EP2283068A1 - Matériau composite thermoconducteur contenant une poudre d'aluminium, procédé de fabrication et utilisation du matériau composite - Google Patents

Matériau composite thermoconducteur contenant une poudre d'aluminium, procédé de fabrication et utilisation du matériau composite

Info

Publication number
EP2283068A1
EP2283068A1 EP09753790A EP09753790A EP2283068A1 EP 2283068 A1 EP2283068 A1 EP 2283068A1 EP 09753790 A EP09753790 A EP 09753790A EP 09753790 A EP09753790 A EP 09753790A EP 2283068 A1 EP2283068 A1 EP 2283068A1
Authority
EP
European Patent Office
Prior art keywords
composite material
aluminum powder
aluminum
weight
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09753790A
Other languages
German (de)
English (en)
Inventor
Klaus Höhn
Eberhard Ritzhaupt-Kleissl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2283068A1 publication Critical patent/EP2283068A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic

Definitions

  • the invention relates to a thermally conductive composite material with aluminum powder.
  • a method for producing the composite material and a use of the composite material are specified.
  • thermally conductive composite materials in the form of adhesive systems with a thermal conductivity of more than 5 W / (m * K) have noble metal-filled epoxy resin systems. Due to the raw materials used, these adhesive systems are expensive.
  • thermally conductive fillers such as aluminum oxide (Al 2 O 3 ), boron nitride (BN) and silicon carbide (SiC) are known, which have a relatively high thermal conductivity of more than 3 W / (m * K).
  • Al 2 O 3 aluminum oxide
  • BN boron nitride
  • SiC silicon carbide
  • the object of the invention is to provide a thermally conductive composite material which has a high thermal conductivity of more than 5 W / (m * K) and which is distinguished by good processability.
  • a thermally conductive composite material with crosslinkable or at least partially crosslinked polymer is used.
  • the aluminum powder has aluminum particles with grain sizes in the range of 0.05 .mu.m to 400 .mu.m and a proportion of aluminum particles with a grain size of less than 1 .mu.m in the aluminum powder is in the range of 1 wt.% To 50% by weight selected.
  • the proportion of aluminum particles having a particle size of less than 1 ⁇ m on the aluminum powder is selected from the range from 10% by weight to 50% by weight.
  • a method for producing the composite material with the following process steps is given: a) providing a starting material of the polymer base material and providing the aluminum powder and b) mixing the starting material and the aluminum powder with one another.
  • the basic idea of the invention is to use an aluminum powder with aluminum particles as a filler for the thermally conductive composite, which have very different grain sizes.
  • the proportion of aluminum particles having small grain sizes is high. This has succeeded in achieving a high thermal conductivity.
  • the thermal conductivity is in the range of more than 7 W / (m * K).
  • the composite material can be processed very well in the non-crosslinked state or in the only partially crosslinked state.
  • the composite is surprisingly characterized by a low electrical conductivity.
  • the composite is very well suited for use in assemblies and components with high packing and power density.
  • High corrosion resistance completes the very good properties of the composite material: it was shown that the high thermal conductivity of the composite material remains after exposure to moist heat for several days (for example, seven days, 85 ° C, 85% relative humidity) , Under these conditions, no degradation of the composite takes place. Corrosion processes can be largely be excluded.
  • the aluminum particles each have an aluminum oxide coating on a particle surface.
  • the aluminum oxide coating is closed.
  • the aluminum-oxide coating which automatically sets in the presence of oxygen (for example, oxygen in the air) by surface oxidation of the aluminum, is particularly favorable in connection with the low electrical conductivity of the composite noticeable.
  • the aluminum oxide coating supports the high corrosion resistance of the aluminum particles and thus the corrosion resistance of the composite material.
  • the particle sizes of the aluminum particles are selected from the range from 0.05 ⁇ m to 200 ⁇ m and in particular from the range from 0.05 ⁇ m to 100 ⁇ m.
  • the high thermal conductivity is achieved, in particular, by selecting a powder proportion of the aluminum powder in the composite from the range from 10% by weight to 90% by weight.
  • the aluminum powder content of the aluminum powder in the composite material is selected from the range from 40% by weight to 90% by weight and in particular from the range from 60% by weight to 90% by weight.
  • An aluminum filling level is relatively high. It has been found that at these mixing ratios of the polymer base material to the aluminum powder on the one hand a very high thermal conductivity and on the other hand an acceptable for the respective applications processability of the composite can be achieved.
  • the shape of the aluminum particles is arbitrary per se. It is particularly advantageous if the aluminum particles have an aluminum particle shape selected from the group of flakes, needles and spheres. These aluminum particle shapes support the high thermal conductivity of the composite material.
  • any suitable macromolecular or macromolecule-processable base material can be considered.
  • the polymer-based material is crosslinkable.
  • the type of crosslinking reaction and its initiation are arbitrary.
  • the crosslinking reaction may be, for example, a polymerization or polycondensation reaction.
  • the initiation of the crosslinking can be done for example by supplying heat or light.
  • the polymer-based material can also be completely or almost completely crosslinked. For example, there is a cured plastic.
  • Plastic may be a thermoplastic, a thermosetting plastic or an elastomeric plastic.
  • the polymer-based material for example, a plastic such as silicone is conceivable.
  • the polymer-based material comprises at least one epoxy resin.
  • the epoxy resin may be two or more components.
  • the epoxy resin is a one-part epoxy resin.
  • a two-component epoxy resin is just as conceivable.
  • the two-component epoxy resin consists for example of an A component with epoxy resin (60 wt.% To 98 wt.%), A diluent (1 wt.% To 40 wt.%) And other additives (0, 01% by weight to 5% by weight).
  • the viscosity of the A component is, for example, less than 5,000 mPas.
  • a B component of the two-part epoxy resin has a liquid hardener with a viscosity of less than 5,000 mPas.
  • the B component of the two-part epoxy resin has conventional epoxy resin chemistry hardeners (anhydrides, amines, phenols, mercaptans or CH-acidic compounds).
  • the polymer-based material has a crosslinking ting temperature of less than 200 ° C on.
  • the polymer-based material is a one-component epoxy resin that is cured at a temperature of 160 ° C. At this temperature, the aluminum powder remains intact. There is no corrosion. The high thermal conductivity of the composite material is retained.
  • the composite material may additionally contain additives that control the chemical, physical and electrical properties of the composite. This concerns the processability of the composite material as well as the thermal conductivity of the composite material or the deformability of a molded part produced with the composite material.
  • the method in particular for providing the aluminum powder at least two aluminum powder fractions having an average particle size d 5 o from 0.1 .mu.m to 50 .mu.m and at least one further aluminum powder fraction with a further average particle size d 5 o from 50 microns to 200 microns mixed together.
  • the particle size distribution of the aluminum powder can be set exactly. The fractions are chosen so that the proportion of aluminum powder particles with small particle sizes is relatively high.
  • the composite material is used as an adhesive.
  • an electrical component is bonded to a substrate by means of the composite material. Due to the high thermal conductivity, an additional heat conduction path opens in the direction of the substrate.
  • the composite material acts as a thermally conductive intermediate layer (thermal interface material, TIM). An efficient dissipation of heat from the device over the substrate is possible.
  • the structural material is used for constructing a molded part, for example a housing, a frame or a carrier (substrate). Parts of any shape are available, for example parts in the form of "pockets" for electrical components.
  • the composite material can also be processed to form an arbitrarily shaped heat sink, and the use of the composite material in cooling hoses is also conceivable.
  • thermosetting plastic When using a suitable polymer-based material, such as a thermosetting plastic, mechanically high-strength components in lightweight construction are accessible. Also conceivable is the use of the composite material as a structural material in apparatus and apparatus for semi-finished products, substrates and housings with sufficient resistance to ionizing electromagnetic radiation. This is particularly suitable for a high aluminum filling level. The resistance to ionizing electromagnetic radiation is based on the high ionization potential of aluminum.
  • the composite material is used as a potting compound, for example, for potting an electrical component or an electrical assembly.
  • the composite material is used as a film material.
  • a shaping process is performed after the mixing of the starting material and the aluminum powder with each other.
  • the molding process includes, for example, potting or film drawing.
  • the composite material can be used as a designer material, especially at high aluminum content due to the resulting metallic appearance.
  • the composite material is characterized by a high thermal See conductivity at the same time low electrical conductivity and good processability.
  • the composite material is corrosion resistant.
  • the composite is cheaper compared to precious metal filled composites.
  • the subject of the examples is in each case a thermally conductive composite material in the form of an adhesive.
  • the adhesive is used to secure a device 1 to a substrate 2 (FIG.
  • the adhesive is applied in the form of an adhesive film 3 on a substrate surface of the substrate.
  • the device is placed on the adhesive film. Subsequent curing (crosslinking) of the adhesive results in a firm mechanical connection between the
  • the composite acts as a "thermal interface material".
  • the adhesive is a thermally conductive composite with a polymer based material having a one component epoxy resin.
  • the one-part epoxy resin has a cationic initiator.
  • Component epoxy resin in the uncrosslinked state is below 5,000 mPas.
  • the polymer-based material contains aluminum powder as filler.
  • the aluminum powder has aluminum particles having a particle size in the range of 0.1 .mu.m to 400 .mu.m. A proportion of the aluminum particles of less than 1 ⁇ m in the aluminum powder is about 1% by weight.
  • the aluminum content of the aluminum powder in the composite material is 95% by weight to 5% by weight.
  • the proportion of the polymer base material is 95 wt.% To 5 wt.%.
  • various aluminum powder fractions are first mixed together.
  • the resulting aluminum-powder mixture is mixed with the starting material of the one-component epoxy resin.
  • crosslinking of the polymer-based material occurs at a temperature of about 150 ° C within 2 hours.
  • the polymer base material is a two-component epoxy resin.
  • the two-component epoxy resin consists of an A component with epoxy resin (60% by weight to 98% by weight), diluent 1% by weight to 40% by weight) and further additives (0.01% by weight). % to 5% by weight).
  • the viscosity of the A component is less than 5,000 mPas.
  • the B component of the two-part epoxy resin has a liquid hardener with a viscosity of less than 5,000 mPas.
  • This hardener is an anhydride of phthalic acid.
  • the aluminum powder is - as described in Example 1 - a mixture of several aluminum powder fractions.
  • the composite material is composed as follows:
  • a component 5% by weight - 45% by weight
  • B component 3% by weight - 45% by weight
  • Accelerator 0.01% by weight - 3% by weight
  • Aluminum powder mixture 95% by weight - 5% by weight.

Abstract

L'invention porte sur un matériau composite thermoconducteur, comportant une matière polymère, réticulable ou au moins partiellement réticulée, et une poudre d'aluminium répartie dans la matière polymère. La poudre d'aluminium présente des particules d'aluminium ayant une granulométrie comprise dans la plage de 0,05 µm à 400 µm. La proportion des particules d'aluminium ayant une granulométrie inférieure à 1 µm dans la poudre d'aluminium représente 1 à 50% en poids. En outre, l'invention porte sur un procédé de préparation du matériau composite, comportant les étapes suivantes : a) préparer une matière de départ de la matière à base de polymère et la poudre d'aluminium, et b) mélanger la matière de départ et la poudre d'aluminium. L'invention vise à utiliser une poudre d'aluminium contenant des particules d'aluminium en tant que matière de charge pour un matériau composite thermoconducteur, ces particules présentant des granulométries très différentes. En outre, la proportion des particules d'aluminium à petite granulométrie est élevée. On obtient ainsi un matériau composite ayant une grande conductivité thermique. La conductivité thermique se trouve dans une plage supérieure à 7 W/(m*K). Simultanément, le matériau composite peut très bien être mis en oevre à l'état non réticulé ou à l'état seulement partiellement réticulé. De plus, le matériau composite se caractérise aussi par une faible conductibilité électrique. Ainsi, le matériau composite convient très bien à une utilisation dans des sous-ensembles et composants ayant une grande densité de tassement et une grande densité de puissance.
EP09753790A 2008-05-28 2009-05-12 Matériau composite thermoconducteur contenant une poudre d'aluminium, procédé de fabrication et utilisation du matériau composite Withdrawn EP2283068A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008025484A DE102008025484A1 (de) 2008-05-28 2008-05-28 Wärmeleitfähiger Verbundwerkstoff mit Aluminium-Pulver, Verfahren zum Herstellen des Verbundwerkstoffs und Verwendung des Verbundwerkstoffs
PCT/EP2009/055713 WO2009144135A1 (fr) 2008-05-28 2009-05-12 Matériau composite thermoconducteur contenant une poudre d'aluminium, procédé de fabrication et utilisation du matériau composite

Publications (1)

Publication Number Publication Date
EP2283068A1 true EP2283068A1 (fr) 2011-02-16

Family

ID=40951514

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09753790A Withdrawn EP2283068A1 (fr) 2008-05-28 2009-05-12 Matériau composite thermoconducteur contenant une poudre d'aluminium, procédé de fabrication et utilisation du matériau composite

Country Status (4)

Country Link
EP (1) EP2283068A1 (fr)
CN (1) CN102046713A (fr)
DE (1) DE102008025484A1 (fr)
WO (1) WO2009144135A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015222657A1 (de) 2015-11-17 2016-05-04 Schaeffler Technologies AG & Co. KG Wärmeleitfähige Elastomermischung mit guten Gleiteigenschaften und Dichtung aus einer derartigen Elastomermischung
DE102017210200A1 (de) * 2017-06-19 2018-12-20 Osram Gmbh Substrat zum aufnehmen eines optoelektronischen bauelements, optoelektronische baugruppe, verfahren zum herstellen eines substrats und verfahren zum herstellen einer optoelektronischen baugruppe

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB967317A (en) * 1962-03-15 1964-08-19 Boeing Co Epoxy resin and metal particle moulding composition
FR2229777B1 (fr) * 1973-05-17 1975-08-22 Ugine Carbone
GB1503250A (en) * 1976-12-22 1978-03-08 B & K Tooling Ltd Heat exchanger bodies and a method of manufacture therefo
ZA812492B (en) * 1980-04-17 1982-04-28 Grace W R Ltd Au Adhesive composition for use in metal-to-metal bonding
DE3522084A1 (de) * 1985-06-20 1987-01-02 Siemens Ag Elektrisch isolierende, gut waermeleitende kunststoffmasse mit als fuellstoff enthaltenen aluminiumpulverpartikeln sowie ein verfahren zu ihrer herstellung
JPH0755979B2 (ja) * 1988-08-18 1995-06-14 有限会社鈴木研究所 エポキシ樹脂組成物
JPH0764912B2 (ja) * 1990-11-09 1995-07-12 有限会社鈴木研究所 エポキシ樹脂組成物
DE4137139A1 (de) * 1991-11-12 1993-05-13 Basf Lacke & Farben Anorganische fuellstoffe enthaltende thermoplastische kunststoffolie, anorganische fuellstoffe enthaltender metall-kunststoff-verbund sowie verfahren zur herstellung
JP4015722B2 (ja) * 1997-06-20 2007-11-28 東レ・ダウコーニング株式会社 熱伝導性ポリマー組成物
JP3948642B2 (ja) * 1998-08-21 2007-07-25 信越化学工業株式会社 熱伝導性グリース組成物及びそれを使用した半導体装置
JP4498702B2 (ja) * 2002-08-22 2010-07-07 シチズンホールディングス株式会社 接着剤組成物およびこれを用いた飾り石の固着方法、装飾品、ならびに装飾品用補修剤
JP4162955B2 (ja) * 2002-09-13 2008-10-08 信越化学工業株式会社 放熱部材用粘着性シリコーン組成物
JP2006036931A (ja) * 2004-07-27 2006-02-09 Three M Innovative Properties Co 熱伝導性組成物
CN101495585B (zh) * 2006-07-28 2011-12-14 帝人株式会社 导热性粘合剂
DE102006062270A1 (de) * 2006-12-22 2008-06-26 Eckart Gmbh & Co. Kg Aluminiumgrieß für dünne, plättchenförmige Effektpigmente, Verfahren zu dessen Herstellung und Verwendung desselben

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009144135A1 *

Also Published As

Publication number Publication date
DE102008025484A1 (de) 2009-12-03
CN102046713A (zh) 2011-05-04
WO2009144135A1 (fr) 2009-12-03

Similar Documents

Publication Publication Date Title
DE112008002566B4 (de) Wärmeleitfähige Lage und Verfahren zum Herstellen derselben, und Leistungsmodul
DE112010005303B4 (de) Wärmehärtende Kunstharzzusammensetzung, B-Stufen Wärmeleitfähigkeitsschicht und Leistungsmodul
DE112007001047B4 (de) Harzzusammensetzung, Prepreg, Laminat und Leiterplatte
DE112016003257T5 (de) Wärmeleitende harzzusammensetzung, wärmeleitende folie und halbleiterbauelement
DE602005003146T2 (de) Polymer- Zusamensetzungen für verbesserte Materialien
DE102016121533A1 (de) Beschichtete Partikel
DE102017104298A1 (de) Kunstharzzusammensetzung
DE60016823T2 (de) Interlaminarer isolierender Klebstoff für mehrschichtige gedruckte Leiterplatte
DE102011113781B4 (de) Verfahren zur Herstellung einer Vorrichtung
EP3512915B1 (fr) Matière de scellement pouvant être fixée à la lumière et procédé de scellement sélectif de substrats/composants utilisant ladite matière
DE112011103323T5 (de) Kunststoffzusammensetzung
DE112015003461T5 (de) Isolierplatte
DE102010022523A1 (de) Vergussmasse geeignet zum Vergießen eines Elektronikbauteils, insbesondere einer großvolumigen Spule wie einer Gradientenspule
DE112018003560T5 (de) Elektrisch leitende Klebstoffzusammensetzung
DE112014001422B4 (de) Herstellen eines Leistungsmoduls mittels eines Spritzpressverfahrens
DE60038049T2 (de) Antistatische pulverlack-zusammensetzung und ihre verwendung
DE112018001668T5 (de) Harzzusammensetzung, harzplatte, gehärtetes harzprodukt, harzsubstrat und laminatsubstrat
DE102016220092A1 (de) Halbzeug zur Kontaktierung von Bauteilen
EP1341847A1 (fr) Masse de remplissage
JP5622267B2 (ja) 接着剤樹脂組成物、その硬化物、及び接着剤フィルム
DE102010022265A1 (de) Hydrophobe Beschichtung und Anwendung dazu
EP2252641B1 (fr) Système de résine réactive durcissable
EP2283068A1 (fr) Matériau composite thermoconducteur contenant une poudre d'aluminium, procédé de fabrication et utilisation du matériau composite
DE102013105334A1 (de) Elektrisch leitfähige Verbindung
EP0650504B1 (fr) Procede de production d'un materiau moulable ignifuge a base de resines epoxy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101104

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20131203