EP2256333A1 - Aktiv schließendes Magnetventil für Magnetinjektoren - Google Patents

Aktiv schließendes Magnetventil für Magnetinjektoren Download PDF

Info

Publication number
EP2256333A1
EP2256333A1 EP10157971A EP10157971A EP2256333A1 EP 2256333 A1 EP2256333 A1 EP 2256333A1 EP 10157971 A EP10157971 A EP 10157971A EP 10157971 A EP10157971 A EP 10157971A EP 2256333 A1 EP2256333 A1 EP 2256333A1
Authority
EP
European Patent Office
Prior art keywords
magnetic
actuator
hydraulic valve
armature
solenoid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10157971A
Other languages
English (en)
French (fr)
Other versions
EP2256333B1 (de
Inventor
Michael Mennicken
Marco Beier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2256333A1 publication Critical patent/EP2256333A1/de
Application granted granted Critical
Publication of EP2256333B1 publication Critical patent/EP2256333B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0059Arrangements of valve actuators
    • F02M63/0063Two or more actuators acting on a single valve body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0614Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of electromagnets or fixed armature
    • F02M51/0617Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of electromagnets or fixed armature having two or more electromagnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid

Definitions

  • the invention is based on known fuel injectors for injecting a fuel into a combustion chamber of an internal combustion engine.
  • this may be the combustion chamber of a self-igniting internal combustion engine.
  • Such fuel injectors are generally based on an injection valve member which releases or closes one or more injection openings.
  • the movement of this injection valve member is usually controlled by one or more hydraulic valves.
  • the hydraulic valves in turn can be controlled directly or indirectly via one or more actuators.
  • the present invention is based, in particular, on fuel injectors which use a magnetic actuator as the actuator.
  • Such fuel injectors are referred to below as Magnetinjektoren.
  • Magnetinjektoren the opening of the hydraulic valve is usually realized by the power build-up when energizing a magnetic circuit of the at least one magnetic actuator.
  • the closing of the hydraulic valve is usually passive over at least one spring element.
  • non-pressure compensated valves are known in which the hydraulic valve with a hydraulic pressure in one direction, usually in an opening direction, is applied.
  • An advantage of such non-pressure compensated valves is for example in an overpressure limitation. From a defined pressure these hydraulic valves open automatically. This is a built-in safety function for the injection system.
  • good particle robustness in particular in the case of the spherical valve seat of the hydraulic valve, should be mentioned as an advantage of the non-pressure compensated valves.
  • a disadvantage of non-pressure compensated valves is that high rail pressures, ie high pressures of the provided fuel, high spring forces require the closing spring, since the spring force results from the product of the rail pressure and the valve seat surface.
  • the valve can be opened even at low rail pressure, therefore, large magnetic forces of the magnetic actuator are required. This leads to ever larger, heavier and therefore slower valves.
  • the second principle is the pressure balanced solenoid valves.
  • pressure-balanced solenoid valves no hydraulic pressure acts on an actuator of the hydraulic valve as a whole, since the hydraulic surfaces of the hydraulic valve cancel each other.
  • An advantage of such pressure compensated solenoid valves is that there is less need for closing spring force. Furthermore, there is less need for magnetic force to counteract the closing spring. In addition, a larger released flow area is possible with the same stroke of the hydraulic valve.
  • pressure compensated solenoid valves usually have no overpressure limiting function.
  • pressure-balanced solenoid valves are generally sensitive to particles and have a lower robustness to disturbing forces, such as friction by pads or similar disturbing forces.
  • An ideal hydraulic valve for use in a fuel injector should therefore on the one hand have the robustness against particles of a ball valve, have the overpressure limiting function of a non-pressure compensated valve and can still be made small and lightweight and thus have short switching times.
  • a hydraulic valve for use in a fuel injector and a fuel injector, which comprises at least one such hydraulic valve.
  • the fuel injector is used to inject a fuel into a combustion chamber of an internal combustion engine, in particular a self-igniting internal combustion engine.
  • the fuel can be injected from a high-pressure accumulator, which is also referred to below as “rail” or “common rail”, for example, with a pressure of at least 2000 bar.
  • the fuel injector has at least one injection valve member releasing or closing an injection opening, that is to say an injection valve member which, depending on its position, releases or closes the at least one injection opening.
  • the Injection valve member is controllable by at least one hydraulic valve according to the invention. For example, this can take place in that at least one hydraulic control chamber is provided, which is hydraulically connected to the injection valve member, wherein a pressure in the at least one control chamber is controlled by the hydraulic valve, for example optionally to high pressure (for example rail pressure) or to low pressure adjustable is.
  • high pressure for example rail pressure
  • low pressure adjustable for example optionally to high pressure (for example rail pressure) or to low pressure adjustable is.
  • the hydraulic valve has at least one actuator.
  • This at least one actuator may include, for example, an actuator rod.
  • the at least one actuator may further include, for example, at least one ball and / or differently configured types of actuators.
  • the actuator may directly or indirectly release or close one or more openings of the hydraulic valve.
  • the hydraulic valve may in particular be wholly or partly designed as a ball valve and / or comprise such a ball valve.
  • other types of valves and / or embodiments of a valve member or valve seat are in principle possible.
  • the hydraulic valve furthermore has at least one first magnetic actuator and at least one second magnetic actuator.
  • a magnetic actuator is generally an actuator to understand, which can exert by using magnetic or electromagnetic Aktorjanien directly or indirectly one or more forces on the actuator.
  • the magnetic actuators as will be explained in more detail below, comprise one or more magnetic coils and one or more armatures.
  • the first magnetic actuator and the second magnetic actuator are arranged to act on the actuator with opposite directions of force. This means that each of the magnetic actuators exerts at least one force on the actuator, these forces each having at least one of the other force opposite force component. In particular, the forces can be directed to each other completely opposite.
  • the first magnetic actuator can exert an opening force, ie a force in an opening direction, on the actuator and the second magnetic actuator a closing force, ie a force in a closing direction, or vice versa.
  • the actuator is wholly or partially formed as actuator rod, so for example, the first magnetic actuator a force parallel or with at least one component parallel to this actuator rod in a first direction, and the second magnetic actuator a force parallel to the actuator rod or with at least one component parallel to the actuator rod in the opposite direction.
  • these may be axial forces with respect to an axis of the fuel injector.
  • the hydraulic valve may further comprise at least one spring element, which also acts on the actuator.
  • the spring element comprise at least one coil spring.
  • the spring element may in particular be designed at least partially as a closing spring, wherein the closing spring is set up to exert a closing force on the actuator, that is, a force in a closing direction.
  • a closing direction is generally understood to mean a direction in which the actuator is pressed directly or indirectly into a valve seat, so that the hydraulic valve closes.
  • An interposition of further closing elements is possible, for example in the case of a ball valve, an interposition of a closing ball.
  • Various embodiments are conceivable and known to the person skilled in the art.
  • the spring element can in particular be designed and / or dimensioned such that the hydraulic valve is in a closed state without application of force by the first magnetic actuator and / or the second magnetic actuator.
  • the actuator should be pressed by the spring element in a closed position in the absence of energization of the magnetic actuators.
  • the hydraulic valve can in particular be configured as a non-force-balanced and / or non-pressure balanced hydraulic valve. This means that preferably the actuator of the hydraulic valve is acted upon by a hydraulic fluid, for example the fuel, with a hydraulic force in one direction, wherein hydraulic surfaces in this direction predominate oppositely acting hydraulic surfaces.
  • a hydraulic fluid for example the fuel
  • the first solenoid actuator and the second solenoid actuator may include at least one armature connected to the actuator.
  • the magnetic actuators as explained in more detail below, share one or more anchors on which the magnetic actuators and / or their magnetic coils act together, or the magnetic actuators may each comprise separate armature.
  • each of the magnetic actuators comprises more than one armature, for example at least one armature of its own and at least one armature an anchor shared with the other magnet actuator.
  • Under an anchor is generally to understand an element on which by means of a magnetic coil, a magnetic force is exercised. In particular, it may be a soft magnetic and / or ferromagnetic material.
  • the at least one anchor can each comprise at least one anchor plate, that is to say an element with a surface area which preferably exceeds its thickness.
  • the surface area may in particular be arranged perpendicular to a longitudinal extent of the actuator and / or to an axis of the fuel injector.
  • the first magnetic actuator may in particular comprise a first magnetic coil, and the second magnetic actuator at least one second magnetic coil.
  • the at least one armature can then be arranged between the first magnet coil and the second magnet coil.
  • This can be realized both in that a common armature is provided for both magnetic actuators, which is arranged between the magnet coils.
  • Even with a separate configuration of the armature an arrangement between the magnetic coils is possible, for example by a first armature is arranged closer to the first magnetic coil, and a second armature closer to the second magnetic coil, wherein the two armatures are arranged between the two magnetic coils.
  • first magnetic actuator and the second magnetic actuator are designed at least partially component-identical. In particular, these can share at least one common component.
  • the common component may in particular be designed to conduct a magnetic flux.
  • a magnetic flux of the first magnetic actuator may overlap with a magnetic flux of the second magnetic actuator in the common component.
  • the first magnetic actuator may at least partially have component-identical magnetic cores.
  • the first magnetic actuator and the second magnetic actuator may also comprise at least partially component-identical armatures.
  • the hydraulic valve may be configured such that the common component can be acted upon by the same or opposite magnetic fluxes.
  • At least one magnetic core of the first magnetic actuator and / or at least one magnetic core of the second magnetic actuator is at least partially formed by an armature and / or the actuator.
  • a magnetic flux of the first magnetic actuator and / or a magnetic flux of the second magnetic actuator at least partially guided by the armature and / or the actuator become.
  • an armature can replace at least part of a magnetic core and, for example, form an inner pole.
  • an armature can replace at least part of a magnetic core and, for example, form an inner pole.
  • a diameter of one or both of the magnetic actuators can be clearly prevented.
  • the first solenoid actuator and the second solenoid actuator may include a common armature connected to the actuator.
  • the first magnetic actuator may have a first magnetic coil and the second magnetic actuator has a second magnetic coil, wherein the hydraulic valve is arranged such that the common armature of the first magnetic coil and the second magnetic coil can be acted upon by a magnetic flux in the same direction.
  • This embodiment has the advantage that the polarization of the respective one magnetic circuit can be built up faster when switching, since the polarization of the other magnetic circuit can be used in the construction of the magnetic flux.
  • the hydraulic valve can also be set up such that the common armature can be acted upon by the first magnet coil and the second magnet coil with an opposite magnetic flux.
  • This offers the advantage that the flow structure of one magnetic circuit can be used for the flow reduction of the other magnetic circuit.
  • Both embodiments of the magnetic fluxes can also be combined, for example, in different switching phases of the hydraulic valve or the fuel injector.
  • a configuration is possible in which the first magnetic actuator has a first armature and the second magnetic actuator has a second armature, wherein the first armature and the second armature on opposite sides of the first Magnet coil and the second magnetic coil are arranged.
  • the hydraulic valve and the fuel injector have a number of advantages over known hydraulic valves and fuel injectors.
  • fuel injectors can be produced which are robust against particle contaminants, in particular contaminants of the fuel, and which may have the robustness of a ball valve.
  • the hydraulic valve and the fuel injector may be provided with a non-pressure compensated over-pressure limiting function Valves are designed and can still build small and light and thus quickly switch.
  • the hydraulic valve can thus be designed as an actively closing solenoid valve, in particular for use in fuel injectors.
  • two magnetic circuits can be used, wherein the one magnetic circuit, so the magnetic circuit of the first magnetic actuator, for example, in the opening direction of the hydraulic valve and the other can act in the closing direction of the hydraulic valve or vice versa.
  • the use is particularly useful on non-pressure balanced hydraulic valves.
  • a portion of the necessary closing force for non-pressure compensated valves can be applied by the closing magnetic circuit itself, in particular by one or more of said magnetic actuators.
  • An advantage of this embodiment is that the closing spring can be made smaller and can be biased smaller. Accordingly, the magnetic power requirement for the opening magnetic circuit or the opening magnetic actuator is correspondingly lower. Accordingly, smaller armatures, lower moving masses and thus faster hydraulic valves or faster fuel injectors can be realized.
  • the protective magnetic actuator or magnetic circuit has lower bounce on the lower stroke stop and thus a progressively increasing closing force.
  • the hydraulic valve and the fuel injector can be configured such that in a closed state, the closing magnetic circuit is continuously flowed through.
  • the energy stored in this magnetic circuit can then be used as a boost energy for the opening magnetic circuit. Accordingly, the energy removal can be reduced from a control unit, for example, the energy withdrawals from a booster capacitor in a control unit.
  • the hydraulic valve can be made intrinsically safe without the need for additional safety measures. Accordingly, the hydraulic valve can be designed such that this automatically opens at an overpressure.
  • hydraulic valves 110 which can be used in fuel injectors 112 used. Other parts of the fuel injectors 112 are not shown in the figures.
  • the hydraulic valves 110 can be used in an injector housing, not shown, of the fuel injector 112, in which, for example, an injection valve member can be stored.
  • the hydraulic valves 110 each have a valve region 114 with a valve seat 116 and a valve bore 118. Valve seat 116 and valve bore 118 may be formed, for example, in an injector body 120, which is shown only in a rudimentary manner.
  • the valve bore 118 may, for example, open directly or indirectly in a control chamber of the fuel injector 112, via which a stroke of an injection valve member is controllable.
  • the hydraulic valve 110 has a closing element 122 in the valve region 114, which in the illustrated exemplary embodiment is configured by way of example as a ball.
  • a closing element 122 in the valve region 114 which in the illustrated exemplary embodiment is configured by way of example as a ball.
  • another embodiment is in principle possible, for example, a configuration as a cone, as a cone, as a spherical cap or in a similar manner.
  • the hydraulic valve 110 configured, for example, as a ball valve and / or has such a ball valve.
  • the closing element 122 is connected to an actuator 124, via which the closing element 122 can be pressed or lifted off in its valve seat 116.
  • the actuator 124 is exemplified in the illustrated embodiment as a cylindrical actuator 124 in the form of an actuator rod. However, other embodiments are possible in principle.
  • This hydraulic force counteracts a spring force of a spring element 126 in the form of a closing spring 128.
  • This closing spring 128 is supported at its lower end directly on the actuator 124 or indirectly on this, for example an armature 130, which may be connected to the actuator 124.
  • This armature is part of two magnetic actuators 132, 134, of which a first magnetic actuator 132 is designed as an opening magnetic actuator and a second magnetic actuator 134 in this embodiment as a closing magnetic actuator.
  • the magnetic actuators 132, 134 each comprise a first magnetic coil 136 and a second magnetic coil 138 and a first magnetic core 140 and a second magnetic core 142, respectively.
  • the magnetic actuators 132, 134 differ in the exemplary embodiments according to FIGS Figures 1 to 4B in terms of the design of their magnetic cores 140, 142 and in terms of the design and arrangement of their armature 130. This will be explained in more detail below.
  • the first magnetic actuator 132 is configured to generate a magnetic flux ⁇ o
  • the second magnetic actuator 134 is configured to generate a magnetic flux ⁇ c .
  • These magnetic fluxes ⁇ o and ⁇ c are indicated in the figures by closed, circular arrows.
  • FIG. 1 an embodiment of a hydraulic valve 110 is shown, which actively closes and in which the magnetic actuators 132, 234 are designed separately, so that the two magnetic circuits of these magnetic actuators 132, 134 substantially or not affect magnetically substantially.
  • the first magnetic actuator 132 has a first armature 144 and the second magnetic actuator 134 has a second armature 146. Both armatures 144, 146 are connected to the actuator 124 and are arranged substantially parallel to one another.
  • the magnetic cores 140, 142 of the two magnetic actuators 132, 134 are formed separately from each other in this embodiment.
  • FIGS. 2A to 4B exemplary embodiments are shown in which the first magnetic actuator 132 and the second magnetic actuator 134 influence one another, in particular in that their magnetic fluxes ⁇ o and ⁇ c overlap one another or influence one another.
  • These embodiments have the advantage that stored in the magnetic fields energies of the other magnetic actuator 132, 134 can be shared.
  • the polarization of the other magnetic circuit can be shared in the construction of the magnetic flux of the own magnetic circuit, resulting in a lower energy consumption for the magnetic field structure. This can be done in different ways.
  • the magnetic cores 114, 142 may be designed at least partially component-identical, so that the magnetic fluxes ⁇ o and ⁇ c can overlap.
  • a common anchor can also be used. Since in the shared part, that is, for example, in the shared armature 130 and / or in the shared magnetic core 140, 142, the magnetic flux direction is maintained and thus the flux density does not change so much, eddy currents are also reduced in this part. In the case of opposing flows, on the other hand, the flux build-up of one magnetic circuit can be used for the flow reduction of the other magnetic circuit.
  • FIGS. 2A and 2B For example, an embodiment of a hydraulic valve 110 is shown in which a common armature 130 is used.
  • the magnetic coils 136, 138 and the magnetic cores 140, 142 of the magnetic actuators 132, 134 are disposed on opposite sides of this shared armature 130.
  • FIG. 2A an embodiment in which the magnetic fluxes ⁇ o and ⁇ c within the armature 130 are in the same direction, whereas in the embodiment in FIG. 2B these magnetic fluxes ⁇ o and ⁇ c are configured in opposite directions. Accordingly, in FIG.
  • FIGS. 3A and 3B an embodiment of a hydraulic valve 110 is shown, which initially substantially the embodiment according to the FIGS. 2A and 2B equivalent.
  • a common armature 130 is used for the two magnetic actuators 132, 134.
  • the second magnetic core 142 does not completely surround the second magnetic coil 138.
  • the actuator 124 and / or a part of the armature 130 can thus at least partially take on the role of the magnetic cores 140, 142 in this and also in other embodiments.
  • the armature 130 can be used as the inner pole of the closing magnetic circuit of the second magnetic actuator 134, so that a part of the magnetic flux ⁇ c passes through this armature 130 and / or the actuator 124.
  • the embodiment in the FIGS. 3A and 3B essentially the embodiment according to the FIGS. 2A or 2B. Again in is FIG. 3A an equal magnetic flux is shown, whereas in FIG. 3B an opposite magnetic flux is shown.
  • FIGS. 4A and 4B Embodiments are shown in which the magnetic actuators 132, 134 have separate armatures 144, 146, similar to FIG. 1 , However, in this embodiment, the armatures 144, 146 on opposite sides with respect to the magnetic cores 140, 142 are arranged. Accordingly, in contrast to the other embodiments, in the illustrated embodiment according to the FIGS. 4A and 4B the magnetic actuator 132, 134 preferably share the magnetic cores 140, 142 as the common magnetic cores 148. Accordingly, the magnetic fluxes ⁇ o and ⁇ c can be superimposed again , Analogous to the FIGS. 2A and 2B or 3A and 3B is in FIG. 4A again shown an arrangement in which the magnetic fluxes ⁇ o and ⁇ c are configured in the same direction in the common magnetic core 148, whereas in the embodiment according to FIG. 4B are designed in opposite directions.
  • the closing spring 128 can be designed to be comparatively small and / or provided with a smaller preload, as a result of which a magnetic power requirement, in particular for the opening magnetic actuators 132, can be reduced.
  • the armature 130 can be made smaller.
  • the closing spring 128 may serve as a return spring in all embodiments and may generate an additional acceleration force for closing the fuel injector 112. As a result, a simpler operation of the fuel injector 112 is possible up to a limit rail pressure.
  • the hydraulic valve 110 can close automatically.
  • existing fuel injectors 112 may also be modified. Particular advantages are offered by the hydraulic valve 110 for a high operating pressure (rail pressure) with simultaneous need for very short switching times.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Magnetically Actuated Valves (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Es wird ein hydraulisches Ventil (110) für den Einsatz in einem Kraftstoffinjektor (112) zum Einspritzen eines Kraftstoffs in einen Brennraum einer Brennkraftmaschine vorgeschlagen. Das hydraulische Ventil (110) umfasst mindestens ein Stellglied (124) sowie weiterhin mindestens einen ersten Magnetaktor (132) und mindestens einen zweiten Magnetaktor (134). Der erste Magnetaktor (132) und der zweite Magnetaktor (134) sind eingerichtet, um mit einander entgegengesetzten Kraftrichtungen auf das Stellglied (124) einzuwirken.

Description

    Stand der Technik
  • Die Erfindung geht aus von bekannten Kraftstoffinjektoren zum Einspritzen eines Kraftstoffs in einen Brennraum einer Brennkraftmaschine. Insbesondere kann es sich dabei um den Brennraum einer selbstzündenden Brennkraftmaschine handeln. Derartige Kraftstoffinjektoren basieren in der Regel auf einem Einspritzventilglied, welches eine oder mehrere Einspritzöffnungen freigibt oder verschließt. Die Bewegung dieses Einspritzventilglieds wird zumeist über ein oder mehrere hydraulische Ventile gesteuert. Die hydraulischen Ventile wiederum können direkt oder indirekt über einen oder mehrere Aktoren gesteuert werden. Die vorliegende Erfindung geht insbesondere von Kraftstoffinjektoren aus, welche als Aktor einen Magnetaktor verwenden. Derartige Kraftstoffinjektoren werden im Folgenden auch als Magnetinjektoren bezeichnet. Bei Magnetinjektoren wird das Öffnen des hydraulischen Ventils in der Regel durch den Kraftaufbau beim Bestromen eines Magnetkreises des mindestens einen Magnetaktors realisiert. Das Schließen des hydraulischen Ventils erfolgt hingegen in der Regel passiv über mindestens ein Federelement.
  • Grundsätzlich existieren zwei Prinzipien für Magnetventile. Zum einen sind nicht-druckausgeglichene Ventile bekannt, bei welchen das hydraulische Ventil mit einem hydraulischen Druck in eine Richtung, in der Regel in eine Öffnungsrichtung, beaufschlagt wird. Ein Vorteil derartiger nicht-druckausgeglichener Ventile liegt beispielsweise in einer Überdruckbegrenzung. Ab einem definierten Druck öffnen diese hydraulischen Ventile automatisch. Dies ist eine eingebaute Sicherheitsfunktion für das Einspritzsystem. Weiterhin ist eine gute Partikelrobustheit, insbesondere bei kugelförmigem Ventilsitz des hydraulischen Ventils, als Vorteil der nicht-druckausgeglichenen Ventile zu nennen. Ein Nachteil nicht-druckausgeglichener Ventile besteht jedoch darin, dass hohe Raildrücke, also hohe Drücke des bereitgestellten Kraftstoffs, hohe Federkräfte der Schließfeder erfordern, da sich die Federkraft aus dem Produkt des Raildrucks und der Ventilsitzfläche ergibt. Damit das Ventil auch bei kleinem Raildruck geöffnet werden kann, sind daher große Magnetkräfte des Magnetaktors erforderlich. Dies führt zu stets größeren, schwereren und damit langsameren Ventilen.
  • Als zweites Prinzip sind die druckausgeglichenen Magnetventile zu nennen. Bei derartigen druckausgeglichenen Magnetventilen wirkt insgesamt kein hydraulischer Druck auf ein Stellglied des hydraulischen Ventils, da sich die hydraulischen Flächen des hydraulischen Ventils gegenseitig aufheben. Ein Vorteil derartiger druckausgeglichener Magnetventile liegt darin, dass ein geringerer Bedarf an Schließfederkraft besteht. Weiterhin besteht ein geringerer Bedarf an Magnetkraft, um der Schließfeder entgegenzuwirken. Zudem ist bei gleichem Hub des hydraulischen Ventils eine größere freigegebene Strömungsfläche möglich. Druckausgeglichene Magnetventile weisen jedoch in der Regel keine Überdruckbegrenzungsfunktion auf. Zudem sind druckausgeglichene Magnetventile in der Regel gegen Partikel empfindlich und weisen eine geringere Robustheit gegenüber Störkräften auf, beispielsweise Reibung durch Beläge oder ähnliche Störkräfte.
  • Ein ideales hydraulisches Ventil für den Einsatz in einem Kraftstoffinjektor sollte daher einerseits die Robustheit gegen Partikel eines Kugelventils haben, die Überdruckbegrenzungsfunktion eines nicht-druckausgeglichenen Ventils aufweisen und trotzdem klein und leicht ausgestaltet werden können und damit kurze Schaltzeiten aufweisen.
  • Offenbarung der Erfindung
  • Es werden daher ein hydraulisches Ventil für den Einsatz in einem Kraftstoffinjektor sowie ein Kraftstoffinjektor, welcher mindestens ein derartiges hydraulisches Ventil umfasst, vorgeschlagen. Der Kraftstoffinjektor dient zum Einspritzen eines Kraftstoffs in einen Brennraum einer Brennkraftmaschine, insbesondere einer selbstzündenden Brennkraftmaschine. Insbesondere kann der Kraftstoff aus einem Hochdruckspeicher eingespritzt werden, welcher im Folgenden auch als "Rail" oder "Common-Rail" bezeichnet wird, beispielsweise mit einem Druck von mindestens 2000 bar.
  • Der Kraftstoffinjektor weist mindestens ein eine Einspritzöffnung freigebendes oder verschließendes Einspritzventilglied auf, also ein Einspritzventilglied, welches je nach seiner Stellung, die mindestens eine Einspritzöffnung freigibt oder verschließt. Das Einspritzventilglied ist steuerbar durch mindestens ein hydraulisches Ventil gemäß der Erfindung. Beispielsweise kann dies dadurch erfolgen, dass mindestens ein hydraulischer Steuerraum vorgesehen ist, welcher hydraulisch mit dem Einspritzventilglied in Verbindung steht, wobei ein Druck in dem mindestens einen Steuerraum durch das hydraulische Ventil steuerbar ist, beispielsweise wahlweise auf Hochdruck (beispielsweise Raildruck) oder auf Niederdruck einstellbar ist. Diesbezüglich kann beispielsweise auf bekannte Kraftstoffinjektoren verwiesen werden.
  • Das hydraulische Ventil weist mindestens ein Stellglied auf. Dieses mindestens eine Stellglied kann beispielsweise eine Aktorstange umfassen. Das mindestens eine Stellglied kann weiterhin beispielsweise mindestens eine Kugel umfassen und/oder anders ausgestaltete Arten von Stellgliedern. Das Stellglied kann direkt oder indirekt eine oder mehrere Öffnungen des hydraulischen Ventils freigeben oder verschließen. Das hydraulische Ventil kann insbesondere ganz oder teilweise als Kugelventil ausgestaltet sein und/oder ein derartiges Kugelventil umfassen. Auch andere Arten von Ventilen und/oder Ausgestaltungen eines Ventilgliedes beziehungsweise Ventilsitzes sind jedoch grundsätzlich möglich.
  • Das hydraulische Ventil weist weiterhin mindestens einen ersten Magnetaktor und mindestens einen zweiten Magnetaktor auf. Unter einem Magnetaktor ist dabei allgemein ein Aktor zu verstehen, welcher durch Verwendung magnetischer oder elektromagnetischer Aktorprinzipien direkt oder indirekt eine oder mehrere Kräfte auf das Stellglied ausüben kann. Insbesondere können die Magnetaktoren, wie unten noch näher ausgeführt wird, eine oder mehrere Magnetspulen und einen oder mehrere Anker umfassen. Der erste Magnetaktor und der zweite Magnetaktor sind dabei eingerichtet, um mit einander entgegengesetzten Kraftrichtungen auf das Stellglied einzuwirken. Dies bedeutet, dass jeder der Magnetaktoren mindestens eine Kraft auf das Stellglied ausübt, wobei diese Kräfte jeweils mindestens eine der anderen Kraft entgegengesetzte Kraftkomponente aufweisen. Insbesondere können die Kräfte einander vollständig entgegengesetzt gerichtet sein. Insbesondere kann der erste Magnetaktor eine Öffnungskraft, also eine Kraft in einer Öffnungsrichtung, auf das Stellglied ausüben und der zweite Magnetaktor eine Schließkraft, das heißt eine Kraft in einer Schließrichtung, oder umgekehrt. Ist beispielsweise das Stellglied ganz oder teilweise als Aktorstange ausgebildet, so kann beispielsweise der erste Magnetaktor eine Kraft parallel oder mit zumindest einer Komponente parallel zur dieser Aktorstange in einer ersten Richtung ausüben, und der zweite Magnetaktor eine Kraft parallel zu der Aktorstange oder mit mindestens einer Komponente parallel zu der Aktorstange in entgegengesetzter Richtung. Beispielsweise kann es sich dabei um axiale Kräfte handeln bezüglich einer Achse des Kraftstoffinjektors.
  • Das hydraulische Ventil kann weiterhin mindestens ein Federelement aufweisen, welches sich ebenfalls auf das Stellglied auswirkt. Beispielsweise kann das Federelement mindestens eine Spiralfeder umfassen. Auch eine mehrteilige Ausgestaltung des Federelements und/oder eine Verwendung mehrere Federelemente ist denkbar. Das Federelement kann insbesondere zumindest teilweise als Schließfeder ausgestaltet sein, wobei die Schließfeder eingerichtet ist, um eine Schließkraft auf das Stellglied auszuüben, also eine Kraft in einer Schließrichtung. Unter eine Schließrichtung wird dabei allgemein eine Richtung verstanden, in welcher das Stellglied direkt oder indirekt in einen Ventilsitz gepresst wird, so dass das hydraulische Ventil schließt. Auch eine Zwischenschaltung weiterer Schließelemente ist möglich, beispielsweise im Falle eines Kugelventils eine Zwischenschaltung einer schließenden Kugel. Verschiedene Ausgestaltungen sind denkbar und dem Fachmann bekannt. Das Federelement kann insbesondere derart ausgestaltet und/oder dimensioniert werden, dass das hydraulische Ventil ohne Kraftbeaufschlagung durch den ersten Magnetaktor und/oder den zweiten Magnetaktor in einem geschlossenen Zustand ist. In anderen Worten soll bei fehlender Bestromung der Magnetaktoren das Stellglied durch das Federelement in eine Schließstellung gedrückt werden.
  • Das hydraulische Ventil kann insbesondere als nicht-kraftausgeglichenes und/oder als nicht-druckausgeglichenes hydraulisches Ventil ausgestaltet sein. Dies bedeutet, dass vorzugsweise das Stellglied des hydraulischen Ventils durch eine Hydraulikflüssigkeit, beispielsweise den Kraftstoff, mit einer hydraulischen Kraft in einer Richtung beaufschlagt wird, wobei hydraulische Flächen in dieser Richtung entgegengesetzt wirkende hydraulische Flächen überwiegen.
  • Der erste Magnetaktor und der zweite Magnetaktor können mindestens einen Anker umfassen, welcher mit dem Stellglied verbunden ist. Dabei können sich die Magnetaktoren, wie unten näher ausgeführt wird, einen oder mehrere Anker teilen, auf welche die Magnetaktoren und/oder deren Magnetspulen gemeinsam einwirken, oder die Magnetaktoren können jeweils separate Anker umfassen. Auch eine Kombination dieser Möglichkeiten ist denkbar, indem beispielsweise jeder der Magnetaktoren mehr als einen Anker umfasst, beispielsweise mindestens einen eigenen Anker und mindestens einen mit dem anderen Magnetaktor geteilten Anker. Unter einem Anker ist dabei allgemein ein Element zu verstehen, auf welches mittels einer Magnetspule eine Magnetkraft ausübbar ist. Insbesondere kann es sich dabei um ein weichmagnetisches und/oder ferromagnetisches Material handeln. Beispielsweise kann der mindestens eine Anker jeweils mindestens eine Ankerplatte umfassen, also ein Element mit einer Flächenausdehnung, welche vorzugsweise seine Dicke übersteigt. Die Flächenausdehnung kann insbesondere senkrecht zu einer Längserstreckung des Stellgliedes und/oder zu einer Achse des Kraftstoffinjektors angeordnet sein.
  • Der erste Magnetaktor kann insbesondere eine erste Magnetspule aufweisen, und der zweite Magnetaktor mindestens eine zweite Magnetspule. Der mindestens eine Anker kann dann zwischen der ersten Magnetspule und der zweiten Magnetspule angeordnet sein. Dies kann sowohl dadurch realisiert werden, dass ein gemeinsamer Anker für beide Magnetaktoren vorgesehen ist, welcher zwischen den Magnetspulen angeordnet ist. Auch bei einer getrennten Ausgestaltung der Anker ist eine Anordnung zwischen den Magnetspulen möglich, beispielsweise indem ein erster Anker näher zur ersten Magnetspule angeordnet ist, und ein zweiter Anker näher zu zweiten Magnetspule, wobei die beiden Anker zwischen den beiden Magnetspulen angeordnet sind.
  • Besonders bevorzugt ist es, wenn der erste Magnetaktor und der zweite Magnetaktor zumindest teilweise bauteilidentisch ausgestaltet sind. Insbesondere können sich diese mindestens ein gemeinsames Bauteil teilen. Das gemeinsame Bauteil kann insbesondere ausgestaltet seien, um einen Magnetfluss zu leiten. In dem gemeinsamen Bauteil kann sich insbesondere ein Magnetfluss des ersten Magnetaktors mit einem Magnetfluss des zweiten Magnetaktors überlagern. Insbesondere können der erste Magnetaktor zumindest teilweise bauteilidentische Magnetkerne aufweisen. Alternativ oder zusätzlich können der erste Magnetaktor und der zweite Magnetaktor, wie oben beschrieben, auch zumindest teilweise bauteilidentische Anker umfassen. Das hydraulische Ventil kann derart eingerichtet sein, dass das gemeinsame Bauteil mit gleichsinnigen oder gegensinnigen Magnetflüssen beaufschlagbar ist.
  • Weiterhin ist es besonders bevorzugt, wenn mindestens ein Magnetkern des ersten Magnetaktors und/oder mindestens ein Magnetkern des zweiten Magnetaktors zumindest teilweise von einem Anker und/oder dem Stellglied gebildet wird. Auf diese Weise kann ein Magnetfluss des ersten Magnetaktors und/oder ein Magnetfluss des zweiten Magnetaktors zumindest teilweise durch den Anker und/oder das Stellglied geführt werden. Auf diese Weise ist eine besonders kompakte Bauweise möglich. So kann beispielsweise ein Anker zumindest einen Teil eines Magnetkerns ersetzen und beispielsweise einen Innenpol bilden. Hierdurch lässt sich beispielsweise ein Anker zumindest einen Teil eines Magnetkerns ersetzen und beispielsweise einen Innenpol bilden. Hierdurch lässt sich beispielsweise ein Durchmesser eines oder beider der Magnetaktoren deutlich verhindern.
  • Der erste Magnetaktor und der zweite Magnetaktor können einen gemeinsamen Anker umfassen, welcher mit dem Stellglied verbunden ist. Der erste Magnetaktor kann dabei eine erste Magnetspule aufweisen und der zweite Magnetaktor eine zweite Magnetspule, wobei das hydraulische Ventil derart eingerichtet ist, dass der gemeinsame Anker von der ersten Magnetspule und der zweiten Magnetspule mit einem gleichsinnigen Magnetfluss beaufschlagbar ist. Diese Ausgestaltung hat den Vorteil, dass die Polarisation des jeweils einen Magnetkreises beim Umschalten schneller aufbaubar ist, da die Polarisation des jeweils anderen Magnetkreises beim Aufbau des magnetischen Flusses genutzt werden kann.
  • Alternativ oder zusätzlich kann das hydraulische Ventil jedoch auch derart eingerichtet sein, dass der gemeinsame Anker von der ersten Magnetspule und der zweiten Magnetspule mit einem gegensinnigen Magnetfluss beaufschlagbar ist. Dies bietet den Vorteil, dass der Flussaufbau des einen Magnetkreises für den Flussabbau des jeweils anderen Magnetkreises genutzt werden kann. Beide Ausgestaltungen der Magnetflüsse können auch kombiniert werden, beispielsweise in unterschiedlichen Schaltphasen des hydraulischen Ventils beziehungsweise des Kraftstoffinjektors. Alternativ oder zusätzlich zu einer Anordnung des mindestens einen Ankers zwischen den Magnetspulen ist auch eine Ausgestaltung möglich, bei welcher der erste Magnetaktor einen ersten Anker und der zweite Magnetaktor einen zweiten Anker aufweisen, wobei der erste Anker und der zweite Anker auf einander gegenüberliegenden Seiten der ersten Magnetspule und der zweiten Magnetspule angeordnet sind.
  • Das hydraulische Ventil und der Kraftstoffinjektor weisen gegenüber bekannten hydraulischen Ventilen und Kraftstoffinjektoren eine Reihe von Vorteilen auf. Insbesondere lassen sich Kraftstoffinjektoren erzeugen, welche robust sind gegenüber Partikelverunreinigungen, insbesondere Verunreinigungen des Kraftstoffs, und welche die Robustheit eines Kugelventils aufweisen können. Gleichzeitig können das hydraulische Ventil und der Kraftstoffinjektor mit einer Überdruckbegrenzungsfunktion eines nicht-druckausgeglichenen Ventils ausgestaltet werden und können trotzdem klein und leicht bauen und damit schnell schalten.
  • Das hydraulische Ventil kann somit als aktiv schließendes Magnetventil ausgestaltet werden, insbesondere für den Einsatz in Kraftstoffinjektoren. Dabei können zwei Magnetkreise eingesetzt werden, wobei der eine Magnetkreis, also der Magnetkreis des ersten Magnetaktors, beispielsweise in Öffnungsrichtung des hydraulischen Ventils und der andere in Schließrichtung des hydraulischen Ventils wirken kann oder umgekehrt. Sinnvoll ist der Einsatz insbesondere an nicht-druckausgeglichenen hydraulischen Ventilen. Ein Teil der notwendigen Schließkraft für nicht-druckausgeglichene Ventile kann von dem schließend wirkenden Magnetkreis selbst aufgebracht werden, insbesondere von einem oder mehreren der genannten Magnetaktoren. Ein Vorteil dieser Ausgestaltung besteht darin, dass die Schließfeder kleiner ausgestaltet werden kann und kleiner vorgespannt werden kann. Dementsprechend geringer ist der Magnetkraftbedarf für den öffnenden Magnetkreis beziehungsweise den öffnenden Magnetaktor. Dementsprechend lassen sich kleinere Anker, geringere bewegte Massen und damit schnellere hydraulische Ventile beziehungsweise schnellere Kraftstoffinjektoren realisieren.
  • Ein weiterer Vorteil liegt darin, dass der schützende Magnetaktor beziehungsweise Magnetkreis geringere Prellerneigungen am unteren Hubanschlag aufweist und somit eine progressiv zunehmende Schließkraft. Weiterhin können das hydraulische Ventil und der Kraftstoffinjektor derart ausgestaltet werden, dass in einem geschlossenen Zustand der schließend wirkende Magnetkreis dauernd durchströmt wird. Die in diesem Magnetkreis gespeicherte Energie kann dann als Boosterenergie für den öffnend wirkenden Magnetkreis benutzt werden. Dementsprechend kann die Energieentnahme aus einem Steuergerät verringert werden, beispielsweise die Energieentnahmen aus einem Boosterkondensator in einem Steuergerät. Ein weiterer zu nennender Vorteil liegt darin, dass das hydraulische Ventil eigensicher ausgestaltet werden kann, ohne die Notwendigkeit zusätzlicher Sicherheitsmaßnahmen. Dementsprechend kann das hydraulische Ventil derart ausgestaltet werden, dass dies bei einem Überdruck automatisch öffnet.
  • Kurze Beschreibung der Zeichnungen
  • Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert.
  • Es zeigen:
  • Figur 1
    ein erstes Ausführungsbeispiel eines aktiv schließenden hydrau- lischen Ventils mit separaten Magnetkreisen;
    Figuren 2 A und 2B
    Ausführungsbeispiele mit gemeinsam genutztem Magnetanker mit gleichsinnigem Magnetfluss (Figur 2A) und gegensinnigem Magnetfluss (Figur 2B);
    Figur 3
    ein Ausführungsbeispiel mit gemeinsam genutztem Anker, bei welchem der Anker als Innenpol des schließenden Magnetkrei- ses mitgenutzt wird, mit gleichsinnigem Magnetfluss (Figur 3A) und gegenseitigem Magnetfluss (Figur 3B); und
    Figuren 4 A und 4
    B ein Ausführungsbeispiel mit gemeinsam genutztem Magnetkern mit gleichsinnigem Magnetfluss (Figur 4 A) und gegensinnigem Magnetfluss (Figur 4 B).
    Ausführungsbeispiele
  • In den Figuren 1 bis 4B sind verschiedene Ausführungsbeispiele hydraulischer Ventile 110 dargestellt, welche in Kraftstoffinjektoren 112 zum Einsatz kommen können. Weitere Teile der Kraftstoffinjektoren 112 sind in den Figuren nicht dargestellt. Beispielsweise können die hydraulischen Ventile 110 in einem nicht dargestellten Injektorgehäuse des Kraftstoffinjektors 112 eingesetzt werden, in welchem beispielsweise auch ein Einspritzventilglied gelagert werden kann. Die hydraulischen Ventile 110 weisen jeweils einen Ventilbereich 114 mit einem Ventilsitz 116 und einer Ventilbohrung 118 auf. Ventilsitz 116 und Ventilbohrung 118 können beispielsweise in einem Injektorkörper 120 ausgebildet sein, welcher lediglich ansatzweise dargestellt ist. Die Ventilbohrung 118 kann beispielsweise direkt oder indirekt in einem Steuerraum des Kraftstoffinjektors 112 münden, über welchen ein Hub eines Einspritzventilgliedes steuerbar ist. Weiterhin weist das hydraulischen Ventil 110 in dem Ventilbereich 114 ein Schließelement 122 auf, welches in dem dargestellten Ausführungsbeispiel exemplarisch als Kugel ausgestaltet ist. Auch eine andere Ausgestaltung ist jedoch grundsätzlich möglich, beispielsweise eine Ausgestaltung als Konus, als Kegel, als Kugelkalotte oder auf ähnliche Weise. Dementsprechend ist in den dargestellten Ausführungsbeispielen das hydraulische Ventil 110 beispielsweise als Kugelventil ausgestaltet und/oder weist ein derartiges Kugelventil auf.
  • Das Schließelement 122 ist verbunden mit einem Stellglied 124, über welches das Schließelement 122 in seinem Ventilsitz 116 gepresst oder aus diesem abgehoben werden kann. Das Stellglied 124 ist in dem dargestellten Ausführungsbeispiel exemplarisch als zylindrisches Stellglied 124 in Form einer Aktorstange ausgebildet. Auch andere Ausgestaltungen sind jedoch grundsätzlich möglich. Durch die Ventilbohrung 118 wirkt eine Druckkraft Fp auf das Schließelement 122 und damit auf das Stellglied 124, welches sich aus dem Hydraulikdruck PRail und der Sitzfläche ASitz ergibt: F p = p Rail * A Sitz
    Figure imgb0001
  • Dieser hydraulischen Kraft entgegen wirkt eine Federkraft eines Federelements 126 in Form einer Schließfeder 128. Diese Schließfeder 128 ist an ihrem unteren Ende direkt auf dem Stellglied 124 oder indirekt auf diesem abgestützt, beispielsweise einem Anker 130, welcher mit dem Stellglied 124 verbunden sein kann. Dieser Anker ist Bestandteil zweier Magnetaktoren 132, 134, von denen ein erster Magnetaktor 132 als öffnender Magnetaktor ausgestaltet ist und ein zweiter Magnetaktor 134 in diesem Ausführungsbeispiel als schließender Magnetaktor. Die Magnetaktoren 132, 134 umfassen jeweils eine erste Magnetspule 136 beziehungsweise eine zweite Magnetspule 138 sowie einen ersten Magnetkern 140 beziehungsweise einen zweiten Magnetkern 142. Die Magnetaktoren 132, 134 unterscheiden sich in den Ausführungsbeispielen gemäß den Figuren 1 bis 4B hinsichtlich der Ausgestaltung ihrer Magnetkerne 140, 142 und hinsichtlich der Ausgestaltung und Anordnung ihrer Anker 130. Dies wird unten näher erläutert. Der erste Magnetaktor 132 ist eingerichtet um einen Magnetfluss Φ o zu erzeugen und der zweite Magnetaktor 134 ist eingerichtet um einen Magnetfluss Φ c zu erzeugen. Diese Magnetflüsse Φ o und Φ c sind jeweils in den Figuren durch geschlossene, kreisförmige Pfeile angedeutet.
  • In Figur 1 ist ein Ausführungsbeispiel eines hydraulischen Ventils 110 dargestellt, welches aktiv schließt und bei welchem die Magnetaktoren 132, 234 getrennt ausgestaltet sind, so dass sich die beiden Magnetkreise dieser Magnetaktoren 132, 134 im Wesentlichen magnetisch nicht oder nur minimal beeinflussen. Dabei weist der erste Magnetaktor 132 einen ersten Anker 144 auf und der zweite Magnetaktor 134 einen zweiten Anker 146. Beide Anker 144, 146 sind mit dem Stellglied 124 verbunden und sind im Wesentlichen parallel zueinander übereinander angeordnet. Die Magnetkerne 140, 142 der beiden Magnetaktoren 132, 134 sind in diesem Ausführungsbeispiel getrennt voneinander ausgebildet.
  • In den Figuren 2A bis 4B sind hingegen Ausführungsbeispiele dargestellt, in welchen sich der erste Magnetaktor 132 und der zweite Magnetaktor 134 gegenseitig beeinflussen, insbesondere indem deren Magnetflüsse Φ o und Φ c einander überlagern beziehungsweise gegenseitig beeinflussen. Diese Ausführungen haben den Vorteil, dass in den Magnetfeldern gespeicherte Energien des jeweils anderen Magnetaktors 132, 134 mitgenutzt werden können. So kann bei gleichsinnigem Magnetfluss die Polarisation des jeweils anderen Magnetkreises beim Aufbau des magnetischen Flusses des eigenen Magnetkreises mitgenutzt werden, was zu einem geringeren Energiebedarf für den Magnetfeldaufbau führt. Dies kann auf unterschiedliche Weise erfolgen. So können beispielsweise die Magnetkerne 114, 142 zumindest teilweise bauteilidentisch ausgestaltet sein, so dass sich die magnetischen Flüsse Φ o und Φ c überlagern können. Alternativ oder zusätzlich kann jedoch auch ein gemeinsamer Anker verwendet werden. Da in dem gemeinsam genutzten Teil, also beispielsweise in dem gemeinsam genutzten Anker 130 und/oder in dem gemeinsam genutzten Magnetkern 140, 142, die magnetische Flussrichtung beibehalten wird und sich somit die Flussdichte nicht so stark ändert, reduzieren sich in diesem Teil auch Wirbelströme. Bei gegensinnigen Flüssen kann hingegen der Flussaufbau des einen Magnetkreises für den Flussabbau des anderen Magnetkreises genutzt werden.
  • In den Figuren 2A und 2B ist ein Ausführungsbeispiel eines hydraulischen Ventils 110 dargestellt, in welchem ein gemeinsamer Anker 130 verwendet wird. Die Magnetspulen 136, 138 und die Magnetkerne 140, 142 der Magnetaktoren 132, 134 sind auf einander gegenüberliegenden Seiten dieses gemeinsam genutzten Ankers 130 angeordnet. Dabei zeigt Figur 2A eine Ausgestaltung, in welcher die Magnetflüsse Φ o und Φ c innerhalb des Ankers 130 gleichsinnig sind, wohingegen bei der Ausgestaltung in Figur 2B diese Magnetflüsse Φ o und Φ c gegensinnig ausgestaltet sind. Dementsprechend kann in Figur 2A beim Aufbau des Magnetflusses Φ o die durch den Magnetfluss Φ c hervorgerufene Polarisation genutzt werden und umgekehrt, was zu einem geringeren Energiebedarf für den Magnetfeldaufbau führt. Umgekehrt kann bei dem Ausführungsbeispiel gemäß Figur 2B der Flussaufbau des Magnetflusses Φ o für den Flussabbau des Magnetflusses Φ c genutzt werden und umgekehrt.
  • In den Figuren 3A und 3B ist ein Ausführungsbeispiel eines hydraulischen Ventils 110 dargestellt, welches zunächst im Wesentlichen dem Ausführungsbeispiel gemäß den Figuren 2A und 2B entspricht. Wiederum wird ein gemeinsamer Anker 130 für die beiden Magnetaktoren 132, 134 genutzt. Allerdings umschließt zentral der zweite Magnetkern 142 die zweite Magnetspule 138 nicht vollständig. Das Stellglied 124 und/oder ein Teil des Ankers 130 können also in diesem und auch in anderen Ausführungsbeispielen zumindest teilweise die Rolle der Magnetkerne 140, 142 übernehmen. In diesem Fall kann beispielsweise der Anker 130 als Innenpol des schließenden Magnetkreises des zweiten Magnetaktors 134 genutzt werden, so dass ein Teil des Magnetflusses Φ c durch diesen Anker 130 und/oder das Stellglied 124 hindurch verläuft. Ansonsten kann das Ausführungsbeispiel in den Figuren 3A und 3B im Wesentlichen dem Ausführungsbeispiel gemäß den Figuren 2A beziehungsweise 2B entsprechen. Wiederum ist in Figur 3A ein gleichsinniger Magnetfluss dargestellt, wohingegen in Figur 3B ein gegensinniger Magnetfluss gezeigt ist.
  • In den Figuren 4A und 4B sind Ausführungsbeispiele gezeigt, bei welchen die Magnetaktoren 132, 134 getrennte Anker 144, 146 aufweisen, ähnlich zu Figur 1. Allerdings sind in diesem Ausführungsbeispiel die Anker 144, 146 aufeinander gegenüberliegenden Seiten bezüglich der Magnetkerne 140, 142 angeordnet. Dementsprechend ist, im Unterschied zu den anderen Ausführungsbeispielen, im dargestellten Ausführungsbeispiel gemäß den Figuren 4A und 4B der öffnende Magnetaktor 132 unten liegend angeordnet, also näher am Ventilbereich 114 als der schließende Magnetaktor 134. Die Magnetaktoren 132, 134 teilen sich vorzugsweise die Magnetkerne 140, 142 als die gemeinsamen Magnetkerne 148. Entsprechend können sich die Magnetflüsse Φ o und Φ c wieder überlagern. Analog zu den Figuren 2A und 2B beziehungsweise 3A und 3B ist in Figur 4A wiederum eine Anordnung gezeigt, in welcher die Magnetflüsse Φ o und Φ c in dem gemeinsamen Magnetkern 148 gleichsinnig ausgestaltet sind, wohingegen diese in dem Ausführungsbeispiel gemäß Figur 4B gegensinnig ausgestaltet sind.
  • Mittels der in den Figuren 1 bis 4B gezeigten Ausführungsbeispiele lassen sich die oben beschrieben Vorteile realisieren. Insbesondere kann die Schließfeder 128 vergleichsweise klein ausgestaltet werden und/oder mit einer kleineren Vorspannung versehen werden, wodurch ein Magnetkraftbedarf insbesondere für den öffnenden Magnetaktoren 132 reduziert werden kann. Zudem lassen sich die Anker 130 kleiner ausgestalten. Die Schließfeder 128 kann in allen Ausführungsbeispielen als Rückstellfeder dienen und kann eine zusätzliche Beschleunigungskraft für das Schließen des Kraftstoffinjektors 112 erzeugen. Hierdurch wird ein einfacherer Betrieb des Kraftstoffinjektors 112 bis hin zu einem Grenz-Raildruck möglich. Beim Ausfall des schließenden Magnetaktors 134 kann das hydraulische Ventil 110 selbsttätig schließen. Mittels des vorgeschlagenen hydraulischen Ventils 110 in einer oder mehreren der vorgeschlagenen Ausgestaltungen lassen sich auch bestehende Kraftstoffinjektoren 112 modifizieren. Besondere Vorteile bietet das hydraulische Ventil 110 für einen hohen Betriebsdruck (Raildruck) bei gleichzeitigem Bedarf an sehr kurzen Schaltzeiten.

Claims (12)

  1. Hydraulisches Ventil (110) für den Einsatz in einem Kraftstoffinjektor (112) zum Einspritzen eines Kraftstoffs in einen Brennraum einer Brennkraftmaschine, wobei das hydraulische Ventil (110) mindestens ein Stellglied (124) umfasst, wobei das hydraulische Ventil (110) weiterhin mindestens einen ersten Magnetaktor (132) und mindestens einen zweiten Magnetaktor (134) umfasst, wobei der ersten Magnetaktor (132) und der zweite Magnetaktor (134) eingerichtet sind, um mit einander entgegengesetzten Kraftrichtungen auf das Stellglied (124) einzuwirken.
  2. Hydraulisches Ventil (110) nach dem vorhergehenden Anspruch, wobei das hydraulische Ventil (110) weiterhin mindestens ein Federelement (126) aufweist, welches auf das Stellglied (124) einwirkt.
  3. Hydraulisches Ventil (110) nach dem vorhergehenden Anspruch, wobei das Federelement (126) zumindest teilweise als Schließfeder (128) ausgestaltet ist, wobei die Schließfeder (128) eingerichtet ist, um eine Schließkraft auf das Stellglied (124) auszuüben.
  4. Hydraulisches Ventil (110) nach einem der beiden vorhergehenden Ansprüche, wobei das Federelement (126) derart ausgestaltet ist, dass das hydraulische Ventil (110) ohne Kraftbeaufschlagung durch den ersten Magnetaktor (132) und durch den zweiten Magnetaktor (134) in einem geschlossenen Zustand ist.
  5. Hydraulisches Ventil (110) nach einem der vorhergehenden Ansprüche, wobei das hydraulische Ventil (110) als nicht-kraftausgeglichenes und/oder nicht-druckausgeglichenes hydraulisches Ventil (110) ausgestaltet ist.
  6. Hydraulisches Ventil (110) nach einem der vorhergehenden Ansprüche, wobei der ersten Magnetaktor (132) und der zweite Magnetaktor (134) mindestens einen Anker (130) umfassen, welcher mit dem Stellglied (124) verbunden ist, wobei der erste Magnetaktor (132) eine erste Magnetspule (136) aufweist, wobei der zweite Magnetaktor (134) eine zweite Magnetspule (138) aufweist, wobei der Anker (130) zwischen der ersten Magnetspule (136) und der zweiten Magnetspule (138) angeordnet ist.
  7. Hydraulisches Ventil (110) nach einem der vorhergehenden Ansprüche, wobei der erste Magnetaktor (132) und der zweite Magnetaktor (134) zumindest ein gemeinsames Bauteil umfassen, insbesondere einen gemeinsamen Anker (130) und/oder einen gemeinsamen Magnetkern (148), wobei das hydraulische Ventil (110) derart eingerichtet ist, dass das gemeinsame Bauteil mit gleichsinnigen oder gegensinnigen Magnetflüssen beaufschlagbar ist.
  8. Hydraulisches Ventil (110) nach einem der vorhergehenden Ansprüche, wobei der erste Magnetaktor (132) und der zweite Magnetaktor (134) einen gemeinsamen Anker (130) umfassen, welcher mit dem Stellglied (124) verbunden ist.
  9. Hydraulisches Ventil (110) nach einem der vorhergehenden Ansprüche, wobei der erste Magnetaktor (132) und der zweite Magnetaktor (134) zumindest teilweise bauteilidentische Magnetkerne (148) aufweisen.
  10. Hydraulisches Ventil (110) nach einem der vorhergehenden Ansprüche, wobei mindestens ein Magnetkern (140, 142; 148) des ersten Magnetaktors (132) und/oder des zweiten Magnetaktors (134) zumindest teilweise von einem Anker (130) und/oder dem Stellglied (124) gebildet wird.
  11. Hydraulisches Ventil (110) nach einem der vorhergehenden Ansprüche, wobei der erste Magnetaktor (132) einen ersten Anker (144) aufweist, wobei der erste Anker (144) mit dem Stellglied (124) verbunden ist, wobei der zweite Magnetaktor (134) einen zweiten Anker (146) aufweist, wobei der zweite Anker (146) mit dem Stellglied (124) verbunden ist, wobei der erste Magnetaktor (132) eine erste Magnetspule (136) aufweist, wobei der zweite Magnetaktor (134) eine zweite Magnetspule (138) aufweist, wobei der erste Anker (144) und der zweite Anker (146) auf einander gegenüberliegenden Seiten der ersten Magnetspule (136) und der zweiten Magnetspule (138) angeordnet sind.
  12. Kraftstoffinjektor (112) zum Einspritzen von Kraftstoff in den Brennraum einer Brennkraftmaschine, insbesondere aus einem Hochdruckspeicher, wobei der Kraftstoffinjektor (112) mindestens eine Einspritzöffnung und mindestens ein die Einspritzöffnung freigebendes oder verschließendes Einspritzventilglied aufweist, wobei das Einspritzventilglied gesteuert wird durch mindestens ein hydraulisches Ventil (110) gemäß einem der vorhergehenden Ansprüche.
EP20100157971 2009-05-19 2010-03-26 Aktiv schließendes Magnetventil für Magnetinjektoren Active EP2256333B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200910003219 DE102009003219A1 (de) 2009-05-19 2009-05-19 Aktiv schließendes Magnetventil für Magnetinjektoren

Publications (2)

Publication Number Publication Date
EP2256333A1 true EP2256333A1 (de) 2010-12-01
EP2256333B1 EP2256333B1 (de) 2015-02-18

Family

ID=42562611

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20100157971 Active EP2256333B1 (de) 2009-05-19 2010-03-26 Aktiv schließendes Magnetventil für Magnetinjektoren

Country Status (3)

Country Link
EP (1) EP2256333B1 (de)
CN (1) CN101892930B (de)
DE (1) DE102009003219A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012219657A1 (de) 2012-10-26 2014-04-30 Robert Bosch Gmbh Kraftstoffinjektor
DE102015203415B4 (de) 2015-02-26 2020-11-26 Schaeffler Technologies AG & Co. KG Verfahren zur Simulation extremer oder defekter Magnetventile zur Demonstration der Ausfalleffekte und Fehlererkennung für die Zertifizierung eines Fahrzeug-Diagnose-Systems
DE102017201581A1 (de) * 2017-02-01 2018-08-02 Robert Bosch Gmbh Magnetventilanordnung für einen Kraftstoffinjektor zum Einspritzen von flüssigem und/oder gasförmigem Kraftstoff
PL426295A1 (pl) 2018-07-10 2020-01-13 Prosperitos Spółka Z Ograniczoną Odpowiedzialnością Sposób zasilania parą wodną o parametrach ultra-nadkrytycznych tłokowych silników parowych i zawór do zasilania parą wodną o parametrach ultra-nadkrytycznych tłokowych silników parowych

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783146A (ja) * 1993-09-13 1995-03-28 Aisin Seiki Co Ltd 燃料噴射装置
EP0987431A2 (de) * 1998-09-18 2000-03-22 Lucas Industries Limited Kraftstoffeinspritzventil
US6065684A (en) * 1998-03-27 2000-05-23 General Motors Corporation Fuel injector and method
EP1035322A2 (de) * 1999-03-09 2000-09-13 Delphi Technologies, Inc. Kraftstoffeinspritzventil
WO2001057390A1 (de) * 2000-02-04 2001-08-09 Robert Bosch Gmbh Brennstoffeinspritzventil und verfahren zu dessen betrieb
EP1533517A2 (de) * 2003-11-14 2005-05-25 Magneti Marelli Powertrain S.p.A. Kraftstoffeinspritzventil mit hydraulischem Stift
JP2005344636A (ja) * 2004-06-03 2005-12-15 Toyota Motor Corp デリバリパイプの電磁リリーフ弁

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783146A (ja) * 1993-09-13 1995-03-28 Aisin Seiki Co Ltd 燃料噴射装置
US6065684A (en) * 1998-03-27 2000-05-23 General Motors Corporation Fuel injector and method
EP0987431A2 (de) * 1998-09-18 2000-03-22 Lucas Industries Limited Kraftstoffeinspritzventil
EP1035322A2 (de) * 1999-03-09 2000-09-13 Delphi Technologies, Inc. Kraftstoffeinspritzventil
WO2001057390A1 (de) * 2000-02-04 2001-08-09 Robert Bosch Gmbh Brennstoffeinspritzventil und verfahren zu dessen betrieb
EP1533517A2 (de) * 2003-11-14 2005-05-25 Magneti Marelli Powertrain S.p.A. Kraftstoffeinspritzventil mit hydraulischem Stift
JP2005344636A (ja) * 2004-06-03 2005-12-15 Toyota Motor Corp デリバリパイプの電磁リリーフ弁

Also Published As

Publication number Publication date
EP2256333B1 (de) 2015-02-18
CN101892930B (zh) 2016-09-14
DE102009003219A1 (de) 2010-11-25
CN101892930A (zh) 2010-11-24

Similar Documents

Publication Publication Date Title
EP1882122B1 (de) Ventil, insbesondere proportional-druckbegrenzungsventil
EP3409984B1 (de) Kolbenschieberventil
EP2634413B1 (de) Einspritzventil
EP3478957B1 (de) Ventil zum eindüsen von gasförmigem kraftstoff
DE19708104A1 (de) Magnetventil
DE102013106214A1 (de) Kolbenschieberventil
EP2256333B1 (de) Aktiv schließendes Magnetventil für Magnetinjektoren
EP2914842B1 (de) Aktor
DE102008032133A1 (de) Kraftstoffeinspritzvorrichtung
EP3364015B1 (de) Elektromagnetisches schaltventil und kraftstoffhochdruckpumpe
EP3102863B1 (de) Elektromagnetventil sowie verbrennungsmotorkühlsystem mit elektromagnetventil
WO2021156083A1 (de) Tankvorrichtung zur speicherung eines gasförmigen mediums
DE102014220877B3 (de) Kraftstoffeinspritzventil
DE102016220912A1 (de) Kraftstoffeinspritzventil
EP2392815B1 (de) Magnetbaugruppe sowie Einspritzventil mit einer Magnetbaugruppe
EP3394420B1 (de) Magnetventil für ein kraftstoffeinspritzventil, verfahren zum betreiben des magnetventils und kraftstoffeinspritzventil mit einem solchen magnetventil
DE4403148C2 (de) Elektromagnetisch ansteuerbares Mehrstrahleinspritzventil, insbesondere für Verbrennungsmotoren mit zwei Ansaugkanälen pro Zylinder
DE102008040068B4 (de) Konkave Luftspaltbegrenzung bei Magnetventil
DE102013210881A1 (de) Elektromagnetisch ansteuerbares Saugventil für eine Hochdruckpumpe
EP2469140B1 (de) Ventil
EP3545185B1 (de) Ventil zum dosieren eines gases
EP3361085B1 (de) Elektromagnetisches schaltventil und kraftstoffhochdruckpumpe
EP2510528A1 (de) Elektromagnetantrieb für ein ventil
DE19936943A1 (de) Brennstoffeinspritzventil
EP3364016B1 (de) Elektromagnetisches schaltventil und kraftstoffhochdruckpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA ME RS

17P Request for examination filed

Effective date: 20110601

17Q First examination report despatched

Effective date: 20111206

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141111

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 710779

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010008894

Country of ref document: DE

Effective date: 20150402

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150218

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150519

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150618

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010008894

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20151119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 710779

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100326

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150326

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240322

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240329

Year of fee payment: 15

Ref country code: FR

Payment date: 20240320

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240527

Year of fee payment: 15