EP2262932A1 - Procede de cristallogenese d'un materiau electriquement conducteur a l'etat fondu - Google Patents

Procede de cristallogenese d'un materiau electriquement conducteur a l'etat fondu

Info

Publication number
EP2262932A1
EP2262932A1 EP09715571A EP09715571A EP2262932A1 EP 2262932 A1 EP2262932 A1 EP 2262932A1 EP 09715571 A EP09715571 A EP 09715571A EP 09715571 A EP09715571 A EP 09715571A EP 2262932 A1 EP2262932 A1 EP 2262932A1
Authority
EP
European Patent Office
Prior art keywords
piston
liquid
interface
crucible
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP09715571A
Other languages
German (de)
English (en)
Inventor
Thierry Duffar
Gilbert Vian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Institut Polytechnique de Grenoble
Original Assignee
Centre National de la Recherche Scientifique CNRS
Institut Polytechnique de Grenoble
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Institut Polytechnique de Grenoble filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP2262932A1 publication Critical patent/EP2262932A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/007Mechanisms for moving either the charge or the heater
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/003Heating or cooling of the melt or the crystallised material
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B30/00Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions
    • C30B30/04Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions using magnetic fields
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1092Shape defined by a solid member other than seed or product [e.g., Bridgman-Stockbarger]

Definitions

  • the present invention relates to a method of crystallogenesis of an electrically conductive material in the molten state, that is to say the solidification of the molten material by drawing in a crucible, leading to the formation of a crystal .
  • the most commonly used crucible solidification method is the "Bridgman" pull technique. According to this technique, with reference to FIG. 1, the alloy to be crystallized is melted in a crucible 1 located in a vertical furnace
  • the material can be solidified by gradually decreasing the temperature of the furnace, the crucible being fixed.
  • the alloying element has a sufficiently high concentration to change the melting temperature of the material (which typically corresponds to a concentration greater than a few percent)
  • this technique has consequences on the one hand a strong curvature of the interface between the solid S and the liquid L (represented by dashes) which generates crystalline defects sources of cracks, and on the other hand a bad homogeneity of the liquid which produces a heterogeneous material both according to its radius and axis.
  • the shape of the interface is parabolic; the curvature is then defined as being the arrow of the interface at the center of the crucible (that is to say the difference in altitude, on the interface, between the axis and the wall).
  • Homogeneity is expressed as a percentage of the average concentration: the lower the percentage, the more homogeneous the material.
  • the radial homogeneity of the sample is defined by the ratio: composition at the center - composition at the edge medium composition
  • the longitudinal homogeneity is defined by the ratio: composition at the top - composition at the base average composition
  • the radial homogeneity of the sample is of the order of 100%. Longitudinal heterogeneity results in the rapid loss of the crystal structure of the sample.
  • Optimizations of the Bridgman process with variable crucible displacement rates have been developed (in this respect reference may be made to the article by Stelian et al., "Growth of concentrated GaInSb alloys with improved chemical homogeneity at low and variable pulling rates”. ", Journal of Crystal Growth 283 (2005) 124-133), but the homogeneity and crystalline quality of the material, although improved, are not yet optimal and the growth rates are very low.
  • the Bridgman process consists in placing the crucible 1 in an electromagnetic motor 2, as illustrated in FIG. 2.
  • This process is the subject of the patent application EP 1 167 586 and of the article of Mitric et al., "Growth of Ga (i -X ) In x Sb alloys by Vertical Bridgman technique under alternating magnetic field", Journal of Crystal Growth 287 (2006) 224-229.
  • the electromagnetic motor 2 may be an alternating field coil or a coil generating a magnetic field either rotating or sliding. The magnetic field creates movements in the liquid that homogenize it effectively. This electromagnetic stirring thus makes it possible to obtain crystals which are much more homogeneous than by the conventional technique.
  • the radial homogeneity obtained is of the order of a few tens of percent as described in the article cited above.
  • the solid liquid interface remains curved - although to a lesser extent than in the classical Bridgman process - and the crystalline quality of the material is not optimal.
  • the resulting sample cracks after a few centimeters of growth.
  • there is a loss of the crystalline structure after a few centimeters of growth which indicates a longitudinal heterogeneity.
  • this process operates only discontinuously, that is to say that it can not be added in a novel first way in the crucible during crystallization. Indeed, the addition of raw material would disrupt the flow created towards the interface.
  • This technique also has the advantage of being able to operate continuously, since the addition of new raw material does not disturb the region close to the interface. It therefore looks promising on an industrial level.
  • the small volume of liquid between the piston and the interface is substantially at rest and is therefore not homogenized at all.
  • the radial homogeneity measured on samples obtained by this technique is of the order of 10%.
  • the known crystallogenesis methods are relatively slow - typically, the faster ones have a crystallization rate of the order of 1 mm / h, ie the average duration of production of a crystal. 'expresses in days.
  • One of the objectives of the invention is therefore to allow the preparation of crystalline alloys whose composition is much more homogeneous than by known techniques and which are free of cracks. It is thus sought to obtain perfect longitudinal homogeneity (ie close to 0%) over most of the sample. Regarding radial homogeneity, homogeneity is a few%.
  • Another object of the invention is to define an industrial process which allows continuous operation and faster crystallization than in the prior art.
  • the molten material is progressively subjected to a decreasing temperature, so that a liquid-solid interface is formed
  • the molten material is subjected, before and during the solidification, to an electromagnetic stirring, said method being characterized in that said electromagnetic stirring is obtained by the application of an alternating magnetic field, without passing electrical current through the material .
  • the control of the flatness of the liquid-solid interface is carried out by maintaining a piston whose temperature is controlled at a determined distance from said interface.
  • the temperature of the piston is substantially equal to the sum of the melting temperature of the material and the product of the thermal gradient in the material by the distance between the interface and the piston.
  • Another object of the invention relates to a device for crystallogenesis of an electrically conductive material in the molten state, by drawing from a melt of this material in a crucible, comprising:
  • the means for controlling the flatness of the interface advantageously comprise:
  • the means for maintaining the lower face of the piston at a determined distance from the liquid-solid interface of the material preferably comprise an electromagnetic coil and means for circulating an alternating electric current in the coil.
  • FIG. 1 is a diagram of a conventional Bridgman type installation
  • FIG. 2 is a diagram of an improved Bridgman type installation using an electromagnetic motor
  • FIG. 3 is a diagram of a Bridgman type installation incorporating the piston of the AHP method
  • Figure 4 schematically illustrates an installation according to the invention
  • Figure 5A schematically illustrates the structure of a Bridgman furnace
  • Figure 5B illustrates the temperature profile within the material in the oven of Figure 5A
  • Figure 6 illustrates a heating piston.
  • the device comprises a conventional Bridgman furnace, in which a crucible is movable in translation, to which electromagnetic inductors and a piston whose temperature is regulated are added.
  • Figure 5 shows, in its part A, a cylindrical crucible 1, at the bottom of which was placed a seed G. Above the seed G is disposed the material from which it is desired to manufacture the single crystal.
  • the crucible 1 is placed in a furnace consisting of two heating parts 4 and 5 separated by a thermally insulating zone 6 so as to obtain inside the crucible 1 the temperature profile T represented in part B of FIG.
  • the temperature profile established during the melting step of the material is centered on the melting temperature Tf of the material. This is the temperature that prevails in the crucible 1 in the part of the melt L which is just in contact with the seed G.
  • the heating portion 4 produces the T1 temperature lower than the melting temperature of the material.
  • the heating portion 5 produces the temperature T2 which is higher than the melting temperature of the material.
  • the material constitutes a melt L having an upper zone called hot zone, of height H and temperature T2 sufficiently far from the melting temperature Tf.
  • the crucible 1 is made of boron nitride. It has a diameter of 11 mm and a depth greater than 90 mm. More generally, those skilled in the art can choose any conventional crucible material, for example graphite or silica for semiconductor materials, noble metals for oxides. In addition, any dimension is potentially conceivable, knowing that the industrial dimensions are a diameter of about 4 inches and a length of several decimetres.
  • the crucible 1 is movable in translation inside the oven.
  • the means for moving the crucible are known to those skilled in the art and will therefore not be described in more detail.
  • the crucible is fixed and the furnace is gradually cooled while the coil and the piston rise together with the liquid-solid interface.
  • the electromagnetic inductors for mixing the liquid can be of any type allowing the application of a rotating, sliding or alternating magnetic field.
  • an alternating magnetic field will be generated, because this solution has the advantage of requiring a much simpler device, namely an electromagnetic coil in which an alternating electric current is circulated.
  • the electromagnetic coil 2 (illustrated in FIG. 4) is in the form of a coil consisting of 20 turns of copper wire 1 mm in diameter.
  • the piston 3 whose lower face is flat, is made of graphite. It is fixed relative to the oven. It is equipped with thermocouples and heating means - for example, a heating resistor - able to regulate its temperature to a value determined according to the material to be crystallized.
  • the piston 3 comprises four thermocouples referenced Th1 to Th4 and two annular resistors R1 and R2 inside the piston.
  • the piston 3 is hollow and removable.
  • the wires of the thermocouples and the power supply wires of the resistors pass through the tube which holds the piston.
  • the thermocouples serve to regulate the temperature of the heating resistors at a temperature slightly above the melting temperature of the material. A radial temperature difference can be imposed by regulating the resistances to different values.
  • the piston may comprise a single thermocouple which regulates the electric current flowing in the furnace resistor surrounding the crucible to maintain the piston at a desired temperature.
  • the piston may comprise a single thermocouple which regulates the electric current flowing in the furnace resistor surrounding the crucible to maintain the piston at a desired temperature.
  • no thermocouple in the piston it then controls the temperature of the piston by positioning it in the oven at a height whose temperature is known approximately. The present invention of course covers all these embodiments.
  • the implementation of the method will now be described with reference to the manufacture of a crystal of an InGaSb concentrated alloy comprising 80% GaSb and 20% InSb.
  • a seed G for initiating the crystallization, and then the raw material, which is melted.
  • the temperature of the junction between the seed G and the molten charge L is the melting temperature of the material.
  • the temperature of the liquid increases from a few degrees to a few tens of degrees per centimeter, thus defining a thermal gradient expressed in ° C / cm. This thermal gradient is known to those skilled in the art.
  • the crucible 1 is then lowered into the furnace, with a thermal gradient of the order of 40 K / cm and a growth rate of 1 micrometer per second (ie 3.6 mm / h). The material cools gradually crystallizing.
  • an alternating current of 6 A and frequency 5000 Hz is applied to the coil 2, which generates an alternating magnetic field of
  • the intensity and frequency of the magnetic field are calculated by the classical equations of electromagnetism.
  • the intensity is calculated by the laws of electromagnetism so as to ensure maximum mixing of the liquid without disturbing the temperature field or the shape or the position of the solid-liquid interface.
  • the frequency is calculated to have an electromagnetic penetration
  • the alternating magnetic field has an intensity of between 1 and 10 mT and a frequency of between 1000 and 10000 Hz.
  • This magnetic field is to generate convection movements inside the molten material that allow to homogenize it.
  • the piston 3 is brought to a temperature substantially equal to the sum of the melting temperature and the product of the aforementioned thermal gradient by the distance that is desired between the piston and the solid-liquid interface.
  • the actual temperature of the piston may differ by a few degrees (for example ⁇ 10 ° C) from the indicated temperature.
  • the temperature of the piston must not fluctuate during the process, otherwise the interface oscillates. Referring to Figure 6, the piston 3 is maintained at a distance h typically between 5 and 10 mm of the liquid-solid interface.
  • the heating piston 3 divides the molten material into two zones, respectively lower Z1 and upper Z2.
  • the effect of the piston 3 is to control the liquid-solid interface by keeping it flat.
  • the invention applies in fact to the crystallogenesis of all semiconductor alloys, such as:
  • the ternary alloys of the IM-V family that is to say based on antimonides (GaSb, AISb and InSb), arsenides (GaAs and InAs) or phosphides (GaP and InP), for applications in fast electronics and optoelectronics;
  • CdTe, ZnTe, HgTe tellurides
  • CdSe or ZnSe selenides
  • the invention can also be applied to the solidification of silicon for photovoltaic applications: it makes it possible to obtain silicon of satisfactory quality from less pure raw material and therefore available in greater quantity and less expensive.
  • the invention applies to any type of crucible solidification and may therefore relate to metal alloys, glasses, oxide crystals or halides, provided they are electrically conductive. in the molten state.
  • the invention is not limited to a device where the piston and the coil are fixed and the crucible movable relative to the furnace; the opposite configuration, where the crucible is fixed relative to the furnace whose temperature is gradually decreased, is a possible embodiment of the invention. In this case, the coil and the piston are movable in translation upwards so as to follow the liquid-solid interface.

Abstract

La présente invention concerne un procédé de cristallogenèse d'un matériau électriquement conducteur à l'état fondu, par tirage à partir d'une masse fondue de ce matériaudans un creuset (1), dans lequel : le matériau fondu est soumis progressivement à une température décroissante, de telle sorte qu'il se forme une interface liquide-solide; on contrôlela planéité de l'interface liquide-solide du matériau; le matériau fondu est soumis, avant et pendant la solidification, à un brassage électromagnétique, ledit procédé étant caractérisé en ce que ledit brassage électromagnétique est obtenu par l'application d'un champ magnétique alternatif. L'invention concerne également un dispositif pour la mise en œuvre dudit procédé.

Description

PROCEDE DE CRISTALLOGENESE D'UN MATERIAU ELECTRIQUEMENT CONDUCTEUR A L'ETAT FONDU
DOMAINE DE L'INVENTION La présente invention concerne un procédé de cristallogenèse d'un matériau électriquement conducteur à l'état fondu, c'est à-dire la solidification du matériau fondu par tirage dans un creuset, conduisant à la formation d'un cristal.
ARRIERE PLAN DE L'INVENTION La ségrégation des espèces chimiques pendant la solidification d'un alliage est un problème connu de longue date.
Elle entraîne systématiquement l'obtention de matériaux dont la composition chimique est hétérogène, ce qui constitue un défaut majeur pour les matériaux dont les propriétés d'usage sont directement liées à la composition chimique - telles par exemple que les propriétés électroniques des semi-conducteurs, ou les propriétés optiques des matériaux lasers ou scintillateurs.
En outre, lorsque l'on souhaite élaborer des alliages concentrés monocristallins, les variations de composition entraînent des déformations du cristal qui génèrent des défauts de la structure cristalline, pouvant aller jusqu'à la fracture de l'échantillon. Des procédés permettant l'élaboration d'alliages et de cristaux beaucoup plus homogènes ont donc fait l'objet de nombreuses recherches.
Pour caractériser la performance d'un procédé de cristallogenèse, on s'intéresse aux paramètres suivants :
- absence de fissures dans le cristal - homogénéité radiale
- homogénéité longitudinale
- vitesse de cristallisation ou de tirage (exprimée en mm/h).
A l'heure actuelle, la méthode de solidification en creuset la plus utilisée est la technique de tirage dite « Bridgman ». Selon cette technique, en référence à la figure 1 , l'alliage à cristalliser est fondu dans un creuset 1 situé dans un four vertical
(section hachurée) dont la température est plus élevée dans sa partie supérieure que dans sa partie inférieure. La cristallisation s'opère en déplaçant lentement le creuset 1 vers le bas.
De manière alternative, on peut solidifier le matériau en diminuant progressivement la température du four, le creuset étant fixe. Dans le cas des alliages concentrés, c'est-à-dire où l'élément d'alliage présente une concentration suffisamment élevée pour modifier la température de fusion du matériau (ce qui correspond typiquement à une concentration supérieure à quelques pourcents), cette technique a pour conséquences d'une part une forte courbure de l'interface entre le solide S et le liquide L (représentée par des tirets) qui génère des défauts cristallins sources de fissures, et d'autre part une mauvaise homogénéité du liquide qui produit un matériau hétérogène à la fois selon son rayon et son axe.
En première approximation, on considère que la forme de l'interface est parabolique ; on définit alors la courbure comme étant la flèche de l'interface au centre du creuset (c'est-à-dire la différence d'altitude, sur l'interface, entre l'axe et la paroi).
L'homogénéité est exprimée en pourcentage de la concentration moyenne : plus ce pourcentage est faible, plus le matériau est homogène. Par exemple l'homogénéité radiale de l'échantillon est définie par le ratio : composition au centre - composition au bord composition moyenne De même, l'homogénéité longitudinale est définie par le ratio : composition au sommet - composition à la base composition moyenne
Avec le procédé Bridgman classique, l'homogénéité radiale de l'échantillon est de l'ordre de 100%. L'hétérogénéité longitudinale se traduit par la perte rapide de la structure cristalline de l'échantillon. Des optimisations du procédé Bridgman avec des vitesses de déplacement du creuset variables ont été développées (on pourra à cet égard se référer à l'article de Stelian et al., « Growth of concentrated GaInSb alloys with improved chemical homogeneity at low and variable pulling rates », Journal of Crystal Growth 283 (2005) 124-133), mais l'homogénéité et la qualité cristalline du matériau, bien qu'améliorées, ne sont pas encore optimales et les vitesses de croissance sont très faibles.
Un autre perfectionnement au procédé Bridgman a alors été développé qui consiste à placer le creuset 1 dans un moteur électromagnétique 2, comme illustré à la figure 2. Ce procédé fait l'objet de la demande de brevet EP 1 167 586 et de l'article de Mitric et al., « Growth of Ga(i-X)lnxSb alloys by Vertical Bridgman technique under alternating magnetic field », Journal of Crystal Growth 287 (2006) 224-229. Selon ce procédé, le moteur électromagnétique 2 peut être une bobine à champ alternatif ou une bobine générant un champ magnétique soit tournant, soit glissant. Le champ magnétique crée des mouvements dans le liquide qui l'homogénéisent de manière efficace. Ce brassage électromagnétique permet donc d'obtenir des cristaux beaucoup plus homogènes que par la technique classique. L'homogénéité radiale obtenue est de l'ordre de quelques dizaines de pourcents comme décrit dans l'article cité ci-dessus. Toutefois, l'interface liquide solide reste courbée - bien que dans une moindre mesure que dans le procédé Bridgman classique - et la qualité cristalline du matériau n'est pas optimale. L'échantillon obtenu se fissure après quelques centimètres de croissance. On observe en outre une perte de la structure cristalline après quelques centimètres de croissance, ce qui témoigne d'une hétérogénéité longitudinale. En outre, ce procédé ne fonctionne que de manière discontinue, c'est-à-dire que l'on ne peut pas ajouter de manière première nouvelle dans le creuset en cours de cristallisation. En effet, l'ajout de matière première perturberait le flux créé vers l'interface.
D'autres chercheurs ont par ailleurs développé une méthode consistant à plonger un piston dans le creuset. Cette méthode, dite « AHP » (acronyme de l'expression anglo-saxonne « Axial Heat flux close to the Phase interface » ou « flux de chaleur axial à proximité de l'interface »), est décrite dans la demande de brevet WO 2007/064247. En référence à la figure 3, le piston 3 est fixe par rapport au four et ne descend donc pas avec le creuset 1. Le piston est équipé d'un thermocouple et d'une résistance chauffante dont la puissance est régulée de telle sorte que la température du piston 3 soit maintenue constante. Dans ces conditions, l'interface solide-liquide reste à une distance constante du piston 3 et elle est beaucoup plus plane que précédemment, car elle suit la forme du piston 3.
Cette technique présente également l'avantage de pouvoir fonctionner en continu, car l'ajout de matière première nouvelle ne perturbe pas la région proche de l'interface. Elle semble donc prometteuse sur un plan industriel.
Cependant, le faible volume de liquide situé entre le piston et l'interface est pratiquement au repos et n'est donc pas du tout homogénéisé. L'homogénéité radiale mesurée sur des échantillons obtenus par cette technique est de l'ordre de 10%.
D'autres chercheurs ont par ailleurs étudié une méthode combinant un piston chauffant, l'application d'un champ électrique dans le matériau fondu et d'un champ magnétique continu. On pourra à cet égard se référer à l'article de Nancy Ma et al., « Vertical gradient freezing of doped gallium-antimonide semiconductor crystals using submerged heater growth and electromagnetic stirring », Journal of Crystal Growth 259 (2003) 26-35. Toutefois, il s'agit là d'une technique très lourde puisqu'elle nécessite plusieurs ampères de courant traversant l'échantillon (pouvant être préjudiciables au matériau) et l'installation d'un gros électroaimant autour du four. D'autre part, les résultats présentés résultent de simulations numériques qui concluent à une meilleure homogénéité, mais aucun résultat expérimental relatif à cette technique n'a été publié.
Pour les raisons exposées ci-dessus, aucun alliage semi-conducteur n'est à ce jour proposé sur le marché. Or ce type de cristaux est de la plus haute importance technologique puisqu'un alliage semi-conducteur permet d'obtenir des paramètres physiques intermédiaires entre ceux des matériaux constitutifs. Par exemple, un alliage comprenant 50% de silicium et 50% de germanium possède des propriétés électroniques intermédiaires entre celles du silicium pur et du germanium pur.
Par ailleurs, les méthodes de cristallogenèse connues sont relativement lentes - typiquement, les plus rapides présentent une vitesse de cristallisation de l'ordre de 1 mm/h, c'est-à-dire que la durée moyenne de production d'un cristal s'exprime en jours. L'un des objectifs de l'invention est donc de permettre l'élaboration d'alliages cristallins dont la composition est beaucoup plus homogène que par les techniques connues et qui sont exempts de fissures. On cherche ainsi à obtenir une homogénéité longitudinale parfaite (i.e. proche de 0%) sur la majeure partie de l'échantillon. En ce qui concerne l'homogénéité radiale, on vise une homogénéité de quelques %.
Un autre but de l'invention est de définir un procédé industriel qui autorise un fonctionnement en continu et une cristallisation plus rapide que dans l'art antérieur.
BREVE DESCRIPTION DE L'INVENTION
Conformément à l'invention, il est proposé un procédé de cristallogenèse d'un matériau électriquement conducteur à l'état fondu, par tirage à partir d'une masse fondue de ce matériau dans un creuset, dans lequel :
- le matériau fondu est soumis progressivement à une température décroissante, de telle sorte qu'il se forme une interface liquide-solide,
- on contrôle la planéité de l'interface liquide-solide du matériau,
- le matériau fondu est soumis, avant et pendant la solidification, à un brassage électromagnétique, ledit procédé étant caractérisé en ce que ledit brassage électromagnétique est obtenu par l'application d'un champ magnétique alternatif, sans faire passer de courant électrique dans le matériau.
De manière particulièrement avantageuse, le contrôle de la planéité de l'interface liquide-solide est effectué en maintenant un piston dont la température est contrôlée à une distance déterminée de ladite interface. La température du piston est sensiblement égale à la somme de la température de fusion du matériau et du produit du gradient thermique dans le matériau par la distance entre l'interface et le piston.
Pour le brassage électromagnétique, on génère un champ magnétique alternatif dont l'intensité est comprise entre 1 et 10 mT et la fréquence est comprise entre 1000 et 10000 Hz. Un autre objet de l'invention concerne un dispositif de cristallogenèse d'un matériau électriquement conducteur à l'état fondu, par tirage à partir d'une masse fondue de ce matériau dans un creuset, comprenant :
- des moyens de refroidissement du matériau fondu, - des moyens de contrôle de la planéité de l'interface liquide-solide du matériau,
- des moyens de génération d'un brassage électromagnétique du matériau fondu, ledit dispositif étant caractérisé en ce que lesdits moyens de génération du brassage électromagnétique comprennent des moyens pour générer un champ magnétique alternatif dans le matériau. Les moyens de contrôle de la planéité de l'interface comprennent avantageusement :
- un piston dont la température est contrôlée, présentant une face inférieure plane, et
- des moyens pour maintenir la face inférieure du piston à une distance déterminée de l'interface liquide-solide du matériau. Les moyens de génération du brassage électromagnétique comprennent de préférence une bobine électromagnétique et des moyens pour faire circuler un courant électrique alternatif dans la bobine.
BREVE DESCRIPTION DES DESSINS D'autres caractéristiques et avantages de l'invention ressortiront de la description détaillée qui va suivre, en référence aux dessins annexés sur lesquels : la figure 1 est un schéma d'une installation de type Bridgman classique ; la figure 2 est un schéma d'une installation de type Bridgman perfectionnée au moyen d'un moteur électromagnétique ; - la figure 3 est un schéma d'une installation de type Bridgman incorporant le piston de la méthode AHP ; la figure 4 illustre de manière schématique une installation conforme à l'invention ; la figure 5A illustre de manière schématique la structure d'un four Bridgman ; la figure 5B illustre le profil de température au sein du matériau dans le four de la figure 5A ; la figure 6 illustre un piston chauffant.
DESCRIPTION DETAILLEE DE L'INVENTION
Les inventeurs ont découvert qu'en combinant les deux techniques, à savoir simultanément :
- soumettre le matériau fondu contenu dans le creuset à un brassage électromagnétique, et - plonger dans le matériau fondu un piston maintenu à une température contrôlée et à une distance constante de l'interface liquide/solide, on obtient de manière surprenante des résultats nettement supérieurs à ceux qui étaient escomptés en cumulant simplement les meilleurs résultats de chacune de ces méthodes. Le schéma de principe du dispositif est illustré à la figure 4.
Description du dispositif
Le dispositif comprend un four Bridgman classique, dans lequel un creuset est mobile en translation, auquel on ajoute des inducteurs électromagnétiques et un piston dont la température est régulée. La figure 5 représente, dans sa partie A, un creuset cylindrique 1 , au fond duquel a été placé un germe G. Au-dessus du germe G est disposé le matériau à partir duquel on veut fabriquer le monocristal. Le creuset 1 est placé dans un four constitué de deux parties chauffantes 4 et 5 séparées par une zone thermiquement isolante 6 de manière à obtenir à l'intérieur du creuset 1 le profil de température T représenté dans la partie B de la figure 5.
Le profil de température établi pendant l'étape de fusion du matériau est centré sur la température de fusion Tf du matériau. C'est la température qui règne dans le creuset 1 dans la partie de la masse fondue L qui est juste en contact avec le germe G. La partie chauffante 4 produit la température T1 inférieure à la température de fusion du matériau. La partie chauffante 5 produit la température T2 qui est supérieure à la température de fusion du matériau. A ce stade du procédé, le matériau constitue une masse fondue L possédant une zone supérieure dite zone chaude, de hauteur H et de température T2 suffisamment éloignée de la température de fusion Tf.
Le creuset 1 est en nitrure de bore. Il présente un diamètre de 11 mm et une profondeur supérieure à 90 mm. De manière plus générale, l'homme du métier pourra choisir tout matériau classique de creuset, par exemple du graphite ou de la silice pour les matériaux semiconducteurs, des métaux nobles pour les oxydes. En outre, toute dimension est potentiellement envisageable, sachant que les dimensions industrielles sont un diamètre de l'ordre de 4 pouces et une longueur de plusieurs décimètres.
Le creuset 1 est mobile en translation à l'intérieur du four. Les moyens de déplacement du creuset sont connus de l'homme du métier et ne seront donc pas décrits plus en détail. Selon une variante de l'invention, le creuset est fixe et on refroidit progressivement le four tandis que la bobine et le piston montent en même temps que l'interface liquide-solide.
Les inducteurs électromagnétiques permettant le brassage du liquide peuvent être de tout type permettant l'application d'un champ magnétique tournant, glissant ou alternatif.
L'utilisation d'un champ magnétique tournant a été décrite par exemple dans la demande de brevet EP 1 167 586. On utilise à cet effet un électroaimant, tel par exemple que le stator d'un moteur électrique.
Toutefois, selon un mode de réalisation préféré, on générera un champ magnétique alternatif, car cette solution présente l'avantage de nécessiter un dispositif beaucoup plus simple, à savoir une bobine électromagnétique dans laquelle on fait circuler un courant électrique alternatif. On pourra se référer à cet égard à la publication d'A. Mitric et al. citée plus haut.
La bobine électromagnétique 2 (illustrée à la figure 4) se présente sous la forme d'une spire constituée de 20 tours de fil de cuivre de 1 mm de diamètre.
Le piston 3, dont la face inférieure est plane, est en graphite. Il est fixe par rapport au four. II est équipé de thermocouples et de moyens de chauffage - par exemple, une résistance chauffante - aptes à réguler sa température à une valeur déterminée en fonction du matériau à cristalliser.
Dans une version complexe, telle qu'illustrée à la figure 6, le piston 3 comprend quatre thermocouples référencés de Th1 à Th4 et deux résistances annulaires R1 et R2 à l'intérieur du piston. A cet effet, le piston 3 est creux et démontable. Les fils des thermocouples et les fils d'alimentation électrique des résistances passent par le tube qui tient le piston. Les thermocouples servent à réguler la température des résistances chauffantes, à une température légèrement supérieure à la température de fusion du matériau. On peut imposer une différence de température radiale en régulant les résistances à des valeurs différentes.
Toutefois, d'autres configurations plus simples du piston sont envisageables, comme par exemple un ou deux thermocouples et une seule résistance. De manière alternative, le piston peut comprendre un seul thermocouple qui régule le courant électrique circulant dans la résistance du four qui entoure le creuset pour maintenir le piston à une température voulue. Enfin, il est également envisageable de ne disposer aucun thermocouple dans le piston : on contrôle alors la température du piston en le positionnant dans le four à une hauteur dont on connaît approximativement la température. La présente invention couvre bien sûr tous ces modes de réalisation.
Description du procédé
On va maintenant décrire la mise en œuvre du procédé en référence à la fabrication d'un cristal d'un alliage concentré d'InGaSb, comprenant 80% de GaSb et 20% d'InSb. On dispose au fond du creuset 1 un germe G permettant d'initier la cristallisation, puis la matière première, que l'on fait fondre. La température de la jonction entre le germe G et la charge fondue L est la température de fusion du matériau. Lorsque l'on s'éloigne du germe, la température du liquide augmente de quelques degrés à quelques dizaines de degrés par centimètre, définissant ainsi un gradient thermique exprimé en °C/cm. Ce gradient thermique est connu de l'homme de l'art. On fait ensuite descendre le creuset 1 dans le four, avec un gradient thermique de l'ordre de 40 K/cm et une vitesse de croissance de 1 micromètre par seconde (soit 3,6 mm/h). Le matériau se refroidit peu à peu en cristallisant.
Avant et pendant la solidification, on applique à la bobine 2 un courant alternatif de 6 A et de fréquence 5000 Hz, ce qui génère un champ magnétique alternatif de
3 mT d'intensité. L'intensité et la fréquence du champ magnétique se calculent par les équations classiques de l'électromagnétisme. L'intensité est calculée par les lois de l'électromagnétisme de façon à assurer un brassage maximal du liquide sans perturber le champ de température ni la forme, ni la position de l'interface solide- liquide. La fréquence est calculée de façon à avoir une pénétration électromagnétique
(épaisseur de peau) de l'ordre du quart du diamètre de l'échantillon (diamètre interne du creuset). Ces grandeurs sont susceptibles de grandes variations d'un dispositif à l'autre, notamment en fonction du diamètre de l'échantillon. Typiquement, le champ magnétique alternatif présente une intensité comprise entre 1 et 10 mT et une fréquence comprise entre 1000 et 10000 Hz.
L'effet de ce champ magnétique est de générer des mouvements de convection à l'intérieur du matériau fondu qui permettent de l'homogénéiser.
Par ailleurs, le piston 3 est porté à une température sensiblement égale à la somme de la température de fusion et du produit du gradient thermique susmentionné par la distance que l'on souhaite avoir entre le piston et l'interface solide-liquide. Par sensiblement égale, on entend dans ce texte que la température réelle du piston peut différer de quelques degrés (par exemple ± 10°C) de la température indiquée. En revanche, la température du piston ne doit pas fluctuer au cours du procédé, sinon l'interface oscille. En référence à la figure 6, le piston 3 est maintenu à une distance h comprise typiquement entre 5 et 10 mm de l'interface liquide-solide.
Le piston chauffant 3 divise le matériau fondu en deux zones respectivement inférieure Z1 et supérieure Z2.
Ces zones sont reliées par un espace annulaire étroit (dont la largeur δ est de l'ordre de 0,5 mm) entre le creuset 1 et le piston 3. Lorsque le creuset se déplace par rapport au piston, le matériau fondu passe de la zone supérieure Z2 (i.e. la zone située au-dessus du piston) à la zone inférieure Z1 (i.e. la zone située entre l'interface de solidification et le piston).
L'effet du piston 3 est de contrôler l'interface liquide-solide en la maintenant plane.
Résultats expérimentaux
On peut établir le tableau comparatif ci-dessous, pour un alliage concentré InGaSb (comprenant 80% de Ga et 20% d'In) :
On constate ainsi que, de manière inattendue, on obtient de bien meilleurs résultats (notamment en termes de vitesse de cristallisation) avec le procédé de l'invention que les résultats que l'on aurait pu escompter en cumulant les meilleures performances du brassage électromagnétique et du piston chauffant pris isolément.
Applications possibles de l'invention L'invention qui vient d'être décrite en référence à un alliage InGaSb n'est aucunement limitée à cet alliage.
L'invention s'applique en effet à la cristallogenèse de tous les alliages semiconducteurs, tels que :
- les alliages binaires de germanium et silicium, pour des applications en micro- électronique ; - les alliages ternaires de la famille IM-V, c'est-à-dire à base d'antimoniures (GaSb, AISb et InSb), d'arséniures (GaAs et InAs) ou de phosphures (GaP et InP), pour des applications en électronique rapide et en optoélectronique ;
- les alliages ternaires de la famille M-IV, à base de tellurures (CdTe, ZnTe, HgTe) ou de séléniures (CdSe ou ZnSe), pour des applications dans le domaine des détecteurs pour toutes la gamme des rayonnements gamma, X, UV, visible et IR.
L'invention peut également s'appliquer à la solidification du silicium pour des applications photovoltaïques : elle permet en effet d'obtenir du silicium de qualité satisfaisante à partir de matière première moins pure et donc disponible en plus grande quantité et moins chère.
De manière plus générale, l'invention s'applique à tout type de solidification en creuset et peut donc concerner des alliages métalliques, des verres, des cristaux d'oxydes ou d'halogénures, sous réserve qu'ils soient conducteurs de l'électricité à l'état fondu. Enfin, on rappelle que l'invention n'est pas limitée à un dispositif où le piston et la bobine sont fixes et le creuset mobile par rapport au four ; la configuration inverse, où le creuset est fixe par rapport au four dont on diminue progressivement la température, est un mode de réalisation possible de l'invention. Dans ce cas, la bobine et le piston sont mobiles en translation vers le haut de manière à suivre l'interface liquide-solide.

Claims

REVENDICATIONS
1. Procédé de cristallogenèse d'un matériau électriquement conducteur à l'état fondu, par tirage à partir d'une masse fondue de ce matériau dans un creuset (1 ), dans lequel :
- le matériau fondu est soumis progressivement à une température décroissante, de telle sorte qu'il se forme une interface liquide-solide,
- on contrôle la planéité de l'interface liquide-solide du matériau,
- le matériau fondu est soumis, avant et pendant la solidification, à un brassage électromagnétique, ledit procédé étant caractérisé en ce que ledit brassage électromagnétique est obtenu par l'application d'un champ magnétique alternatif.
2. Procédé selon la revendication 1 , caractérisé en ce que le contrôle de la planéité de l'interface liquide-solide est effectué en maintenant un piston (3) dont la température est contrôlée à une distance déterminée (h) de ladite interface.
3. Procédé selon la revendication 2, caractérisé en ce que la température du piston (3) est sensiblement égale à la somme de la température de fusion du matériau et du produit du gradient thermique dans le matériau par la distance entre l'interface et le piston.
4. Procédé selon l'une des revendications précédentes, caractérisé en ce que, pour le brassage électromagnétique, on génère un champ magnétique alternatif dont l'intensité est comprise entre 1 et 10 mT et la fréquence est comprise entre 1000 et 10000 Hz.
5. Dispositif de cristallogenèse d'un matériau électriquement conducteur à l'état fondu, par tirage à partir d'une masse fondue de ce matériau dans un creuset (1 ), comprenant :
- des moyens de refroidissement du matériau fondu, - des moyens de contrôle de la planéité de l'interface liquide-solide du matériau,
- des moyens (2) de génération d'un brassage électromagnétique du matériau fondu, ledit dispositif étant caractérisé en ce que lesdits moyens de génération du brassage électromagnétique comprennent des moyens pour générer un champ magnétique alternatif dans le matériau.
6. Dispositif selon la revendication 5, caractérisé en ce que les moyens de contrôle de la planéité de l'interface comprennent :
- un piston (3) dont la température est contrôlée, présentant une face inférieure plane, et
- des moyens pour maintenir la face inférieure du piston à une distance (h) déterminée de l'interface liquide-solide du matériau.
7. Dispositif selon l'une des revendications 5 ou 6, caractérisé en ce que les moyens de génération du brassage électromagnétique comprennent une bobine électromagnétique (2) et des moyens pour faire circuler un courant électrique alternatif dans la bobine.
EP09715571A 2008-02-27 2009-02-27 Procede de cristallogenese d'un materiau electriquement conducteur a l'etat fondu Ceased EP2262932A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0851259A FR2927910B1 (fr) 2008-02-27 2008-02-27 Procede de cristallogenese d'un materiau electriquement conducteur a l'etat fondu.
PCT/EP2009/052393 WO2009106625A1 (fr) 2008-02-27 2009-02-27 Procede de cristallogenese d'un materiau electriquement conducteur a l'etat fondu

Publications (1)

Publication Number Publication Date
EP2262932A1 true EP2262932A1 (fr) 2010-12-22

Family

ID=39495171

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09715571A Ceased EP2262932A1 (fr) 2008-02-27 2009-02-27 Procede de cristallogenese d'un materiau electriquement conducteur a l'etat fondu

Country Status (5)

Country Link
US (1) US9493889B2 (fr)
EP (1) EP2262932A1 (fr)
JP (1) JP5777888B2 (fr)
FR (1) FR2927910B1 (fr)
WO (1) WO2009106625A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010048602A1 (de) * 2010-10-15 2012-04-19 Centrotherm Sitec Gmbh Schmelztiegel für Silizium, Schmelztiegelanordnung und Trenneinheit für einen Schmelztiegel
US9587324B2 (en) * 2014-05-12 2017-03-07 Varian Semiconductor Equipment Associates, Inc. Apparatus for processing a melt

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1167586A1 (fr) * 2000-06-20 2002-01-02 Commisariat à l'énergie Atomique Procédé de cristallogenese avec champ magnetique

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3096158A (en) * 1959-09-25 1963-07-02 Gerthart K Gaule Apparatus for pulling single crystals in the form of long flat strips from a melt
FR2630459B1 (fr) 1988-04-20 1994-04-29 Commissariat Energie Atomique Procede et creuset de solidification de materiaux, et application a la cristallogenese de semi-conducteurs
US5047113A (en) * 1989-08-23 1991-09-10 Aleksandar Ostrogorsky Method for directional solidification of single crystals
JPH06234590A (ja) * 1993-02-09 1994-08-23 Furukawa Electric Co Ltd:The 化合物半導体単結晶の製造方法とその装置
FR2712608B1 (fr) 1993-11-16 1996-01-12 Commissariat Energie Atomique Procédé de fabrication de pièces en matériau polycristallin ou monocristallin par croissance à partir d'un bain fondu.
FR2742488A1 (fr) 1995-12-19 1997-06-20 Commissariat Energie Atomique Dispositif de deplacement d'un liquide notamment dans des conditions de gravite reduite
FR2747173B1 (fr) * 1996-04-03 1998-04-30 Commissariat Energie Atomique Dispositif de traversee etanche d'une cloison par un organe mobile
FR2757184B1 (fr) * 1996-12-12 1999-02-26 Commissariat Energie Atomique Dispositif et procede de cristallogenese
FR2762021B1 (fr) * 1997-04-09 1999-06-11 Commissariat Energie Atomique Dispositif de cristallogenese a piston
EP1088912A1 (fr) * 1999-09-28 2001-04-04 Forschungsverbund Berlin e.V. Croissance en solution dans une zone flottante de cristaux d'un composé ou d'un alliage
FR2806100B1 (fr) * 2000-03-10 2002-09-20 Commissariat Energie Atomique Dispositif et procede de cristallogenese
US6849121B1 (en) * 2001-04-24 2005-02-01 The United States Of America As Represented By The Secretary Of The Air Force Growth of uniform crystals
DE10349339A1 (de) * 2003-10-23 2005-06-16 Crystal Growing Systems Gmbh Kristallzüchtungsanlage
FR2865740B1 (fr) * 2004-01-30 2007-06-22 Centre Nat Rech Scient Procede et dispositif de fabrication de monocristaux
JP2006008483A (ja) * 2004-06-29 2006-01-12 Sharp Corp 薄板製造装置
JP4294576B2 (ja) * 2004-11-17 2009-07-15 シャープ株式会社 薄板生成装置および薄板生成方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1167586A1 (fr) * 2000-06-20 2002-01-02 Commisariat à l'énergie Atomique Procédé de cristallogenese avec champ magnetique

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
MITRIC A ET AL: "Growth of Ga"("1"-"x")In"xSb alloys by Vertical Bridgman technique under alternating magnetic field", JOURNAL OF CRYSTAL GROWTH, ELSEVIER, AMSTERDAM, NL, vol. 287, no. 2, 25 January 2006 (2006-01-25), pages 224 - 229, XP028016211, ISSN: 0022-0248, [retrieved on 20060125], DOI: 10.1016/J.JCRYSGRO.2005.10.101 *
OSTROGORSKY A G ET AL: "DIFFUSION-CONTROLLED DISTRIBUTION OF SOLUTE IN SN-1% BI SPECIMENS SOLIDIFIED BY THE SUBMERGED HEATER METHOD", JOURNAL OF CRYSTAL GROWTH, ELSEVIER, AMSTERDAM, NL, vol. 110, no. 4, 1 April 1991 (1991-04-01), pages 950 - 954, XP000261056, ISSN: 0022-0248, DOI: 10.1016/0022-0248(91)90655-O *
OSTROGORSKY ET AL: "Numerical simulation of single crystal growth by submerged heater method", JOURNAL OF CRYSTAL GROWTH, ELSEVIER, AMSTERDAM, NL, vol. 104, no. 2, 2 July 1990 (1990-07-02), pages 233 - 238, XP024437848, ISSN: 0022-0248, [retrieved on 19900702], DOI: 10.1016/0022-0248(90)90122-2 *
OSTROGORSKY ET AL: "Numerical simulation of single crystal growth by submerged heater method", JOURNAL OF CRYSTAL GROWTH, ELSEVIER, AMSTERDAM, NL, vol. 104, no. 2, 2 July 1990 (1990-07-02), pages 233 - 238, XP027419849, ISSN: 0022-0248, [retrieved on 19900702] *
See also references of WO2009106625A1 *

Also Published As

Publication number Publication date
US9493889B2 (en) 2016-11-15
JP2011513168A (ja) 2011-04-28
WO2009106625A1 (fr) 2009-09-03
US20110000424A1 (en) 2011-01-06
FR2927910B1 (fr) 2011-06-17
JP5777888B2 (ja) 2015-09-09
FR2927910A1 (fr) 2009-08-28

Similar Documents

Publication Publication Date Title
CN102017178B (zh) 片材制造方法及利用其所形成的产物
EP0130865B1 (fr) Dispositif d'élaboration d'un monocristal
EP2014803B1 (fr) Dispositif de fabrication d'un bloc de matériau cristallin avec modulation de la conductivité thermique
US20110168081A1 (en) Apparatus and Method for Continuous Casting of Monocrystalline Silicon Ribbon
KR20150023031A (ko) SiC 단결정 잉곳 및 그 제조 방법
KR101710814B1 (ko) SiC 단결정의 제조 방법
EP3184673B1 (fr) Procédé d'étalonnage d'un four de recuit utilisé pour former des donneurs thermiques
JPH107493A (ja) シリコン半導体基板および太陽電池用基板の製造方法
EP2014802A1 (fr) Procédé d'élaboration de plaquettes en matériau semi-conducteur par moulage et cristillisation dirigée
EP3323912A1 (fr) Suivi de l'avancement de la fusion par technique libs lors de l'élaboration d'un lingot par solidification dirigée par reprise sur germes
EP2262932A1 (fr) Procede de cristallogenese d'un materiau electriquement conducteur a l'etat fondu
FR2553232A1 (fr) Procede et dispositif pour elaborer un lingot d'un materiau semi-conducteur polycristallin
FR2526449A1 (fr) Procede et dispositif de fabrication d'un monocristal, exempt de toute contrainte, d'un compose ferroelectrique a structure cristalline
EP2751309A1 (fr) Système de fabrication d'un matériau cristallin par cristallisation dirigée muni d'une source de chaleur additionnelle latérale
WO2014045252A1 (fr) Procede de formation d'une couche de silicium epitaxiee
EP2802532B1 (fr) Procédé de purification du silicium
EP1399606B1 (fr) Dispositif de fabrication de cristaux d'alliage
EP2319072A1 (fr) Procede de preparation d'une couche mince auto-supportee de silicium cristallise
FR2652357A1 (fr) Methode pour inhiber la generation de dislocations dans les films de silicium dendritiques.
EP0234984B1 (fr) Procédé de préparation d'un lingot cristallin de Hg1-xo Cdxo Te
Adetunji et al. Growth of Cr-and Co-doped CdSe crystals from high-temperature selenium solutions
EP3047053B1 (fr) Procede de fabrication d'un lingot de silicium presentant une concentration homogene en phosphore
JP2004284892A (ja) 多結晶シリコンの製造方法
EP3390697B1 (fr) Four de cristallisation d'un lingot en matériau semi-conducteur enrichi en oxygène
WO2013125133A1 (fr) Procédé de traitement thermique d'une matière première en phase solide et dispositif associé, procédé de production de lingot, article et cellule solaire

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100923

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20151012

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20180310