EP3394420B1 - Magnetventil für ein kraftstoffeinspritzventil, verfahren zum betreiben des magnetventils und kraftstoffeinspritzventil mit einem solchen magnetventil - Google Patents

Magnetventil für ein kraftstoffeinspritzventil, verfahren zum betreiben des magnetventils und kraftstoffeinspritzventil mit einem solchen magnetventil Download PDF

Info

Publication number
EP3394420B1
EP3394420B1 EP16798522.5A EP16798522A EP3394420B1 EP 3394420 B1 EP3394420 B1 EP 3394420B1 EP 16798522 A EP16798522 A EP 16798522A EP 3394420 B1 EP3394420 B1 EP 3394420B1
Authority
EP
European Patent Office
Prior art keywords
armature
solenoid valve
solenoid
electromagnet
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16798522.5A
Other languages
English (en)
French (fr)
Other versions
EP3394420A1 (de
Inventor
Lars Olems
Thomas Nierychlo
Oezguer Tuerker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3394420A1 publication Critical patent/EP3394420A1/de
Application granted granted Critical
Publication of EP3394420B1 publication Critical patent/EP3394420B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0635Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/064Introducing corrections for particular operating conditions for engine starting or warming up for starting at cold start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/167Means for compensating clearance or thermal expansion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1638Armatures not entering the winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2065Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit the control being related to the coil temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/26Fuel-injection apparatus with elastically deformable elements other than coil springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • F02M63/0017Valves characterised by the valve actuating means electrical, e.g. using solenoid using electromagnetic operating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/081Magnetic constructions
    • H01F2007/086Structural details of the armature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F2007/1661Electromagnets or actuators with anti-stick disc

Definitions

  • the invention relates to a solenoid valve for a fuel injection valve, a method for operating such a solenoid valve and a fuel injection valve with such a solenoid valve, the fuel injection valve preferably being used for introducing fuel under high pressure into the combustion chamber of an internal combustion engine.
  • Fuel injection valves with a solenoid valve for controlling fuel injection are known from the prior art, for example from DE 10 2007 052 753 A1 known.
  • the compressed fuel is fed to the fuel injection valve and is introduced here through injection openings into a combustion chamber of an internal combustion engine, the fuel being finely atomized due to the high fuel pressure.
  • the opening and closing of these injection openings is controlled by means of a nozzle needle, which is arranged to be longitudinally movable within the fuel injection valve.
  • the movements of the nozzle needle are servo-hydraulic, in that the fuel pressure in a control chamber is varied by means of a solenoid valve, a closing force being exerted on the nozzle needle by the pressure in the control chamber.
  • the solenoid valve comprises a magnet armature which interacts with an electromagnet and can be moved by the force of the electromagnet against the force of a closing spring. Due to the longitudinal movement of the magnet armature, a discharge cross-section, a so-called discharge throttle, is opened and closed controlled so that fuel can flow out of the control chamber into a low-pressure chamber, which lowers the pressure in the control chamber. Accordingly, the pressure in the control room builds up again when the solenoid valve is closed.
  • the solenoid valve includes the magnet armature, the magnet armature forming an armature plate which is largely flat and lies opposite the electromagnet.
  • a residual air disk is provided between the armature plate and the electromagnet.
  • the residual air gap disc is located on the outer edge of the armature plate, while the closing spring, which acts on the magnet armature in the direction of its closed position, acts on the magnet armature in the middle of the armature plate.
  • the anchor plate If the electromagnet is energized, the anchor plate is pulled out of its closed position and comes into contact with the residual air gap disc, since the electromagnet exerts a greater force on the magnet armature than the closing force of the closing spring.
  • the armature plate In the known solenoid valve, the armature plate is slightly bent by the effect of the closing spring, since the closing spring acts on the armature plate with a force away from the magnet. The deflection of the anchor plate caused in this way is approximately one micrometer in the known solenoid valves.
  • the solenoid valve is at a low temperature because, for example, it is flushed with low-temperature fuel as part of a fuel injector. If the fuel injection valve is now put into operation, fuel flows from the control chamber through an outlet throttle into the low-pressure chamber when the solenoid valve is open. As a result, the highly compressed fuel is relaxed and heats up strongly, which first of all leads to a heating of the magnet armature. The magnet armature then expands, while the other components of the fuel injection valve, in particular the outer housing elements of the solenoid valve, still have a low temperature.
  • the maximum stroke of the solenoid valve is reduced by up to 8 ⁇ m, which continues until the solenoid valve has reached a uniform temperature.
  • a reduced stroke of the solenoid valve can, however, lead to changed flow properties at the outlet throttle, i.e. the pressure reduction within the control chamber does not take place as quickly as is necessary to achieve the same switching dynamics of the fuel injection valve due to the not fully opened discharge cross-section in the solenoid valve as with a cold injection valve or when it has reached its operating temperature. This can lead to irregularities during the warm-up phase and thus to irregular injections.
  • Other solenoid valves are known from the DE102009001706 A1 and the GB2058467 A .
  • the solenoid valve according to the invention has the advantage that the reduced opening stroke can be compensated for when the components are partially heated, and thus a uniform opening cross section can be achieved at all temperatures.
  • the solenoid valve has a magnet armature which has a longitudinal axis and is movable along this longitudinal axis and which cooperates with an electromagnet, the magnet armature forming an armature plate which is arranged opposite the electromagnet.
  • a residual air gap disc is arranged between the electromagnet and the armature plate, which prevents the armature plate from directly contacting the electromagnet, the armature plate coming into contact with the outer edge of the residual air gap disc.
  • a closing spring which acts on the magnet armature with a closing force in the direction of a valve seat, the closing spring acting on the armature plate near its longitudinal axis and a flow cross section for a fluid being able to be opened or closed by the interaction of the magnet armature with the valve seat.
  • a weakening zone is formed within the anchor plate, so that the flexibility of the anchor plate is increased.
  • the weakening zone is formed by a circumferential annular groove which is formed on the surface of the armature plate facing the electromagnet.
  • the weakening zone can also be formed by a circumferential annular groove on the Surface of the armature plate facing away from the electromagnet is formed, wherein it can also be provided that an annular groove is formed on both sides. Depending on the depth and shape of the ring groove, the weakening zone can be set without affecting the overall stability of the anchor plate.
  • the anchor plate Due to the formation of the weakening zone, the anchor plate is deflected more when the closing spring is applied than is the case with the known spring plates.
  • the deflection of the armature plate corresponds approximately to the amount by which the magnet armature is extended during operation due to its thermal expansion and thus normally reduces the stroke of the solenoid valve. If the reduced solenoid valve stroke is to be compensated for when the solenoid valve is partially heated, the force of the electromagnet can be increased so that the interior of the anchor plate is also tightened more than is necessary to open the solenoid valve and to overcome the closing spring force.
  • the force of the closing spring is thus partially compensated for by the increased magnetic force, so that the inside of the magnet armature is raised and the spring plate takes on an almost flat shape.
  • the total stroke of the solenoid valve is increased again and brought to the level that existed before the partial heating. If the entire solenoid valve and thus the other components heat up in the course of operation, the energization of the electromagnet is shut down when the solenoid valve opens and the magnet armature opens as if the injection valve were cold.
  • the closing spring is designed as a helical compression spring, the longitudinal axis of which coincides with the longitudinal axis of the magnet armature. This enables a compact construction and the force of the closing spring can be easily varied via the design of the closing spring.
  • the magnet armature has a longitudinal bore, the longitudinal axis of which forms the longitudinal axis of the magnet armature. This makes it possible to guide the magnet armature on a valve bolt, the longitudinal axis of which coincides with the longitudinal axis of the magnet armature.
  • the residual air gap disk is designed as a flat annular disk. In this way, the minimum distance that the anchor plate can take from the electromagnet can easily be set via the thickness of the residual air gap disc.
  • the solenoid valve is operated in such a way that a first coil current is passed through the electromagnet at a low temperature, as a result of which a magnetic force is generated which is necessary for moving the magnet armature and overcoming the force of the closing spring Measure goes beyond.
  • the coil current for opening the solenoid valve is reduced compared to the first coil current.
  • the stroke of the solenoid valve can be kept constant by the two different coil currents for opening the solenoid valve in the cold and in the warm state, since the stroke of the solenoid can be adjusted via the deflection of the magnet armature or the armature plate, which can be adjusted by the coil current .
  • a solenoid valve according to the invention is advantageously provided in a fuel injection valve, which is used to inject fuel under high pressure into a combustion chamber of an internal combustion engine.
  • the fuel injection valve has a pressure chamber that can be filled with fuel under high pressure, in which a longitudinally movable nozzle needle is arranged, which cooperates with a nozzle seat for opening and closing at least one injection opening, the nozzle needle delimiting a control chamber with its front side facing away from the nozzle seat an alternating pressure can be set by connecting the control chamber to a low-pressure chamber formed in the housing via the control valve.
  • the control valve is designed as a solenoid valve according to the invention.
  • a fuel injection valve according to the invention is shown in longitudinal section, the fuel injection valve having a magnetic valve according to the invention.
  • the fuel injection valve 1 has a housing 2 with a longitudinal axis 3, which comprises a magnetic body 6, a holding body 4 and a nozzle body 5, which are clamped against each other in a liquid-tight manner by means of a clamping device (not shown in the drawing).
  • a pressure chamber 9 is formed in the holding body 4 and in the nozzle body 5 and can be filled with fuel under high pressure via a high-pressure fuel connection 11.
  • a high-pressure bore 10 is formed in the holding body 4, which opens into the high-pressure chamber 9, through which the compressed fuel flows into the region of a nozzle seat 17, which is formed at the end of the nozzle body 5 on the combustion chamber side.
  • a piston-shaped nozzle needle 15 is arranged longitudinally displaceably within the pressure chamber 9 and has at its end on the combustion chamber side a sealing surface 16 with which the nozzle needle 15 interacts with the nozzle seat 17 for opening and closing at least one injection opening 18 which is formed on the end of the nozzle body 5 on the combustion chamber side .
  • the injection openings 8 are closed against the pressure chamber 9, while when the nozzle needle 15 is lifted from the valve seat 17, fuel can flow from the pressure chamber 9 to the injection openings 8 and through them into a combustion chamber of an internal combustion engine.
  • the pressure chamber 9 is closed by a valve piece 12, which is fixed in place within the holding body 4 by means of a clamping screw 14.
  • the valve piece 12 has a blind bore 26 which receives the end of the nozzle needle 15 facing away from the nozzle seat, a control chamber 22 being delimited by the front face of the nozzle needle 15 facing away from the nozzle seat and the blind bore 26 within the valve piece 12, said control chamber being connected to the pressure chamber 9 via an inlet throttle 20 is.
  • a drain hole 24 is also formed, in which a drain throttle 25 is formed, which opens into a drain space 31, which is formed in the end region of the holding body 4 facing away from the nozzle seat.
  • the low pressure chamber 35 is connected via a drain hole 37 to a return system in which there is a low fuel pressure, so that a low fuel pressure is always present in the low pressure chamber 35.
  • a control valve 30 is arranged in the low-pressure chamber 35, which is designed as an electromagnetic control valve and which has an electromagnet 44, the electromagnet 44 comprising a magnetic core 45 with a recess 47 and a magnet coil 46 arranged therein.
  • the electromagnet 44 is arranged in the magnetic body 6, which forms the end of the housing 2 facing away from the combustion chamber and is clamped against the holding body 4 by means of a clamping nut 7.
  • the control valve 30 further comprises a magnet armature 40, which forms a largely flat armature plate 140, which is arranged opposite the electromagnet 44.
  • the magnet armature 40 also has a bore 48 in which a valve bolt 34 is arranged, on which the magnet armature 40 is guided so as to be longitudinally movable.
  • the magnet armature 40 is also guided in a sleeve-shaped extension 112 of the valve piece 12 on its outside, an outlet space 31 being delimited by the sleeve-shaped extension 112, which is connected to the control chamber 22 via the outlet throttle 25 and the outlet bore 24.
  • the magnet armature 42 also interacts with an annular valve seat 42 which is formed in the valve piece 12, so that the outlet space 31 can be connected to the low pressure space 35 when the magnet armature 40 is pulled away from the valve seat 42 by the electromagnet 44.
  • the electromagnet 44 is switched off the magnetic armature 40 is acted upon by a closing force 50 in the direction of the valve seat 42 by a closing spring 50, which is arranged surrounding the valve pin 34 within the magnetic core 45.
  • the fuel injector works as follows: at the beginning of the injection, the electromagnet 44 is not energized, and the closing spring 50 presses the magnet armature 40 against the valve seat 42. As a result, the outlet chamber 31 is hydraulically separated from the low-pressure chamber 35, with a high fuel pressure in the control chamber 22 is present, which presses the nozzle needle 15 against the nozzle seat 17 and thus closes the injection openings 18. If an injection is to take place, the electromagnet 44 is energized, which causes a magnetic force on the magnet armature 40 which pulls it in the direction of the electromagnet 44. The armature 40 then moves away from the valve seat 42 until it comes into contact with the throttle plate 52.
  • Fuel under high pressure then flows out of the high-pressure chamber 9 into the now opened injection openings 18, the fuel being atomized finely as it exits the injection openings 18 due to the high fuel pressure.
  • the electromagnet is switched off, so that the magnetic force is eliminated.
  • the magnet armature 40 is pressed back into its closed position by the closing spring 50, so that the original pressure conditions are restored and the nozzle needle 15 closes the injection openings 18 again.
  • This effect can be used to compensate for the different strokes of the electromagnet, which are caused by the heating of the entire solenoid valve.
  • the entire solenoid valve is at a low temperature level, as is the fuel in the fuel injector. If the highly compressed fuel now escapes from the control chamber 22 by opening the solenoid valve, the mechanical energy stored in it is released, which is noticeable in the heating of the outflowing fuel. This heats the magnet armature 40, which lengthens due to the thermal expansion and thereby reduces the maximum stroke of the magnet armature, typically by approximately 8 ⁇ m.
  • the weakening zone 55 can, as in the Figure 3 shown, are formed by a first annular groove 56 and a second annular groove 57. However, it is also possible to produce the weakening zone 55 in a different way, for example by means of bores distributed over the circumference which penetrate the anchor plate 140 or by another mechanical weakening of the anchor plate 140 in this area.
  • the weakening zone 52 should preferably be placed in the region of the coil window in order to keep the loss of magnetic force as low as possible as a result of the change in the magnet armature geometry.
  • the coil window is the area of the magnetic core 45 in which an opening facing the magnet armature 40 is formed by the recess 47.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

  • Die Erfindung betrifft ein Magnetventil für ein Kraftstoffeinspritzventil, ein Verfahren zum Betreiben eines solchen Magnetventils und ein Kraftstoffeinspritzventil mit einem solchen Magnetventil, wobei das Kraftstoffeinspritzventil vorzugsweise zur Einbringung von Kraftstoff unter hohem Druck in den Brennraum einer Brennkraftmaschine Verwendung findet.
  • Stand der Technik
  • Kraftstoffeinspritzventile mit einem Magnetventil zur Steuerung der Kraftstoffeinspritzung sind aus dem Stand der Technik beispielsweise aus der DE 10 2007 052 753 A1 bekannt. Bei dem bekannten Kraftstoffeinspritzventil wird der verdichtete Kraftstoff dem Kraftstoffeinspritzventil zugeführt und hier durch Einspritzöffnungen in einen Brennraum einer Brennkraftmaschine eingebracht, wobei der Kraftstoff bedingt durch den hohen Kraftstoffdruck fein zerstäubt wird. Das Öffnen und Schließen dieser Einspritzöffnungen wird mittels einer Düsennadel gesteuert, die längsbeweglich innerhalb des Kraftstoffeinspritzventils angeordnet ist. Die Bewegungen der Düsennadel erfolgt servohydraulisch, indem der Kraftstoffdruck in einem Steuerraum mittels eines Magnetventils variiert wird, wobei durch den Druck im Steuerraum eine Schließkraft auf die Düsennadel ausgeübt wird. Das Magnetventil umfasst dabei einen Magnetanker, der mit einem Elektromagneten zusammenwirkt und durch die Kraft des Elektromagneten entgegen der Kraft einer Schließfeder bewegbar ist. Durch die Längsbewegung des Magnetankers wird ein Absteuerquerschnitt, eine sogenannte Ablaufdrossel, auf- und zugesteuert, sodass Kraftstoff aus dem Steuerraum in einen Niederdruckraum abfließen kann, wodurch sich der Druck im Steuerraum erniedrigt. Entsprechend baut sich der Druck im Steuerraum wieder auf, wenn das Magnetventil geschlossen wird.
  • Das Magnetventil umfasst den Magnetanker, wobei der Magnetanker einen Ankerteller ausbildet, der weitgehend flach ausgebildet ist und dem Elektromagneten gegenüber liegt. Um ein magnetisches Kleben des Ankertellers am Elektromagneten zu verhindern, ist eine Restluftscheibe zwischen dem Ankerteller und dem Elektromagneten vorgesehen. Dadurch kommt der Magnetanker nicht direkt am Elektromagneten zur Anlage, sondern an der Restluftspaltscheibe, sodass ein Luftspalt zwischen dem Ankerteller und dem Elektromagneten verbleibt. Die Restluftspaltscheibe befindet sich dabei am äußeren Rand des Ankertellers, während die Schließfeder, die den Magnetanker in Richtung seiner Schließstellung beaufschlagt, in der Mitte des Ankertellers auf den Magnetanker einwirkt.
  • Wird der Elektromagnet bestromt, so wird der Ankerteller aus seiner Schließstellung angezogen und kommt in Anlage an die Restluftspaltscheibe, da der Elektromagnet eine größere Kraft auf den Magnetanker ausübt als die Schließkraft der Schließfeder. Bei dem bekannten Magnetventil wird durch die Auswirkung der Schließfeder der Ankerteller leicht durchgebogen, da die Schließfeder den Ankerteller vom Magneten weg mit einer Kraft beaufschlagt. Die so bewirkte Durchbiegung des Ankertellers beträgt bei den bekannten Magnetventilen ungefähr ein Mikrometer.
  • Zu Beginn des Betriebs ist das Magnetventil auf einer niedrigen Temperatur, da es beispielsweise als Teil eines Kraftstoffeinspritzventils mit Kraftstoff niedriger Temperatur umspült ist. Wird das Kraftstoffeinspritzventil jetzt in Betrieb genommen, so strömt bei geöffnetem Magnetventil Kraftstoff aus dem Steuerraum durch eine Ablaufdrossel in den Niederdruckraum. Der hochverdichtete Kraftstoff wird dadurch entspannt und erwärmt sich stark, was zuerst vor allem zu einer Erwärmung des Magnetankers führt. Der Magnetanker dehnt sich daraufhin aus, während die übrigen Komponenten des Kraftstoffeinspritzventils, insbesondere die äußeren Gehäuseelemente des Magnetventils, noch eine niedrige Temperatur aufweisen.
  • Durch die Wärmeausdehnung des Magnetankers erniedrigt sich der maximale Hub des Magnetventils um bis zu 8 µm, was so lange anhält, bis das Magnetventil eine einheitliche Temperatur erreicht hat. Ein verringerter Hub des Magnetventils kann jedoch zu veränderten Strömungseigenschaften an der Ablaufdrossel führen, das heißt, dass der Druckabbau innerhalb des Steuerraums durch den nicht voll geöffneten Abflussquerschnitt im Magnetventil nicht so rasch erfolgt, wie es notwendig ist, um die gleiche Schaltdynamik des Kraftstoffeinspritzventils zu erreichen wie bei kalten Einspritzventil oder wenn dieses seine Betriebstemperatur erreicht hat. Dadurch kann es zu Unregelmäßigkeiten während der Warmlaufphase kommen und damit zu unregelmäßigen Einspritzungen. Weitere Magnetventile sind bekannt aus der DE102009001706 A1 und der GB2058467 A .
  • Offenbarung der Erfindung
  • Das erfindungsgemäße Magnetventil weist demgegenüber den Vorteil auf, dass der verringerte Öffnungshub bei teilweiser Erwärmung der Komponenten kompensierbar ist und damit ein einheitlicher Öffnungsquerschnitt bei allen Temperaturen erreicht werden kann. Dazu weist das Magnetventil einen eine Längsachse aufweisenden und entlang dieser Längsachse beweglichen Magnetanker auf, der mit einem Elektromagneten zusammenwirkt, wobei der Magnetanker einen Ankerteller ausbildet, der dem Elektromagneten gegenüber angeordnet ist. Weiter ist zwischen dem Elektromagneten und dem Ankerteller eine Restluftspaltscheibe angeordnet, die ein direktes Anliegen des Ankertellers am Elektromagneten verhindert, wobei der Ankerteller mit seinem äußeren Rand an der Restluftspaltscheibe zur Anlage kommt. Weiterhin ist eine Schließfeder vorgesehen, die den Magnetanker mit einer Schließkraft in Richtung eines Ventilsitzes beaufschlagt, wobei die Schließfeder auf den Ankerteller nahe seiner Längsachse einwirkt und durch das Zusammenwirken des Magnetankers mit dem Ventilsitz ein Durchflussquerschnitt für ein Fluid geöffnet oder geschlossen werden kann. Erfindungsgemäß ist innerhalb des Ankertellers eine Schwächungszone ausgebildet, sodass die Flexibilität des Ankertellers erhöht wird. Die Schwächungszone wird durch eine umlaufende Ringnut gebildet, die auf der dem Elektromagneten zugewandten Fläche des Ankertellers ausgebildet ist. Die Schwächungszone kann aber auch durch eine umlaufende Ringnut ausgebildet sein, die auf der dem Elektromagneten abgewandten Fläche des Ankertellers ausgebildet ist, wobei es auch vorgesehen sein kann, dass auf beiden Seiten eine Ringnut ausgebildet ist. Je nach Tiefe und Form der Ringnut lässt sich so die Schwächungszone einstellen, ohne die Stabilität des Ankertellers insgesamt zu beeinträchtigen.
  • Durch die Ausbildung der Schwächungszone wird der Ankerteller bei Beaufschlagung mit der Schließfeder stärker durchgebogen als dies bei den bekannten Federtellern der Fall ist. Die Durchbiegung des Ankertellers entspricht dabei etwa dem Betrag, um den sich der Magnetanker aufgrund seiner thermischen Ausdehnung beim Betrieb verlängert und damit normalerweise den Hub des Magnetventils verringert. Soll nun der verringerte Magnetventilhub bei teilweise erwärmten Magnetventil kompensiert werden, kann die Kraft des Elektromagneten erhöht werden, sodass auch das Innere des Ankertellers stärker angezogen wird als dies zum Öffnen des Magnetventils und zur Überwindung der Schließfederkraft notwendig ist. Die Kraft der Schließfeder wird so durch die erhöhte Magnetkraft teilweise kompensiert, sodass das Innere des Magnetankers angehoben wird und der Federteller eine nahezu flache Form einnimmt. Dadurch wird der Gesamthub des Magnetventils wieder erhöht und auf den Stand gebracht, der vor der teilweisen Erwärmung vorhanden war. Erwärmt sich im Laufe des Betriebs das gesamte Magnetventil und damit auch die anderen Komponenten, so wird die Bestromung des Elektromagneten bei Öffnung des Magnetventils heruntergefahren und der Magnetanker öffnet wie bei kaltem Einspritzventil.
  • In einer ersten vorteilhaften Ausgestaltung ist die Schließfeder als Schraubendruckfeder ausgebildet, deren Längsachse mit der Längsachse des Magnetankers zusammenfällt. Dadurch ist ein kompakter Aufbau möglich und über die Ausgestaltung der Schließfeder kann leicht die Kraft derselben variiert werden.
  • In einer weiteren vorteilhaften Ausgestaltung weist der Magnetanker eine Längsbohrung auf, deren Längsachse die Längsachse des Magnetankers bildet. Dadurch ist eine Führung des Magnetankers auf einem Ventilbolzen möglich, dessen Längsachse mit der Längsachse des Magnetankers zusammenfällt. Weiterhin kann es in vorteilhafter Weise vorgesehen sein, dass die Restluftspaltscheibe als ebene Ringscheibe ausgebildet ist. Dadurch lässt sich einfach über die Dicke der Restluftspaltscheibe der minimale Abstand einstellen, den der Ankerteller vom Elektromagneten einnehmen kann.
  • Bei dem erfindungsgemäßen Verfahren zum Betreiben des Magnetventils wird das Magnetventil derart betrieben, dass bei einer niedrigen Temperatur ein erster Spulenstrom durch den Elektromagneten geleitet wird, wodurch eine Magnetkraft erzeugt wird, die über das für das Bewegen des Magnetankers und die Überwindung der Kraft der Schließfeder notwendige Maß hinaus geht. Bei einer höheren Temperatur des Magnetventils wird der Spulenstrom zum Öffnen des Magnetventils gegenüber dem ersten Spulenstrom erniedrigt. Durch die beiden verschiedenen Spulenströme zum Öffnen des Magnetventils im kalten und im warmen Zustand kann der Hub des Magnetventils konstant gehalten werden, da über die Durchbiegung des Magnetankers bzw. des Ankertellers, die sich durch den Spulenstrom einstellen lässt, der Hub des Elektromagneten eingestellt werden kann.
  • In vorteilhafter Weise ist ein erfindungsgemäßes Magnetventil in einem Kraftstoffeinspritzventil vorgesehen, das zur Einspritzung von Kraftstoff unter hohem Druck in einen Brennraum einer Brennkraftmaschine dient. Dazu weist das Kraftstoffeinspritzventil ein mit Kraftstoff unter hohem Druck befüllbaren Druckraum auf, in dem eine längsbewegliche Düsennadel angeordnet ist, die mit einem Düsensitz zum Öffnen und Schließen wenigstens einer Einspritzöffnung zusammenwirkt, wobei die Düsennadel mit ihrer dem Düsensitz abgewandten Stirnseite einen Steuerraum begrenzt, in dem ein wechselnder Druck einstellbar ist, indem der Steuerraum mit einem im Gehäuse ausgebildeten Niederdruckraum über das Steuerventil verbindbar ist. Das Steuerventil ist dabei als erfindungsgemäßes Magnetventil ausgebildet.
  • Zeichnung
  • In der Zeichnung sind ein erfindungsgemäßes Magnetventil und ein erfindungsgemäßer Kraftstoffinjektor dargestellt. Es zeigen
  • Figur 1
    einen Längsschnitt durch ein erfindungsgemäßes Kraftstoffeinspritzventil mit einem erfindungsgemäßen Magnetventil als Steuerventil,
    Figur 2
    eine Vergrößerung von Figur 1 im Bereich des Magnetventils und
    Figur 3
    eine separate Darstellung des Magnetankers zur Verdeutlichung der mechanischen Durchbiegung.
    Beschreibung der Ausführungsbeispiele
  • In Figur 1 ist ein erfindungsgemäßes Kraftstoffeinspritzventil im Längsschnitt dargestellt, wobei das Kraftstoffeinspritzventil ein erfindungsgemäßes Magnetventil aufweist. Das Kraftstoffeinspritzventil 1 weist ein Gehäuse 2 auf mit einer Längsachse 3, das einen Magnetkörper 6, einen Haltekörper 4 und einen Düsenköper 5 umfasst, die über eine in der Zeichnung nicht dargestellte Spannvorrichtung flüssigkeitsdicht gegeneinander verspannt sind. Im Haltekörper 4 und im Düsenkörper 5 ist ein Druckraum 9 ausgebildet, der über einen Kraftstoffhochdruckanschluss 11 mit Kraftstoff unter hohem Druck befüllbar ist. Dazu ist im Haltekörper 4 eine Hochdruckbohrung 10 ausgebildet, die in den Hochdruckraum 9 mündet, durch den der verdichtete Kraftstoff bis in den Bereich eines Düsensitzes 17 strömt, der am brennraumseitigen Ende des Düsenkörpers 5 ausgebildet ist. Innerhalb des Druckraums 9 ist eine kolbenförmige Düsennadel 15 längsverschiebbar angeordnet, die an ihrem brennraumseitigen Ende eine Dichtfläche 16 aufweist, mit der die Düsennadel 15 mit dem Düsensitz 17 zum Öffnen und Schließen wenigstens einer Einspritzöffnung 18 zusammenwirkt, die am brennraumseitigen Ende des Düsenkörpers 5 ausgebildet ist. Ist die Düsennadel 15 in Anlage am Düsensitz 17, so werden die Einspritzöffnungen 8 gegen den Druckraum 9 verschlossen, während bei vom Ventilsitz 17 abgehobener Düsennadel 15 Kraftstoff aus dem Druckraum 9 zu den Einspritzöffnungen 8 strömen kann und durch diese hindurch in einen Brennraum einer Brennkraftmaschine.
  • Dem Düsensitz 17 abgewandt wird der Druckraum 9 durch ein Ventilstück 12 verschlossen, welches mittels einer Spannschraube 14 innerhalb des Haltekörpers 4 ortsfest fixiert ist. Das Ventilstück 12 weist eine Sackbohrung 26 auf, die das düsensitzabgewandte Ende der Düsennadel 15 aufnimmt, wobei durch die düsensitzabgewandte Stirnseite der Düsennadel 15 und die Sackbohrung 26 innerhalb des Ventilstücks 12 ein Steuerraum 22 begrenzt wird, welcher über eine Zulaufdrossel 20 mit dem Druckraum 9 verbunden ist. Im Ventilstück 12 ist darüber hinaus eine Ablaufbohrung 24 ausgebildet, in der eine Ablaufdrossel 25 ausgebildet ist, die in einen Ablaufraum 31 mündet, welcher im düsensitzabgewandten Endbereich des Haltekörpers 4 ausgebildet ist. Der Niederdruckraum 35 ist über eine Ablaufbohrung 37 mit einem Rücklaufsystem verbunden in dem ein niedriger Kraftstoffdruck herrscht, sodass im Niederdruckraum 35 stets ein niedriger Kraftstoffdruck anliegt.
  • Im Niederdruckraum 35 ist ein Steuerventil 30 angeordnet, welches als elektromagnetisches Steuerventil ausgebildet ist und welches einen Elektromagneten 44 aufweist, wobei der Elektromagnet 44 einen Magnetkern 45 mit einer Ausnehmung 47 und einer darin angeordneten Magnetspule 46 umfasst. Der Elektromagnet 44 ist dabei im Magnetkörper 6 angeordnet, welcher das brennraumabgewandte Ende des Gehäuses 2 bildet und mittels einer Spannmutter 7 gegen den Haltekörper 4 verspannt ist. Das Steuerventil 30 umfasst weiterhin einen Magnetanker 40, welcher einen weitgehend flachen Ankerteller 140 ausbildet, der dem Elektromagneten 44 gegenüberliegend angeordnet ist. Der Magnetanker 40 weist weiterhin eine Bohrung 48 auf, in der ein Ventilbolzen 34 angeordnet ist, auf dem der Magnetanker 40 längsbeweglich geführt ist. Der Magnetanker 40 wird darüber hinaus in einem hülsenförmigen Fortsatz 112 des Ventilstücks 12 an seiner Außenseite geführt, wobei durch den hülsenförmigen Fortsatz 112 ein Ablaufraum 31 begrenzt wird, welcher über die Ablaufdrossel 25 und die Ablaufbohrung 24 mit dem Steuerraum 22 verbunden ist. Der Magnetanker 42 wirkt darüber hinaus mit einem ringförmigen Ventilsitz 42 zusammen, der im Ventilstück 12 ausgebildet ist, sodass der Ablaufraum 31 mit dem Niederdruckraum 35 verbindbar ist, wenn der Magnetanker 40 durch den Elektromagneten 44 vom Ventilsitz 42 weggezogen wird. Bei ausgeschaltetem Elektromagneten 44 wird der Magnetanker 40 durch eine Schließfeder 50, welche den Ventilbolzen 34 umgebend innerhalb des Magnetkerns 45 angeordnet ist, in Richtung des Ventilsitzes 42 mit einer Schließkraft beaufschlagt.
  • Die Funktionsweise des Kraftstoffinjektors ist wie folgt: Zu Beginn der Einspritzung ist der Elektromagnet 44 nicht bestromt, und die Schließfeder 50 drückt den Magnetanker 40 gegen den Ventilsitz 42. Dadurch ist der Ablaufraum 31 vom Niederdruckraum 35 hydraulisch getrennt, wobei im Steuerraum 22 ein hoher Kraftstoffdruck anliegt, der die Düsennadel 15 gegen den Düsensitz 17 drückt und damit die Einspritzöffnungen 18 verschließt. Soll eine Einspritzung erfolgen, so wird der Elektromagnet 44 bestromt, was eine magnetische Kraft auf den Magnetanker 40 bewirkt, die diesen in Richtung des Elektromagneten 44 zieht. Der Magnetanker 40 bewegt sich daraufhin vom Ventilsitz 42 weg, bis er in Anlage an die Drosselscheibe 52 kommt. Über den jetzt aufgesteuerten Ventilsitz 42 fließt Kraftstoff aus dem Zulaufraum 31 in den Niederdruckraum 35 ab, wodurch der Druck im Steuerraum 22 erniedrigt wird und die hydraulischen Kräfte im Hochdruckraum 9 die Düsennadel 15 vom Düsensitz 17 wegdrücken. In die jetzt freigegebenen Einspritzöffnungen 18 strömt daraufhin unter hohem Druck stehender Kraftstoff aus dem Hochdruckraum 9, wobei der Kraftstoff beim Austritt aus den Einspritzöffnungen 18 aufgrund des hohen Kraftstoffdrucks fein zerstäubt wird. Zur Beendigung der Einspritzung wird der Elektromagnet abgeschaltet, sodass die Magnetkraft entfällt. Der Magnetanker 40 wird durch die Schließfeder 50 zurück in seine Schließstellung gedrückt, sodass sich die ursprünglichen Druckverhältnisse wieder einstellen und die Düsennadel 15 die Einspritzöffnungen 18 erneut verschließt.
  • In Öffnungsstellung des Magnetankers 40, also wenn der Ankerteller 140 in Anlage an der Restluftspaltscheibe 52 ist, wirkt auf den Ankerteller 140 weiterhin die Kraft der Schließfeder 50. Durch die Schwächungszone 55 wird dadurch der Ankerteller 140 etwas durchgebogen, da die Magnetkraft im Inneren des Elektromagneten 44 geringer ist als die Kraft der Schließfeder 50. Dies ist in Figur 3 nochmals dargestellt, wo der Magnetanker 40 unter einer solchen Belastung dargestellt ist, wobei die Durchbiegung d des Ankertellers 140 sehr stark übertrieben dargestellt ist. Diese Durchbiegung d entspricht bei normaler Bestromung des Elektromagneten 44 etwa 6 bis 8 µm.
  • Dieser Effekt kann zum Ausgleich der unterschiedlichen Hübe des Elektromagneten benutzt werden, die durch die Erwärmung des gesamten Magnetventils zustande kommen. Zu Beginn des Gebrauchs befindet sich das gesamte Magnetventil auf einem niedrigen Temperaturniveau, ebenso der im Kraftstoffeinspritzventil befindliche Kraftstoff. Entweicht der hochverdichtete Kraftstoff jetzt durch Öffnen des Magnetventils aus dem Steuerraum 22, so wird die in ihm gespeicherte mechanische Energie freigesetzt, was sich in einer starken Erwärmung des abgeströmten Kraftstoffs bemerkbar macht. Dieser erwärmt den Magnetanker 40, der sich durch die thermische Ausdehnung verlängert und dadurch den maximalen Hub des Magnetankers verringert, typischerweise um ca. 8 µm. Dies kann bei dem vorliegenden erfindungsgemäßen Magnetventil jedoch dadurch kompensiert werden, dass die Bestromung des Magnetventils 44 über das für das Öffnen des Steuerventils notwendige Maß erhöht wird, sodass auch im Inneren des Elektromagneten eine Kraft wirkt. Die Kraft der Schließfeder 50 wird damit überdrückt und die Durchbiegung des Ankertellers 140, wie in Figur 2a dargestellt, zumindest teilweise kompensiert. Damit erhöht sich der maximale Hub des Magnetankers 40 wieder und auf den ursprünglichen Wert. Wenn sich im weiteren Betrieb des Magnetventils auch die übrigen Komponenten nach und nach erwärmen und die gleiche Temperatur annehmen wie der Magnetanker 40, so steigt dadurch der maximale Hub des Magnetankers 40 wiederum an. Um den Hub des Magnetankers 40 konstant zu lassen, wird jetzt die Bestromung des Elektromagneten 44 herabgesetzt. Der Federteller 140 zeigt dann erneut die in Figur 3 dargestellte Durchbiegung.
  • Die Schwächungszone 55 kann, wie in der Figur 3 dargestellt, durch eine erste Ringnut 56 und eine zweite Ringnut 57 ausgebildet werden. Es ist aber auch möglich, die Schwächungszone 55 auf andere Weise herzustellen, bspw. durch über den Umfang verteilt angeordnete Bohrungen, die den Ankerteller 140 durchdringen oder durch eine andere mechanische Schwächung des Ankertellers 140 in diesem Bereich. Die Schwächungszone 52 sollte dabei vorzugsweise im Bereich des Spulenfensters platziert, um den Magnetkraftverlust infolge der Änderung der Magnetankergeometrie möglichst gering zu halten. Das Spulenfenster ist dabei der Bereich des Magnetkerns 45, in dem durch die Ausnehmung 47 eine dem Magnetanker 40 zugewandte Öffnung gebildet wird.

Claims (6)

  1. Magnetventil für ein Kraftstoffeinspritzventil mit einem eine Längsachse (3) aufweisenden und entlang dieser Längsachse (3) beweglichen Magnetanker (40), der mit einem Elektromagneten (44) zusammenwirkt, wobei der Magnetanker (40) einen Ankerteller (140) ausbildet, der dem Elektromagneten (44) gegenüber angeordnet ist, und zwischen dem Elektromagneten (44) und dem Ankerteller (140) eine Restluftspaltscheibe (52) ein direktes Anliegen des Ankertellers (140) am Elektromagneten (44) verhindert, wobei der Ankerteller (140) mit seinem äußeren Rand an der Restluftspaltscheibe (52) zur Anlage kommt, und mit einer Schließfeder (50), die den Magnetanker (40) mit einer Schließkraft in Richtung eines Ventilsitzes (42) beaufschlagt, wobei die Schließfeder (50) auf dem Ankerteller (140) nahe seiner Längsachse (3) aufliegt und durch das Zusammenwirken des Magnetankers (40) mit dem Ventilsitz (42) ein Durchflussquerschnitt für ein Fluid geöffnet oder geschlossen werden kann,
    dadurch gekennzeichnet, dass
    radial innerhalb des Ankerteller (140) eine Schwächungszone (55) ausgebildet ist, die durch eine auf der dem Elektromagneten (44) zugewandten Fläche des Ankertellers (140) ausgebildete umlaufende Ringnut (56) und/oder durch eine auf der dem Elektromagneten (44) abgewandten Fläche des Ankertellers (140) ausgebildete umlaufende Ringnut (57) ausgebildet ist.
  2. Magnetventil nach Anspruch 1, dadurch gekennzeichnet, dass die Schließfeder (50) als Schraubendruckfeder ausgebildet ist, deren Längsachse mit der Längsachse (3) des Magnetankers (40) zusammenfällt.
  3. Magnetventil nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Magnetanker (40) eine Längsbohrung (41) aufweist, deren Längsachse die Längsachse des Magnetankers (40) bildet.
  4. Magnetventil nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Restluftspaltscheibe (52) als ebene Ringscheibe ausgebildet ist.
  5. Kraftstoffeinspritzventil mit einem Gehäuse, in dem ein mit Kraftstoff unter hohem Druck befüllbarer Druckraum (9) ausgebildet ist, in eine längsbewegliche Düsennadel (15) angeordnet ist, die mit einem Düsensitz (17) zum Öffnen und Schließen wenigstens einer Einspritzöffnung (18) zusammenwirkt, wobei die Düsennadel (15) mit ihrer dem Düsensitz (17) abgewandten Stirnseite einen Steuerraum (22) begrenzt, in dem ein wechselnder Druck einstellbar ist, indem der Steuerraum (22) mit einem im Gehäuse (2) ausgebildeten Niederdruckraum (35) über das Steuerventil (30) verbindbar ist,
    dadurch gekennzeichnet, dass
    das Steuerventil (30) als ein Magnetventil nach einem der Ansprüche 1 bis 4 ausgebildet ist.
  6. Verfahren zum Betreiben eines Magnetventils nach einem der Ansprüche 1 bis 4, wobei der Ankerteller (140) wegen der Schwächungszone (55) bei Anlage an der Restluftspaltscheibe (52) durch die Kraft der Schließfeder (50) etwas durchgebogen wird und die Durchbiegung dabei etwa dem Betrag entspricht, um den sich der Magnetanker (140) aufgrund seiner thermischen Ausdehnung im Betrieb verlängert,
    dadurch gekennzeichnet,
    dass bei einer niedrigen Temperatur des Magnetventils ein erster Spulenstrom durch den Elektromagneten (44) geleitet wird, wodurch eine Magnetkraft erzeugt wird, die über das für das Bewegen des Magnetankers und die Überwindung der Kraft der Schließfeder (50) notwendige Maß hinausgeht, so dass die Kraft der Schließfeder (50) überdrückt und die Durchbiegung des Ankertellers (140) zumindest teilweise kompensiert wird, und bei einer höheren Temperatur der Spulenstrom zum Öffnen des Magnetventils gegenüber dem ersten Spulenstrom erniedrigt ist.
EP16798522.5A 2015-12-22 2016-11-22 Magnetventil für ein kraftstoffeinspritzventil, verfahren zum betreiben des magnetventils und kraftstoffeinspritzventil mit einem solchen magnetventil Active EP3394420B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015226499.8A DE102015226499A1 (de) 2015-12-22 2015-12-22 Magnetventil für ein Kraftstoffeinspritzventil, Verfahren zum Betreiben des Magnetventils und Kraftstoffeinspritzventil mit einem solchen Magnetventil
PCT/EP2016/078375 WO2017108297A1 (de) 2015-12-22 2016-11-22 Magnetventil für ein kraftstoffeinspritzventil, verfahren zum betreiben des magnetventils und kraftstoffeinspritzventil mit einem solchen magnetventil

Publications (2)

Publication Number Publication Date
EP3394420A1 EP3394420A1 (de) 2018-10-31
EP3394420B1 true EP3394420B1 (de) 2020-05-06

Family

ID=57354383

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16798522.5A Active EP3394420B1 (de) 2015-12-22 2016-11-22 Magnetventil für ein kraftstoffeinspritzventil, verfahren zum betreiben des magnetventils und kraftstoffeinspritzventil mit einem solchen magnetventil

Country Status (4)

Country Link
EP (1) EP3394420B1 (de)
KR (1) KR20180094093A (de)
DE (1) DE102015226499A1 (de)
WO (1) WO2017108297A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016225768A1 (de) * 2016-12-21 2018-06-21 Robert Bosch Gmbh Kraftstoffinjektor und Verfahren zum Betreiben eines Kraftstoffinjektors
DE102018116485A1 (de) * 2018-07-06 2020-01-09 Samson Aktiengesellschaft System zum ausgleichen einer durch thermische belastung einhergehende abmessungsänderung an einer stellarmatur, stellungsregelungssystem, verfahren zum ausgleichen einer durch thermische belastung einhergehende abmessungsänderung an einer stellarmatur und stellarmatur

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2936853A1 (de) * 1979-09-12 1981-04-02 Robert Bosch Gmbh, 7000 Stuttgart Elektromagnetisch betaetigbares ventil
DE29713167U1 (de) * 1997-07-24 1998-11-19 Fev Motorentech Gmbh & Co Kg Elektromagnetischer Aktuator mit elastisch verformbarem Anker
DE10141945A1 (de) * 2001-08-28 2003-03-20 Bayerische Motoren Werke Ag Elektromagnetischer Aktor zur Betätigung eines Brennkraftmaschinen-Hubventils
DE102007016252A1 (de) * 2007-04-04 2008-10-09 Robert Bosch Gmbh Magnetventil
DE102007052753A1 (de) 2007-11-06 2009-05-07 Robert Bosch Gmbh Kraftstoffinjektor mit optimiertem Absteuerstoß
DE102008042265A1 (de) * 2008-09-22 2010-04-08 Robert Bosch Gmbh Verfahren zum Betreiben eines Einspritzventils
DE102009001706A1 (de) * 2009-03-20 2010-09-23 Robert Bosch Gmbh Restluftspaltscheibe
DE102014209384A1 (de) * 2014-05-16 2015-11-19 Robert Bosch Gmbh Ventil mit einem magnetischen Aktor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3394420A1 (de) 2018-10-31
KR20180094093A (ko) 2018-08-22
WO2017108297A1 (de) 2017-06-29
DE102015226499A1 (de) 2017-06-22

Similar Documents

Publication Publication Date Title
EP2283226B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1266135B1 (de) Magnetventil zur steuerung eines einspritzventils einer brennkraftmaschine
EP2867517B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP2092187B1 (de) Injektor zum einspritzen von kraftstoff
WO2009156211A1 (de) Kraftstoffinjektor
EP3074623B1 (de) Kraftstoffinjektor
DE102008002717A1 (de) Kraftstoffinjektor mit zweiteiligem Magnetanker
EP3394420B1 (de) Magnetventil für ein kraftstoffeinspritzventil, verfahren zum betreiben des magnetventils und kraftstoffeinspritzventil mit einem solchen magnetventil
WO2011095367A1 (de) Steuerventilanordnung eines kraftstoffinjektors
EP2025922B1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE102009027727A1 (de) Ventilanordnung
DE102013210843A1 (de) Injektor
AT512422B1 (de) Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
EP3384149B1 (de) Kraftstoffinjektor mit steuerventil
EP2273098B1 (de) Kraftstoffeinspritzventil und Kraftstoffeinspritzsystem
EP2733345A1 (de) Druckregelventil für einen Hochdruckspeicher eines Verbrennungsmotors
EP2185807B1 (de) Steuerventil für einen kraftstoffinjektor
EP2138709B1 (de) Direkt betätigter Kraftstoffinjektor
DE102008042531A1 (de) Ventilanordnung zur Kraftstoffhochdruckeinspritzung
WO2015106934A1 (de) Kraftstoffinjektor
WO2002059475A1 (de) 3/2 wegeventil
EP2336543A2 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
AT512296A4 (de) Ventilplatte/ventilkörper mit eingepresster kegelhülse aus hartmetall
WO2009130063A1 (de) Injektor
DE102021206186A1 (de) Gasdosierventil und Verfahren zur Herstellung eines solchen

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180723

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200108

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1267140

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016009901

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200907

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200807

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200806

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200806

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016009901

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201122

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201122

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201122

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220125

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1267140

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211122

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502016009901

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230601