents in the direction of the melt stream, and that by the interaction of Magnetic field and alternating currents are generated forces that can reduce the flow velocity of the melt stream and accelerate and stop the melt stream, the frequency of the alternating field and the traveling magnetic field and the frequency of the alternating field and the moving magnetic field generating electric current are changeable and different circumstances customizable.
- a flow direction of the melt stream is generated which counteracts the flow velocity of the melt stream and can stop the melt stream.
- an electromagnetic traveling field with the eddy currents the melt stream can be stopped and the flow direction of the melt stream can be reversed.
- the frequency of the alternating electromagnetic field and the traveling magnetic field as well as the magnetic field generating electric current can be changed and adapted to different circumstances.
- the magnetic flux in a closed magnetic circuit at the entrance of the melt flow into the magnetic field and at the exit of the melt stream from the magnetic field of the magnetic circuit counteracts the direction of flow of the melt stream on this decelerating. In this way, an additive effect on the melt flow is achieved.
- the control device 1 according to FIG. 1 which is preferably used in the tapping of blast furnaces for controlling the flow rate and for braking a melt stream 2 by a stationary electric magnetic field 3 with constant polarity, has a core 4 of ferromagnetic material, which is formed as a yoke 5 with two poles 6, 7 is that form a gap 8 for receiving a closed guide element 9 in the form of a tube 10 made of an electrically conductive material, for example copper, for passing the melt stream 2.
- the laminar melt stream 2 which flows in the direction of arrow a through the guide tube 10, has the in Fig. 2a shown speed profile 11.
- Figure 2c illustrates that due to the velocity profile 11 of the melt stream 2 in combination with the stationary magnetic field 3 with constant polarity depending on the local flow velocity of the melt stream 2 differently strong voltages 15 are induced across the field lines 14 of the magnetic field 3 in the melt stream 2, which in of the stationary boundary layer of the melt stream 2 fall to zero.
- the electrically conductive material, in particular copper, the guide tube 10 of the control device 1 the strength of the radial eddy currents 16, 17, since then the eddy currents in addition to flow through the melt stream 2 through the wall of the guide tube 10.
- the braking effect on the melt stream 2 is amplified accordingly.
- the longitudinal section of the guide tube 10 of the control device 1 according to FIG. 3a according to the section line AA of FIG. 1 shows the course of the transverse to the melt stream 2 and in the direction a of the melt stream extending field lines 14 of the magnetic field 3, which extends in and transverse to the flow direction a of the melt stream 2.
- the melt stream 2 enters the magnetic field 3 in the region 19 and leaves it again in the region 20.
- the melt stream 2 Upon entry of the melt stream 2 into the magnetic field 3 in the melt stream in a plane perpendicular to the magnetic field lines 14 in FIG. 3b shown voltage 21 induced by the according to the rule of Lenz eddy currents 22 according to Figure 3c to compensate for the potential difference in the melt stream 2 are generated.
- the eddy currents 22 flow axially to the flow direction a of the melt stream 2 to outside the range of the magnetic field third
- the electrically conductive material, in particular copper, the guide tube 10 of the control device 1 the strength of the axial eddy currents 22, 24, since then the eddy currents except through the Melt flow 2 additionally flow through the wall of the guide tube 10.
- the braking effect on the melt stream 2 is amplified accordingly.
- FIG. 4 is made of electrically good conductive material such as copper guide tube 10 of the control device 1 equipped with cooling channels 26 through which a cooling medium is passed to prevent the guide tube is attacked by the liquid melt of the melt stream 2.
- melt stream 2 Due to the cooling, a solidified melt layer 27 of the melt stream 2 settles on the inner wall 10a of the guide tube 10, which acts as a protective layer against wear of the guide tube 10.
- the melt layer is thinned by wear at any point, the increased melt cooling effect at this point due to the reduced tube wall thickness immediately causes localized solidification of the melt, with the result of rebuilding the protective layer at that location.
- wear of the inner wall 10 a of the guide tube 10 is prevented by the melt stream 2.
- the tapping operation of blast furnaces can be lengthened and the flow rate of the melt stream reduced in such a way that permanent tapping is possible, and ultimately the closure and reopening of the stitch holes can be waived.
- the gap between the guided in the guide tube 10 melt stream 2 and the ends of the two poles 6, 7 must be as small as possible.
- the spacing of the ends of the poles 6, 7 and the diameter of the draft tube 10 must be chosen so that the facilities a stitch hole tamping machine and the drill bit and the drill rod for opening the taphole channel through the guide tube 10 in the gap 8 between the ends of the two poles 6, 7 of the magnetic core or the yoke 5 can be passed.
- FIG. 5 shows a further embodiment 28 of the control device for generating electric magnetic fields of constant polarity, the core 4 for amplifying the magnetic field 3 as a double yoke 29 with two yokes 5, 5a is formed, on which four induction coils 12, 13, 30, 31 are arranged.
- FIG. 6 illustrates a control device 32 with a series connection of two electromagnetic fields 3, 3a of constant polarity, through which a in Figure 7a in longitudinal section along line BB FIG. 6 represented central axial eddy current field 33 is generated with a significantly increased current intensity, in addition by the in FIG. 7b shown radial eddy current fields 34, 35 is amplified, so that a significant increase in the overall efficiency and the braking effect of the control device is achieved in a melt stream.
- FIG. 8 illustrated apparatus 36 for controlling the flow velocity, for braking and holding a melt stream 2 and for reversing the flow direction a of the melt stream 2 is built between the two poles 6a, 7a an alternating electromagnetic field 3b, which arranged by the on the poles 6a, 7a , Induction coils, not shown, which are operated with alternating current, is generated.
- 3b eddy currents 37, 38 are induced within the alternating magnetic field, which generate by interaction with the alternating magnetic field 3b Lorentz forces 39, 40, which act repulsively.
- the structure of the control device 36 with an alternating magnetic field 3b according to FIG. 8 corresponds to the structure of the control device 1 with a magnetic field 3 of constant polarity according to FIG. 1 ,
- the eddy currents and the Lorentz forces can be changed by a change in the frequency of these fields and the electric current generating the magnetic fields and thus adapted to different circumstances.
- the induction coils can be made of superconducting material.
- a superconductor has the advantage that it conducts the electrical power without loss. As a result, very high current densities are possible in a small space, so that very strong magnetic fields can be generated with low energy consumption and space requirements as well as low costs.
- FIG. 9 shows an induction coil 41 of the two formed as a superconductor induction coils for generating magnetic fields of the control device 1.
- the induction coil 41 is disposed on a pole 7 of the pole pair 6, 7, from which the magnetic field lines 14 emerge, and is preferably made of a high-temperature superconducting material, the developed its superconducting properties in more or less cooled state.
- the induction coil 41 is installed in a chamber 42 which consists of one or more layers of highly heat-insulating material 43.
- the induction coil 41 rests in the center of the chamber 42 in a cooling bath 44 of liquid gas, preferably nitrogen, which is kept at the boiling point by the evaporative cooling resulting from its evaporation, which must be below the critical temperature of the superconducting material of the induction coil 41. Since the evaporation of the liquid gas consumes over time, depending on the consumption of liquid must be refilled into the chamber.
- the superconducting induction coil is charged or discharged as required with electric current.
- FIG. 10 is the arrangement of the control device 28 for generating a force acting on a melt stream in the taphole 45 of a blast furnace 46 braking forces by means of electric magnetic fields of constant polarity as a pre-appliance in front of the outlet opening 47 of the taphole channel 45 with a connection of the taphole channel to the guide tube 10 of the control device 28 can be seen.
- a table 50 is movable, on which the control device 28 as a closed box 51 according to FIG. 11 is arranged.
- the box 51 of the control device 28 can be brought into a position in which the axis of the taphole 45 extends coaxially to the axis of the guide tube 10 of the control device 28 for the passage of the melt stream 2.
- the outlet opening 47 of the branch channel 45 and the inlet opening 53 of the guide tube 10 of the control device 28 for braking the melt stream 2 are first sealingly connected together and then the taphole 45 in the wall 54th the blast furnace 46 with a conventional drilling device bored through the guide tube 10 of the control device 28 therethrough.
- FIG. 5 is apparent, is to improve the overall efficiency of the double yoke 29 for guiding and guiding the magnetic flux, according to FIG. 5 is generated by the four induction coils 12, 13, 30, 31, formed as a closed box 51 which encloses all the components of the control device.
- the front of the box 51 is removed.
- the free space 55 of the induction coils 12, 13, 30, 31 and the guide tube 10 receiving closed box 51 is filled with fine-grained flowable material, preferably sand, to damage the two yokes 5, 5 a of Doppeljochs 29 and the induction coils 12, 13, 30, 31 to avoid even in the case when cracks in the control tube 10 should arise in operational damage and thereby conditionally liquid pig iron or slag can escape within the box 51.
- fine-grained flowable material preferably sand
- the leaked melt is collected and brought to solidification.
- a drain opening 56 in the bottom 57 of the box 51 the sand can be drained.
- a mechanical slider 58 is shown in accordance with FIG. 10 between the outlet opening 47 of the taphole 45 of a blast furnace 46 and the inlet opening 53 of the guide tube 10 of the device 28 for regulating the flow rate and for braking the emerging from the taphole 45 melt stream 2 is arranged.
- the slider 58 which consists of high temperature resistant material and is covered on its inside with refractory ceramic, is held and guided in lateral guides 59, 60 and locked by a stop 61 which engages over the slider 58 in the closed position.
- the melt stream 2 in the guide tube 10 is decelerated or nearly braked by the action of the magnetic fields, the slider 58 is closed.
- the melt stream 2 emerging from the taphole channel 45 under the internal pressure of the blast furnace 46 can be interrupted for a long time after the deceleration by the magnetic fields of the control device 28. Should the melt retained in the taphole channel solidify, it can be heated by heaters as described below FIG. 14 be melted again to initiate a new tapping.
- FIGS. 13a and 13b show a shut-off device for interrupting the melt stream 2, as the pivoting flap 62nd is formed, which is occupied on its the tap hole channel 45 side facing refractory material.
- the pivoting flap 62 is held in the closing position of stops 63 pivoted in front of the taphole channel 45.
- the slider 58 according to the Figures 12a and 12b and the pivoting flap 62 in accordance with Figures 13a and 13b can be arranged both between the outlet opening 47 of the taphole 45 and the inlet opening 53 of the guide tube 10 of the control device 28 for controlling the flow rate and for braking the melt stream 2 in the taphole 45 and in front of the outlet opening 64 of the guide tube 10 of the control device 28.
- tap hole 45 of the blast furnace 46 is formed by an outer tube 65 and an axially displaceable in this inner tube 66, wherein the outer tube 65 is fixedly connected to the lining 67 of the blast furnace 46.
- Both tubes 65, 66 are made of a high-strength, preferably ceramic material and the material of the inner tube 66, which serves to stop the Abrasionsverschl founded by the outflowing pig iron and the effluent melt is additionally resistant to abrasion.
- the inner tube 66 consists of tube sections 68, which are replaced to compensate for the Abrasionsverschl foundedes occurring at certain intervals by new pipe sections 68a, wherein the inner pipe sections 68a inserted through the outlet opening 47 of the taphole 45 against the flow direction a of the melt stream 2 in the outer tube 65 and at the same time worn pipe sections 68b are pushed through the inlet opening 69 of the taphole 45 from the outer tube 65 out into the blast furnace 46.
- the Inner tube section 68b through which the melt stream 2 enters the taphole channel 45 of the blast furnace 46, protrudes by a certain amount to protect the outer tube 65 and the outer wall 67 of the blast furnace 46 against Abrasionsverschl redesign into the blast furnace.
- This inner pipe section 68b assumes the function of the so-called mushroom on the inside of the lining of a blast furnace in the conventional tapping process.
- the time interval of the insertion of new pipe sections 68a is selected so that destruction of the inner pipe sections 68 is avoided and thereby contact of the slag or the melt with the outer pipe 65 is excluded.
- a lubricant 70 on a mineral basis, which unfolds its full lubricity at the high temperatures of the outflowing iron and the effluent slag.
- Outer tube 65 and inner tube 66 of in FIG. 15 illustrated Stichlochkanals 45 are equipped with a combined heating and cooling system, which consists of at least one mounted on the outer tube 65 hollow coil 71 of electrically conductive material, preferably copper, wherein a coil 71 flowing through the coolant solidifies in the taphole 45 after braking a melt stream 2 caused by the magnetic fields of a control device 28 for braking the melt stream after a tapping melt and wherein to initiate a re-tapping the connected to a high-frequency alternating current with high currents coil 71 in the taphole 45 solidified melt large eddy currents for melting the melt generated.
- a combined heating and cooling system which consists of at least one mounted on the outer tube 65 hollow coil 71 of electrically conductive material, preferably copper, wherein a coil 71 flowing through the coolant solidifies in the taphole 45 after braking a melt stream 2 caused by the magnetic fields of a control device 28 for braking the melt stream after a tapping melt and wherein to initiate a
- the device 72 according to FIG. 16 for controlling the flow velocity and for decelerating a non-ferromagnetic melt stream 2 to a standstill is characterized by a core 73 of a ferromagnetic eddy current damping material, preferably a transformer sheet, with a plurality of series pole pairs 74 having a gap 75 for receiving a tube 10 Form guide element for the melt stream 2, and on the pole pieces 76, 77 of the poles 78, 79 of the pole pairs 74 arranged induction coils 80, 81, with a three-phase current with a single use of the three phases L1, L2, L3 to produce a two-pole electromagnetic traveling field be fed with a maximum and a minimum of field strength.
- a core 73 of a ferromagnetic eddy current damping material preferably a transformer sheet
- a plurality of series pole pairs 74 having a gap 75 for receiving a tube 10 Form guide element for the melt stream 2
- a disadvantage of the control device according to FIG. 16 is that the amplitude of the field strength attenuates in the migration from one pole pair to the next in the intermediate positions.
- the control device 72 in Practice as shown in FIG. 17 with an increased number of pole pairs 74 and with a repeated use of each phase L1, L2, L3 of the three-phase current to produce a multi-pole traveling magnetic field with in the Figures 18a and 18b Loss of the magnetic flux density shown executed in the previously with reference to FIG. 6 described technology of eddy current gain with their double utilization is used.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Electromagnetism (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Continuous Casting (AREA)
- Blast Furnaces (AREA)
- General Induction Heating (AREA)
- Vertical, Hearth, Or Arc Furnaces (AREA)
- Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
- Furnace Details (AREA)
- Furnace Charging Or Discharging (AREA)
Claims (31)
- Procédé pour contrôler le débit d'écoulement et pour freiner des liquides et masses fondues non-ferromagnétiques électroconducteurs par des champs magnétiques électriques en passant un élément de conduit en type de canal ou de tube, en particulier pendant la coulée de réservoirs métallurgiques comme des hauts fourneaux ou des fours de fusion,
caractérisé en ce que
le flux de liquide, resp. de masse fondue (2) est guidé dans un élément de conduit (9, 10) fermé à travers au moins un champ magnétique (3) stationnaire de polarité constante de manière que les lignes du champ magnétique (14) traversent le flux de masse fondue (2) transversalement par son entière coupe transversale, que rectangulaire par rapport aux lignes du champ magnétiques (14) dans le champ magnétique (3) des voltages (15) sont induits dont la hauteur est proportionnelle au débit d'écoulement local du flux de masse fondue (2) et à la puissance locale du champ magnétique (3), que les voltages (15) génèrent des courants tourbillonnaires (16, 17, 22, 24) électriques de puissances localement différentes par la coupe transversale d'écoulement du flux de masse fondue (2) qui sont orientés radialement et axialement à la direction d'écoulement (a) du flux de masse fondue (2), dans lequel par la synergie du champ magnétique (3) et des courants tourbillonnaires (16, 17, 22, 24) des forces (18, 23, 25) de puissance localement différente sont générées qui influent sur le débit d'écoulement du flux de masse fondue (2), et qu'avec la puissance du champ magnétique croissante le profil d'écoulement du flux de masse fondue (2) est homogénéisé et freiné et en vue de diminuer la résistance électrique et ainsi amplifier des courants tourbillonnaires (22, 24) dont résultant, le flux de masse fondue (2) est guidé avec de force de freinage corrélativement amplifiée dans un élément de conduit (9, 10) d'un matériel électriquement conducteur. - Procédé selon la revendication 1,
caractérisé en ce que
l'élément de conduit (9, 10) est refroidi (26) en vue de former une couche protectrice (27) de masse fondue solidifiée contre l'usure sur la paroi entière (10a). - Procédé pour contrôler le débit d'écoulement et pour freiner des liquides et masses fondues non-ferromagnétiques électroconducteurs par des champs magnétiques électriques en passant un élément de conduit en type de canal ou de tube, en particulier pendant la coulée de réservoirs métallurgiques comme des hauts fourneaux ou des fours de fusion,
caractérisé en ce que
le flux de liquide, resp. de masse fondue (2) est guidé dans un élément de conduit (9, 10) fermé à travers un champ magnétique alternatif (3b) stationnaire ou d'un champ électromagnétique progressif multipolaire de telle manière que les lignes du champ magnétique (3b) traversent le flux de masse fondue (2) transversalement par son entière coupe transversale et un voltage est induit dans le flux de masse fondue (2) par lequel des courants tourbillonnaires axiales sont induits dans le flux de masse fondue (2) et que par la synergie du champ magnétique (3b) et des courants tourbillonnaires (37, 38) des forces (39, 40) sont générées qui peuvent diminuer et accélérer le débit d'écoulement du flux de masse fondue (2) et arrêter le flux de masse fondue (2), dans lequel la fréquence du champ alternatif (3b) et du champ magnétique progressif et aussi la fréquence du courant électrique générant le champ alternatif (3b) et le champ magnétique progressif est changeable et adaptable aux conditions différentes. - Procédé selon la revendication 1,
caractérisé en ce que
dans la région du flux de masse fondue (2) avec le plus grand débit d'écoulement, en particulier dans la région centrale du flux de masse fondue (2), les plus grandes forces (18, 23, 25) agissant sur le flux de masse fondue (2) sont générées. - Procédé selon la revendication 3,
caractérisé par
une variation de la fréquence réseau du courant triphasé pour l'opération des bobines d'induction pour générer le champ magnétique progressif et une variation de la vitesse du champ magnétique progressif causée par la variation de la fréquence du courant triphasé en vue d'influer sur les courants tourbillonnaires (37, 38) générés dans le flux de masse fondue (2) et sur les forces (39, 40) agissant sur le flux de masse fondue. - Procédé selon l'une quelconque des revendications 1 et 2,
caractérisé en ce que
par la synergie du champ magnétique (3), resp. des champs magnétiques de polarité constante et des courants tourbillonnaires (16, 17, 22, 24) une force (18, 23, 25) orientée contre la direction d'écoulement (a) du flux de masse fondue (2) est générée par laquelle le débit d'écoulement du flux de masse fondue (2) est diminuée parallèlement à une diminution des turbulences. - Procédé selon la revendication 3,
caractérisé en ce que
par la synergie du champ magnétique alternatif (3b), resp. des champs magnétiques alternatifs et aussi du champ magnétique progressif, resp. des champs magnétiques progressifs et des courants tourbillonnaires (37, 38) une force (39, 40) orientée contre la direction d'écoulement (a) du flux de masse fondue (2) est générée qui peut diminuer le débit d'écoulement du flux de masse fondue, arrêter le flux de masse fondue (2) et inverser la direction d'écoulement (a) du flux de masse fondue (a). - Procédé selon l'une quelconque des revendications 1 à 7,
caractérisé par
une variation du champ magnétique (3, 3b), resp. des champs magnétique pour amplifier ou diminuer les forces (18, 23, 25, 39, 40) agissant sur le flux de masse fondue (2). - Procédé selon l'une quelconque des revendications 1 à 8,
caractérisé en ce que
dans un circuit magnétique fermé le flux magnétique du champ magnétique (3, 3b) agit freinant sur le flux de masse fondue (2) contre la direction d'écoulement (a) quand le flux de masse fondue (2) entre dans le champ magnétique (3, 3b) et quand le flux de masse fondue (2) sort du champ magnétique du circuit magnétique. - Procédé selon l'une quelconque des revendications 1 et 2,
caractérisé par
la connexion en série d'au moins deux champs magnétiques autonomes (3, 3a) de polarité constante utilisant double le flux magnétique des champs magnétiques et utilisant double les courants tourbillonnaires (34, 35) en vue d'amplifier l'effet de freinage sur le flux de masse fondue (2). - Procédé selon l'une quelconque des revendications 1 à 10,
caractérisé par
l'utilisation des effets différents du champ magnétique (3, 3a, 3b) sur la fonte brute et le laitier pour séparer lesdites deux composants d'un flux de masse fondue (2). - Dispositif pour contrôler le débit d'écoulement et pour freiner des flux de masse fondue non-ferromagnétiques, en particulier pendant la coulée de réservoirs métallurgiques comme des hauts fourneaux ou des fours de fusion suivant le procédé selon la revendication 1,
caractérisé par
un noyau (4) en matériel ferromagnétique comprenant deux pôles (6, 7) qui forment une fissure (8) pour recevoir un élément de conduit (9) pour un flux de masse fondue (2) et comprenant des bobines d'induction (12, 13) disposées sur le noyau (4) pour générer un champ magnétique (3) stationnaire de polarité constante qui agit sure le flux de masse fondue (2) dans l'élément de conduit (9) arrangé entre les deux pôles (6, 7) et dans lequel l'élément de conduit (9) pour le flux de masse fondue (2) est formé comme tube de conduit (10) en matériel électroconducteur, en particulier en cuivre. - Dispositif de contrôle selon la revendication 12,
caractérisé en ce que
le noyau (4) est formé comme culasse (5) sur laquelle deux bobines d'induction (12, 13) sont disposées. - Dispositif de contrôle selon la revendication 13,
caractérisé en ce que
le noyau (4) est réalisé comme culasse double (29) avec deux culasses (5, 5a) sur lesquelles quatre bobines d'induction (12, 13, 30, 31) sont arrangées. - Dispositif de contrôle selon la revendication 12,
caractérisé en ce que
le tube de conduit (10) est pourvu de canaux de refroidissement (26) pour guider un agent de refroidissement. - Dispositif de contrôle selon l'une quelconque des revendications 12 à 15,
caractérisé en ce que
les dimensions des pôles (6, 7) du noyau (4) et de la fissure (8) sont adaptées aux dimensions de l'élément de conduit (9) pour le flux de masse fondue (2). - Dispositif de contrôle selon la revendication 16,
caractérisé par
une telle dimension de la fissure (8) entre les pôles (6, 7) du noyau (4) et du diamètre du tube de conduit (10) que la mèche de forage et la tige de forage d'une perceuse de trou de coulée pour ouvrir le canal de trou de coulée (45) d'un haut fourneau (46) et les dispositifs correspondants d'une machine de remplissage de trou de coulée peuvent être guidés par le tube de conduit (10) dans la fissure (8). - Dispositif de contrôle selon l'une quelconque des revendications 12 à 17,
caractérisé en ce que
les bobines d'induction (41) pour générer un champ magnétique de polarité constante sont formées comme supraconducteurs, en particulier comme supraconducteurs à haute température. - Dispositif de contrôle selon la revendication 18,
caractérisé en ce que
chaque bobine d'induction (41) est montée dans une chambre isolée contre la chaleur (42) avec un bain de gaz liquide (44) pour refroidir la bobine. - Dispositif de contrôle selon l'une quelconque des revendications 12 à 19,
caractérisé en ce que
pour guider et conduire le flux magnétique (14) la culasse (5) entoure les bobines d'induction (12, 13) en forme d'une boîte fermée (51) en vue de parvenir à un degré d'efficacité magnétique le plus grand possible. - Dispositif de contrôle selon la revendication 20,
caractérisé en ce que
l'espace libre (55) de la boîte (51) entourant les bobines d'induction (12, 13, 30, 31) est rempli d'un matériel capable de couler, préférablement du sable à grain fin. - Dispositif de contrôle selon l'une quelconque des revendications 12 à 21,
caractérisé par
un arrangement du dispositif de contrôle (28) comme dispositif d'attache en amont de l'ouverture de sortie (47) du canal de trou de coulée (45) d'un haut fourneau (46), le canal de trou de coulée (45) étant connecté à le tube de conduit (10) du dispositif de contrôle (28). - Dispositif de contrôle selon la revendication 22,
caractérisé en ce qu'
entre le dispositif de contrôle (28) arrangeable comme dispositif d'attache en amont du canal de trou de coulée (45) d'un haut fourneau (46) et l'ouverture de sortie (47) du canal de trou de coulée (45) ou en amont de l'ouverture de sortie (64) du tube de conduit (10) du dispositif de contrôle (28) un élément de blocage, par exemple une vanne (58) ou un volet pivotant (62) est arrangé pour bloquer le canal de trou de coulée à long terme après la freinage du flux de masse fondue (2) par le champ magnétique (3) du dispositif de contrôle (28). - Dispositif de contrôle selon l'une quelconque des revendications 12 à 23,
caractérisé en ce que
le canal de trou de coulée (45) du haut fourneau (46) est formé par un tube extérieur (65) et un tube intérieur (66) étant axialement glissable dans le tube extérieur dans lequel le tube extérieur (65) est rigidement connecté au garnissage intérieur (67) du haut fourneau (46), les deux tubes (65, 66) sont composés en matériel à haute résistance, préférablement céramique, et le matériel du tube intérieur (66) est en outre résistant à l'abrasion. - Dispositif de contrôle selon la revendication 24,
caractérisé en ce que
le tube intérieur (66) est composé de sections de tube (68) qui sont replacées aux intervalles définis par des sections de tube nouvelles (68a) pour compenser l'usure d'abrasion apparaissant, dans lequel les sections de tube nouvelles (68a) sont poussées à travers l'ouverture de sortie (47) du canal de trou de coulée (45) dans le tube extérieur (65) contre la direction d'écoulement (a) du flux de masse fondue (2) et simultanément des sections de tube intérieur (68b) usées sont poussées à travers l'ouverture d'entrée (69) du canal de trou de coulée (45) à partir du tube extérieur (65) dans le haut fourneau (46). - Dispositif de contrôle selon les revendications 24 et 25,
caractérisé en ce que
la section de tube intérieur (68b) usée par quelle le flux de masse fondue (2) entre dans le canal de trou de coulée (45) du haut fourneau (46) saillit dans une certaine mesure dans le haut fourneau (46) en vue de protéger le tube extérieur (65) et le garnissage intérieur (67) du haut fourneau (46). - Dispositif de contrôle selon les revendications 24 à 26,
caractérisé en ce que
le tube extérieur (65) et le tube intérieur (66) du canal de trou de coulée (45) sont pourvus d'un refroidissement pour causer une solidification de la masse fondue retenue dans le canal de trou de coulée (45) après le freinage du flux de masse fondue (2). - Dispositif de contrôle selon la revendication 27,
caractérisé par
le tube extérieur (65) et le tube intérieur (66) du canal de trou de coulée (45) étant pourvus d'un système de refroidissement et de chauffage combiné qui est composé d'au moins un tuyau spiral (71) en matériel électroconducteur monté sur le tube extérieur (65), dans lequel un fluide de refroidissement écoulant dans le tuyau spiral (71) cause une solidification de la masse fondue retenue dans le canal de trou de coulée (45) après la freinage d'un flux de masse fondue (2) par les champs magnétiques d'un dispositif de contrôle (28) et dans lequel pour commencer un procédé de coulée nouveau le tuyau spiral (71) connecté à un courant alternatif à haute fréquence des ampérages hauts cause des courants tourbillonnaires forts dans la masse fondue solidifiée dans le canal de trou de coulée (45) en vue de fondre la masse fondue solidifiée. - Dispositif pour contrôler le débit d'écoulement et pour freiner des
flux de masse fondue non-ferromagnétiques jusqu'à l'arrêt suivant le procédé selon la revendication 3,
caractérisé par
au moins un noyau (73) en matériel ferromagnétique avec des paires de pôles (74) arrangées en ligne qui forment une fissure (75) pour recevoir un élément de conduit (9) pour un flux de masse fondue (2), et des bobines d'induction (80, 81) arrangées sur les épanouissements polaires (76, 77) des pôles (78, 79) des paires de pôles (74) qui sont alimentées en courant triphasé d'une operation singulière des trois phases L1, L2, L3 pour générer un champ électromagnétique progressif bipolaire ou en courant triphasé d'une operation multiple de chaque phase L1, L2, L3 pour générer un champ magnétique progressif multipolaire qui agit sur le flux de masse fondue (2) dans l'élément de conduit (9) arrangé entre les deux pôles (78, 79) des paires de pôles (74). - Dispositif de contrôle selon la revendication 29,
caractérisé en ce que
le noyau (73) est fabriqué d'un matériel qui amortit des courants tourbillonnaires. - Dispositif de contrôle selon la revendication 30,
caractérisé en ce que
le noyau (73) est fabriqué de tôles transformateurs.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102008036799 | 2008-08-07 | ||
DE200910035241 DE102009035241B4 (de) | 2008-08-07 | 2009-07-29 | Verfahren und Vorrichtungen zur Regelung der Strömungsgeschwindigkeit und zum Abbremsen von nichtferromagnetischen, elektrisch leitfähigen Flüssigkeiten und Schmelzen |
PCT/EP2009/060216 WO2010015679A1 (fr) | 2008-08-07 | 2009-08-06 | Procédés et dispositifs pour la régulation de la vitesse d'écoulement et pour le ralentissement de liquides et matières en fusion électroconducteurs non ferromagnétiques |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2310538A1 EP2310538A1 (fr) | 2011-04-20 |
EP2310538B1 true EP2310538B1 (fr) | 2013-03-06 |
Family
ID=41507951
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20090781564 Not-in-force EP2310538B1 (fr) | 2008-08-07 | 2009-08-06 | Procédés et dispositifs pour la régulation de la vitesse d'écoulement et pour le ralentissement de liquides et matières en fusion électroconducteurs non ferromagnétiques |
Country Status (9)
Country | Link |
---|---|
US (1) | US8696976B2 (fr) |
EP (1) | EP2310538B1 (fr) |
JP (1) | JP2011529794A (fr) |
CN (1) | CN102177257B (fr) |
BR (1) | BRPI0917122A2 (fr) |
DE (1) | DE102009035241B4 (fr) |
RU (1) | RU2532213C2 (fr) |
WO (1) | WO2010015679A1 (fr) |
ZA (1) | ZA201100942B (fr) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8343416B2 (en) * | 2008-08-07 | 2013-01-01 | Tmt Tapping-Measuring-Technology Gmbh | Methods and devices for regulating the flow rate and for slowing down non-ferromagnetic, electrically conductive liquids and melts |
US20100229955A1 (en) * | 2009-03-13 | 2010-09-16 | Douglas Bell | Increasing Fluidity of a Flowing Fluid |
WO2012033454A1 (fr) | 2010-09-10 | 2012-03-15 | Jernkontoret | Production de ferrite nanométrique |
DE102013101962B3 (de) | 2013-02-27 | 2014-05-22 | Schuler Pressen Gmbh | Gießvorrichtung und Gießverfahren |
CN104317350A (zh) * | 2014-10-13 | 2015-01-28 | 上海大学 | 一种控制磁性液体流动的方法 |
JP6413959B2 (ja) * | 2015-07-08 | 2018-10-31 | トヨタ自動車株式会社 | 流体輸送装置 |
KR101931633B1 (ko) * | 2016-10-28 | 2018-12-21 | 울산과학기술원 | 회전자계형 유도전자펌프 |
CN108929929A (zh) * | 2017-05-23 | 2018-12-04 | 余凤彬 | 一种高炉钻铁口装置 |
DE102017005210B4 (de) | 2017-05-30 | 2020-10-08 | Technische Universität Ilmenau | Vorrichtung zur Ermittlung von Parametern einer elektrisch leitfähigen Substanz und dazugehöriges Verfahren |
CN109468750A (zh) * | 2018-10-15 | 2019-03-15 | 浙江理工大学 | 制备均质增强熔喷非织造材料的阶梯磁场装置及使用方法 |
CN109609713A (zh) * | 2019-01-21 | 2019-04-12 | 浙江华源通冶金科技有限公司 | 一种能够减少高炉出铁沟铁损的装置和方法 |
DE102019122000A1 (de) * | 2019-08-15 | 2021-02-18 | Ald Vacuum Technologies Gmbh | Verfahren und Vorrichtung zum Zerteilen einer elektrisch leitfähigen Flüssigkeit |
CN112311195B (zh) * | 2020-09-21 | 2021-11-23 | 江苏大学 | 一种具有轴向导叶的圆柱式线性感应电磁泵 |
CN112167501B (zh) * | 2020-09-30 | 2023-10-27 | 江南大学 | 一种连续流磁感应电场低温杀菌装置及方法 |
CN114440651A (zh) * | 2022-03-10 | 2022-05-06 | 石家庄爱迪尔电气有限公司 | 一种u型电磁推进溜槽 |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1111344B (de) * | 1952-07-25 | 1961-07-20 | Ver Leichtmetallwerke Gmbh | Verfahren und Anordnung zur Durchflussregelung fuer Metalle beim Giessen |
JPS474890Y1 (fr) | 1967-05-26 | 1972-02-21 | ||
DE1949982C2 (de) * | 1969-10-03 | 1971-05-19 | Aeg Elotherm Gmbh | Elektromagnetische Foerderrinne zur Entnahme von fluessigem Metall aus Schmelz- oder Warmhaltegefaessen sowie Verfahren zum Betrieb einer solchen Foerderrinne |
US3701357A (en) | 1968-09-30 | 1972-10-31 | Asea Ab | Electromagnetic valve means for tapping molten metal |
SE357686B (fr) * | 1969-05-21 | 1973-07-09 | Asea Ab | |
SE365731B (fr) | 1970-01-20 | 1974-04-01 | Asea Ab | |
DE2248052C2 (de) | 1972-09-30 | 1973-09-27 | Aeg-Elotherm Gmbh, 5630 Remscheidhasten | Gießvorrichtung zum Vergießen von flüssigem Metall oder Metallegierungen mit einem Schmelz- oder Warmhalteofen und einer elektromagnetischen Förderrinne |
JPS53126909U (fr) * | 1977-03-17 | 1978-10-07 | ||
JPS6028661Y2 (ja) * | 1980-08-27 | 1985-08-30 | 川崎製鉄株式会社 | 高炉の連続出銑装置 |
JPS5932296U (ja) | 1982-08-21 | 1984-02-28 | 株式会社ニツコ− | 製鋼用電気炉の水冷式出鋼樋 |
JPS63238969A (ja) * | 1987-03-25 | 1988-10-05 | Nippon Steel Corp | 溶融金属の移送速度調整装置 |
US4936374A (en) * | 1988-11-17 | 1990-06-26 | The United States Of America As Represented By The United States Department Of Energy | Sidewall containment of liquid metal with horizontal alternating magnetic fields |
JP2820430B2 (ja) * | 1989-05-16 | 1998-11-05 | 川崎製鉄株式会社 | 金属溶解炉からの溶融金属排出制御方法 |
JPH03198974A (ja) | 1989-12-26 | 1991-08-30 | Kawasaki Steel Corp | 移送流路内の溶融金属の流動制御装置 |
JPH06142853A (ja) * | 1992-11-02 | 1994-05-24 | Sumitomo Metal Ind Ltd | 液体金属の流量制御装置 |
WO1995018237A1 (fr) * | 1993-12-28 | 1995-07-06 | Kawasaki Steel Corporation | Procede de coulee a partir d'un haut fourneau |
JPH07188719A (ja) | 1993-12-28 | 1995-07-25 | Kawasaki Steel Corp | 高炉の出銑滓分離方法 |
JPH07204829A (ja) | 1994-01-12 | 1995-08-08 | Sakai Shoji Kk | コアレス型溶湯金属の給排湯装置 |
JPH07276018A (ja) | 1994-04-05 | 1995-10-24 | Nkk Corp | ノズル内の溶鋼の流動状態検出方法 |
US5681527A (en) | 1996-01-11 | 1997-10-28 | Mitsubishi Jukogyo Kabushiki Kaisha | Molten metal holding apparatus |
DE19641169C1 (de) * | 1996-10-08 | 1998-05-28 | Didier Werke Ag | Verfahren und Vorrichtung zum disontinuierlichen Abstechen von Schmelzen |
JPH10273707A (ja) | 1997-03-31 | 1998-10-13 | Kawasaki Steel Corp | 高炉出銑口における出銑滓流量の制御方法及び出銑口 |
FR2776216B1 (fr) | 1998-03-19 | 2000-06-16 | Kvaerner Metals Clecim | Installation de coulee continue, en particulier pour l'acier |
WO2000071761A1 (fr) * | 1999-05-18 | 2000-11-30 | Danieli Technology, Inc. | Frein electromagnetique dans le canal d'evacuation d'un four |
DE102008036798A1 (de) * | 2008-08-07 | 2010-02-18 | Tmt Tapping-Measuring-Technology Gmbh | Verfahren und Vorrichtung zur Regelung der Strömungsgeschwindigkeit und zum Abbremsen von Schmelzeströmen durch Magnetfelder, insbesondere beim Abstich von metallurgischen Behältern wie Hochöfen und Schmelzöfen |
US8343416B2 (en) * | 2008-08-07 | 2013-01-01 | Tmt Tapping-Measuring-Technology Gmbh | Methods and devices for regulating the flow rate and for slowing down non-ferromagnetic, electrically conductive liquids and melts |
-
2009
- 2009-07-29 DE DE200910035241 patent/DE102009035241B4/de not_active Expired - Fee Related
- 2009-08-06 US US13/057,378 patent/US8696976B2/en not_active Expired - Fee Related
- 2009-08-06 CN CN200980139898.8A patent/CN102177257B/zh not_active Expired - Fee Related
- 2009-08-06 BR BRPI0917122A patent/BRPI0917122A2/pt not_active IP Right Cessation
- 2009-08-06 WO PCT/EP2009/060216 patent/WO2010015679A1/fr active Application Filing
- 2009-08-06 JP JP2011521582A patent/JP2011529794A/ja active Pending
- 2009-08-06 EP EP20090781564 patent/EP2310538B1/fr not_active Not-in-force
- 2009-08-06 RU RU2011106578/02A patent/RU2532213C2/ru not_active IP Right Cessation
-
2011
- 2011-02-04 ZA ZA2011/00942A patent/ZA201100942B/en unknown
Also Published As
Publication number | Publication date |
---|---|
DE102009035241A1 (de) | 2010-04-15 |
CN102177257B (zh) | 2014-07-02 |
RU2011106578A (ru) | 2012-09-20 |
CN102177257A (zh) | 2011-09-07 |
ZA201100942B (en) | 2013-07-31 |
WO2010015679A1 (fr) | 2010-02-11 |
US8696976B2 (en) | 2014-04-15 |
JP2011529794A (ja) | 2011-12-15 |
EP2310538A1 (fr) | 2011-04-20 |
DE102009035241B4 (de) | 2014-06-12 |
RU2532213C2 (ru) | 2014-10-27 |
US20110168273A1 (en) | 2011-07-14 |
BRPI0917122A2 (pt) | 2015-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2310538B1 (fr) | Procédés et dispositifs pour la régulation de la vitesse d'écoulement et pour le ralentissement de liquides et matières en fusion électroconducteurs non ferromagnétiques | |
EP0155575B1 (fr) | Procédé pour le réglage d'écoulement d'un liquide conductible à l'électricité spécialement d'un bain de métal de la coulée continue et dispositif pour la mise en oeuvre du procédé | |
DE102008036790B4 (de) | Abstichkanal zur Ableitung von Eisen- und Metallschmelzen sowie flüssige Schlacke aus metallurgischen Behältern, wie Hochöfen und Schmelzöfen | |
DE3910777C2 (de) | Induktionsofen mit einem metallischen Tiegel | |
DE4338555C1 (de) | Gleichstrom-Lichtbogenofen | |
DE2629045A1 (de) | Elektromagnetische vorrichtung zur begrenzung von fluessigen metallen | |
DE1296747B (de) | Vorrichtung zur Zufuhr einer metallischen Schmelze aus einem Vorratsbehaelter | |
DE69005208T2 (de) | Elektromagnetisches Ventil zur Kontrolle des Flüssigkeitsdurchflusses in einer Leitung. | |
WO2007093213A1 (fr) | Procédé de chauffage inductif d'une pièce | |
WO1998005452A1 (fr) | Procede, dispositif et busette de coulee refractaire pour injecter et/ou couler des metaux liquides | |
WO2010015682A2 (fr) | Procédé et canaux de coulée, pour interrompre et rétablir l'écoulement de masses de fer et de métal fondu dans des canaux de trou de coulée de haut-fourneau et de canaux de décharge de fours de fusion | |
DE19651534C2 (de) | Verfahren, Vorrichtung und feuerfester Ausguß zum Angießen und/oder Vergießen von flüssigen Metallen | |
DE19880178B4 (de) | Einrichtung und Verfahren zum Gießen von Bändern aus Metall, insbesondere aus Stahl, in Zweiwalzen-Bandgießmaschinen | |
CH695090A5 (de) | Verfahren sowie eine Vorrichtung zur Herstellung eines Metallbandes an einer Rollen-Bandgiessmaschine. | |
EP0944448B1 (fr) | Inducteur a placer dans une cuve de fusion | |
DE102004044539B4 (de) | Einrichtung zum Bewegen von elektrisch leitenden flüssigen Medien | |
DE19603317A1 (de) | Verfahren zum Betreiben eines Induktors und Induktor zur Durchführung des Verfahrens | |
DE2154444C3 (de) | Verfahren und Einrichtung zur magnetohydrodynamischen Steuerung der Durchflußmenge einer elektrisch leitenden Flüssigkeit | |
DE4438119C2 (de) | Seitenwandausbildung von Zweiwalzen-Bandgießmaschinen | |
DE1120079B (de) | Einrichtung zur Regelung der Fallgeschwindigkeit eines Stromes geschmolzenen Metalls | |
DE3041741C2 (de) | Induktionsrinnenofen | |
DE2110401C (de) | Vorrichtung zum kontinuierlichen Abziehen von Roheisen aus einem Hochofen | |
DE3105129A1 (de) | Ausruestung des abstichlochs eines schmelzofens fuer nichtmetallische stoffe | |
DE2110401A1 (de) | Einrichtung zum kontinuierlichen Abstechen von Roheisen aus Hochoefen | |
DE4332220A1 (de) | Seitliche Verschlußwand einer Anlage zum kontinuierlichen Gießen von Metallen zwischen beweglichen Wänden und Anlage mit einer derartigen Wand |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20110209 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
17Q | First examination report despatched |
Effective date: 20110921 |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 599666 Country of ref document: AT Kind code of ref document: T Effective date: 20130315 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502009006416 Country of ref document: DE Effective date: 20130502 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130606 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130617 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130606 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130607 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130706 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130708 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 |
|
26N | No opposition filed |
Effective date: 20131209 |
|
BERE | Be: lapsed |
Owner name: TMT TAPPING-MEASURING-TECHNOLOGY G.M.B.H. Effective date: 20130831 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502009006416 Country of ref document: DE Effective date: 20131209 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130831 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130831 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130806 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20140821 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20140821 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20140819 Year of fee payment: 6 Ref country code: AT Payment date: 20140620 Year of fee payment: 6 Ref country code: SE Payment date: 20140821 Year of fee payment: 6 Ref country code: GB Payment date: 20140821 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20140827 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20141024 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20090806 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502009006416 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150806 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 599666 Country of ref document: AT Kind code of ref document: T Effective date: 20150806 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20150806 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150806 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20150901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150807 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150806 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20160429 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160301 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150806 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150831 |