EP2392815B1 - Magnetbaugruppe sowie Einspritzventil mit einer Magnetbaugruppe - Google Patents

Magnetbaugruppe sowie Einspritzventil mit einer Magnetbaugruppe Download PDF

Info

Publication number
EP2392815B1
EP2392815B1 EP20110166202 EP11166202A EP2392815B1 EP 2392815 B1 EP2392815 B1 EP 2392815B1 EP 20110166202 EP20110166202 EP 20110166202 EP 11166202 A EP11166202 A EP 11166202A EP 2392815 B1 EP2392815 B1 EP 2392815B1
Authority
EP
European Patent Office
Prior art keywords
magnet
injection valve
magnetic
armature
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20110166202
Other languages
English (en)
French (fr)
Other versions
EP2392815A1 (de
Inventor
Marco Beier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2392815A1 publication Critical patent/EP2392815A1/de
Application granted granted Critical
Publication of EP2392815B1 publication Critical patent/EP2392815B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0689Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means and permanent magnets

Definitions

  • the invention relates to a magnet assembly for an injection valve for injecting fuel into the combustion chamber of an internal combustion engine with a liftable injection valve member for releasing or closing at least one injection port, wherein the magnet assembly of the direct or indirect actuation of the injection valve member is used. Furthermore, a generic magnet assembly on the further features of the preamble of claim 1. Furthermore, the invention relates to an injection valve for injecting fuel into the combustion chamber of an internal combustion engine having a magnet assembly for direct or indirect actuation of the injection valve member.
  • the use of magnetic actuators for direct or indirect control of an injection valve has long been known from the prior art.
  • the solenoid actuator can first control a servo valve or actuate the injection valve member directly, as is the rule in gasoline injection systems, for example.
  • a magnet assembly for a fuel injection valve for example, from the published patent application DE 10 2008 001 968 A1 out.
  • the magnet assembly is designed as a solenoid valve, which causes a discharge of a control chamber and thus the opening of a nozzle needle in the open position, while in the closed position of the solenoid valve, a building up in the control chamber control pressure leads to closing of the nozzle needle.
  • the proposed magnet assembly thus serves the indirect actuation of the nozzle needle of the fuel injection valve.
  • the magnet assembly comprises a magnet coil inserted into a housing part of the magnet assembly as well as an armature cooperating with the magnet coil.
  • the armature is also designed as a closing element and is acted upon by the spring force of a closing spring in the direction of a valve seat of the solenoid valve.
  • a magnetic force is generated, which causes a lifting of the armature against the spring force of the closing spring and thus opening of the solenoid valve. If the energization of the solenoid is terminated, the spring force of the closing spring causes the return of the armature in the valve seat.
  • the spring force of the closing spring is sufficiently high to choose.
  • a high spring force has a negative effect on a fast opening behavior of the solenoid valve, since a sufficiently high magnetic force must be provided to overcome the force acting as a closing force high spring force.
  • the voltage is usually set high, so that high currents are generated in the solenoid actuator. If the high voltage is maintained in the holding phase of the solenoid valve, this in turn has a negative effect on the closing behavior of the solenoid valve. An increase in tension in the holding phase is also economically unreasonable.
  • a fuel injection valve with a magnetic actuator which has a magnetic coil cooperating with an armature. Furthermore, the magnetic actuator comprises a magnetic inner pole and a magnetic outer pole, which are connected in a region such that a mechanical weak point is formed.
  • a permanent magnet is proposed, which is arranged in the connecting region between the inner pole and the outer pole.
  • the permanent magnet should cause not only a mechanical reinforcement, but also a magnetic throttling, since the permanent magnet in the ferritic material of the outer pole generates a primary flux, so that only a reduced cross section is available for the secondary flux generated by the magnetic coil.
  • a multipole magnetic actuator which comprises a first and a second actuator acting on a lifting magnet.
  • at least one solenoid comprises at least one permanent magnet whose magnetic force acts on the same actuator, such as an armature of the magnetic actuator.
  • the permanent magnet is preferably annular and used with the lifting magnet in a coil window of the magnetic core.
  • the object of the present invention is to provide a magnet assembly for an ice-spraying valve whose use causes an improvement in the dynamics of the injection valve.
  • the proposed magnet assembly to allow an improvement in the dynamics of the injector while reducing the voltage.
  • the proposed magnet assembly for direct or indirect actuation of an injection valve member comprises a magnetic core, a magnetic coil accommodated in a recess of the magnetic core and cooperating with the magnetic one or more parts, liftable armature and at least one annular permanent magnet which generates a magnetic flux base, which at an energization of the solenoid causes a gain or attenuation of the magnetic force acting on the armature.
  • the permanent magnet is integrated in an annular outer pole or an annular inner pole of the magnetic core, wherein the outer pole and the inner pole of the magnetic core define the recess for receiving the magnetic coil in the radial direction.
  • the cross-sectional profile of the magnetic core is therefore preferably U-shaped.
  • the position of the permanent magnet is chosen such that the permanent magnet influences the polarity of the magnet assembly. This is the case when the magnetic base flux generated by the permanent magnet causes an amplification or weakening of the magnetic force when the magnetic coil is energized.
  • the basic magnetic flux of the permanent magnet causes amplification or weakening of the magnetic force acting on the armature depends essentially on whether the magnetic coil is in the same direction or in opposite directions with respect to the polarity the permanent magnet is energized.
  • the permanent magnet causes an amplification of the magnetic force acting on the armature, since the basic magnetic flux of the permanent magnet and the magnetic flux of the magnet coil are complementary.
  • the increase in the magnetic force leads to a rapid opening of the injection valve, since the permanent magnet makes its contribution to overcome the armature acting in the closing direction spring force of a spring element. With lifting of the armature against the spring force of the spring element
  • the permanent magnet is flush-mounted in the outer pole or the inner pole of the magnetic core.
  • the inner and / or the outer diameter of the permanent magnet is consequently adapted to the inner and / or outer diameter of the outer pole or the inner pole of the magnetic core.
  • the recess for receiving the magnetic coil is not reduced by the integration of the permanent magnet in the magnetic core.
  • a further permanent magnet may be inserted in the bottom of the magnetic core or in the armature. The insertion of the permanent magnet in the bottom of the magnetic core or in the anchor is preferably also flush.
  • the proposed magnet assembly is part of a solenoid valve.
  • the magnet assembly is therefore used in an injection valve for indirect control of an injection valve member.
  • the one-piece or multi-part liftable armature cooperating with the magnetic coil preferably comprises a valve closing element cooperating with a valve seat of the magnetic valve.
  • the armature itself may be formed as a valve closing element, which cooperates with the valve seat of the solenoid valve. In the open position of the solenoid valve, that is, when the valve closing element is not sealingly against the valve seat, under high pressure fuel from a control chamber of the injector can be supplied to a return. As a result, the control room is relieved.
  • the falling control pressure in the control chamber which acts on the injection valve member in the closing direction, causes the injection valve member lifts from its sealing seat.
  • the injection valve opens.
  • the injection valve member is returned by the spring force of a spring in its sealing seat.
  • a high control pressure builds up again in the control chamber, which holds the injection valve member in contact with its sealing seat.
  • an injection valve for injecting fuel into the combustion chamber of an internal combustion engine is claimed with a liftable injection valve member for releasing or closing at least one injection port and a magnetic assembly according to the invention for direct or indirect actuation of the injection valve member.
  • the magnet assembly of the injection valve may be formed as a solenoid valve and serve, for example, the indirect control of the injection valve member. Alternatively, however, a direct actuation of the injection valve member may be provided.
  • a magnet needle is preferably received in the armature of the magnet assembly, which is mechanically and / or hydraulically coupled to the injection valve member.
  • a permanent magnet for polarization of a magnet assembly comprises a magnetic core, a magnetic coil accommodated in a recess of the magnetic core and a cooperating with the solenoid one or more parts, lifting armature, wherein the permanent magnet in an annular outer pole or an annular inner pole of the magnetic core is integrated.
  • the magnetic coil When the magnetic coil is energized, the basic magnetic flux of the permanent magnet causes an amplification or weakening of the magnetic force acting on the armature.
  • the proposed use is therefore preferably associated with the use of the magnet assembly in an injection valve.
  • FIG. 1 is to be taken from an already known injection valve, which comprises a magnetic assembly for direct actuation of an injection valve member 11.
  • the injection valve member 11 is received in a liftable manner in a central bore 14 of a housing part 15, wherein at least one injection opening 12 of the injection valve is releasable or closable via the lifting movement of the injection valve member 11.
  • a section of the central bore 14 serves the high pressure guide, via which the at least one injection port 12 is supplied under high pressure fuel.
  • In the bore 14 of the fuel under high pressure passes through a laterally disposed high-pressure channel 16th
  • the magnet assembly comprises a magnetic core 1, a magnetic coil 3 accommodated therein and an armature 4, which in the present case is composed of a plate-shaped component and a needle-shaped component.
  • the armature 4 is acted upon by the pressure force of a spring element 13 which is supported on the housing part 17.
  • the solenoid 3 When the solenoid 3 is energized, the armature 4 is moved in the direction of the magnet coil 3 counter to the pressure force of the spring element 13.
  • the needle-shaped component of the armature 4 which is coupled to the injection valve member 11 via a hydraulic coupler volume 18, pulls the injection valve member 11 out of its sealing seat. Since the hydraulically effective area formed on the needle-shaped component is smaller than that of the nozzle needle, a force amplification takes place during this first phase of the opening stroke of the injection valve member 11. With stop of the injection valve member 11 to a booster piston 19 which surrounds the needle-shaped component of the armature 4 and is supported during the first phase of the opening stroke on the housing part 15, there is a switch from a power gain to a 1/1 ratio. During this second phase of the opening stroke, the magnet assembly ensures sufficient lift of the injection valve member 11 to effect full seat throttling.
  • the Figures 2 and 3 is a first and a second magnetic assembly according to the invention for an injection valve refer. Both illustrated embodiments have in common that they comprise a magnetic core 1 with a recess 2 and a magnetic coil 3 received in the recess 2. Furthermore, an armature 4 belongs to the respective magnetic assembly, which is presently designed as a valve closing element 10, which cooperates with a valve seat 9.
  • the in the Figures 2 and 3 shown Magnetic assemblies thus each forms a solenoid valve. These magnet assemblies are therefore preferably used in an injection valve whose injection valve member 11 is actuated indirectly. Alternatively, each of the magnet assemblies shown can also be used in injection valves, the injection valve member 11 is controlled directly. In this case, the formation of a valve seat 9 can be dispensed with.
  • the magnetic assemblies of Figures 2 and 3 each further comprise a permanent magnet 5 for polarization of the magnet assembly. Both embodiments of a magnet assembly according to the invention differ only in relation to the respective arrangement of the permanent magnet 5 within the magnet assembly.
  • the permanent magnet 5 is arranged in an outer pole 6 of the magnetic core 1.
  • the outer pole 6 is limited together with an inner pole 7 and a bottom 8 of the magnetic core 1, the recess 2, in which the magnetic coil 3 is received.
  • the permanent magnet 5 is flush-mounted in the outer pole 6.
  • the permanent magnet 5 extends in the radial direction over the entire width of the outer pole 6.
  • the permanent magnet 5 has a smaller width than the outer pole 6.
  • the magnetic coil 3 is energized in the same direction to the polarity of the permanent magnet 5.
  • the magnetic flux of the magnetic circuit generated by the magnetic coil 3 supplements the basic magnetic flux of the permanent magnet 5.
  • the energization of the solenoid 3 is preferably lowered so far that the magnetic force is only slightly larger than the spring force of the spring element 13. This ensures that the armature 4 is securely held in the raised position.
  • the magnetic coil 3 is energized in opposite directions to the polarity of the permanent magnet 5, so that the basic magnetic flux of the permanent magnet 5 is weakened or completely compensated.
  • For closing the armature 4 ie for returning the armature 4 in the valve seat 9 is consequently the full spring force of the spring element 13 is available. This results in a fast closing and a rapid decay of closing bouncers.
  • the permanent magnet 5 in the inner pole 7 of the magnetic core 1 is arranged.
  • the mode of action is analogous to that previously associated with the FIG. 2 described mode of action. A repetition is therefore omitted.
  • the illustrated embodiments of the Figures 2 and 3 comprise a further permanent magnet 5, which is arranged in the bottom 8 of the magnetic core 1 or in the armature 4.
  • FIG. 4 shows the current or force over time during an opening or closing cycle of a designed as a solenoid valve according to the invention magnetic assembly.
  • the letter A indicates the opening phase
  • the letter B the holding phase
  • the letter C the closing phase of the solenoid valve.
  • the valve opens while it closes at the time indicated by "c”.
  • the three graphs shown represent the current waveform (middle graph), the magnetic force profile (upper graph) and the course of the force acting on the armature 4 (lower graph) during the phases of an opening and closing cycle.
  • the current supply is lowered.
  • the energization of the magnetic coil 3 can be further lowered.
  • the force acting on the armature 4 only has to ensure that the armature 4 is held in its open position.
  • the closing phase C is followed by the closing phase C, in which the energization of the magnetic coil 3 takes place in the opposite direction to the polarity of the permanent magnet 5.
  • the basic magnetic flux of the permanent magnet 5 is preferable by the magnetic force of the solenoid coil 3 constantly compensated, so that the opposing energization of the solenoid 3 assists the closing of the armature 4.
  • a magnet assembly according to the invention can be used not only in injection valves, but in all hydraulic valves. However, the benefits are particularly significant in injectors in a fuel injection system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

    Stand der Technik
  • Die Erfindung betrifft eine Magnetbaugruppe für ein Einspritzventil zum Einspritzen von Kraftstoff in den Brennraum einer Brennkraftmaschine mit einem hubbeweglichen Einspritzventilglied zum Freigeben oder Verschließen wenigstens einer Einspritzöffnung, wobei die Magnetbaugruppe der direkten oder indirekten Betätigung des Einspritzventilgliedes dient. Ferner weist eine gattungsgemäße Magnetbaugruppe die weiteren Merkmale des Oberbegriffs des Anspruchs 1 auf. Des Weiteren betrifft die Erfindung ein Einspritzventil zum Einspritzen von Kraftstoff in den Brennraum einer Brennkraftmaschine mit einer Magnetbaugruppe zur direkten oder indirekten Betätigung des Einspritzventilgliedes.
  • Der Einsatz von Magnetaktoren zu direkten oder indirekten Steuerung eines Einspritzventils ist aus dem Stand der Technik seit langem bekannt. Der Magnetaktor kann zunächst ein Servoventil ansteuern oder das Einspritzventilglied direkt betätigen, wie es beispielsweise die Regel bei Benzineinspritzsystemen ist.
  • Stand der Technik
  • Eine Magnetbaugruppe für ein Brennstoffeinspritzventil geht beispielsweise aus der Offenlegungsschrift DE 10 2008 001 968 A1 hervor. Die Magnetbaugruppe ist als Magnetventil ausgelegt, das in Offenstellung eine Entlastung eines Steuerraums und damit das Öffnen einer Düsennadel bewirkt, während in Schließstellung des Magnetventils ein sich im Steuerraum aufbauender Steuerdruck zum Schließen der Düsennadel führt. Die vorgeschlagene Magnetbaugruppe dient somit der indirekten Betätigung der Düsennadel des Brennstoffeinspritzventils. Die Magnetbaugruppe umfasst hierzu eine in ein Gehäuseteil der Magnetbaugruppe eingesetzte Magnetspule sowie einen mit der Magnetspule zusammenwirkenden Anker. Der Anker ist zugleich als Schließelement ausgebildet und wird von der Federkraft einer Schließfeder in Richtung eines Ventilsitzes des Magnetventils beaufschlagt. Bei einer Bestromung der Magnetspule wird eine Magnetkraft erzeugt, die ein Anheben des Ankers entgegen der Federkraft der Schließfeder und damit ein Öffnen des Magnetventils bewirkt. Wird die Bestromung der Magnetspule beendet, bewirkt die Federkraft der Schließfeder die Rückstellung des Ankers in den Ventilsitz.
  • Um ein schnelles Schließen eines Magnetventils der vorstehend genannten Art und damit einen schnellen Druckaufbau im Steuerraum zu bewirken, ist die Federkraft der Schließfeder ausreichend hoch zu wählen. Eine hohe Federkraft wirkt sich jedoch negativ auf ein schnelles Öffnungsverhalten des Magnetventils aus, da eine ausreichend hohe Magnetkraft bereitgestellt werden muss, um die als Schließkraft wirkende hohe Federkraft zu überwinden. Um die Dynamik des Magnetventils beim Öffnen zu verbessern, wird daher in der Regel die Spannung hochgesetzt, so dass hohe Ströme im Magnetaktor erzeugt werden. Wird die hochgesetzte Spannung in der Haltephase des Magnetventils aufrechterhalten, wirkt sich diese wiederum negativ auf das Schließverhalten des Magnetventils aus. Eine Hochsetzung der Spannung in der Haltephase ist zudem unter ökonomischen Gesichtspunkten wenig vertretbar.
  • Aus der Offenlegungsschrift DE 100 39 076 A1 ist ein Brennstoffeinspritzventil mit einem Magnetaktor bekannt, welcher eine mit einem Anker zusammenwirkende Magnetspule aufweist. Ferner umfasst der Magnetaktor einen magnetischen Innenpol und einen magnetischen Außenpol, die in einem Bereich derart verbunden sind, dass eine mechanische Schwachstelle gebildet wird. Um die Festigkeit zu erhöhen wird der Einsatz eines Permanentmagneten vorgeschlagen, der im Verbindungsbereich zwischen dem Innenpol und dem Außenpol angeordnet ist. Der Permanentmagnet soll jedoch nicht nur eine mechanische Verstärkung, sondern auch eine magnetische Drosselung bewirken, da der Permanentmagnet in dem ferritischen Material des Außenpols einen Primärfluss erzeugt, so dass für den durch die Magnetspule erzeugten Sekundärfluss nur noch ein reduzierter Querschnitt zur Verfügung steht.
  • Aus der Offenlegungsschrift DE 10 2007 050 550 A1 geht ein Multipol-Magnetaktor hervor, welcher einen ersten und einen zweiten auf ein Betätigungselement wirkenden Hubmagneten umfasst. Zur Steigerung der Schaltdynamik des Magnetaktors wird vorgeschlagen, dass zumindest ein Hubmagnet wenigstens einen Permanentmagneten umfasst, dessen Magnetkraft auf das gleiche Betätigungselement, beispielsweise einen Anker des Magnetaktors, wirkt. Der Permanentmagnet ist vorzugsweise ringförmig ausgebildet und mit dem Hubmagneten in ein Spulenfenster des Magnetkerns eingesetzt.
  • Aufgabe der vorliegenden Erfindung ist es, eine Magnetbaugruppe für ein Eispritzventil bereitzustellen, deren Einsatz eine Verbesserung der Dynamik des Einspritzventils bewirkt. Insbesondere soll die vorgeschlagene Magnetbaugruppe eine Verbesserung der Dynamik des Einspritzventils bei gleichzeitiger Herabsetzung der Spannung ermöglichen.
  • Die Aufgabe wird gelöst, durch eine Magnetbaugruppe mit den Merkmalen des Anspruchs 1. Ferner wird zur Lösung der Aufgabe ein Einspritzventil mit einer solchen Magnetbaugruppe gemäß Anspruch 4 sowie die Verwendung eines Permanentmagneten in einer Magnetbaugruppe gemäß Anspruch 5 vorgeschlagen. Vorteilhafte Weiterbildungen einer erfindungsgemäßen Magnetbaugruppe werden in den auf Anspruch 1 rückbezogenen Unteransprüchen angegeben.
  • Offenbarung der Erfindung
  • Die vorgeschlagene Magnetbaugruppe zur direkten oder indirekten Betätigung eines Einspritzventilgliedes umfasst einen Magnetkern, eine in einer Ausnehmung des Magnetkerns aufgenommene Magnetspule und einen mit der Magnetspule zusammenwirkenden ein- oder mehrteilig ausgebildeten, hubbeweglichen Anker sowie wenigstens einen ringförmigen Permanentmagneten, der einen magnetischen Grundfluss erzeugt, welcher bei einer Bestromung der Magnetspule eine Verstärkung oder Abschwächung der auf den Anker wirkenden Magnetkraft bewirkt. Erfindungsgemäß ist der Permanentmagnet in einen ringförmigen Außenpol oder einen ringförmigen Innenpol des Magnetkerns integriert, wobei der Außenpol und der Innenpol des Magnetkerns die Ausnehmung zur Aufnahme der Magnetspule in radialer Richtung begrenzen. Das Querschnittsprofil des Magnetkerns ist demzufolge vorzugsweise U-förmig ausgebildet. Die Lage des Permanentmagneten ist derart gewählt, dass der Permanentmagnet Einfluss auf die Polarität der Magnetbaugruppe nimmt. Dies ist dann der Fall, wenn der durch den Permanentmagneten erzeugte magnetische Grundfluss bei einer Bestromung der Magnetspule eine Verstärkung oder Abschwächung der Magnetkraft bewirkt.
  • Ob der magnetische Grundfluss des Permanentmagneten eine Verstärkung oder Abschwächung der auf den Anker wirkenden Magnetkraft bewirkt, hängt im Wesentlichen davon ab, ob die Magnetspule gleichsinnig oder gegensinnig in Bezug auf die Polarität des Permanentmagneten bestromt wird. Bei gleichsinniger Bestromung der Magnetspule bewirkt der Permanentmagnet eine Verstärkung der auf den Anker wirkenden Magnetkraft, da sich der magnetische Grundfluss des Permanentmagneten und der Magnetfluss der Magnetspule ergänzen. Der Anstieg der Magnetkraft führt zu einem schnellen Öffnen des Einspritzventils, da der Permanentmagnet seinen Beitrag leistet, eine den Anker in Schließrichtung beaufschlagende Federkraft eines Federelements zu überwinden. Mit Anheben des Ankers entgegen der Federkraft des Federelements
  • kann zum Halten des Ankers in seiner angehobenen Lage, die Bestromung der Magnetspule reduziert werden. Als Haltekraft reicht eine Magnetkraft aus, die nur minimal größer ist, als die Federkraft des in Schließrichtung wirkenden Federelements. Soll das Einspritzventil geschlossen werden, wird die Magnetspule gegensinnig zur Polarität des Permanentmagneten bestromt, was zu einer Schwächung des Grundflusses des Permanentmagneten führt. Demzufolge steht für den Schließvorgang die volle Federkraft des den Anker in Schließrichtung beaufschlagenden Federelements zur Verfügung. Somit kann ein schnelles Schließen des Ventils und ein schnelles Abklingen etwaiger Schließpreller bewirkt werden. Beides wirkt sich vorteilhaft auf die Dynamik des Einspritzventilglieds aus.
  • Weiterhin vorzugsweise ist der Permanentmagnet flächenbündig in den Außenpol oder den Innenpol des Magnetkerns eingesetzt. Bei einer ringförmigen Ausbildung des Permanentmagneten ist demzufolge der Innen- und/oder der Außendurchmesser des Permanentmagneten dem Innen- und/oder Außendurchmesser des Außenpols oder des Innenpols des Magnetkerns angepasst. Durch das flächenbündige Einsetzen des Permanentmagneten in den Außenpol oder den Innenpol des Magnetkerns können die ursprünglichen Abmessungen des Magnetkerns beibehalten werden. Insbesondere wird die Ausnehmung zur Aufnahme der Magnetspule durch die Integration des Permanentmagneten in den Magnetkern nicht verkleinert. Ergänzend kann ein weiterer Permanentmagnet im Boden des Magnetkerns oder in den Anker eingesetzt sein. Das Einsetzen des Permanentmagneten in den Boden des Magnetkerns oder in den Anker erfolgt vorzugsweise ebenfalls flächenbündig.
  • Gemäß einer Weiterbildung der Erfindung ist die vorgeschlagene Magnetbaugruppe Bestandteil eines Magnetventils. Die Magnetbaugruppe ist demnach in einem Einspritzventil zur indirekten Steuerung eines Einspritzventilgliedes einsetzbar. Vorzugsweise umfasst der mit der Magnetspule zusammenwirkende ein- oder mehrteilig ausgebildete, hubbewegliche Anker ein mit einem Ventilsitz des Magnetventils zusammenwirkendes Ventilschließelement. Alternativ kann der Anker auch selbst als Ventilschließelement ausgebildet sein, das mit dem Ventilsitz des Magnetventils zusammenwirkt. In Offenstellung des Magnetventils, das heißt, wenn das Ventilschließelement nicht dichtend am Ventilsitz anliegt, kann unter hohem Druck stehender Kraftstoff aus einem Steuerraum des Einspritzventils einem Rücklauf zugeführt werden. Dadurch erfährt der Steuerraum eine Entlastung. Der sinkende Steuerdruck im Steuerraum, der das Einspritzventilglied in Schließrichtung beaufschlagt, bewirkt, dass das Einspritzventilglied aus seinem Dichtsitz abhebt. Das Einspritzventil öffnet. Zum Schließen des Einspritzventils wird das Einspritzventilglied durch die Federkraft einer Feder in seinen Dichtsitz zurückgestellt. Bei zugleich geschlossenem Magnetventil baut sich erneut ein hoher Steuerdruck im Steuerraum auf, der das Einspritzventilglied in Anlage mit seinem Dichtsitz hält.
  • Die vorstehend beschriebenen Vorteile einer erfindungsmäßen Magnetbaugruppe kommen insbesondere bei Einsatz in einem Einspritzventil zum Tragen. Ferner wird daher ein Einspritzventil zum Einspritzen von Kraftstoff in den Brennraum einer Brennkraftmaschine mit einem hubbeweglichen Einspritzventilglied zum Freigeben oder Verschließen wenigstens einer Einspritzöffnung sowie einer erfindungsgemäßen Magnetbaugruppe zu direkten oder indirekten Betätigung des Einspritzventilgliedes beansprucht. Die Magnetbaugruppe des Einspritzventils kann als Magnetventil ausgebildet sein und beispielsweise der indirekten Steuerung des Einspritzventilgliedes dienen. Alternativ kann aber auch eine direkte Betätigung des Einspritzventilgliedes vorgesehen sein. Hierzu ist vorzugsweise im Anker der Magnetbaugruppe eine Magnetnadel aufgenommen, welche mechanisch und/oder hydraulisch mit dem Einspritzventilglied koppelbar ist.
  • Schließlich wird zur Lösung der eingangs gestellten Aufgabe die Verwendung eines Permanentmagneten zur Polarisation einer Magnetbaugruppe vorgeschlagen, welche einen Magnetkern, eine in einer Ausnehmung des Magnetkerns aufgenommene Magnetspule und einen mit der Magnetspule zusammenwirkenden ein- oder mehrteilig ausgebildeten, hubbeweglichen Anker umfasst, wobei der Permanentmagnet in einem ringförmigen Außenpol oder einem ringförmigen Innenpol des Magnetkerns integriert ist. Dabei bewirkt der magnetischen Grundfluss des Permanentmagneten bei Bestromung der Magnetspule eine Verstärkung oder Abschwächung der auf den Anker wirkenden Magnetkraft. Die vorgeschlagene Verwendung geht daher vorzugsweise mit dem Einsatz der Magnetbaugruppe in einem Einspritzventil einher.
  • Bevorzugte Ausführungsformen der Erfindung werden nachfolgend anhand der beigefügten Zeichnungen näher beschrieben. Diese zeigen:
  • Figur 1
    einen Längsschnitt durch ein aus dem Stand der Technik bekanntes Einspritzventil mit einer Magnetbaugruppe zur direkten Betätigung des Einspritzventilgliedes,
    Figur 2
    einen Teillängsschnitt durch eine erfindungsgemäße Magnetbaugruppe,
    Figur 3
    einen Teillängsschnitt durch eine weitere erfindungsgemäße Magnetbaugruppe, und
    Figur 4
    ein Diagramm zur Darstellung des Strom- bzw. Kraftverlaufs über die Dauer eines Einspritzzyklus eines erfindungsgemäßen Einspritzventils.
    Ausführliche Beschreibung der Zeichnungen
  • Der Figur 1 ist ein bereits bekanntes Einspritzventil zu entnehmen, das eine Magnetbaugruppe zur direkten Betätigung eines Einspritzventilgliedes 11 umfasst. Das Einspritzventilglied 11 ist in einer zentralen Bohrung 14 eines Gehäuseteils 15 hubbeweglich aufgenommen, wobei über die Hubbewegung des Einspritzventilgliedes 11 wenigstens eine Einspritzöffnung 12 des Einspritzventils freigebbar oder verschließbar ist. Ein Teilabschnitt der zentralen Bohrung 14 dient der Hochdruckführung, über welche der wenigstens einen Einspritzöffnung 12 unter hohem Druck stehender Kraftstoff zugeführt wird. In die Bohrung 14 gelangt der unter hohem Druck stehende Kraftstoff über einen seitlich angeordneten Hochdruckkanal 16.
  • An das Gehäuseteil 15, in welchem das Einspritzventilglied 11 aufgenommen ist, schließt sich ein weiteres Gehäuseteil 17 an, in welchem die Magnetbaugruppe angeordnet ist. Die Magnetbaugruppe umfasst einen Magnetkern 1, eine hierin aufgenommene Magnetspule 3 sowie einen Anker 4, der vorliegend aus einem plattenförmigen Bauteil und einem nadelförmigen Bauteil zusammengesetzt ist. In Schließrichtung des Einspritzventilglieds 11 wird der Anker 4 von der Druckkraft eines Federelements 13 beaufschlagt, das am Gehäuseteil 17 abgestützt ist. Bei einer Bestromung der Magnetspule 3 wird der Anker 4 entgegen der Druckkraft des Federelements 13 in Richtung der Magnetspule 3 bewegt. Hierbei zieht das nadelförmige Bauteil des Ankers 4, das über ein hydraulisches Kopplervolumen 18 mit dem Einspritzventilglied 11 gekoppelt ist, das Einspritzventilglied 11 aus seinem Dichtsitz. Da die am nadelförmigen Bauteil ausgebildete hydraulisch wirksame Fläche kleiner als die der Düsennadel ist, erfolgt während dieser ersten Phase des Öffnungshubes des Einspritzventilgliedes 11 eine Kraftverstärkung. Mit Anschlag des Einspritzventilgliedes 11 an einem Übersetzerkolben 19, der das nadelförmige Bauteil des Ankers 4 umgibt und während der ersten Phase des Öffnungshubes am Gehäuseteil 15 abgestützt ist, erfolgt eine Umschaltung von einer Kraftverstärkung auf eine 1/1-Übersetzung. Während dieser zweiten Phase des Öffnungshubes gewährleistet die Magnetbaugruppe einen ausreichenden Hub des Einspritzventilgliedes 11, um eine vollständige Sitzentdrosselung zu bewirken. Um das Einspritzventilglied in seinen Dichtsitz zurückzustellen, wird die Bestromung der Magnetspule 3 beendet und die Rückstellung des Ankers 4 und des Einspritzventilgliedes 11 durch die Federkraft des Federelements 13 bewirkt. Ein weiteres Federelement 13 gewährleistet die Rückstellung des Übersetzerkolbens 19.
  • Den Figuren 2 und 3 ist eine erste und eine zweite erfindungsgemäße Magnetbaugruppe für ein Einspritzventil zu entnehmen. Beiden dargestellten Ausführungsformen ist gemein, dass sie einen Magnetkern 1 mit einer Ausnehmung 2 und einer in der Ausnehmung 2 aufgenommenen Magnetspule 3 umfassen. Ferner gehört zur jeweiligen Magnetbaugruppe ein Anker 4, der vorliegend als Ventilschließelement 10 ausgebildet ist, das mit einem Ventilsitz 9 zusammenwirkt. Die in den Figuren 2 und 3 dargestellten Magnetbaugruppen bildet somit jeweils ein Magnetventil aus. Vorzugsweise finden diese Magnetbaugruppen daher Einsatz in einem Einspritzventil, dessen Einspritzventilglied 11 indirekt angesteuert wird. Alternativ ist jede der dargestellten Magnetbaugruppen aber auch in Einspritzventilen einsetzbar, deren Einspritzventilglied 11 direkt angesteuert wird. In diesem Fall kann auf die Ausbildung eines Ventilsitzes 9 verzichtet werden.
  • Die Magnetbaugruppen der Figuren 2 und 3 weisen ferner jeweils einen Permanentmagneten 5 zur Polarisation der Magnetbaugruppe auf. Beide Ausführungsformen einer erfindungsgemäßen Magnetbaugruppe unterscheiden sich lediglich in Bezug auf die jeweilige Anordnung des Permanentmagneten 5 innerhalb der Magnetbaugruppe.
  • Gemäß der Ausführungsform der Figur 2 ist der Permanentmagnet 5 in einem Außenpol 6 des Magnetkerns 1 angeordnet. Der Außenpol 6 begrenzt gemeinsam mit einem Innenpol 7 und einem Boden 8 des Magnetkerns 1 die Ausnehmung 2, in welcher die Magnetspule 3 aufgenommen ist. Um die Abmessungen der Ausnehmung 2 beizubehalten, ist der Permanentmagnet 5 flächenbündig in den Außenpol 6 integriert. Vorliegend erstreckt sich der Permanentmagnet 5 in radialer Richtung über die gesamte Breite des Außenpols 6. Alternativ ist auch denkbar, dass der Permanentmagnet 5 eine geringere Breite als der Außenpol 6 aufweist.
  • Der Permanentmagnet 5 stellt einen magnetischen Grundfluss im Magnetkreis der Magnetbaugruppe bereit, welcher eine magnetische Kraft FPOL erzeugt. Zusammen mit der Federkraft FFED eines Federelements 13, das den Anker 4 in Schließrichtung beaufschlagt, ergibt sich nach der Gleichung Fgeschlossen = FFED - FPOL eine auf den Anker einwirkende Kraft. Diese Kraft ist derart ausgelegt, dass das Magnetventil sicher geschlossen ist. Zum Öffnen des Magnetventils wird die Magnetspule 3 gleichsinnig zur Polarität des Permanentmagneten 5 bestromt. Der magnetische Fluss des durch die Magnetspule 3 erzeugten Magnetkreises ergänzt den magnetischen Grundfluss des Permanentmagneten 5. Dies führt zu einem Ansteigen der auf den Anker 6 wirkenden Magnetkraft, so dass der Anker 4 entgegen der Federkraft des Federelements 13 aus dem Ventilsitz 9 gehoben wird. Sobald der Anker 4 seine äußerste angehobene Position erreicht hat, wird vorzugsweise die Bestromung der Magnetspule 3 soweit abgesenkt, dass die Magnetkraft nur noch geringfügig größer ist als die Federkraft des Federelements 13. Dadurch ist gewährleistet, dass der Anker 4 sicher in der angehobenen Position gehalten wird. Zum Schließen des Magnetventils wird die Magnetspule 3 gegensinnig zur Polarität des Permanentmagneten 5 bestromt, so dass der magnetische Grundfluss des Permanentmagneten 5 geschwächt bzw. vollständig kompensiert wird. Zum Schließen des Ankers 4, d. h. zur Rückstellung des Ankers 4 in den Ventilsitz 9 steht demzufolge die volle Federkraft des Federelements 13 zur Verfügung. Dies hat ein schnelles Schließen und ein schnelles Abklingen von Schließprellern zur Folge.
  • Im Unterschied zur Ausführungsform der Figur 2 ist bei der Ausführungsform der Figur 3 der Permanentmagnet 5 im Innenpol 7 des Magnetkerns 1 angeordnet. Die Wirkungsweise ist jedoch analog zu der zuvor im Zusammenhang mit der Figur 2 beschriebenen Wirkungsweise. Auf eine Wiederholung wird daher verzichtet.
  • Ergänzend können die dargestellten Ausführungsformen der Figuren 2 und 3 einen weiteren Permanentmagneten 5 umfassen, der im Boden 8 des Magnetkerns 1 oder im Anker 4 angeordnet ist.
  • Das Diagramm der Figur 4 zeigt den Strom- bzw. Kraftverlauf über die Zeit während eines Öffnungs- bzw. Schließzyklus einer als Magnetventil ausgeführten erfindungsgemäßen Magnetbaugruppe. Der Buchstabe A kennzeichnet dabei die Öffnungsphase, der Buchstabe B die Haltephase und der Buchstabe C die Schließphase des Magnetventils. Im mit "a" bezeichneten Zeitpunkt öffnet das Ventil, während es im mit "c" bezeichneten Zeitpunkt schließt. Die drei dargestellten Graphen bezeichnen den Stromverlauf (mittlerer Graph), den Magnetkraftverlauf (oberer Graph) und den Verlauf der auf den Anker 4 wirkenden Kraft (unterer Graph) während der Phasen eines Öffnungs- bzw. Schließzyklus. Zu Beginn der Öffnungsphase A, das heißt mit Einsetzen der Bestromung der Magnetspule 3, steigen alle drei Graphen an. Nach Überwindung einer anfänglich hohen Schließkraft wird die Bestromung abgesenkt. Zum Halten der Offenstellung des Ventils während der Haltephase B kann die Bestromung der Magnetspule 3 weiter abgesenkt werden. Die auf den Anker 4 wirkende Kraft muss lediglich ein Halten des Ankers 4 in seiner Offenstellung gewährleisten. An die Haltephase B schließt sich die Schließphase C an, in welcher die Bestromung der Magnetspule 3 gegensinnig zur Polarität des Permanentmagneten 5 erfolgt. Der magnetische Grundfluss des Permanentmagneten 5 wird durch die Magnetkraft der Magnetspule 3 vorzugsweise ständig kompensiert, so dass die gegensinnige Bestromung der Magnetspule 3 das Schließen des Ankers 4 unterstützt.
  • Eine erfindungsgemäße Magnetbaugruppe kann nicht nur in Einspritzventilen, sondern in alle hydraulischen Ventile eingesetzt werden. Die Vorteile kommen jedoch besonders deutlich bei Einspritzventilen in einem Kraftstoffeinspritzsystem zum Tragen.

Claims (5)

  1. Magnetbaugruppe für ein Einspritzventil zum Einspritzen von Kraftstoff in den Brennraum einer Brennkraftmaschine mit einem hubbeweglichen Einspritzventilglied (11) zum Freigeben oder Verschließen wenigstens einer Einspritzöffnung (12), wobei die Magnetbaugruppe zur direkten oder indirekten Betätigung des Einspritzventilgliedes (11) einen Magnetkern (1), eine in einer Ausnehmung (2) des Magnetkerns (1) aufgenommene Magnetspule (3) und einen mit der Magnetspule (3) zusammenwirkenden ein- oder mehrteilig ausgebildeten, hubbeweglichen Anker (4) sowie wenigstens einen ringförmigen Permanentmagneten (5) umfasst, der einen magnetischen Grundfluss erzeugt, welcher bei einer Bestromung der Magnetspule (3) eine Verstärkung oder Abschwächung der auf den Anker (4) wirkenden Magnetkraft bewirkt,
    dadurch gekennzeichnet, dass der Permanentmagnet (5) in einen ringförmigen Außenpol (6) oder einen ringförmigen Innenpol (7) des Magnetkerns (1) integriert ist, welche die Ausnehmung (2) zur Aufnahme der Magnetspule (3) in radialer Richtung begrenzen.
  2. Magnetbaugruppe nach Anspruch 1,
    dadurch gekennzeichnet, dass der Permanentmagnet (5) flächenbündig in den Außenpol (6) oder den Innenpol (7) des Magnetkerns (1) eingesetzt ist.
  3. Magnetbaugruppe nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass die Magnetbaugruppe Bestandteil eines Magnetventils ist und der mit der Magnetspule (3) zusammenwirkende ein- oder mehrteilig ausgebildete, hubbewegliche Anker (4) ein mit einem Ventilsitz (9) zusammenwirkendes Ventilschließelement (10) umfasst oder als ein solches ausbildet ist.
  4. Einspritzventil zum Einspritzen von Kraftstoff in den Brennraum einer Brennkraftmaschine mit einem hubbeweglichen Einspritzventilglied (11) zum Freigeben oder Verschließen wenigstens einer Einspritzöffnung (12) mit einer Magnetbaugruppe nach einem der vorhergehenden Ansprüche zur direkten oder indirekten Betätigung des Einspritzventilgliedes (11).
  5. Verwendung eines Permanentmagneten (5) zur Polarisation einer Magnetbaugruppe umfassend einen Magnetkern (1), eine in eine Ausnehmung (2) des Magnetkerns (1) aufgenommene Magnetspule (3) und einen mit der Magnetspule (3) zusammenwirkenden ein- oder mehrteilig ausgebildeten, hubbeweglichen Anker (4), wobei der Permanentmagnet (5) in einen ringförmigen Außenpol (6) oder einen ringförmigen Innenpol (7) des Magnetkerns (1) integriert ist und wobei der magnetische Grundfluss des Permanentmagneten (5) bei Bestromung der Magnetspule (3) eine Verstärkung oder Abschwächung der auf den Anker (4) wirkenden Magnetkraft bewirkt.
EP20110166202 2010-06-01 2011-05-16 Magnetbaugruppe sowie Einspritzventil mit einer Magnetbaugruppe Active EP2392815B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201010029595 DE102010029595A1 (de) 2010-06-01 2010-06-01 Magnetbaugruppe sowie Einspritzventil mit einer Magnetbaugruppe

Publications (2)

Publication Number Publication Date
EP2392815A1 EP2392815A1 (de) 2011-12-07
EP2392815B1 true EP2392815B1 (de) 2014-11-12

Family

ID=44276049

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20110166202 Active EP2392815B1 (de) 2010-06-01 2011-05-16 Magnetbaugruppe sowie Einspritzventil mit einer Magnetbaugruppe

Country Status (2)

Country Link
EP (1) EP2392815B1 (de)
DE (1) DE102010029595A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012011975B4 (de) 2012-06-15 2018-09-20 Rolf Prettl Ventilanordnung und Tankmodul für ein Harnstoffeinspritzsystem
DE102015217362A1 (de) 2015-09-11 2017-03-16 Continental Automotive Gmbh Kraftstoffinjektor, Verfahren zum Ermitteln der Position eines beweglichen Ankers und Motorsteuerung
JP6683143B2 (ja) * 2016-11-14 2020-04-15 株式会社デンソー 燃料噴射装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3336011A1 (de) * 1983-10-04 1985-04-18 Robert Bosch Gmbh, 7000 Stuttgart Elektromagnet
GB8728628D0 (en) * 1987-12-08 1988-01-13 Lucas Ind Plc Fuel injection valve
DE4024054A1 (de) * 1990-07-28 1992-01-30 Bosch Gmbh Robert Magnetsystem
US5961045A (en) * 1997-09-25 1999-10-05 Caterpillar Inc. Control valve having a solenoid with a permanent magnet for a fuel injector
DE10039076A1 (de) 2000-08-10 2002-02-21 Bosch Gmbh Robert Brennstoffeinspritzventil
DE102007050550A1 (de) * 2007-10-23 2009-04-30 Robert Bosch Gmbh Multipol-Magnetaktor
DE102008001968A1 (de) 2008-05-26 2009-12-03 Robert Bosch Gmbh Magnetgruppe für ein Magnetventil

Also Published As

Publication number Publication date
EP2392815A1 (de) 2011-12-07
CN102360707A (zh) 2012-02-22
DE102010029595A1 (de) 2011-12-01

Similar Documents

Publication Publication Date Title
EP1756415B1 (de) Kraftstoffinjektor mit variabler aktorübersetzung
EP3478957B1 (de) Ventil zum eindüsen von gasförmigem kraftstoff
EP1203151B1 (de) Zweistufiges magnetventil für einen injektor von brennkarftmaschinen
WO2011095367A1 (de) Steuerventilanordnung eines kraftstoffinjektors
DE102011003443A1 (de) Kraftstoffinjektor
EP2462335B1 (de) Vorrichtung zur kraftstoffhochdruckeinspritzung
DE102009047559A1 (de) Kraftstoffinjektor
EP2392815B1 (de) Magnetbaugruppe sowie Einspritzventil mit einer Magnetbaugruppe
WO2015078629A1 (de) Kraftstoffinjektor
DE102010040401A1 (de) Kraftstoffinjektor
DE102012220860A1 (de) Kraftstoffinjektor mit Magnetaktor
WO2008049671A1 (de) Kraftstoffinjektor
DE102010041109A1 (de) Kraftstoffinjektor
DE102012222127A1 (de) Kraftstoffinjektor
EP2472096A1 (de) Einspritzventil zum Einspritzen eines Fluids
DE102008041553A1 (de) Kraftstoff-Injektor
DE10005015B4 (de) Verfahren zum Betreiben eines Brennstoffeinspritzventils
DE102007009167A1 (de) Mehrwegeventil
DE10041024A1 (de) Kraftstoffeinspritzvorrichtung für Brennkraftmaschinen
DE102012224247A1 (de) Kraftstoffinjektor und dessen Verwendung
DE10202324A1 (de) Magnetventil und Verfahren zu seiner Herstellung
DE102012021154B4 (de) Doppelnadelinjektor
DE102009046286B4 (de) Kraftstoffinjektor und Verfahren zu dessen Betreiben
DE102019220172A1 (de) Kraftstoffinjektor für eine Brennkraftmaschine
DE102014206210A1 (de) Kraftstoffinjektor

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120608

17Q First examination report despatched

Effective date: 20130107

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140523

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140626

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 695931

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011004938

Country of ref document: DE

Effective date: 20141224

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20141112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150212

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150312

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150312

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150213

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011004938

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150813

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150516

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150516

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150516

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110516

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 695931

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160516

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230531

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230726

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240522

Year of fee payment: 14