EP2308646A1 - Verfahren zum Bearbeiten von Werkstücken mittels eines unter hohem Druck aus einer Düse austretenden schleifmittelhaltigen Wasserstrahls, Wasserstrahlanlage zur Durchführung des Verfahrens sowie Anwendung des Verfahrens - Google Patents

Verfahren zum Bearbeiten von Werkstücken mittels eines unter hohem Druck aus einer Düse austretenden schleifmittelhaltigen Wasserstrahls, Wasserstrahlanlage zur Durchführung des Verfahrens sowie Anwendung des Verfahrens Download PDF

Info

Publication number
EP2308646A1
EP2308646A1 EP10180557A EP10180557A EP2308646A1 EP 2308646 A1 EP2308646 A1 EP 2308646A1 EP 10180557 A EP10180557 A EP 10180557A EP 10180557 A EP10180557 A EP 10180557A EP 2308646 A1 EP2308646 A1 EP 2308646A1
Authority
EP
European Patent Office
Prior art keywords
abrasive
water jet
pressure
pump
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10180557A
Other languages
English (en)
French (fr)
Other versions
EP2308646B1 (de
Inventor
Philipp Roth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP2308646A1 publication Critical patent/EP2308646A1/de
Application granted granted Critical
Publication of EP2308646B1 publication Critical patent/EP2308646B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C7/00Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts
    • B24C7/0007Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts the abrasive material being fed in a liquid carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C5/00Devices or accessories for generating abrasive blasts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/023Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms double acting plate-like flexible member

Definitions

  • the present invention relates to the field of machining work pieces by means of water jets. It relates to a method for processing, in particular cleaning, of a workpiece by means of a high-pressure emerging from a nozzle, abrasive-containing water jet according to the preamble of claim 1, and a water jet system for implementation of the procedure. Moreover, the invention relates to a method for using the inventive water jet method.
  • Components of power plants are subject during their operation of a high mechanical and thermal stress. This is particularly true for the hot gas flow exposed components of gas turbines whose surfaces in addition to the extreme mechanical and thermal stresses also unwanted thermal and chemical reactions to form non-metallic layers, such as scale or corrosion coatings, are exposed with negative effects on performance. This requires regular maintenance intervals to check the condition of these components and their removal and / or cleaning, repair or replacement if necessary.
  • Sandblasting is one of the known and established methods in the field. Air compressed to a pressure of several bars, to which an abrasive is added, is directed to the surface to be treated. The particles of the abrasive which impinge on the surface with high energy cause a cleaning effect. Disadvantages of these methods, however, are inaccurate control and in a relatively coarse material removal with adverse changes in the surface quality of the workpiece.
  • Another type of cleaning method is based on the high-pressure water jet technique, with pure or added with an abrasive water jets are applied to the surface to be cleaned.
  • the high pressure water jet technique uses water pressures of up to 600 MPa to produce a high velocity water jet.
  • Such a high velocity water jet can be used as an omnidirectional tool for cutting or cleaning applications.
  • Simplified illustrated first principle 10 water is supplied via a water supply line 11 of a pressure pump 12 in a water jet system and pumped at high pressure into a pressure line 13, which leads to a suitable nozzle 14.
  • the high pressure water in the pressure line 13 then exits the nozzle 14 as necessary to form a high energy water jet.
  • soft materials such as fabrics, leather, solidified foams, food, etc. can be cut.
  • Typical parameters for pure water jet cleaning are working pressures of up to 300 MPa and volume flow rates of about 30 liters / min, resulting in high energy consumption (up to 150 kW). Corresponding high pressure pumps are also very expensive.
  • the ASWJ (abrasive suspension water jets) produced according to the third principle are generally used for mobile and special applications.
  • the advantages of the ASWJ beams compared to the AIWJ beams generated by the second principle are a higher efficiency (up to a factor of 4-5 higher) and the ability to use these beams in all layers and environments.
  • a water jet installation 30 water is again supplied via a water feed line 11 to a pressure pump 12 and pumped at high pressure (up to 200 MPa) into a pressure line 13 which leads to a suitable nozzle 14.
  • the water flow is split.
  • a part flows via a first throttle valve 27 and a mixing piece 28 directly to the nozzle 14.
  • a second, smaller part flows in a bypass line 23 via a second throttle valve 22 in a filled with abrasive and after removal of a dummy plug 25 refillable pressure tank 24 and from there via a shut-off valve 26 to the mixing piece 28. While the water flows through the pressure tank 24, it entrains the abrasive particles with.
  • the resulting water / abrasive mixture is then placed in the mixing section 28 in the main water stream given.
  • the throttle valves 22 and 27 the proportion of abrasive in the emerging from the nozzle 14 abrasive-containing water jet 29 can be controlled.
  • Such a system is for example in the document DE-A1-199 09 377 described.
  • the invention has for its object to provide such a method and such a system, which are the requirements of an application for power plants, such as turbines, grown.
  • This field of application requires effective use in confined spaces, such as in narrow gaps, and also places high demands on the surface finish after machining.
  • Essential to the invention is that in a first step at normal pressure an abrasive and water-containing abrasive suspension is provided, that in a second step, the provided abrasive suspension is brought to a working pressure above normal pressure, and that in a third step from under the working pressure standing abrasive suspension by means of a nozzle abrasive containing water jet is generated.
  • a mixture with water and the abrasive is prepared in an open mixing container to provide the abrasive suspension under normal pressure in an open mixing container. This ensures that the suspension in the mixing container can be added at any time without difficulty.
  • the mixture is kept in motion in the mixing container continuously, in particular by means of an agitator.
  • Another embodiment of the inventive method is characterized in that a working pressure of several MPa, in particular from about 15 MPa to 25 MPa, is used.
  • the comparatively low working pressure allows the use of less expensive components (eg pumps) and reduces energy consumption.
  • An outstanding advantage of the invention is also that the low working pressure allows the use of small dimensioned and flexible components of the water jet system, such as pressure lines and cleaning heads, whereby it is now possible with the help of the invention, even difficult to access surfaces effectively to treat. As a result, it is possible in certain cases to dispense with the elaborate removal of the workpieces to be cleaned. Especially in power plant construction, this represents an advantage that should not be underestimated, leading to considerable cost savings for the power plant operator.
  • an abrasive having a hardness of at least 7 according to the Mohs scale is added to the water.
  • the abrasive particles have a diameter in the range of 0.1 mm to 0.3 mm.
  • the abrasive suspension is preferably brought to the working pressure by means of a pump and the abrasive suspension brought to working pressure is conducted via a pressure line from the outlet of the pump directly to the nozzle, wherein a diaphragm pump is used in particular as a pump.
  • An embodiment of the water jet system according to the invention is characterized in that the pump is a diaphragm pump, that the diaphragm pump has a pump chamber limited by a diaphragm, which communicates via an inlet valve with the suction line and an outlet valve with the pressure line, and that the valves respectively a valve sleeve forming a central valve passage, which is closed at the downstream end by a valve member seated, against the flow direction resiliently biased closing element.
  • the use of a diaphragm pump has the advantage of low wear compared to other pump types, such as piston pumps.
  • valve bushing and the closing element of the valves are made of a hard metal, in particular tungsten carbide, and that the valve seats are ground.
  • the closing element in the area corresponding to the valve seat is spherical and biased by a compression spring in the closing direction.
  • Another embodiment of the system according to the invention is characterized in that a pressure relief valve is arranged in the pressure line.
  • the mixing container has an agitator equipped with a motor and is designed as an open container.
  • the inventive method is advantageously used for cutting and / or cleaning tasks in power plant components, especially boilers, heat exchangers and turbines.
  • Fig. 4 is the simplified scheme of working with abrasive suspension water jet system according to an embodiment of the invention reproduced.
  • the water jet system 40 comprises a mixing vessel 31, a diaphragm pump 36 connected on the input side to the mixing vessel 31 via a suction line 35 and a nozzle 44 connected to the outlet of the membrane pump 36 via a pressure line 39.
  • an abrasive suspension 34 is mixed under normal pressure and kept ready.
  • an agitator 33 is provided which is driven by a motor 32.
  • the mixing container 31 may be open at the top so that the components of the abrasive suspension can be replenished as needed and without interrupting the operation.
  • Working under normal pressure greatly facilitates the controlled addition of water and abrasive into the mixing vessel 31 to maintain a constant mixing ratio.
  • Variants of a automated loading of the mixing container 31 are preferred and can be implemented with comparatively simple technical means. Thus, a continuous operation of the water jet system is guaranteed with little equipment.
  • the diaphragm pump 36 which has a pump chamber 38 limited by a diaphragm 37, sucks in an intake stroke (movement to the left in FIG Fig. 4 ) via an inlet valve 41 from the mixing container 31 suspension and pushes them in a working stroke (movement to the right in Fig. 4
  • the suspension flows via the pressure line 39 (in which a pressure relief valve is arranged to prevent damage to the pump 36 by overpressure) directly to the nozzle 44 consisting of hard metal (tungsten carbide).
  • a abrasive-containing water jet 45 is formed, which can be punctiform, spread or otherwise shaped depending on the requirement of the application.
  • the pressure in the pressure line 39 may be higher than that of pure water ( Fig. 1 ) from 200 MPa to 15 MPa to 25 MPa, preferably 20 MPa, without impairing the cleaning effect.
  • This allows the use of small dimensioned pressure lines in the form of hoses with diameters below 12 mm.
  • Such hoses have a high flexibility (bending radius less than 50 mm) and are therefore also suitable for use in tight space conditions, as prevail, for example, within the blading of turbines.
  • a diaphragm pump 36 is used instead of a conventional piston pump whose structure and function, for example, in the document US B2-6,899,530 is described. These pumps are commonly used to pump corrosive and abrasive media, but at comparatively low pressures. In the present application, the sucked with such a pump Suspension brought to pressures of about 15 MPa to 25 MPa. An operation at these pressures is achieved in that the inlet and outlet valves 41, 42, which are subject to a special wear, according FIGS. 5 and 6 have been modified.
  • Diaphragm pumps are volumetric pumps that generate pressure by mechanical displacement of synthetic membranes. To achieve constant pressure and flow, each pump chamber (38 in Fig. 4 ) with two valves (41, 42 in Fig. 4 ) fitted. A pump usually contains three to five such pump chambers. Due to the high flow rate of the abrasive suspension when opening the valves, these are mainly exposed to wear (the erosion is very much dependent on the speed of the eroding particles).
  • the valve 42 'of Fig. 5 includes an (annular) valve sleeve 46 defining a central valve passage 50.
  • a disc-shaped closing element 48 ' is pressed by means of a compression spring 49 against a valve seat 47' at the downstream end of the valve sleeve 46 and thus closes the valve passage 50 and thus the adjacent pump chamber.
  • valve 42 ' A major problem with the valve 42 'is that if the valve does not close or does not close properly, high local flow velocities will occur at the location of the leakage and the closure member 48' and valve sleeve 46 will erode very severely. Even tungsten carbide valves are eroded in less than half an hour.
  • the reason for the lack of tightness in such standard valves is the lack of centering of the disk-shaped closing element 48 'in the valve sleeve 46:
  • the closing element 48' has no due to the (flat) shape of the standard closing element 48 '(ground radius of the valve seat 47'), there are some areas where there is no surface contact between the closing element 48 'and the valve seat 47' when the closing element 48 'is not is perfectly centered.
  • valve geometry is according to Fig. 6 been changed.
  • the closing element 48 of the valve 42 now has the shape of a ball or a spherical section. This has the consequence that, even if the closing element 48 is not perfectly centered, 47 surface contact still prevails over the entire circumference of the valve seat and the tightness is ensured. At the same time, the contact surface on the valve seat 47 has been considerably enlarged. In addition, all sealing surfaces are ground to achieve a good seal.
  • As the material for the closing element 48 and the valve sleeve 46 tungsten carbide is used. It has been proven that the necessary maintenance intervals can be considerably extended by these measures. Intervals of 50 hours and more have proven to be sufficient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Erzeugen eines unter hohem Druck aus einer Düse (44) austretenden, schleifmittelhaltigen Wasserstrahls (45). Ein ununterbrochener Betrieb bei gleichzeitig höherer Bearbeitungsleistung und geringeren Kosten wird dadurch ermöglicht, dass in einem ersten Schritt bei Normaldruck eine Schleifmittel und Wasser enthaltende Schleifmittelsuspension (34) bereit gestellt wird, dass in einem zweiten Schritt die bereit gestellte Schleifmittelsuspension (34) auf einen weit über Normaldruck liegenden Arbeitsdruck gebracht wird, und dass in einem dritten Schritt aus der unter dem Arbeitsdruck stehenden Schleifmittelsuspension (34) mittels einer Düse (44) ein schleifmittelhaltiger Wasserstrahl (45) erzeugt wird.

Description

    TECHNISCHES GEBIET
  • Die vorliegende Erfindung bezieht sich auf das Gebiet der Bearbeitung von Werkstücken mittels Wasserstrahlen. Sie betrifft ein Verfahren zum Bearbeiten, insbesondere Reinigen, eines Werkstücks mittels eines unter hohem Druck aus einer Düse austretenden, schleifmittelhaltigen Wasserstrahls gemäss dem Oberbegriff des Anspruchs 1, sowie eine Wasserstrahlanlage zur Durchführung des Verfahrens. Darüber hinaus betrifft die Erfindung ein Verfahren zur Anwendung des erfindungsgemässen Wasserstrahlverfahrens.
  • STAND DER TECHNIK
  • Komponenten von Kraftwerksanlagen unterliegen während ihres Betriebs einer hohen mechanischen und thermischen Beanspruchung. Dies gilt in besonderem Masse für dem Heissgasstrom ausgesetzte Komponenten von Gasturbinen, deren Oberflächen neben den extremen mechanischen und thermischen Beanspruchungen ausserdem unerwünschten thermischen und chemischen Reaktionen unter Bildung nichtmetallischer Schichten, wie Zunder oder Korrosionsbeläge, ausgesetzt sind mit negativen Auswirkungen auf das Betriebsverhalten. Dies macht regelmässige Wartungsintervalle zur Überprüfung des Zustands dieser Komponenten und zu deren Ausbau und/oder Reinigung, Reparatur oder ggf. Austausch erforderlich.
  • Verfahren zum Reinigen von Gasturbinenkomponenten, wie beispielsweise von Schaufeln, sind in vielfältiger Ausprägung bekannt. Zu den auf diesem Gebiet bekannten und eingeführten Verfahren zählt das Sandstrahlen. Auf einen Druck von mehreren Bar komprimierte Luft, der ein Abrasivstoff zugesetzt wird, wird auf die zu behandelnde Oberfläche geleitet. Die mit hoher Energie auf die Oberfläche auftreffenden Partikel des Abrasivstoffs bewirken einen Reinigungseffekt. Nachteile dieser Verfahren liegen jedoch in einer ungenauen Steuerung und in einem relativ groben Materialabtrag mit nachteiligen Veränderungen der Oberflächengüte des Werkstücks.
  • Eine andere Gattung von Reinigungsverfahren beruht auf der Hochdruckwasserstrahltechnik, wobei reine oder mit einem Schleifmittel versetzte Wasserstrahlen auf die zu reinigende Oberfläche aufgebracht werden. Die Hochdruckwasserstrahltechnik setzt Wasserdrücke von bis zu 600 MPa ein, um einen Hochgeschwindigkeitswasserstrahl zu erzeugen. Ein solcher Hochgeschwindigkeitswasserstrahl kann als in alle Richtungen wirkendes Werkzeug für Schneid- oder Reinigungsanwendungen eingesetzt werden.
  • Abhängig von der jeweiligen Anwendung werden nach drei verschiedenen Prinzipien arbeitende Wasserstrahlen benutzt, nämlich:
    1. (1) reine Wasserstrahlen (siehe Fig. 1),
    2. (2) schleifmittelhaltige Wasserstrahlen, die durch Eintrag eines Schleifmittels in einen vorher erzeugten reinen Wasserstrahl generiert werden (Abrasive Injection Water Jets AIWJ; siehe Fig. 2), und
    3. (3) schleifmittelhaltige Wasserstrahlen, bei denen der Strahl durch den Austritt einer unter Druck stehenden Suspension des Schleifmittels aus einer Düse erzeugt wird (Abrasive Suspension Water Jets ASWJ; siehe Fig. 3).
  • Bei dem in Fig. 1 vereinfacht dargestellten ersten Prinzip wird in einer Wasserstrahlanlage 10 Wasser über eine Wasserzuleitung 11 einer Druckpumpe 12 zugeführt und mit hohem Druck in eine Druckleitung 13 gepumpt, die zu einer geeigneten Düse 14 führt. Das unter hohem Druck stehende Wasser in der Druckleitung 13 tritt dann bei Bedarf unter Bildung eines hochenergetischen Wasserstrahls aus der Düse 14 aus. Mit derartigen reinen Wasserstrahlen können weiche Materialien wie z.B. Stoffe, Leder, verfestigte Schäume, Lebensmittel etc. geschnitten werden.
  • Für Reinigungsanwendungen werden hauptsächlich mit einem reinen Wasserstrahl arbeitende Systeme eingesetzt. Typische Parameter für die Reinigung mit reinem Wasserstrahl sind Arbeitsdrücke bis zu 300 MPa und Volumendurchsätze von etwa 30 Liter/min, die zu einem hohen Energieverbrauch führen (bis zu 150 kW). Entsprechende Hochdruckpumpen sind ebenfalls sehr teuer.
  • Bei dem in Fig. 2 dargestellten zweiten Prinzip wird in einer Wasserstrahlanlage 20 wiederum Wasser über eine Wasserzuleitung 11 einer Druckpumpe 12 zugeführt und mit hohem Druck in eine Druckleitung 13 gepumpt, die zu einer geeigneten Düse 14 führt. Das unter hohem Druck stehende Wasser in der Druckleitung 13 tritt dann bei Bedarf unter Bildung eines hochenergetischen Wasserstrahls aus der Düse 14 aus. In einem nachfolgenden Mischrohr 16 wird dem reinen Wasserstrahl dann in einer Eintragvorrichtung 17 ein Schleifmittel zugemischt, das über eine Schleifmittelzuführung 18 herangeführt worden ist. Am Ende des Mischrohres 16 tritt dann ein hochenergetischer schleifmittelhaltiger Wasserstrahl 19 aus. Eine solche Anlage ist beispielsweise in der Druckschrift WO-A1-2005/051598 beschrieben. Derartige AIWJ-Strahlen (abrasive injection water jets) werden hauptsächlich bei stationären Schneidanwendungen eingesetzt. Mit ihnen können alle technischen Materialien geschnitten werden wie:
    • alle Metalle (Stahl, Aluminium, Kupfer, Titan etc.)
    • Glas
    • Synthetische Materialien
    • Verbundwerkstoffe, und
    • Beton.
  • Die nach dem dritten Prinzip erzeugten ASWJ-Strahlen (abrasive suspension water jets) werden generell für mobile und Spezialanwendungen eingesetzt. Die Vorteile der ASWJ-Strahlen gegenüber den nach dem zweiten Prinzip erzeugten AIWJ-Strahlen sind ein höherer Wirkungsgrad (bis zu einem Faktor 4-5 höher) und die Möglichkeit, diese Strahlen in allen Lagen und Umgebungen einsetzen zu können.
  • Bei dem in Fig. 3 dargestellten dritten Prinzip wird in einer Wasserstrahlanlage 30 wiederum Wasser über eine Wasserzuleitung 11 einer Druckpumpe 12 zugeführt und mit hohem Druck (bis zu 200 MPa) in eine Druckleitung 13 gepumpt, die zu einer geeigneten Düse 14 führt. An einem T-Stück 21 wird der Wasserstrom aufgeteilt. Ein Teil strömt über ein erstes Drosselventil 27 und ein Mischstück 28 direkt zur Düse 14. Eine zweiter, kleinerer Teil fliesst in einer Bypassleitung 23 über ein zweites Drosselventil 22 in einen mit Schleifmittel gefüllten und nach Entfernung eines Blindstopfens 25 nachfüllbaren Drucktank 24 und von dort über ein Absperrventil 26 zum Mischstück 28. Während das Wasser durch den Drucktank 24 strömt, reisst es die Schleifmittelteilchen mit. Die entstehende Wasser/Schleifmittel-Mischung wird dann im Mischstück 28 in den Haupt-Wasserstrom gegeben. Mit den Drosselventilen 22 und 27 kann der Anteil an Schleifmittel in dem aus der Düse 14 austretenden schleifmittelhaltigen Wasserstrahl 29 gesteuert werden. Ein solches System ist beispielsweise in der Druckschrift DE-A1-199 09 377 beschrieben.
  • Hauptnachteile der derzeit bekannten, nach dem dritten Prinzip mit Drücken zwischen 50 MPa und 200 MPa arbeitenden Systeme sind:
    • die ungenaue Steuerung des Schleifmittelanteils in der Suspension;
    • die fehlende Möglichkeit eines kontinuierlichen Betriebs, da nach einer gewissen Zeit der Betrieb unterbrochen und der Drucktank mit Schleifmittel wieder aufgefüllt werden muss; und
    • die hohen Arbeitsdrücke erfordern dementsprechend dimensionierte Komponenten der Wasserstrahlanlage mit der Folge einer erschwerten Handhabung und eines begrenzten Einsatzbereichs hinsichtlich enger Raumverhältnisse.
    DARSTELLUNG DER ERFINDUNG
  • Es ist Aufgabe der Erfindung, ein insbesondere für Reinigungsanwendungen geeignetes Verfahren zum Behandeln von Werkstücken mittels eines unter hohem Druck aus einer Düse austretenden, schleifmittelhaltigen Wasserstrahls anzugeben, welches kontinuierliche betrieben werden kann und die vorstehend geschilderten Nachteile bekannter Verfahren vermeidet, sowie eine Wasserstrahlanlage zur Durchführung des Verfahrens zu schaffen.
  • Insbesondere liegt der Erfindung die Aufgabe zugrunde, ein solches Verfahren und eine solche Anlage bereitzustellen, die den Anforderungen eines Einsatzes für Kraftwerksanlagen, beispielsweise Turbinen, gewachsen sind. Dieses Anwendungsgebiet erfordert einen wirksamen Einsatz unter engen Raumverhältnissen, wie in engen Spalten, und stellt darüber hinaus hohe Anforderungen an die Oberflächengüte nach der Bearbeitung.
  • Diese Aufgaben werden durch die Gesamtheit der Merkmale der unabhängigen Ansprüche gelöst. Wesentlich für die Erfindung ist, dass in einem ersten Schritt bei Normaldruck eine Schleifmittel und Wasser enthaltende Schleifmittelsuspension bereitgestellt wird, dass in einem zweiten Schritt die bereitgestellte Schleifmittelsuspension auf einen über Normaldruck liegenden Arbeitsdruck gebracht wird, und dass in einem dritten Schritt aus der unter dem Arbeitsdruck stehenden Schleifmittelsuspension mittels einer Düse ein schleifmittelhaltiger Wasserstrahl erzeugt wird.
  • Durch die bei Normaldruck vorgenommen Zubereitung der Suspension kann fortlaufend Suspension bereitgestellt werden, ohne dass die Strahlerzeugung und -anwendung unterbrochen werdenmüssen. Das im Wasser enthaltene Schleifmittel verstärkt dabei in an sich bekannter Weise massiv die Reinigungswirkung des Strahls.
  • Gemäss einer Ausgestaltung der Erfindung wird zur Bereitstellung der unter Normaldruck stehenden Schleifmittelsuspension in einem offenen Mischbehälter eine Mischung mit Wasser und dem Schleifmittel hergestellt. Hierdurch ist gewährleistet, dass die Suspension im Mischbehälter jederzeit ohne Schwierigkeiten ergänzt werden kann.
  • Vorzugsweise wird die Mischung in dem Mischbehälter fortlaufend, insbesondere mittels eines Rührwerks, in Bewegung gehalten.
  • Eine andere Ausgestaltung des erfindungsgemässen Verfahrens zeichnet sich dadurch aus, dass ein Arbeitsdruck von mehreren MPa, insbesondere von etwa 15 MPa bis 25 MPa, verwendet wird. Der vergleichsweise niedrige Arbeitsdruck ermöglicht den Einsatz kostengünstigerer Komponenten (z.B. Pumpen) und reduziert den Energieverbrauch. Ein herausragender Vorteil der Erfindung besteht ausserdem darin, dass der niedrige Arbeitsdruck den Einsatz gering dimensionierter und flexibler Komponenten der Wasserstrahlanlage, wie Druckleitungen und Reinigungsköpfe, gestattet, wodurch es mit Hilfe der Erfindung nunmehr möglich ist, auch schwer zugängliche Oberflächen wirksam zu behandeln. Dadurch kann in bestimmten Fällen auf den aufwändigen Ausbau der zu reinigenden Werkstücke verzichtet werden. Gerade im Kraftwerksbau stellt dies einen nicht zu unterschätzenden Vorteil dar, der zu erheblichen Kosteneinsparungen für den Kraftwerksbetreiber führt.
  • Nach einer weiteren bevorzugten Ausführungsart wird dem Wasser ein Schleifmittel mit einer Härte von mindestens 7 gemäss Mohs-Skala zugesetzt. Die Schleifmittelpartikel weisen einen Durchmesser im Bereich von 0,1 mm bis 0,3 mm auf.
  • Bevorzugt wird die Schleifmittelsuspension mittels einer Pumpe auf den Arbeitsdruck gebracht und die auf Arbeitsdruck gebrachte Schleifmittelsuspension über eine Druckleitung vom Ausgang der Pumpe direkt zur Düse geleitet, wobei als Pumpe insbesondere eine Membranpumpe verwendet wird.
  • Eine Ausgestaltung der erfindungsgemässen Wasserstrahlanlage ist dadurch gekennzeichnet, dass die Pumpe eine Membranpumpe ist, dass die Membranpumpe eine von einer Membran begrenzte Pumpenkammer aufweist, die über ein Einlassventil mit der Ansaugleitung und über ein Auslassventil mit der Druckleitung in Verbindung steht, und dass die Ventile jeweils eine einen zentralen Ventildurchgang ausbildende Ventilbuchse umfassen, die am stromabwärts liegenden Ende durch ein auf einem Ventilsitz aufliegendes, entgegen der Strömungsrichtung federnd vorgespanntes Schliesselement verschlossen ist. Der Einsatz einer Membranpumpe hat im Vergleich zu anderen Pumpengattungen, wie Kolbenpumpen, den Vorteil eines geringen Verschleisses.
  • Eine bevorzugte Weiterbildung zeichnet sich dadurch aus, dass die Ventilbuchse und das Schliesselement der Ventile aus einem Hartmetall, insbesondere Wolframcarbid, hergestellt sind, und dass die Ventilsitze eingeschliffen sind. Insbesondere ist das Schliesselement in dem zum Ventilsitz korrespondierenden Bereich kugelförmig ausgebildet und durch eine Druckfeder in Schliessrichtung vorgespannt.
  • Eine andere Ausgestaltung der erfindungsgemässen Anlage ist dadurch gekennzeichnet, dass in der Druckleitung ein Überdruckventil angeordnet ist.
  • Vorzugsweise weist der Mischbehälter ein mit einem Motor ausgestattetes Rührwerk auf und ist als offener Behälter ausgebildet.
  • Das erfindungsgemässe Verfahren wird mit Vorteil für Schneid- und/oder Reinigungsaufgaben bei Kraftwerkskomponenten, insbesondere Kesseln, Wärmeübertragern und Turbinen eingesetzt.
  • Durch Anwendung der erfindungsgemässen, in den Ansprüchen näher definierten Merkmale ist es erstmals gelungen, die Vorteile verschiedener bekannter Verfahren der Wasserstrahltechnik in vorteilhafter Weise zu vereinen und dieser Technik damit neue Anwendungsmöglichkeiten zu erschliessen.
  • KURZE ERLÄUTERUNG DER FIGUREN
  • Die Erfindung soll nachfolgend anhand von Ausführungsbeispielen im Zusammenhang mit der Zeichnung näher erläutert werden. Es zeigen
  • Fig. 1
    das vereinfachte Schema einer mit reinem Wasser arbeitenden Wasserstrahlanlage nach dem Stand der Technik;
    Fig. 2
    das vereinfachte Schema einer mit Schleifmittelzusatz nach dem Injektionsprinzip arbeitenden Wasserstrahlanlage nach dem Stand der Technik;
    Fig. 3
    das vereinfachte Schema einer mit Schleifmittelsuspension arbeitenden Wasserstrahlanlage nach dem Stand der Technik;
    Fig. 4
    das vereinfachte Schema einer mit Schleifmittelsuspension arbeitenden Wasserstrahlanlage gemäss einem Ausführungsbeispiel der Erfindung;
    Fig. 5
    den Längsschnitt durch ein herkömmliches Ein- bzw. Auslassventil einer für die Anlage nach Fig. 4 geeigneten Membranpumpe; und
    Fig. 6
    den Längsschnitt durch ein gegenüber Fig. 5 modifiziertes und für die Anlage nach Fig. 4 optimiertes Ein- bzw. Auslassventil.
    WEGE ZUR AUSFÜHRUNG DER ERFINDUNG
  • In Fig. 4 ist das vereinfachte Schema einer mit Schleifmittelsuspension arbeitenden Wasserstrahlanlage gemäss einem Ausführungsbeispiel der Erfindung wiedergegeben. Die Wasserstrahlanlage 40 umfasst einen Mischbehälter 31, eine eingangsseitig mit dem Mischbehälter 31 über eine Ansaugleitung 35 in Verbindung stehende Membranpumpe 36 und eine über eine Druckleitung 39 an den Ausgang der Membranpumpe 36 angeschlossene Düse 44.
  • Im Mischbehälter 31 wird unter Normaldruck eine Schleifmittelsuspension 34 angemischt und bereitgehalten. Zum Mischen und Aufrechterhalten der Schleifmittelsuspension ist ein Rührwerk 33 vorgesehen, das von einem Motor 32 angetrieben wird. Der Mischbehälter 31 kann oben offen sein, so dass bei Bedarf und ohne Betriebsunterbruch die Komponenten der Schleifmittelsuspension nachgefüllt werden können. Das Arbeiten unter Normaldruck erleichtert erheblich die kontrollierte Zugabe von Wasser und Schleifmittel in den Mischbehälter 31 zur Aufrechterhaltung eines konstanten Mischungsverhältnisses. Varianten einer automatisierten Beschickung des Mischbehälters 31 sind dabei bevorzugt und mit vergleichsweise einfachen technischen Mitteln umsetzbar. Somit ist mit geringem apparativen Aufwand ein kontinuierlicher Betrieb der Wasserstrahlanlage gewährleistet.
  • Die Membranpumpe 36, die eine von einer Membran 37 begrenzte Pumpenkammer 38 aufweist, saugt bei einem Ansaughub (Bewegung nach links in Fig. 4) über ein Einlassventil 41 aus dem Mischbehälter 31 Suspension an und drückt sie in einem Arbeitshub (Bewegung nach rechts in Fig. 4) über ein Auslassventil 42 mit hohem Druck in die Druckleitung 39. Die Suspension fliesst über die Druckleitung 39 (in der ein Überdruckventil angeordnet ist, um Beschädigungen der Pumpe 36 durch Überdruck zu verhindern) direkt zu der aus Hartmetall (Wolframcarbid) bestehenden Düse 44. Dort wird ein schleifmittelhaltiger Wasserstrahl 45 ausgebildet, der je nach Erfordernis des Anwendungsfalls punktförmig, gespreizt oder anderweitig geformt sein kann.
  • Wegen des Schleifmittelanteils im Wasserstrahl kann der Druck in der Druckleitung 39 gegenüber der mit reinem Wasser arbeitenden Technik (Fig. 1) von 200 MPa auf 15 MPa bis 25 MPa, vorzugsweise 20 MPa abgesenkt werden, ohne dass die Reinigungswirkung beeinträchtigt wird. Dies erlaubt den Einsatz geringer dimensionierter Druckleitungen in Form von Schläuchen mit Durchmessern unter 12 mm. Derartige Schläuche besitzen eine hohe Flexibilität (Biegeradius kleiner als 50 mm) und sind daher auch für den Einsatz unter engen Raumverhältnissen, wie sie beispielsweise innerhalb der Beschaufelung von Turbinen herrschen, geeignet.
  • Wegen des Schleifmittelanteils in der gepumpten Suspension wird statt einer herkömmlichen Kolbenpumpe eine Membranpumpe 36 eingesetzt, deren Aufbau und Funktion beispielsweise in der Druckschrift US-B2-6,899,530 beschrieben ist. Diese Pumpen werden üblicherweise zum Pumpen von korrosiven und abrasiven Medien eingesetzt, dies jedoch bei vergleichsweise niedrigen Drücken. Im vorliegenden Anwendungsfall wird mit einer solchen Pumpe die angesaugte Suspension auf Drücke von etwa 15 MPa bis 25 MPa gebracht. Ein Betrieb bei diesen Drücken wird dadurch erreicht, dass die Ein- und Auslassventile 41, 42, die einem besonderen Verschleiss unterliegen, gemäss Fig. 5 und 6 modifiziert worden sind.
  • Membranpumpen sind volumetrisch arbeitende Pumpen, die durch die mechanische Verschiebung von synthetischen Membranen Druck erzeugen. Um einen konstanten Druck und Durchfluss zu erreichen, ist jede Pumpenkammer (38 in Fig. 4) mit zwei Ventilen (41, 42 in Fig. 4) ausgestattet. Eine Pumpe enthält meist drei bis fünf solcher Pumpenkammern. Wegen der hohen Strömungsgeschwindigkeit der abrasiven Suspension beim Öffnen der Ventile sind hauptsächliche diese dem Verschleiss ausgesetzt (die Erosion ist sehr stark von der Geschwindigkeit der erodierenden Partikel abhängig).
  • Die standardmässige Konstruktion der Ventile der Pumpenkammer einer Membranpumpe der beschriebenen Art ist in Fig. 5 wiedergegeben: Das Ventil 42' der Fig. 5 umfasst eine (ringförmige) Ventilbuchse 46, die einen zentralen Ventildurchgang 50 begrenzt. Ein scheibenförmiges Schliesselement 48' wird mittels einer Druckfeder 49 gegen einen Ventilsitz 47' am stromabwärts gelegenen Ende der Ventilbuchse 46 gepresst und schliesst so den Ventildurchgang 50 und damit die angrenzende Pumpenkammer ab. Wenn durch die Membran 37 Druck in der Pumpenkammer 38 erzeugt wird, hebt das Schliesselement 48' gegen den Druck der Feder 49 vom Ventilsitz 47' ab und eine Volumenstrom verlässt die Pumpenkammer 38 durch den zugehörigen Ventildurchgang.
  • Ein Hauptproblem besteht beim Ventil 42' darin, dass, wenn das Ventil nicht oder nicht mehr richtig schliesst, hohe lokale Strömungsgeschwindigkeiten am Ort der Leckage entstehen und das Schliesselement 48' und die Ventilbuchse 46 sehr stark erodieren. Selbst Wolframcarbid-Ventile werden so in weniger als einer halben Stunde erodiert. Der Grund für die mangelnde Dichtigkeit bei solchen Standardventilen ist die mangelnde Zentrierung des scheibenförmigen Schliesselements 48' in der Ventilbuchse 46: Das Schliesselement 48' hat keine ausreichende Führung, und wegen der (flachen) Form des standardmässigen Schliesselements 48' (eingeschliffener Radius des Ventilsitzes 47') gibt es einige Bereiche, in denen kein Flächenkontakt zwischen dem Schliesselement 48' und dem Ventilsitz 47' besteht, wenn das Schliesselement 48' nicht perfekt zentriert ist.
  • Um hier Abhilfe zu schaffen, ist die Ventilgeometrie gemäss Fig. 6 verändert worden. Das Schliesselement 48 des Ventils 42 hat nunmehr die Form einer Kugel bzw. eines Kugelabschnitts. Dies hat zur Folge, dass, auch wenn das Schliesselement 48 nicht perfekt zentriert ist, dennoch am ganzen Umfang des Ventilsitzes 47 Flächenkontakt herrscht und die Dichtigkeit gewährleistet ist. Gleichzeitig ist die Kontaktfläche am Ventilsitz 47 erheblich vergrössert worden. Darüber hinaus sind alle Dichtflächen eingeschliffen, um eine gute Abdichtung zu erzielen. Als Material für das Schliesselement 48 und die Ventilbuchse 46 wird Wolframcarbid verwendet. Es hat sich erwiesen, dass durch diese Massnahmen die erforderlichen Wartungsintervalle erheblich verlängert werden können. Intervalle von 50 Betriebsstunden und mehr haben sich als ausreichend erwiesen.
  • Mit einer Anlage gemäss Fig. 4 kann nun im Dauerbetrieb ein schleifmittelhaltiger Wasserstrahl mit einem Druck von etwa 15 MPa bis zu 25 MPa erzeugt werden, der mit besonderem Vorteil auf dem Gebiet der Kraftwerkstechnik eingesetzt werden kann. Insbesondere können folgende Reinigungsaufgaben erledigt werden:
    • Bei Dampfkesseln können die Rohre der Rohrbündel gereinigt werden.
    • Bei Turbinen können die Beschaufelung oder andere Komponenten gereinigt werden, wobei auf einen Ausbau derselben häufig verzichtet werden kann, da nach der Erfindung selbst Zwischenräume zwischen den Schaufeln im Einbauzustand wirksam gereinigt werden können. Dies erlaubt erhebliche Kosteneinsparungen gegenüber herkömmlichen Methoden der Reinigung.
  • Des weiteren lassen sich nach der Erfindung im Kraftwerksbereich mit Vorteil Oberflächen bearbeiten:
    • Wasserstrahl-Honen: Es werden die zentralen Bohrungen von Dampfturbinen-Rotoren bearbeitet. Hierdurch lassen sich gegenüber herkömmlichen Methoden die Maschinenzeiten erheblich reduzieren.
    • Schaufel-Aufarbeitung: Die Schaufeloberflächen von Gasturbinen werden bearbeitet, um Oberflächenrisse zu beseitigen.
  • Gegenüber den auf reinen Wasserstrahlen basierenden Systemen ergeben sich dabei die folgenden Vorteile:
    • Weniger Energieverbrauch;
    • Verbesserte Reinigungsleistung;
    • Einstellbare Oberflächeneigenschaften bei den bearbeiteten Oberflächen;
    • Überlegene Oberflächengüte;
    • Einstellbare Materialabtragungsraten;
    • Verbesserte Handhabbarkeit aufgrund des verringerten Druckes;
    • Geringer dimensionierte Zuleitungen (beispielsweise mit einem Schlauchdurchmesser von weniger als 12 mm) und Düsen;
    • Geringer Biegeradius der Zuleitung von weniger als 50 mm ermöglicht einen Einsatz unter engen Raumverhältnissen, selbst in engen Spalten;
    • Geringere Anlagenkosten.
    BEZUGSZEICHENLISTE
  • 10,20,30,40
    Wasserstrahlanlage
    11
    Wasserzuleitung
    12
    Druckpumpe
    13,39
    Druckleitung
    14,44
    Düse
    15
    Wasserstrahl
    16
    Mischrohr
    17
    Eintragvorrichtung
    18
    Schleifmittelzuführung
    19,29,45
    Wasserstrahl (schleifmittelhaltig)
    21
    T-Stück
    22,27
    Drosselventil
    23
    Bypassleitung
    24
    Drucktank (mit Schleifmittel)
    25
    Blindstopfen
    26
    Absperrventil
    28
    Mischstück
    31
    Mischbehälter
    32
    Motor
    33
    Rührwerk
    34
    Schleifmittelsuspension
    35
    Ansaugleitung
    36
    Membranpumpe
    37
    Membran
    38
    Pumpenkammer
    41
    Einlassventil
    42,42'
    Auslassventil
    43
    Überdruckventil
    46
    Ventilbuchse
    47,47'
    Ventilsitz
    48,48'
    Schliesselement
    49
    Druckfeder
    50
    Ventildurchgang

Claims (17)

  1. Verfahren zum Bearbeiten eines Werkstücks mittels eines unter hohem Druck aus einer Düse (44) austretenden, schleifmittelhaltigen Wasserstrahls (45), dadurch gekennzeichnet, dass in einem ersten Schritt bei Normaldruck eine Schleifmittel und Wasser enthaltende Schleifmittelsuspension (34) bereitgestellt wird, dass in einem zweiten Schritt die bereitgestellte Schleifmittelsuspension (34) auf einen über Normaldruck liegenden Arbeitsdruck gebracht wird, dass in einem dritten Schritt die unter dem Arbeitsdruck stehende Schleifmittelsuspension (34) einer Düse (44) zugeführt wird, und dass in einem vierten Schritt ein schleifmittelhaltiger Wasserstrahl zwecks Beaufschlagung der Werkstückoberfläche aus der Düse (44) austritt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass zur Bereitstellung der unter Normaldruck stehenden Schleifmittelsuspension (34) in einem offenen Mischbehälter (31) eine Mischung mit Wasser und dem Schleifmittel hergestellt wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Mischung in dem Mischbehälter (31) fortlaufend, insbesondere mittels eines Rührwerks (32, 33), in Bewegung gehalten wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Schleifmittelsuspension auf einen Arbeitsdruck von mehreren MPa gebracht wird.
  5. Verfahren nach Anspruch 4, gekennzeichnet durch einen Arbeitsdruck von 15 MPa bis 25 MPa.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Schleifmittel eine Härte von mindestens 7 gemäss Mohs-Skala aufweist.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Schleifmittelpartikel einen Durchmesser im Bereich von 0,1 mm bis 0,3 mm aufweisen.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Schleifmittelsuspension (34) mittels einer Pumpe (36) auf den Arbeitsdruck gebracht wird, und dass die auf Arbeitsdruck gebrachte Schleifmittelsuspension (34) über eine Druckleitung (39) vom Ausgang der Pumpe (36) direkt zur Düse (44) geleitet wird.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass als Pumpe eine Membranpumpe (36) verwendet wird.
  10. Wasserstrahlanlage (40) zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 9, welche Wasserstrahlanlage (40) eine Düse (44) zur Ausbildung eines Wasserstrahls (45) umfasst, welche über eine Druckleitung (39) an den Ausgang einer Druck erzeugenden Pumpe (36) angeschlossen ist, dadurch gekennzeichnet, dass die Pumpe (36) eingangsseitig über eine Ansaugleitung (35) an einen eine Schleifmittelsuspension (34) enthaltenden Mischbehälter (31) angeschlossen ist.
  11. Wasserstrahlanlage nach Anspruch 10, dadurch gekennzeichnet, dass die Pumpe eine Membranpumpe (36) ist.
  12. Wasserstrahlanlage nach Anspruch 11, dadurch gekennzeichnet, dass die Membranpumpe (36) eine von einer Membran (37) begrenzte Pumpenkammer (38) aufweist, die über ein Einlassventil (41) mit der Ansaugleitung (35) und über ein Auslassventil (42) mit der Druckleitung (39) in Verbindung steht, und dass die Ventile (41, 42) jeweils eine einen zentralen Ventildurchgang (50) ausbildende Ventilbuchse (46) umfassen, die am stromabwärts liegenden Ende durch ein auf einem Ventilsitz (47) aufliegendes, entgegen der Strömungsrichtung federnd vorgespanntes Schliesselement (48) verschlossen ist.
  13. Wasserstrahlanlage nach Anspruch 12, dadurch gekennzeichnet, dass die Ventilbuchse (46) und das Schliesselement (48) der Ventile (41, 42) aus einem Hartmetall, insbesondere Wolframcarbid, hergestellt sind, und dass die Ventilsitze (47) eingeschliffen sind.
  14. Wasserstrahlanlage nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass das Schliesselement (48) in dem zum Ventilsitz (47) korrespondierenden Bereich kugelförmig ausgebildet und durch eine Druckfeder (49) in Schliessrichtung vorgespannt ist.
  15. Wasserstrahlanlage nach einem der Ansprüche 10 bis 14, dadurch gekennzeichnet, dass in der Druckleitung (39) ein Überdruckventil (43) angeordnet ist.
  16. Wasserstrahlanlage nach einem der Ansprüche 10 bis 15, dadurch gekennzeichnet, dass der Mischbehälter (31) ein mit einem Motor (32) ausgestattetes Rührwerk (33) aufweist, und dass der Mischbehälter (31) als offener Behälter ausgebildet ist.
  17. Anwendung des Verfahrens nach einem der Ansprüche 1 bis 9 für Schneid- und/oder Reinigungsaufgaben an Kraftwerkskomponenten, insbesondere Kesseln, Wärmeüberträgern oder Turbinen.
EP10180557.0A 2009-10-01 2010-09-28 Verfahren zum Bearbeiten von Werkstücken mittels eines unter hohem Druck aus einer Düse austretenden schleifmittelhaltigen Wasserstrahls, Wasserstrahlanlage zur Durchführung des Verfahrens sowie Anwendung des Verfahrens Not-in-force EP2308646B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009043697A DE102009043697A1 (de) 2009-10-01 2009-10-01 Verfahren zum Bearbeiten von Werkstücken mittels eines unter hohem Druck aus einer Düse austretenden schleifmittelhaltigen Wasserstrahls, Wasserstrahlanlage zur Durchführung des Verfahrens sowie Anwendung des Verfahrens

Publications (2)

Publication Number Publication Date
EP2308646A1 true EP2308646A1 (de) 2011-04-13
EP2308646B1 EP2308646B1 (de) 2014-02-26

Family

ID=43618100

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10180557.0A Not-in-force EP2308646B1 (de) 2009-10-01 2010-09-28 Verfahren zum Bearbeiten von Werkstücken mittels eines unter hohem Druck aus einer Düse austretenden schleifmittelhaltigen Wasserstrahls, Wasserstrahlanlage zur Durchführung des Verfahrens sowie Anwendung des Verfahrens

Country Status (4)

Country Link
US (1) US8602844B2 (de)
EP (1) EP2308646B1 (de)
DE (1) DE102009043697A1 (de)
MY (1) MY155526A (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019133827A1 (de) 2018-12-18 2020-06-18 Technische Universität Chemnitz Vorrichtung und Verfahren zum Schalten einer Hochdruck-Suspension

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130084190A1 (en) * 2011-09-30 2013-04-04 General Electric Company Titanium aluminide articles with improved surface finish and methods for their manufacture
US10155298B2 (en) * 2011-12-21 2018-12-18 Sikorsky Aircraft Corporation Alpha case removal process for a main rotor blade spar
US9011205B2 (en) * 2012-02-15 2015-04-21 General Electric Company Titanium aluminide article with improved surface finish
US11260503B2 (en) * 2013-12-20 2022-03-01 Flow International Corporation Abrasive slurry delivery systems and methods
US11904435B2 (en) * 2017-03-31 2024-02-20 Ant Applied New Technologies Ag Water-abrasive-suspension cutting system and method for water-abrasive-suspension cutting
CN108655960A (zh) * 2018-04-10 2018-10-16 西安蓝想新材料科技有限公司 双高压混合清洗设备
CN109664204B (zh) * 2019-01-02 2024-08-27 中国矿业大学 一种超高压前混合磨料射流智能连续供料系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2073630A (en) * 1980-04-12 1981-10-21 Ogle & Sons Ltd G C Sand-blasting equipment
DE3121103A1 (de) * 1980-05-31 1982-02-11 Otto Tuchenhagen GmbH & Co KG, 2059 Büchen "membranpumpe"
US4408626A (en) * 1980-10-08 1983-10-11 Tlv Co., Ltd. Valve seat assembly for a steam trap
US4854090A (en) * 1985-10-10 1989-08-08 The British Hydromechanics Research Association Feeding abrasive material
US4872293A (en) * 1986-02-20 1989-10-10 Kawasaki Jukogyo Kabushiki Kaisha Abrasive water jet cutting apparatus
US5160548A (en) * 1991-09-09 1992-11-03 Ohmstede Mechanical Services, Inc. Method for cleaning tube bundles using a slurry
WO1997031752A1 (en) * 1996-03-01 1997-09-04 Extrude Hone Corporation Abrasive jet stream polishing
WO2008001111A1 (en) * 2006-06-29 2008-01-03 Bhr Group Limited Water jet cutting apparatus

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2984188A (en) * 1958-10-10 1961-05-16 Walbro Corp Bladder fuel pump
US4818191A (en) * 1982-03-31 1989-04-04 Neyra Industries, Inc. Double-acting diaphragm pump system
GB2170128B (en) * 1985-01-16 1988-11-16 Fluid Eng Prod Apparatus for generating an abrasive fluid jet
US4669230A (en) * 1986-01-03 1987-06-02 Fuji Seiki Machine Works, Ltd. Wet blasting machine with automatic control system for slurry concentration
DE29612046U1 (de) * 1996-07-11 1996-09-12 Otto Christ GmbH & Co., 87734 Benningen Vorrichtung zum Reinigen von verschmutzten Oberflächen
DE19909377C2 (de) 1999-03-04 2002-03-21 Kurt Hoerger Verfahren und Vorrichtung zum Schneiden und Abtragen von Hindernissen und Ablagerungen in nichtbegehbaren und begehbaren Rohren oder Kanälen
DE19910563A1 (de) * 1999-03-10 2000-09-14 Torbo Engineering Keizers Gmbh Reinigungsgerät und -Verfahren
US6899530B2 (en) 2002-10-31 2005-05-31 Wanner Engineering, Inc. Diaphragm pump with a transfer chamber vent with a longitudinal notch on the piston cylinder
US7485027B2 (en) 2003-11-19 2009-02-03 Donald Stuart Miller Abrasive entrainment
US7040962B2 (en) * 2003-11-19 2006-05-09 Fuji Seiki Machine Works, Ltd. Ice blasting apparatus and trimming method for film insert molding
KR100709587B1 (ko) * 2004-11-11 2007-04-20 가부시끼가이샤 후지세이사쿠쇼 연마재 및 동 연마재의 제조 방법, 및 상기 연마재를이용한 블라스트 가공 방법
US7749049B2 (en) * 2006-05-25 2010-07-06 Lightmachinery Inc. Submerged fluid jet polishing
US7455573B2 (en) * 2006-09-06 2008-11-25 Lightmachinery Inc. Fluid jet polishing with constant pressure pump
US8257147B2 (en) * 2008-03-10 2012-09-04 Regency Technologies, Llc Method and apparatus for jet-assisted drilling or cutting

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2073630A (en) * 1980-04-12 1981-10-21 Ogle & Sons Ltd G C Sand-blasting equipment
DE3121103A1 (de) * 1980-05-31 1982-02-11 Otto Tuchenhagen GmbH & Co KG, 2059 Büchen "membranpumpe"
US4408626A (en) * 1980-10-08 1983-10-11 Tlv Co., Ltd. Valve seat assembly for a steam trap
US4854090A (en) * 1985-10-10 1989-08-08 The British Hydromechanics Research Association Feeding abrasive material
US4872293A (en) * 1986-02-20 1989-10-10 Kawasaki Jukogyo Kabushiki Kaisha Abrasive water jet cutting apparatus
US5160548A (en) * 1991-09-09 1992-11-03 Ohmstede Mechanical Services, Inc. Method for cleaning tube bundles using a slurry
WO1997031752A1 (en) * 1996-03-01 1997-09-04 Extrude Hone Corporation Abrasive jet stream polishing
WO2008001111A1 (en) * 2006-06-29 2008-01-03 Bhr Group Limited Water jet cutting apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019133827A1 (de) 2018-12-18 2020-06-18 Technische Universität Chemnitz Vorrichtung und Verfahren zum Schalten einer Hochdruck-Suspension
WO2020125860A1 (de) 2018-12-18 2020-06-25 Technische Universität Chemnitz Vorrichtung und verfahren zum schalten einer hochdrucksuspension

Also Published As

Publication number Publication date
DE102009043697A1 (de) 2011-04-07
US20110081834A1 (en) 2011-04-07
AU2010224471A1 (en) 2011-04-21
AU2010224471B2 (en) 2016-03-17
MY155526A (en) 2015-10-30
EP2308646B1 (de) 2014-02-26
US8602844B2 (en) 2013-12-10

Similar Documents

Publication Publication Date Title
EP2308646B1 (de) Verfahren zum Bearbeiten von Werkstücken mittels eines unter hohem Druck aus einer Düse austretenden schleifmittelhaltigen Wasserstrahls, Wasserstrahlanlage zur Durchführung des Verfahrens sowie Anwendung des Verfahrens
EP1825958B1 (de) Einrichtung für Wasserstrahl- oder Abrasivwasserstrahl-Schneidanlagen
DE69718514T2 (de) Vorrichtung zum gasdynamischen beschichten
EP2741862B1 (de) Vorrichtung zum erzeugen eines pulsierenden mit druck beaufschlagten fluidstrahls
DE60030341T2 (de) Verfahren und Vorrichtung zur Veredelung und Reinigung von Metalloberflächen
DE69721162T2 (de) Strahloberflächenfertigungsmaschine und Oberflächenfertigungssystem mit einem zweiphasigen Strahl
EP2723508B1 (de) Vorrichtung zum behandeln von werkstücken
DE4120613A1 (de) Selbstregulierender hochdrucktrennstrahlbeschleuniger
EP3532245B1 (de) Vorrichtung zum abrasiven fluidstrahlschneiden
DE3418338A1 (de) Verfahren zur herstellung von lebensmittelschaum
EP1618993B1 (de) Verfahren zum Schleifen und/oder Polieren von Oberflächen
DE112004000565T5 (de) Schalten einer Fluidströmung durch Umleitung
EP2536532B1 (de) Verfahren zur funktionsunterbrechung eines schneidstrahls sowie vorrichtung zur durchführung des verfahrens
EP3733348B1 (de) Verfahren und vorrichtung zum glätten einer oberfläche eines bauteils
WO2018184798A1 (de) Vorrichtung und verfahren zum hochdruck-fluidstrahlschneiden
DE3226016A1 (de) Anlage zur kontinuierlichen zersetzung der zellen von mikroorganismen
DE10020162C2 (de) Verfahren und Vorrichtung zum Herstellen eines Massivstoff oder Schaumstoff bildenden, fließfähigen Reaktionsgemisches
DE10348805B4 (de) Verfahren zur Erzeugung eines Wasserabrasivstrahls
WO2013079488A2 (de) Verfahren, strahlmittel und vorrichtung zum nassstrahlen
EP1051568A1 (de) Verfahren zum herstellen eines verschleifssgefährdeten bauteiles einer strömungsmaschine
DE69011357T2 (de) Schneidverfahren und Vorrichtung.
DE3939420C2 (de) Verfahren und Vorrichtung zum Schneiden widerstandsfähiger Werkstoffe mit einem Wasserstrahl
EP2246128B1 (de) Verfahren und Vorrichtung zum Entfernen von Fertigungsrückständen aus Durchgängen in Werkstücken
DE2225463A1 (de) Vorrichtung zum aufbau eines stroemungsmittel-schneidstrahls
DE1503676C3 (de) Einrichtung zur Erzeugung von Druckluft für aluminothermisches Schweißen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

17P Request for examination filed

Effective date: 20110920

17Q First examination report despatched

Effective date: 20121126

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20131126

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 653271

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010006157

Country of ref document: DE

Effective date: 20140410

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140226

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140626

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140626

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010006157

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20141127

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010006157

Country of ref document: DE

Effective date: 20141127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140928

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140928

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140527

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100928

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010006157

Country of ref document: DE

Representative=s name: RUEGER | ABEL PATENT- UND RECHTSANWAELTE, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010006157

Country of ref document: DE

Representative=s name: RUEGER ABEL PATENTANWAELTE PARTGMBB, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010006157

Country of ref document: DE

Representative=s name: RUEGER, BARTHELT & ABEL, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010006157

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010006157

Country of ref document: DE

Representative=s name: RUEGER ABEL PATENT- UND RECHTSANWAELTE, DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 653271

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150928

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: ALSTOM TECHNOLOGY LTD, CH

Effective date: 20161124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150928

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170925

Year of fee payment: 8

Ref country code: GB

Payment date: 20170927

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170927

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010006157

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180928