EP2634413B1 - Einspritzventil - Google Patents

Einspritzventil Download PDF

Info

Publication number
EP2634413B1
EP2634413B1 EP13152706.1A EP13152706A EP2634413B1 EP 2634413 B1 EP2634413 B1 EP 2634413B1 EP 13152706 A EP13152706 A EP 13152706A EP 2634413 B1 EP2634413 B1 EP 2634413B1
Authority
EP
European Patent Office
Prior art keywords
stop
armature
valve needle
magnet armature
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13152706.1A
Other languages
English (en)
French (fr)
Other versions
EP2634413A1 (de
Inventor
Philipp Rogler
Ioana Constantin
Bruno Schmidt
Juergen Maier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2634413A1 publication Critical patent/EP2634413A1/de
Application granted granted Critical
Publication of EP2634413B1 publication Critical patent/EP2634413B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0635Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding
    • F02M51/066Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding the armature and the valve being allowed to move relatively to each other or not being attached to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0685Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature and the valve being allowed to move relatively to each other or not being attached to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/30Fuel-injection apparatus having mechanical parts, the movement of which is damped
    • F02M2200/304Fuel-injection apparatus having mechanical parts, the movement of which is damped using hydraulic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/188Spherical or partly spherical shaped valve member ends

Definitions

  • the present invention relates to an injection valve for injecting a medium, in particular for injecting fuel into a combustion chamber.
  • valves in particular for fuel, wherein each injection openings are opened and closed by means of a valve needle.
  • the valve needle is usually moved by means of an actuator against a closing spring, so that a desired amount of fuel is selectively introduced.
  • the magnet armature can be decoupled from the valve needle.
  • the closing spring force, the hydraulic force and the friction forces must be overcome to open the valve.
  • these closing forces must be applied by the electromagnet, which has a high electrical energy requirement. Solutions are known which divides the moving mass of the valve needle into several sub-masses, which are coupled to one another by means of springs, guides and stop surfaces.
  • a hydraulic valve opening in common rail diesel injectors is known, but always have a return of the fuel to the tank. This return is expensive and maintenance-prone.
  • An injection valve in particular for injecting fuel into a combustion chamber, is already known, which includes, inter alia, a housing with at least one injection opening on an outlet side.
  • the injector further comprises a solenoid, a magnet armature linearly movable by the solenoid, a linearly movable valve needle for opening and closing the injection port with a first stop on an outlet side of the magnet armature and a second stop on an outlet side of the armature, the magnet armature between the first Stop and the second stop relative to the valve needle is linearly movable, and wherein for the second stop a first stop surface and the first stop surface opposite the second stop surface are formed, wherein on the first stop surface designed as a cavity filled with the medium hydraulic cushion is arranged, and wherein the cavity is open on the side facing the second stop surface.
  • the injection valve according to the invention with the features of claim 1 uses a pressure difference between a magnet armature bottom and a top of the stop sleeve on the valve needle against the pressure on the underside of the stop sleeve, thereby the valve needle from the valve seat to lift. This reduces the energy required to open the injector. Furthermore, the pressure difference arising during a magnet armature movement between magnet armature and stop ring is used to dampen the valve needle movement. This results in a lower noise level and less wear of the injector. Furthermore, the magnetic armature movement can be selectively damped by the hydraulic cushion according to the invention after closing the valve needle.
  • an injection valve for injecting a medium with the features of claim 1.
  • it is a fuel injection valve for injecting fuel into a combustion chamber.
  • This fuel injection valve is used in particular for the direct injection of fuel into a spark-ignited internal combustion engine.
  • the injection valve comprises a housing with at least one injection opening on an outlet side. About this at least one injection port, the medium is injected, for example, in the combustion chamber.
  • the injection valve comprises a magnetic coil, a magnet armature linearly movable armature and a linearly movable valve needle for opening and closing the injection opening.
  • a first stop on an outlet side facing away from the armature and a second stop on an outlet side facing the armature are formed.
  • the magnet armature can move linearly between the first stop and the second stop with respect to the valve needle and with respect to the housing.
  • a hydraulic cushion is provided. This hydraulic cushion is designed as a cavity filled with the medium.
  • a first stop face and a first stop face opposite the second stop face are provided.
  • One of the two stop surfaces is located on the armature.
  • the other stop surface is located on the valve needle.
  • At the first stop surface designed as a cavity hydraulic cushion is arranged. The cavity is open on the side facing the second stop surface.
  • the second stop and the first stop surface are formed with the cavity completely on the valve needle.
  • the second stop is formed by a fixedly connected to the valve needle sleeve.
  • the first stop surface with the cavity can also be formed on the magnet armature.
  • a shoulder is provided on the first stop surface.
  • the shoulder on the side facing the magnet armature of the second stop extends in the direction of the magnet armature so as to limit the cavity laterally.
  • This shoulder is preferably formed completely on the second stop and spaced from the main body of the valve needle. This will open the cavity one side limited by the body of the valve needle and on the other side by this paragraph.
  • the inclination of the magnet armature facing side of the second stopper relative to the longitudinal axis may be combined with the formation of this paragraph.
  • the second stop face in particular on the magnet armature, is shaped such that it partially dips into the cavity during a movement of the valve needle and / or of the magnet armature.
  • the paragraph on the second stop is formed so that it surrounds the armature at least partially laterally.
  • a first, parallel to the longitudinal axis of the valve needle surface on the magnet armature and a second, parallel to the longitudinal axis of the valve needle surface on the second stop are provided. Between these two surfaces, a gap, in particular an annular gap, is formed. This gap is used for throttled feeding and discharging the medium from the cavity.
  • a first spring acting on the valve needle in the direction of the outlet and a second spring acting on the magnet armature in the direction of the outlet are provided.
  • the first spring thus pushes the valve needle in its closed position.
  • the second spring presses the armature in the direction of the second stop and thus also in the closing direction.
  • FIG. 1 shows an injection valve 1 according to a first example, which does not belong to the claimed subject matter. Shown is the injection valve 1 in a section parallel to a longitudinal axis 7, wherein only one half of the rotationally symmetrical components of the injection valve 1 is shown.
  • the injection valve 1 comprises a housing 2 with at least one injection opening 16 on an outlet side 17.
  • the outlet side 17 faces an outlet 18 facing away from the outlet.
  • a fixed part of the housing 2 is a magnet pot 3.
  • a magnetic coil 4 is arranged in this magnet pot 3.
  • Inside the housing 2 is a housing-fixed inner pole 5. At this inner pole 5, an adjusting sleeve 6 is attached.
  • armature 11 In the housing 2, a relative to the housing 2 along the longitudinal axis 7 linearly movable armature 11 is arranged. About the magnetic coil 4 of the inner pole 5 is magnetized and thereby attracted to the armature 11 or repelled and thus moved along the longitudinal axis 7.
  • a valve needle 8 extending along the longitudinal axis 7 is located in the housing 2.
  • the valve needle 8 is movable relative to the magnet armature 11 and relative to the counter housing 2.
  • the valve needle 8 comprises an internally hollow body 9 with lateral passage openings 10 for the medium to be injected.
  • a stop ring 12 and a stop sleeve 13 is firmly connected to the base body 9.
  • the stop ring 12 represents a first stop 14.
  • the stop sleeve 13 represents a second stop 15.
  • the magnet armature 11 is movable between the two stops 14, 15 and thus takes over these two stops 14, 15 with the valve needle 8.
  • a spherical closure body 20 is arranged between the valve needle 8 and the injection port 16, a spherical closure body 20 is arranged. In the closed state, the valve needle 8 presses this closure body 20 onto the valve seat 21, which is embodied conically on the housing 2. The media flow through the spray opening is interrupted in the de-energized state.
  • a first spring 24 is arranged between the adjusting sleeve 6 and the stop ring 12.
  • a second spring 25 is arranged between the armature 11 and the inner pole 5.
  • the first spring 24 presses the valve needle 8 in the direction of the outlet side 17.
  • the second spring 25 presses the armature 11 in the direction of the outlet side 17th
  • the closure body 20 forms, together with the lower part of the housing 2, a valve seat 21.
  • a lower guide 22 is formed between the closure body 20 and the housing 2.
  • the valve needle 8 is guided on the armature 11. This armature 11 in turn is guided over an upper guide 23 relative to the housing 2.
  • first stop surface arranged on the stop sleeve 13 and a second stop surface, disposed on the armature 11, opposite.
  • the first stop surface faces the magnet armature 11 and is inclined at an angle ⁇ with respect to the longitudinal axis 7. This angle ⁇ deviates from 90 °.
  • the inclination is chosen so that on the magnet armature 11 facing side of the stop sleeve 13, a cavity 19 is formed. This cavity 19, filled with the medium to be injected, forms a hydraulic cushion.
  • FIG. 2 shows a diagram for all embodiments of the injection valve 1.
  • the time t is plotted. Shown is from top to bottom, a current waveform 26 to the solenoid 4, a Ventilnadelhubverlauf 27 of the valve needle 8, a Magnetankerhubverlauf 28 of the magnet armature 11, a first pressure curve 29, a second pressure curve 30 and a third pressure profile 31.
  • the first pressure profile 29 is at a the side facing away from the outlet of the armature 11 is measured. Accordingly, this pressure increases when opening the injection valve 1.
  • the second pressure curve 30 is measured below the stop sleeve 13. Here, the pressure remains relatively constant during opening.
  • the third pressure curve 31 is measured in the cavity 19.
  • This pressure curve falls accordingly when tightening the armature 11 by the Pole 5 from.
  • the valve needle 8 is tightened in the opening direction of the armature 11. If the magnetic coil 4 is traversed by a current, the armature 11 starts its movement until it hits the first stop 14 after overcome Ankerfreweg and lifts the valve needle 8 from the valve seat 21. By moving the magnet armature 11, the drawn pressure curves.
  • FIG. 3 shows the injection valve 1 according to a second example, which does not belong to the claimed subject matter. Identical or functionally identical components are provided with the same reference numerals in all embodiments and examples.
  • the second spring 25 is no longer disposed between the armature 11 and the inner pole 5.
  • a spring cup 32 is provided. This spring cup 32 is firmly connected to the armature 11 and engages behind or engages under the stop sleeve 13 on a side facing the outlet. Between the spring cup 32 and the stop sleeve 13, the second spring 25 is arranged.
  • the upper guide 32 is executed directly between the valve needle 8, in particular the stop ring 12, and the inner pole 5.
  • FIG. 4 shows the injection valve 1 according to a third example, which does not belong to the claimed subject matter.
  • the same or functionally identical components are provided in all and examples with the same reference numerals.
  • the third example corresponds to the second example except for the formation of the cavity 19.
  • the magnet armature 11 facing side of the second stop 15 is stepped in the third example.
  • a shoulder 33 extending in the direction of the armature 11 is provided on the stop sleeve 13. Between this shoulder 33 and the base body 9 of the valve needle 8, the cavity 19 is formed.
  • FIG. 5 shows the injection valve 1 according to a fourth a fourth example, which does not belong to the claimed subject matter.
  • the shoulder 33 extends much further toward the magnet armature 11, increasing the volume of the cavity 19.
  • the shoulder 33 is here substantially narrower than in the third example, whereby the hydraulic adhesive forces between paragraph 33 and armature 11 reduced become. The armature 11 can thereby be moved faster on the valve needle 8.
  • FIG. 6 shows the injection valve 1 according to an embodiment of the invention. Identical or functionally identical components are provided with the same reference numerals in all embodiments and examples.
  • the armature 11 is formed so that it at least partially immersed in the cavity 19.
  • the shoulder 33 engages laterally around the armature 11, so that a gap 34 is formed.
  • the size of the gap 34 is dependent on the distance between stop sleeve 13 and armature 11. In the present embodiment, the width of the gap 34 over a certain distance regardless of the distance between armature 11 and stop sleeve 13. This results in the fourth example a path-dependent throttle via the gap 34. In the present embodiment, this throttle is largely away from the gap 34.
  • the second stop 15 was flat on the armature 11 at.
  • This plane-parallel nip can cause the two components to stick together hydraulically to such an extent that the injection valve is greatly delayed or does not open at all.
  • the magnet armature 11 facing side of the stop sleeve 13 is wedge-shaped or inclined, so that this hydraulic bonding can not occur.
  • the second stop 15 facing side of the armature 11 may be formed inclined relative to the longitudinal axis 7.
  • both opposing surfaces may be inclined or wedge-shaped.
  • the third example shows a variant in which this hydraulic bonding is prevented by at least one simple gradation. The gradation can be formed on the stop sleeve 13 or else on the magnet armature 11, as shown in the figures.
  • the omission of the spring cup 32 in the first example leads to a cost reduction for the individual production and assembly and reduces the decisive for the noise moving mass. Due to the omission of the Spring cup 32 in the first example, especially the surface of the second stop 15 and thus the hydraulic force can be increased to open the valve, since no more space for the assembly of the spring cup 32 must be kept. Thus, in all the examples presented here instead of the spring cup 32, the arrangement of the second spring 25 as shown in the first example can be selected.
  • the armature 11 and the stop sleeve 13 are no longer hydraulically connected to each other only by a small plane-parallel nip, as was the case in the prior art.
  • the medium-filled cavity 19 Between the magnet armature 11 and the stop sleeve 13 according to the invention exists with the medium-filled cavity 19.
  • a pressure equalization between the cavity 19 and the environment can on the one hand on the guide gap between armature 11 and valve needle 8 and the other by the gap 34 between the stop sleeve 13 and armature 11 will take place.
  • the speed of the pressure compensation via the throttle point, formed by the gap 34, between armature 11 and stop sleeve 13 are set, which is independent of the relative position of the armature 11 to the stop sleeve 13 in the embodiment.
  • the magnet armature 11 moves so fast that the volume between magnet armature 11 and stop sleeve 13 increases, the third pressure profile 31 drops. This creates a valve needle 8 opening force. This force is equal to the pressure difference between the second pressure curve 30 and the third pressure curve 31 multiplied by the area of the second stopper 15.
  • the volume and the throttle between armature 11 and stop sleeve 13 are designed when the largest hydraulic force in the Moment acts when the armature 11 meets the stop ring 12.
  • the magnet armature 11 continues its movement after the needle closure and is damped by the hydraulic forces that arise between the magnet armature 11 and the stop sleeve 13.
  • needle closing however, a greater damping of the magnetic armature movement is achieved by the embodiment in the fourth example, since the throttling action increases, the closer the armature 11 of the stop sleeve 13 comes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

    Stand der Technik
  • Die vorliegende Erfindung betrifft ein Einspritzventil zum Einspritzen eines Mediums, insbesondere zum Einspritzen von Brennstoff in einen Brennraum.
  • Der Stand der Technik kennt verschiedene Einspritzventile, insbesondere für Brennstoff, wobei jeweils Einspritzöffnungen mittels einer Ventilnadel geöffnet und geschlossen werden. Die Ventilnadel wird üblicherweise mittels eines Aktors gegen eine Schließfeder bewegt, so dass eine gewünschte Brennstoffmenge gezielt eingebracht wird. Optional kann bei einem Magnetventil der Magnetanker von der Ventilnadel entkoppelt sein. Bei direkt geschalteten Einspritzventilen müssen zum Öffnen des Ventils die Schließfederkraft, die hydraulische Kraft und die Reibkräfte überwunden werden. Bei einem Magnetventil müssen diese Schließkräfte durch den Elektromagneten aufgebracht werden, was einen hohen elektrischen Energiebedarf zur Folge hat. Bekannt sind Lösungen, welche die bewegte Masse der Ventilnadel in mehrere Teilmassen aufteilt, die mittels Federn, Führungen und Anschlagflächen aneinander gekoppelt sind. Des Weiteren ist ein hydraulisches Ventilöffnen bei Common Rail Diesel Injektoren bekannt, die jedoch stets einen Rücklauf des Kraftstoffs zum Tank besitzen. Dieser Rücklauf ist teuer und wartungsanfällig.
  • Aus der EP 1 602 821 A1 ist bereits ein Einspritzventil, insbesondere zum Einspritzen von Brennstoff in einen Brennraum, bekannt, das u.a. ein Gehäuse mit zumindest einer Spritzöffnung an einer Auslassseite umfasst. Das Einspritzventil umfasst ferner eine Magnetspule, einen durch die Magnetspule linearbeweglichen Magnetanker, eine linearbewegliche Ventilnadel zum Öffnen und Schließen der Spritzöffnung mit einem ersten Anschlag auf einer auslassabgewandten Seite des Magnetankers und einem zweiten Anschlag auf einer auslasszugewandten Seite des Magnetankers, wobei der Magnetanker zwischen dem ersten Anschlag und dem zweiten Anschlag gegenüber der Ventilnadel linearbeweglich ist, und wobei für den zweiten Anschlag eine erste Anschlagfläche und eine der ersten Anschlagfläche gegenüberliegende zweite Anschlagfläche ausgebildet sind, wobei an der ersten Anschlagfläche ein als mit dem Medium gefüllter Hohlraum ausgebildetes Hydraulikpolster angeordnet ist, und wobei der Hohlraum auf der der zweiten Anschlagfläche zugewandten Seite offen ist.
  • Offenbarung der Erfindung
  • Das erfindungsgemäße Einspritzventil mit den Merkmalen des Anspruchs 1 nutzt einen Druckunterschied zwischen einer Magnetankerunterseite und einer Oberseite der Anschlaghülse an der Ventilnadel gegenüber dem Druck an der Unterseite der Anschlaghülse aus, um dadurch die Ventilnadel aus dem Ventilsitz zu heben. Dadurch reduziert sich der benötigte Energiebedarf zum Öffnen des Einspritzventils. Des Weiteren wird der bei einer Magnetankerbewegung zwischen Magnetanker und Anschlagring entstehende Druckunterschied dazu genutzt, die Ventilnadelbewegung zu dämpfen. Dadurch entstehen ein niedrigerer Geräuschpegel und ein geringerer Verschleiß des Einspritzventils. Des Weiteren kann durch das erfindungsgemäße Hydraulikpolster die Magnetankerbewegung nach dem Schließen der Ventilnadel gezielt gedämpft werden. Dies reduziert das Risiko von Nadelprellern, bei denen die Ventilnadel nach erstmaligem Schließen sich wieder ohne eine erneute Bestromung aus dem Sitz hebt. Außerdem wird die Zeit reduziert, bis der Magnetanker wieder seine Ausgangslage erreicht. Das Ventil kann dadurch schneller als bisher wieder so angesteuert werden, dass es die gewünschte Menge einspritzt. All diese Vorteile werden erreicht durch ein Einspritzventil zum Einspritzen eines Mediums mit den Merkmalen des Anspruchs 1. Insbesondere handelt es sich um ein Brennstoffeinspritzventil zum Einspritzen von Brennstoff in einen Brennraum. Dieses Brennstoffeinspritzventil wird insbesondere zum direkten Einspritzen von Kraftstoff in eine fremdgezündete Brennkraftmaschine verwendet. Das Einspritzventil umfasst ein Gehäuse mit zumindest einer Spritzöffnung an einer Auslassseite. Über diese zumindest eine Spritzöffnung wird das Medium beispielsweise in den Brennraum eingespritzt. Des Weiteren umfasst das Einspritzventil eine Magnetspule, einen durch die Magnetspule linear beweglichen Magnetanker und eine linear bewegliche Ventilnadel zum Öffnen und Schließen der Spritzöffnung. An dieser Ventilnadel sind ein erster Anschlag auf einer auslassabgewandten Seite des Magnetankers und ein zweiter Anschlag auf einer auslasszugewandten Seite des Magnetankers ausgebildet. Der Magnetanker kann sich zwischen dem ersten Anschlag und dem zweiten Anschlag gegenüber der Ventilnadel und gegenüber dem Gehäuse linear bewegen. Je nach Bewegungsrichtung nimmt der Magnetanker über den ersten Anschlag oder über den zweiten Anschlag die Ventilnadel mit. Erfindungsgemäß ist ein Hydraulikpolster vorgesehen. Dieses Hydraulikpolster ist ausgebildet als ein mit dem Medium gefüllter Hohlraum. Für den Anschlag des Magnetankers am zweiten Anschlag sind eine erste Anschlagfläche und eine der ersten Anschlagfläche gegenüberliegende zweite Anschlagfläche vorgesehen. Eine der beiden Anschlagflächen befindet sich am Magnetanker. Die andere Anschlagfläche befindet sich an der Ventilnadel. An der ersten Anschlagfläche ist das als Hohlraum ausgebildete Hydraulikpolster angeordnet. Der Hohlraum ist auf der der zweiten Anschlagfläche zugewandten Seite offen. Wenn sich die beiden Anschlagflächen aufeinander zu bewegen, erhöht sich der Druck des Mediums in diesem Hohlraum, und es entsteht eine Kraft, die der Magnetankerbewegung entgegenwirkt. Wird das Medium dann durch Spalte aus dem Hohlraum verdrängt, entsteht eine Dämpfung der Bewegung der Ventilnadel und/oder des Magnetankers. Wenn sich der Magnetanker und der zweite Anschlag voneinander wegbewegen, entsteht ein Unterdruck in diesem Hohlraum, wodurch der zweite Anschlag und somit auch die Ventilnadel in Richtung des Magnetankers gezogen werden.
  • Die Unteransprüche zeigen bevorzugte Weiterbildungen der Erfindung.
  • Bevorzugt ist vorgesehen, dass der zweite Anschlag und die erste Anschlagfläche mit dem Hohlraum vollumfänglich an der Ventilnadel ausgebildet sind. Insbesondere ist der zweite Anschlag durch eine fest mit der Ventilnadel verbundene Hülse gebildet. Alternativ kann die erste Anschlagfläche mit dem Hohlraum auch am Magnetanker ausgebildet werden.
  • Des Weiteren ist ein Absatz auf der ersten Anschlagfläche vorgesehen. Insbesondere ist vorgesehen, dass sich der Absatz an der dem Magnetanker zugewandten Seite des zweiten Anschlags sich in Richtung des Magnetankers erstreckt, um so den Hohlraums seitlich zu begrenzen. Dieser Absatz ist bevorzugt vollumfänglich am zweiten Anschlag ausgebildet und von dem Grundkörper der Ventilnadel beabstandet. Dadurch wird der Hohlraum auf der einen Seite durch den Grundkörper der Ventilnadel und auf der anderen Seite durch diesen Absatz begrenzt. Die Neigung der dem Magnetanker zugewandten Seite des zweiten Anschlags gegenüber der Längsachse kann kombiniert werden mit der Ausbildung dieses Absatzes.
  • Des Weiteren ist die zweite Anschlagfläche, insbesondere am Magnetanker, so ausgeformt, dass sie bei einer Bewegung der Ventilnadel und/oder des Magnetankers teilweise in den Hohlraum eintaucht. Hierzu ist der Absatz am zweiten Anschlag so ausgebildet, dass er den Magnetanker zumindest teilweise seitlich umgreift. Dabei sind eine erste, zur Längsachse der Ventilnadel parallele Fläche an dem Magnetanker und eine zweite, zur Längsachse der Ventilnadel parallele Fläche am zweiten Anschlag vorgesehen. Zwischen diesen beiden Flächen ist ein Spalt, insbesondere ein ringförmiger Spalt, ausgebildet. Dieser Spalt dient zum gedrosselten Zuführen und Abführen des Mediums aus dem Hohlraum. Dadurch, dass die beiden Flächen parallel zueinander angeordnet sind, ergibt sich eine unabhängig von der relativen Position des Magnetankers zum zweiten Anschlag konstante Drossel. Bewegen sich der zweite Anschlag und der Magnetanker aufeinander zu, wird das Medium über diesen Spalt aus dem Hohlraum gedrückt. Bewegen sich der Magnetanker und der zweite Anschlag voneinander weg, wird über diesen Spalt das Medium in den Hohlraum gesaugt und es bleibt zumindest über eine gewisse Zeit der Unterdruck aufrecht erhalten.
  • Allerdings ist es auch möglich, einen wegabhängigen Spalt zwischen den beiden Anschlagflächen auszubilden, so dass auch die entsprechende Drosselwirkung für den Fluss des Mediums in den Hohlraum und aus dem Hohlraum heraus abhängig ist von dem Abstand zwischen Magnetanker und zweitem Anschlag. So dient eine dem Magnetanker zugewandte Fläche des Absatzes auf dem zweiten Anschlag als wegabhängige Drossel für das Medium, das in den Hohlraum hinein und aus dem Hohlraum herausfließt.
  • Des Weiteren ist eine erste, die Ventilnadel in Richtung Auslass beaufschlagende Feder und eine zweite, den Magnetanker in Richtung Auslass beaufschlagende Feder vorgesehen. Die erste Feder drückt somit die Ventilnadel in ihre Schließstellung. Die zweite Feder drückt den Magnetanker in Richtung des zweiten Anschlages und somit ebenfalls in Schließrichtung.
  • Es ist vorgesehen, auf einer dem Auslass zugewandten Seite des Magnetankers einen Federtopf fest mit dem Magnetanker zu verbinden. Dieser Federtopf untergreift den zweiten Anschlag, so dass die zweite Feder sich mit einem Ende am Federtopf und mit dem anderen Ende auf der dem Auslass zugewandten Seite des zweiten Anschlags abstützen kann.
  • Kurze Beschreibung der Zeichnungen
  • Nachfolgend werden nicht beanspruchte Beispiele sowie ein Ausführungsbeispiel der Erfindung unter Bezugnahme auf die begleitende Zeichnung im Detail beschrieben. Dabei zeigen:
  • Figur 1
    ein erfindungsgemäßes Einspritzventil gemäß einem ersten Beispiel,
    Figur 2
    ein Diagramm zum erfindungsgemäßen Einspritzventil gemäß allen Ausführungsbeispielen,
    Figur 3
    das erfindungsgemäße Einspritzventil gemäß einem zweiten Beispiel,
    Figur 4
    das erfindungsgemäße Einspritzventil gemäß einem dritten Beispiel,
    Figur 5
    das erfindungsgemäße Einspritzventil gemäß einem vierten Beispiel, und
    Figur 6
    das erfindungsgemäße Einspritzventil gemäß einem Ausführungsbeispiel.
    Ausführungsformen der Erfindung
  • Figur 1 zeigt ein Einspritzventil 1 gemäß einem ersten Beispiel, das zum beanspruchten Gegenstand nicht gehört. Dargestellt ist das Einspritzventil 1 in einem Schnitt parallel zu einer Längsachse 7, wobei nur eine Hälfte der rotationssymmetrischen Bauteile des Einspritzventils 1 dargestellt ist.
  • Das Einspritzventil 1 umfasst ein Gehäuse 2 mit zumindest einer Spritzöffnung 16 auf einer Auslassseite 17. Der Auslassseite 17 liegt eine auslassabgewandte Seite 18 gegenüber. Fester Bestandteil des Gehäuses 2 ist ein Magnettopf 3. In diesem Magnettopf 3 ist eine Magnetspule 4 angeordnet. Im Inneren des Gehäuses 2 befindet sich ein gehäusefester Innenpol 5. An diesem Innenpol 5 ist eine Einstellhülse 6 befestigt.
  • Im Gehäuse 2 ist ein gegenüber dem Gehäuse 2 entlang der Längsachse 7 linear beweglicher Magnetanker 11 angeordnet. Über die Magnetspule 4 wird der Innenpol 5 magnetisiert und dadurch der Magnetanker 11 angezogen oder abgestoßen und somit entlang der Längsachse 7 bewegt.
  • Des Weiteren befindet sich im Gehäuse 2 eine sich entlang der Längsachse 7 erstreckende Ventilnadel 8. Die Ventilnadel 8 ist gegenüber dem Magnetanker 11 und gegenüber dem Gegengehäuse 2 beweglich. Die Ventilnadel 8 umfasst einen innen hohlen Grundkörper 9 mit seitlichen Durchlassöffnungen 10 für das einzuspritzende Medium. Des Weiteren ist ein Anschlagring 12 und eine Anschlaghülse 13 fest mit dem Grundkörper 9 verbunden. Der Anschlagring 12 stellt einen ersten Anschlag 14 dar. Die Anschlaghülse 13 stellt einen zweiten Anschlag 15 dar. Der Magnetanker 11 ist zwischen den beiden Anschlägen 14, 15 beweglich und nimmt somit über diese beiden Anschläge 14, 15 die Ventilnadel 8 mit. Zwischen der Ventilnadel 8 und der Spritzöffnung 16 ist ein kugelförmiger Verschlusskörper 20 angeordnet. Im verschlossenen Zustand drückt die Ventilnadel 8 diesen Verschlusskörper 20 auf den Ventilsitz 21, der kegelförmig am Gehäuse 2 ausgeführt ist. Der Medienzufluss durch die Spritzöffnung ist im unbestromten Zustand unterbrochen.
  • Zwischen der Einstellhülse 6 und dem Anschlagring 12 ist eine erste Feder 24 angeordnet. Zwischen dem Magnetanker 11 und dem Innenpol 5 ist eine zweite Feder 25 angeordnet. Die erste Feder 24 drückt die Ventilnadel 8 in Richtung der Auslassseite 17. Die zweite Feder 25 drückt den Magnetanker 11 in Richtung der Auslassseite 17.
  • Der Verschlusskörper 20 bildet zusammen mit dem unteren Teil des Gehäuses 2 einen Ventilsitz 21. Im unteren Bereich ist zwischen dem Verschlusskörper 20 und dem Gehäuse 2 eine untere Führung 22 gebildet. Im oberen Bereich ist die Ventilnadel 8 am Magnetanker 11 geführt. Dieser Magnetanker 11 wiederum ist über eine obere Führung 23 gegenüber dem Gehäuse 2 geführt.
  • Am zweiten Anschlag 15 liegen sich eine erste Anschlagfläche, angeordnet an der Anschlaghülse 13, und eine zweite Anschlagfläche, angeordnet am Magnetanker 11, gegenüber. Die erste Anschlagfläche ist dem Magnetanker 11 zugewandt und ist mit einem Winkel α gegenüber der Längsachse 7 geneigt. Dieser Winkel α weicht von 90° ab. Die Neigung ist dabei so gewählt, dass auf der dem Magnetanker 11 zugewandten Seite der Anschlaghülse 13 ein Hohlraum 19 entsteht. Dieser Hohlraum 19, gefüllt mit dem einzuspritzenden Medium, bildet ein Hydraulikpolster.
  • Wird die Magnetspule 4 von Strom durchflossen, baut sich ein Magnetfeld auf, wodurch der Magnetanker 11 gegen den Innenpol 5 gezogen wird. Durch die Bewegung des Magnetankers 11 in dem flüssigen Medium entsteht zwischen dem Magnetanker 11 und dem Innenpol 5 ein Über- und auf der gegenüberliegenden Seite ein Unterdruck, gegen den der Magnetanker 11 bewegt werden muss. Trifft der Magnetanker 11 auf den ersten Anschlag 14, so hebt er die Ventilnadel 8 aus dem Ventilsitz 21. Der Verschlusskörper 20 gibt die Spritzöffnung 16 zum Einspritzen des Mediums, insbesondere des Kraftstoffs in den Brennraum, frei.
  • Figur 2 zeigt ein Diagramm für alle Ausführungsbeispiele des Einspritzventils 1. Auf der horizontalen Achse ist die Zeit t aufgetragen. Eingezeichnet ist von oben nach unten ein Stromverlauf 26 an der Magnetspule 4, ein Ventilnadelhubverlauf 27 der Ventilnadel 8, ein Magnetankerhubverlauf 28 des Magnetankers 11, ein erster Druckverlauf 29, ein zweiter Druckverlauf 30 und ein dritter Druckverlauf 31. Der erste Druckverlauf 29 wird an einer dem Auslass abgewandten Seite des Magnetankers 11 gemessen. Dementsprechend steigt dieser Druck beim Öffnen des Einspritzventils 1 an. Der zweite Druckverlauf 30 wird unterhalb der Anschlaghülse 13 gemessen. Hier bleibt der Druck während des Öffnens relativ konstant. Der dritte Druckverlauf 31 wird im Hohlraum 19 gemessen. Dieser Druckverlauf fällt entsprechend beim Anziehen des Magnetankers 11 durch den Innenpol 5 ab. Über den Unterdruck gemäß dem dritten Druckverlauf 31 wird die Ventilnadel 8 in Öffnungsrichtung an den Magnetanker 11 angezogen. Wird die Magnetspule 4 von einem Strom durchflossen, startet der Magnetanker 11 seine Bewegung, bis er nach überwundenem Ankerfreiweg auf den ersten Anschlag 14 trifft und die Ventilnadel 8 aus dem Ventilsitz 21 hebt. Durch Bewegen des Magnetankers 11 entstehen die eingezeichneten Druckverläufe.
  • Figur 3 zeigt das Einspritzventil 1 gemäß einem zweiten Beispiel, das zum beanspruchten Gegenstand nicht gehört. Gleiche bzw. funktional gleiche Bauteile sind in allen Ausführungsbeispielen und Beispielen mit denselben Bezugszeichen versehen. Im zweiten Beispiel ist die zweite Feder 25 nicht mehr zwischen dem Magnetanker 11 und dem Innenpol 5 angeordnet. Hier ist ein Federtopf 32 vorgesehen. Dieser Federtopf 32 ist fest mit dem Magnetanker 11 verbunden und hintergreift bzw. untergreift die Anschlaghülse 13 auf einer dem Auslass zugewandten Seite. Zwischen dem Federtopf 32 und der Anschlaghülse 13 ist die zweite Feder 25 angeordnet. Die obere Führung 32 ist direkt zwischen der Ventilnadel 8, insbesondere dem Anschlagring 12, und dem Innenpol 5 ausgeführt.
  • Figur 4 zeigt das Einspritzventil 1 gemäß einem dritten Beispiel, das zum beanspruchten Gegenstand nicht gehört. Gleiche bzw. funktional gleiche Bauteile sind in allen und Beispielen mit denselben Bezugszeichen versehen. Das dritte Beispiel entspricht dem zweiten Beispiel bis auf die Ausbildung des Hohlraums 19. Die dem Magnetanker 11 zugewandte Seite des zweiten Anschlags 15 ist im dritten Beispiel gestuft ausgebildet. Zur Ausbildung dieser Abstufung ist an der Anschlaghülse 13 ein sich in Richtung des Magnetankers 11 erstreckender Absatz 33 vorgesehen. Zwischen diesem Absatz 33 und dem Grundkörper 9 der Ventilnadel 8 ist der Hohlraum 19 ausgebildet.
  • Figur 5 zeigt das Einspritzventil 1 gemäß einem vierten einem vierten Beispiel, das zum beanspruchten Gegenstand nicht gehört. Gleiche bzw. funktional gleiche Bauteile sind in allen und Beispielen mit denselben Bezugszeichen versehen. Im Unterschied zum dritten Beispiel erstreckt sich der Absatz 33 im vierten Beispiel sehr viel weiter in Richtung des Magnetankers 11, wodurch sich das Volumen des Hohlraums 19 vergrößert. Vorzugsweise ist der Absatz 33 hier wesentlich schmaler als im dritten Beispiel ausgeführt, wodurch die hydraulischen Klebekräfte zwischen Absatz 33 und Magnetanker 11 reduziert werden. Der Magnetanker 11 kann dadurch schneller auf der Ventilnadel 8 bewegt werden.
  • Figur 6 zeigt das Einspritzventil 1 gemäß einem Ausführungsbeispiel der Erfindung. Gleiche bzw. funktional gleiche Bauteile sind in allen Ausführungsbeispielen und Beispielen mit denselben Bezugszeichen versehen. Im Ausführungsbeispiel ist der Magnetanker 11 so ausgebildet, dass er zumindest teilweise in den Hohlraum 19 eintaucht. Der Absatz 33 umgreift seitlich den Magnetanker 11, so dass ein Spalt 34 entsteht.
  • Im vierten Beispiel ist die Größe des Spaltes 34 abhängig von dem Abstand zwischen Anschlaghülse 13 und Magnetanker 11. Im vorliegenden Ausführungsbeispiel ist die Breite des Spaltes 34 über eine gewisse Strecke hinweg unabhängig von dem Abstand zwischen Magnetanker 11 und Anschlaghülse 13. Dadurch entsteht im vierten Beispiel eine wegabhängige Drossel über den Spalt 34. Im vorliegenden Ausführungsbeispiel ist diese Drossel über den Spalt 34 weitgehend wegunabhängig.
  • Bei vorbekannten Anordnungen lag der zweite Anschlag 15 plan am Magnetanker 11 an. Dieser planparallele Quetschspalt kann dazu führen, dass beide Bauteile so stark aneinander hydraulisch kleben, dass das Einspritzventil stark verzögert oder gar nicht öffnet. Wie in den ersten beiden Beispielen gezeigt, wird die dem Magnetanker 11 zugewandte Seite der Anschlaghülse 13 keilförmig bzw. geneigt gestaltet, so dass dieses hydraulische Kleben nicht auftreten kann. Alternativ kann auch die dem zweiten Anschlag 15 zugewandte Seite des Magnetankers 11 gegenüber der Längsachse 7 geneigt ausgebildet werden. Des Weiteren können alternativ beide sich gegenüberliegende Flächen geneigt bzw. keilförmig ausgebildet werden. Das dritte Bespiel zeigt eine Variante, bei der dieses hydraulische Kleben durch zumindest eine einfache Abstufung verhindert wird. Die Abstufung kann wie in den Figuren gezeigt, an der Anschlaghülse 13 oder aber auch am Magnetanker 11 ausgebildet sein.
  • Der Verzicht auf den Federtopf 32 im ersten Beispiel führt zu einer Kostenreduzierung für die Einzelfertigung und Montage und reduziert die für die Geräuschentwicklung maßgebliche bewegte Masse. Durch den Entfall des Federtopfes 32 im ersten Beispiel kann vor allem die Fläche des zweiten Anschlags 15 und damit die hydraulische Kraft zum Ventilöffnen erhöht werden, da kein Platz mehr für die Montage des Federtopfes 32 vorgehalten werden muss. So kann bei allen hier vorgestellten Beispielen anstatt des Federtopfes 32 auch die Anordnung der zweiten Feder 25 wie im ersten Beispiel gezeigt, gewählt werden.
  • Gemäß der hier vorgestellten Erfindung sind der Magnetanker 11 und die Anschlaghülse 13 nicht mehr nur durch einen kleinen planparallelen Quetschspalt hydraulisch miteinander verbunden, wie dies im Stand der Technik der Fall war. Zwischen dem Magnetanker 11 und der Anschlaghülse 13 existiert erfindungsgemäß der mit Medium gefüllte Hohlraum 19. Ein Druckausgleich zwischen dem Hohlraum 19 und der Umgebung kann zum einen über den Führungsspalt zwischen Magnetanker 11 und Ventilnadel 8 und zum anderen durch den Spalt 34 zwischen Anschlaghülse 13 und Magnetanker 11 stattfinden. Insbesondere im vorliegegenden Ausführungsbeispiel kann die Geschwindigkeit des Druckausgleichs über die Drosselstelle, gebildet durch den Spalt 34, zwischen Magnetanker 11 und Anschlaghülse 13 eingestellt werden, der im Ausführungsbeispiel unabhängig von der relativen Position des Magnetankers 11 zur Anschlaghülse 13 ist. In allen Ausführungsbeispielen und Beispielen gilt, bewegt sich der Magnetanker 11 so schnell, dass sich das Volumen zwischen Magnetanker 11 und Anschlaghülse 13 vergrößert, fällt der dritte Druckverlauf 31 ab. Dadurch entsteht eine die Ventilnadel 8 öffnende Kraft. Diese Kraft ist gleich dem Druckunterschied zwischen dem zweiten Druckverlauf 30 und dem dritten Druckverlauf 31, multipliziert mit der Fläche des zweiten Anschlags 15. Besonders vorteilhaft sind das Volumen und die Drossel zwischen Magnetanker 11 und Anschlaghülse 13 dann gestaltet, wenn die größte hydraulische Kraft in dem Moment wirkt, wenn der Magnetanker 11 auf den Anschlagring 12 trifft. Beim Ventilschließen entsteht bei all den hier beschriebenen Ausführungsbeispielen und Beispielen der positive Effekt, dass die Bewegung des Magnetankers 11 gedämpft wird, nachdem die Ventilnadel 8 den Verschlusskörper 20 in den Ventilsitz 21 gedrückt hat. Der Magnetanker 11 führt nach dem Nadelschließen seine Bewegung fort und wird durch die hydraulischen Kräfte, die zwischen dem Magnetanker 11 und der Anschlaghülse 13 entstehen, gedämpft. Im vierten Beispiel ist die Drossel über den Spalt 34 durch die Relativposition vom Magnetanker 11 und Anschlaghülse 13 abhängig. Dadurch sind für große Ankerfreiwege geringere öffnende Kräfte als bei der Ausführung nach dem Ausführungsbeispiel zu erwarten. Beim Nadelschließen wird jedoch eine größere Dämpfung der Magnetankerbewegung durch die Ausführung im vierten Beispiel erreicht, da die Drosselwirkung zunimmt, je näher der Magnetanker 11 der Anschlaghülse 13 kommt.

Claims (4)

  1. Einspritzventil (1) zum Einspritzen eines Mediums, insbesondere zum Einspritzen von Brennstoff in einen Brennraum, umfassend:
    - ein Gehäuse (2) mit zumindest einer Spritzöffnung (16) an einer Auslassseite (17),
    - eine Magnetspule (4),
    - einen durch die Magnetspule (4) linearbeweglichen Magnetanker (11),
    - eine linearbewegliche Ventilnadel (8) zum Öffnen und Schließen der Spritzöffnung (16) mit einem ersten Anschlag (14) auf einer auslassabgewandten Seite des Magnetankers (11) und einem zweiten Anschlag (15) auf einer auslasszugewandten Seite des Magnetankers (11),
    - wobei der Magnetanker (11) zwischen dem ersten Anschlag (14) und dem zweiten Anschlag (15) gegenüber der Ventilnadel (8) linearbeweglich ist, und
    - wobei für den zweiten Anschlag (15) eine erste Anschlagfläche und eine der ersten Anschlagfläche gegenüberliegende zweite Anschlagfläche ausgebildet sind, wobei an der ersten Anschlagfläche ein als mit dem Medium gefüllter Hohlraum (19) ausgebildetes Hydraulikpolster angeordnet ist, und wobei der Hohlraum (19) auf der der zweiten Anschlagfläche zugewandten Seite offen ist, dadurch gekennzeichnet,
    dass eine erste, zur Längsachse (7) der Ventilnadel (8) parallele Fläche an dem Magnetanker (11) und eine zweite, zur Längsachse (7) der Ventilnadel (8) parallele Fläche am zweiten Anschlag (15) vorgesehen sind, wobei zwischen der ersten Fläche und der zweiten Fläche ein Spalt (34) zum gedrosselten Zuführen und Abführen des Mediums aus dem Hohlraum (19) ausgebildet ist und
    dass ein fest mit dem Magnetanker (11) verbundener Federtopf (32) vorgesehen ist, und
    dass eine zweite, den Magnetanker (11) in Richtung Auslass beaufschlagende Feder (25) vorgesehen ist, wobei sich die zweite Feder (25) mit einem Ende am Federtopf (32) und mit dem anderen Ende an der Ventilnadel (8) abstützt, und dass als Verbindung zwischen dem axialen Spalt (34) und dem Inneren des Federtopfes (32) ein Radialspalt zwischen Magnetanker (11) und zweitem Anschlag (15) als die offene Seite gebildet ist.
  2. Einspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass die erste Anschlagfläche mit dem Hohlraum (19) vollumfänglich an der Ventilnadel (8) ausgebildet sind.
  3. Einspritzventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zweite Anschlagfläche ausgeformt ist, um bei einer Bewegung der Ventilnadel (8) und/oder des Magnetankers (11) teilweise in den Hohlraum (19) einzutauchen.
  4. Einspritzventil nach einem der vorhergehenden Ansprüche, gekennzeichnet durch eine erste, die Ventilnadel (8) in Richtung Auslass beaufschlagende Feder (24).
EP13152706.1A 2012-02-29 2013-01-25 Einspritzventil Active EP2634413B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201210203161 DE102012203161A1 (de) 2012-02-29 2012-02-29 Einspritzventil

Publications (2)

Publication Number Publication Date
EP2634413A1 EP2634413A1 (de) 2013-09-04
EP2634413B1 true EP2634413B1 (de) 2017-04-26

Family

ID=47683551

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13152706.1A Active EP2634413B1 (de) 2012-02-29 2013-01-25 Einspritzventil

Country Status (2)

Country Link
EP (1) EP2634413B1 (de)
DE (1) DE102012203161A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012217322A1 (de) * 2012-09-25 2014-06-12 Robert Bosch Gmbh Einspritzventil
DE102013219974B4 (de) * 2013-10-02 2019-08-08 Continental Automotive Gmbh Ventilbaugruppe für ein Einspritzventil
EP2860386A1 (de) * 2013-10-10 2015-04-15 Continental Automotive GmbH Injektor für eine Brennkraftmaschine
EP2949917B1 (de) 2014-05-27 2017-01-04 Continental Automotive GmbH Kraftstoffeinspritzdüse
EP2985445A1 (de) * 2014-08-14 2016-02-17 Continental Automotive GmbH Elektromagnetisch betätigtes Flüssigkeitsinjektionsventil
EP3009663B1 (de) * 2014-10-15 2020-06-24 Vitesco Technologies GmbH Ventilanordnung und fluidinjektor
DE102014220877B3 (de) * 2014-10-15 2015-12-03 Continental Automotive Gmbh Kraftstoffeinspritzventil
DE102014221208A1 (de) * 2014-10-20 2016-04-21 Volkswagen Ag Ventilvorrichtung und Brennstoffzellensystem mit einer solchen
DE102017207273A1 (de) * 2016-06-30 2018-01-04 Robert Bosch Gmbh Ventil zum Zumessen eines Fluids
DE102018200364A1 (de) * 2018-01-11 2019-07-11 Robert Bosch Gmbh Ventil zum Zumessen eines Fluids

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000265919A (ja) * 1999-03-16 2000-09-26 Bosch Automotive Systems Corp 電磁式燃料噴射弁
DE10256661A1 (de) * 2002-12-04 2004-06-17 Robert Bosch Gmbh Brennstoffeinspritzventil
DE10305985A1 (de) * 2002-12-13 2004-07-15 Robert Bosch Gmbh Prellerfreier Magnetsteller für Einspritzventile
JP2006017101A (ja) * 2004-06-02 2006-01-19 Denso Corp 燃料噴射弁
DE102004056424B4 (de) * 2004-11-23 2016-12-29 Robert Bosch Gmbh Brennstoffeinspritzventil und Verfahren zur Strukturierung eines magnetischen Polstücks
JP4637931B2 (ja) * 2008-05-22 2011-02-23 三菱電機株式会社 燃料噴射弁

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2634413A1 (de) 2013-09-04
DE102012203161A1 (de) 2013-08-29

Similar Documents

Publication Publication Date Title
EP2634413B1 (de) Einspritzventil
EP2634412B1 (de) Einspritzventil
EP2901004A1 (de) Einspritzventil
WO2009121646A1 (de) Magnetventil mit mehrteiligem anker ohne ankerführung
WO2010000517A1 (de) Luftspaltbegrenzung bei magnetventil
EP1387937B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen mit einem druckschwingungen reduzierenden dämpfungsraum
DE102008041595A1 (de) Quetschspalt zur hydraulischen Dämpfung
EP2519732B1 (de) Elektromagnetisch betätigtes mengensteuerventil, insbesondere zur steuerung der fördermenge einer kraftstoff-hochdruckpumpe
EP2743493B1 (de) Kraftstoffinjektor
EP2025922A2 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
WO2010009925A1 (de) Ankerbolzen für magnetventil
EP1967727A2 (de) Kraftstoffinjektor mit einer verbesserten Ausführung eines Steuerventils zur Steuerung einer Düsennadel
DE102008001913A1 (de) Kraftstoff-Injektor
EP2733345A1 (de) Druckregelventil für einen Hochdruckspeicher eines Verbrennungsmotors
DE102013226776A1 (de) Kraftstoffinjektor
EP3095998B1 (de) Kraftstoffinjektor
EP2138709B1 (de) Direkt betätigter Kraftstoffinjektor
WO2015058929A1 (de) Kraftstoffinjektor
WO2010108747A1 (de) Kraftstoffeinspritzvorrichtung
WO2008086941A1 (de) Kraftstoffinjektor mit koppler
WO2015106864A1 (de) Klebfreier quetschspalt für ventile mit tauchanker-magnetaktorik
DE102016209022A1 (de) Steuerventil für ein Kraftstoffeinspritzventil
DE102013225376A1 (de) Magnetventil für einen Kraftstoffinjektor
EP3098433B1 (de) Kraftstoffinjektor
WO2016134930A1 (de) Teildruckausgeglichenes druckregelventil für einen hochdruckspeicher

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20140304

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F02M 51/06 20060101AFI20170112BHEP

Ipc: F02M 61/18 20060101ALN20170112BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: F02M 61/18 20060101ALN20170118BHEP

Ipc: F02M 51/06 20060101AFI20170118BHEP

INTG Intention to grant announced

Effective date: 20170201

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 888119

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013007053

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170426

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170727

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170826

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013007053

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180125

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180125

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180125

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 888119

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170426

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220124

Year of fee payment: 10

Ref country code: FR

Payment date: 20220120

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230125

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240322

Year of fee payment: 12