EP2392815A1 - Magnetbaugruppe sowie Einspritzventil mit einer Magnetbaugruppe - Google Patents
Magnetbaugruppe sowie Einspritzventil mit einer Magnetbaugruppe Download PDFInfo
- Publication number
- EP2392815A1 EP2392815A1 EP11166202A EP11166202A EP2392815A1 EP 2392815 A1 EP2392815 A1 EP 2392815A1 EP 11166202 A EP11166202 A EP 11166202A EP 11166202 A EP11166202 A EP 11166202A EP 2392815 A1 EP2392815 A1 EP 2392815A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- magnetic
- armature
- injection valve
- permanent magnet
- coil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002347 injection Methods 0.000 title claims abstract description 73
- 239000007924 injection Substances 0.000 title claims abstract description 73
- 230000004907 flux Effects 0.000 claims abstract description 17
- 239000000446 fuel Substances 0.000 claims description 12
- 238000002485 combustion reaction Methods 0.000 claims description 10
- 230000003313 weakening effect Effects 0.000 claims description 6
- 230000003321 amplification Effects 0.000 claims description 5
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 5
- 230000010287 polarization Effects 0.000 claims description 3
- 238000005728 strengthening Methods 0.000 claims description 3
- BGPVFRJUHWVFKM-UHFFFAOYSA-N N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] Chemical compound N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] BGPVFRJUHWVFKM-UHFFFAOYSA-N 0.000 description 15
- 230000000694 effects Effects 0.000 description 5
- 238000007789 sealing Methods 0.000 description 5
- 230000000712 assembly Effects 0.000 description 4
- 238000000429 assembly Methods 0.000 description 4
- 238000000418 atomic force spectrum Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M51/00—Fuel-injection apparatus characterised by being operated electrically
- F02M51/06—Injectors peculiar thereto with means directly operating the valve needle
- F02M51/061—Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
- F02M51/0689—Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means and permanent magnets
Definitions
- the invention relates to a magnet assembly for an injection valve for injecting fuel into the combustion chamber of an internal combustion engine with a liftable injection valve member for releasing or closing at least one injection port, wherein the magnet assembly of the direct or indirect actuation of the injection valve member is used. Furthermore, a generic magnet assembly on the further features of the preamble of claim 1. Furthermore, the invention relates to an injection valve for injecting fuel into the combustion chamber of an internal combustion engine having a magnet assembly for direct or indirect actuation of the injection valve member.
- the use of magnetic actuators for direct or indirect control of an injection valve has long been known from the prior art.
- the solenoid actuator can first control a servo valve or actuate the injection valve member directly, as is the rule in gasoline injection systems, for example.
- a magnet assembly for a fuel injection valve for example, from the published patent application DE 10 2008 001 968 A1 out.
- the magnet assembly is designed as a solenoid valve, which causes a discharge of a control chamber and thus the opening of a nozzle needle in the open position, while in the closed position of the solenoid valve, a building up in the control chamber control pressure leads to closing of the nozzle needle.
- the proposed magnet assembly thus serves the indirect actuation of the nozzle needle of the fuel injection valve.
- the magnet assembly comprises a magnet coil inserted into a housing part of the magnet assembly as well as an armature cooperating with the magnet coil.
- the armature is also designed as a closing element and is acted upon by the spring force of a closing spring in the direction of a valve seat of the solenoid valve.
- a magnetic force is generated, which causes a lifting of the armature against the spring force of the closing spring and thus opening of the solenoid valve. If the energization of the solenoid is terminated, the spring force of the closing spring causes the return of the armature in the valve seat.
- the spring force of the closing spring is sufficiently high to choose.
- a high spring force has a negative effect on a fast opening behavior of the solenoid valve, since a sufficiently high magnetic force must be provided to overcome the force acting as a closing force high spring force.
- the voltage is usually set high, so that high currents are generated in the solenoid actuator. If the high voltage is maintained in the holding phase of the solenoid valve, this in turn has a negative effect on the closing behavior of the solenoid valve. An increase in tension in the holding phase is also economically unreasonable.
- a fuel injection valve with a magnetic actuator which has a magnetic coil cooperating with an armature. Furthermore, the magnetic actuator comprises a magnetic inner pole and a magnetic outer pole, which are connected in a region such that a mechanical weak point is formed.
- a permanent magnet is proposed, which is arranged in the connecting region between the inner pole and the outer pole.
- the permanent magnet should cause not only a mechanical reinforcement, but also a magnetic throttling, since the permanent magnet in the ferritic material of the outer pole generates a primary flux, so that only a reduced cross section is available for the secondary flux generated by the magnetic coil.
- the object of the present invention is to provide a magnet assembly for an ice-spraying valve whose use causes an improvement in the dynamics of the injection valve.
- the proposed magnet assembly to allow an improvement in the dynamics of the injector while reducing the voltage.
- the proposed magnet assembly for the direct or indirect actuation of an injection valve member comprises a magnetic core, a magnetic coil accommodated in a recess of the magnetic core, and a one-piece or multi-part hub-shaped armature cooperating with the magnetic coil and at least one permanent magnet.
- the permanent magnet is integrated in the magnetic core or in the armature and generates a magnetic base flux, which causes a strengthening or weakening of the force acting on the armature magnetic force when energizing the magnetic coil.
- the basic magnetic flux of the permanent magnet causes a strengthening or weakening of the magnetic force acting on the armature essentially depends on whether the magnetic coil is energized in the same direction or in opposite directions with respect to the polarity of the permanent magnet.
- the permanent magnet causes an amplification of the magnetic force acting on the armature, since the basic magnetic flux of the permanent magnet and the magnetic flux of the magnet coil are complementary.
- the increase in the magnetic force leads to a rapid opening of the injection valve, since the permanent magnet makes its contribution to overcome the armature acting in the closing direction spring force of a spring element.
- the permanent magnet is integrated into an outer pole, an inner pole or a bottom of the magnetic core, wherein the outer pole, the inner pole and the bottom of the magnetic core limit the recess for receiving the magnetic coil in the radial and axial directions.
- the cross-sectional profile of the magnetic core is therefore preferably U-shaped.
- the position of the permanent magnet is chosen such that the permanent magnet influences the polarity of the magnet assembly. This is the case when the magnetic base flux generated by the permanent magnet causes an amplification or weakening of the magnetic force when the magnetic coil is energized.
- the permanent magnet is integrated into the outer pole or the inner pole of the magnetic core.
- the permanent magnet is annular. This facilitates the integration of the permanent magnet in the magnetic core.
- the permanent magnet is flush mounted in the magnetic core.
- the inner and / or outer diameter of the permanent magnet is consequently adapted to the inner and / or outer diameter of the outer pole, the inner pole or the bottom of the magnetic core.
- the recess for receiving the magnetic coil by the integration of the permanent magnet not reduced in the magnetic core.
- the permanent magnet is inserted into the armature, the insertion of the permanent magnet into the armature preferably likewise takes place flush.
- the proposed magnet assembly is part of a solenoid valve.
- the magnet assembly is therefore used in an injection valve for indirect control of an injection valve member.
- the one-piece or multi-part liftable armature cooperating with the magnetic coil preferably comprises a valve closing element cooperating with a valve seat of the magnetic valve.
- the armature itself may be formed as a valve closing element, which cooperates with the valve seat of the solenoid valve. In the open position of the solenoid valve, that is, when the valve closing element is not sealingly against the valve seat, under high pressure fuel from a control chamber of the injector can be supplied to a return. As a result, the control room is relieved.
- the falling control pressure in the control chamber which acts on the injection valve member in the closing direction, causes the injection valve member lifts from its sealing seat.
- the injection valve opens.
- the injection valve member is returned by the spring force of a spring in its sealing seat.
- a high control pressure builds up again in the control chamber, which holds the injection valve member in contact with its sealing seat.
- an injection valve for injecting fuel into the combustion chamber of an internal combustion engine is claimed with a liftable injection valve member for releasing or closing at least one injection port and a magnetic assembly according to the invention for direct or indirect actuation of the injection valve member.
- the magnet assembly of the injection valve may be formed as a solenoid valve and serve, for example, the indirect control of the injection valve member. Alternatively, however, a direct actuation of the injection valve member may be provided.
- a magnet needle is preferably received in the armature of the magnet assembly, which is mechanically and / or hydraulically coupled to the injection valve member.
- a permanent magnet for polarization of a magnet assembly comprises a magnetic core, a magnet coil accommodated in a recess of the magnetic core and a cooperating with the solenoid one or more parts, lifting armature.
- the magnetic coil When the magnetic coil is energized, the basic magnetic flux of the permanent magnet causes an amplification or weakening of the magnetic force acting on the armature.
- the proposed use is therefore preferably associated with the use of the magnet assembly in an injection valve.
- the FIG. 1 is to be taken from an already known injection valve, which comprises a magnetic assembly for direct actuation of an injection valve member 11.
- the injection valve member 11 is received in a liftable manner in a central bore 14 of a housing part 15, wherein at least one injection opening 12 of the injection valve is releasable or closable via the lifting movement of the injection valve member 11.
- a section of the central bore 14 serves the high pressure guide, via which the at least one injection port 12 is supplied under high pressure fuel.
- In the bore 14 of the fuel under high pressure passes through a laterally disposed high-pressure channel 16th
- the magnet assembly comprises a magnetic core 1, a magnetic coil 3 accommodated therein and an armature 4, which in the present case is composed of a plate-shaped component and a needle-shaped component.
- the armature 4 is acted upon by the pressure force of a spring element 13 which is supported on the housing part 17.
- the solenoid 3 When the solenoid 3 is energized, the armature 4 is moved in the direction of the magnet coil 3 counter to the pressure force of the spring element 13.
- the needle-shaped component of the armature 4 which is coupled to the injection valve member 11 via a hydraulic coupler volume 18, pulls the injection valve member 11 out of its sealing seat. Since the hydraulically effective area formed on the needle-shaped component is smaller than that of the nozzle needle, a force amplification takes place during this first phase of the opening stroke of the injection valve member 11. With stop of the injection valve member 11 to a booster piston 19 which surrounds the needle-shaped component of the armature 4 and is supported during the first phase of the opening stroke on the housing part 15, there is a switch from a power gain to a 1/1 ratio. During this second phase of the opening stroke, the magnet assembly ensures sufficient lift of the injection valve member 11 to effect full seat throttling.
- the Figures 2 and 3 is a first and a second magnetic assembly according to the invention for an injection valve refer. Both illustrated embodiments have in common that they comprise a magnetic core 1 with a recess 2 and a magnetic coil 3 received in the recess 2. Furthermore, an armature 4 belongs to the respective magnetic assembly, which is presently designed as a valve closing element 10, which cooperates with a valve seat 9.
- the in the Figures 2 and 3 shown Magnetic assemblies thus each forms a solenoid valve. These magnet assemblies are therefore preferably used in an injection valve whose injection valve member 11 is actuated indirectly. Alternatively, each of the magnet assemblies shown can also be used in injection valves, the injection valve member 11 is controlled directly. In this case, the formation of a valve seat 9 can be dispensed with.
- the magnetic assemblies of Figures 2 and 3 each further comprise a permanent magnet 5 for polarization of the magnet assembly. Both embodiments of a magnet assembly according to the invention differ only in relation to the respective arrangement of the permanent magnet 5 within the magnet assembly.
- the permanent magnet 5 is arranged in an outer pole 6 of the magnetic core 1.
- the outer pole 6 is limited together with an inner pole 7 and a bottom 8 of the magnetic core 1, the recess 2, in which the magnetic coil 3 is received.
- the permanent magnet 5 is flush-mounted in the outer pole 6.
- the permanent magnet 5 extends in the radial direction over the entire width of the outer pole 6.
- the permanent magnet 5 has a smaller width than the outer pole 6.
- the magnetic coil 3 is energized in the same direction to the polarity of the permanent magnet 5.
- the magnetic flux of the magnetic circuit generated by the magnetic coil 3 supplements the basic magnetic flux of the permanent magnet 5.
- the energization of the solenoid 3 is preferably lowered so far that the magnetic force is only slightly larger than the spring force of the spring element 13. This ensures that the armature 4 is securely held in the raised position.
- the magnetic coil 3 is energized in opposite directions to the polarity of the permanent magnet 5, so that the basic magnetic flux of the permanent magnet 5 is weakened or completely compensated.
- For closing the armature 4 ie for returning the armature 4 in the valve seat 9 is consequently the full spring force of the spring element 13 is available. This results in a fast closing and a rapid decay of closing bouncers.
- the permanent magnet 5 in the inner pole 7 of the magnetic core 1 is arranged.
- the mode of action is analogous to that previously associated with the FIG. 2 described mode of action. A repetition is therefore omitted.
- the permanent magnet 5 can also be arranged in the bottom 8 of the magnetic core 1 or in the armature 4.
- FIG. 4 shows the current or force over time during an opening or closing cycle of a designed as a solenoid valve according to the invention magnetic assembly.
- the letter A indicates the opening phase
- the letter B the holding phase
- the letter C the closing phase of the solenoid valve.
- the valve opens while it closes at the time indicated by "c”.
- the three graphs shown represent the current waveform (middle graph), the magnetic force profile (upper graph) and the course of the force acting on the armature 4 (lower graph) during the phases of an opening and closing cycle.
- the current supply is lowered.
- the energization of the magnetic coil 3 can be further lowered.
- the force acting on the armature 4 only has to ensure that the armature 4 is held in its open position.
- the closing phase C is followed by the closing phase C, in which the energization of the magnetic coil 3 takes place in the opposite direction to the polarity of the permanent magnet 5.
- the basic magnetic flux of the permanent magnet 5 is preferably completed by the magnetic force of the magnetic coil 3 compensated, so that the opposing energization of the magnetic coil 3 assists the closing of the armature 4.
- a magnet assembly according to the invention can be used not only in injection valves, but in all hydraulic valves. However, the benefits are particularly significant in injectors in a fuel injection system.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fuel-Injection Apparatus (AREA)
Abstract
Description
- Die Erfindung betrifft eine Magnetbaugruppe für ein Einspritzventil zum Einspritzen von Kraftstoff in den Brennraum einer Brennkraftmaschine mit einem hubbeweglichen Einspritzventilglied zum Freigeben oder Verschließen wenigstens einer Einspritzöffnung, wobei die Magnetbaugruppe der direkten oder indirekten Betätigung des Einspritzventilgliedes dient. Ferner weist eine gattungsgemäße Magnetbaugruppe die weiteren Merkmale des Oberbegriffs des Anspruchs 1 auf. Des Weiteren betrifft die Erfindung ein Einspritzventil zum Einspritzen von Kraftstoff in den Brennraum einer Brennkraftmaschine mit einer Magnetbaugruppe zur direkten oder indirekten Betätigung des Einspritzventilgliedes.
- Der Einsatz von Magnetaktoren zu direkten oder indirekten Steuerung eines Einspritzventils ist aus dem Stand der Technik seit langem bekannt. Der Magnetaktor kann zunächst ein Servoventil ansteuern oder das Einspritzventilglied direkt betätigen, wie es beispielsweise die Regel bei Benzineinspritzsystemen ist.
- Eine Magnetbaugruppe für ein Brennstoffeinspritzventil geht beispielsweise aus der Offenlegungsschrift
DE 10 2008 001 968 A1 hervor. Die Magnetbaugruppe ist als Magnetventil ausgelegt, das in Offenstellung eine Entlastung eines Steuerraums und damit das Öffnen einer Düsennadel bewirkt, während in Schließstellung des Magnetventils ein sich im Steuerraum aufbauender Steuerdruck zum Schließen der Düsennadel führt. Die vorgeschlagene Magnetbaugruppe dient somit der indirekten Betätigung der Düsennadel des Brennstoffeinspritzventils. Die Magnetbaugruppe umfasst hierzu eine in ein Gehäuseteil der Magnetbaugruppe eingesetzte Magnetspule sowie einen mit der Magnetspule zusammenwirkenden Anker. Der Anker ist zugleich als Schließelement ausgebildet und wird von der Federkraft einer Schließfeder in Richtung eines Ventilsitzes des Magnetventils beaufschlagt. Bei einer Bestromung der Magnetspule wird eine Magnetkraft erzeugt, die ein Anheben des Ankers entgegen der Federkraft der Schließfeder und damit ein Öffnen des Magnetventils bewirkt. Wird die Bestromung der Magnetspule beendet, bewirkt die Federkraft der Schließfeder die Rückstellung des Ankers in den Ventilsitz. - Um ein schnelles Schließen eines Magnetventils der vorstehend genannten Art und damit einen schnellen Druckaufbau im Steuerraum zu bewirken, ist die Federkraft der Schließfeder ausreichend hoch zu wählen. Eine hohe Federkraft wirkt sich jedoch negativ auf ein schnelles Öffnungsverhalten des Magnetventils aus, da eine ausreichend hohe Magnetkraft bereitgestellt werden muss, um die als Schließkraft wirkende hohe Federkraft zu überwinden. Um die Dynamik des Magnetventils beim Öffnen zu verbessern, wird daher in der Regel die Spannung hochgesetzt, so dass hohe Ströme im Magnetaktor erzeugt werden. Wird die hochgesetzte Spannung in der Haltephase des Magnetventils aufrechterhalten, wirkt sich diese wiederum negativ auf das Schließverhalten des Magnetventils aus. Eine Hochsetzung der Spannung in der Haltephase ist zudem unter ökonomischen Gesichtspunkten wenig vertretbar.
- Aus der Offenlegungsschrift
DE 100 39 076 A1 ist ein Brennstoffeinspritzventil mit einem Magnetaktor bekannt, welcher eine mit einem Anker zusammenwirkende Magnetspule aufweist. Ferner umfasst der Magnetaktor einen magnetischen Innenpol und einen magnetischen Außenpol, die in einem Bereich derart verbunden sind, dass eine mechanische Schwachstelle gebildet wird. Um die Festigkeit zu erhöhen wird der Einsatz eines Permanentmagneten vorgeschlagen, der im Verbindungsbereich zwischen dem Innenpol und dem Außenpol angeordnet ist. Der Permanentmagnet soll jedoch nicht nur eine mechanische Verstärkung, sondern auch eine magnetische Drosselung bewirken, da der Permanentmagnet in dem ferritischen Material des Außenpols einen Primärfluss erzeugt, so dass für den durch die Magnetspule erzeugten Sekundärfluss nur noch ein reduzierter Querschnitt zur Verfügung steht. - Aufgabe der vorliegenden Erfindung ist es, eine Magnetbaugruppe für ein Eispritzventil bereitzustellen, deren Einsatz eine Verbesserung der Dynamik des Einspritzventils bewirkt. Insbesondere soll die vorgeschlagene Magnetbaugruppe eine Verbesserung der Dynamik des Einspritzventils bei gleichzeitiger Herabsetzung der Spannung ermöglichen.
- Die Aufgabe wird gelöst, durch eine Magnetbaugruppe mit den Merkmalen des Anspruchs 1. Ferner wird zur Lösung der Aufgabe ein Einspritzventil mit einer solchen Magnetbaugruppe gemäß Anspruch 6 sowie die Verwendung eines Permanentmagneten in einer Magnetbaugruppe gemäß Anspruch 7 vorgeschlagen. Vorteilhafte Weiterbildungen einer erfindungsgemäßen Magnetbaugruppe werden in den auf Anspruch 1 rückbezogenen Unteransprüchen angegeben.
- Die vorgeschlagene Magnetbaugruppe zur direkten oder indirekten Betätigung eines Einspritzventilgliedes umfasst einen Magnetkern, eine in einer Ausnehmung des Magnetkerns aufgenommene Magnetspule und einen mit der Magnetspule zusammenwirkenden ein- oder mehrteilig ausgebildeten, hubbeweglichen Anker sowie wenigstens einen Permanentmagneten. Erfindungsgemäß ist der Permanentmagnet in den Magnetkern oder in den Anker integriert und erzeugt einen magnetischen Grundfluss, der bei einer Bestromung der Magnetspule eine Verstärkung oder Abschwächung der auf den Anker wirkenden Magnetkraft bewirkt.
- Ob der magnetische Grundfluss des Permanentmagneten eine Verstärkung oder Abschwächung der auf den Anker wirkenden Magnetkraft bewirkt, hängt im Wesentlichen davon ab, ob die Magnetspule gleichsinnig oder gegensinnig in Bezug auf die Polarität des Permanentmagneten bestromt wird. Bei gleichsinniger Bestromung der Magnetspule bewirkt der Permanentmagnet eine Verstärkung der auf den Anker wirkenden Magnetkraft, da sich der magnetische Grundfluss des Permanentmagneten und der Magnetfluss der Magnetspule ergänzen. Der Anstieg der Magnetkraft führt zu einem schnellen Öffnen des Einspritzventils, da der Permanentmagnet seinen Beitrag leistet, eine den Anker in Schließrichtung beaufschlagende Federkraft eines Federelements zu überwinden. Mit Anheben des Ankers entgegen der Federkraft des Federelements kann zum Halten des Ankers in seiner angehobenen Lage, die Bestromung der Magnetspule reduziert werden. Als Haltekraft reicht eine Magnetkraft aus, die nur minimal größer ist, als die Federkraft des in Schließrichtung wirkenden Federelements. Soll das Einspritzventil geschlossen werden, wird die Magnetspule gegensinnig zur Polarität des Permanentmagneten bestromt, was zu einer Schwächung des Grundflusses des Permanentmagneten führt. Demzufolge steht für den Schließvorgang die volle Federkraft des den Anker in Schließrichtung beaufschlagenden Federelements zur Verfügung. Somit kann ein schnelles Schließen des Ventils und ein schnelles Abklingen etwaiger Schließpreller bewirkt werden. Beides wirkt sich vorteilhaft auf die Dynamik des Einspritzventilglieds aus.
- Bevorzugt ist der Permanentmagnet in einen Außenpol, einen Innenpol oder einen Boden des Magnetkerns integriert, wobei der Außenpol, der Innenpol und der Boden des Magnetkerns die Ausnehmung zur Aufnahme der Magnetspule in radialer und axialer Richtung begrenzen. Das Querschnittsprofil des Magnetkerns ist demzufolge vorzugsweise U-förmig ausgebildet. Die Lage des Permanentmagneten ist derart gewählt, dass der Permanentmagnet Einfluss auf die Polarität der Magnetbaugruppe nimmt. Dies ist dann der Fall, wenn der durch den Permanentmagneten erzeugte magnetische Grundfluss bei einer Bestromung der Magnetspule eine Verstärkung oder Abschwächung der Magnetkraft bewirkt. Vorteilhafterweise ist hierzu der Permanentmagnet in den Außenpol oder den Innenpol des Magnetkerns integriert.
- Da der Außenpol und der Innenpol des Magnetkerns vorzugsweise ringförmig ausgebildet sind, ist vorzugsweise auch der Permanentmagnet ringförmig ausgebildet. Dies erleichtert die Integration des Permanentmagneten in den Magnetkern.
- Weiterhin vorzugsweise ist der Permanentmagnet flächenbündig in den Magnetkern eingesetzt. Bei einer ringförmigen Ausbildung des Permanentmagneten ist demzufolge der Innen- und/oder der Außendurchmesser des Permanentmagneten dem Innen- und/oder Außendurchmesser des Außenpols, des Innenpols oder des Bodens des Magnetkerns angepasst. Durch das flächenbündige Einsetzen des Permanentmagneten in den Außenpol, Innenpol oder Boden des Magnetkerns können die ursprünglichen Abmessungen des Magnetkerns beibehalten werden. Insbesondere wird die Ausnehmung zur Aufnahme der Magnetspule durch die Integration des Permanentmagneten in den Magnetkern nicht verkleinert. Ist gemäß einer alternativen Ausführungsform der Permanentmagnet in den Anker eingesetzt, erfolgt das Einsetzen des Permanentmagneten in den Anker vorzugsweise ebenfalls flächenbündig.
- Gemäß einer Weiterbildung der Erfindung ist die vorgeschlagene Magnetbaugruppe Bestandteil eines Magnetventils. Die Magnetbaugruppe ist demnach in einem Einspritzventil zur indirekten Steuerung eines Einspritzventilgliedes einsetzbar. Vorzugsweise umfasst der mit der Magnetspule zusammenwirkende ein- oder mehrteilig ausgebildete, hubbewegliche Anker ein mit einem Ventilsitz des Magnetventils zusammenwirkendes Ventilschließelement. Alternativ kann der Anker auch selbst als Ventilschließelement ausgebildet sein, das mit dem Ventilsitz des Magnetventils zusammenwirkt. In Offenstellung des Magnetventils, das heißt, wenn das Ventilschließelement nicht dichtend am Ventilsitz anliegt, kann unter hohem Druck stehender Kraftstoff aus einem Steuerraum des Einspritzventils einem Rücklauf zugeführt werden. Dadurch erfährt der Steuerraum eine Entlastung. Der sinkende Steuerdruck im Steuerraum, der das Einspritzventilglied in Schließrichtung beaufschlagt, bewirk, dass das Einspritzventilglied aus seinem Dichtsitz abhebt. Das Einspritzventil öffnet. Zum Schließen des Einspritzventils wird das Einspritzventilglied durch die Federkraft einer Feder in seinen Dichtsitz zurückgestellt. Bei zugleich geschlossenem Magnetventil baut sich erneut ein hoher Steuerdruck im Steuerraum auf, der das Einspritzventilglied in Anlage mit seinem Dichtsitz hält.
- Die vorstehend beschriebenen Vorteile einer erfindungsmäßen Magnetbaugruppe kommen insbesondere bei Einsatz in einem Einspritzventil zum Tragen. Ferner wird daher ein Einspritzventil zum Einspritzen von Kraftstoff in den Brennraum einer Brennkraftmaschine mit einem hubbeweglichen Einspritzventilglied zum Freigeben oder Verschließen wenigstens einer Einspritzöffnung sowie einer erfindungsgemäßen Magnetbaugruppe zu direkten oder indirekten Betätigung des Einspritzventilgliedes beansprucht. Die Magnetbaugruppe des Einspritzventils kann als Magnetventil ausgebildet sein und beispielsweise der indirekten Steuerung des Einspritzventilgliedes dienen. Alternativ kann aber auch eine direkte Betätigung des Einspritzventilgliedes vorgesehen sein. Hierzu ist vorzugsweise im Anker der Magnetbaugruppe eine Magnetnadel aufgenommen, welche mechanisch und/oder hydraulisch mit dem Einspritzventilglied koppelbar ist.
- Schließlich wird zur Lösung der eingangs gestellten Aufgabe die Verwendung eines Permanentmagneten zur Polarisation einer Magnetbaugruppe vorgeschlagen, welche einen Magnetkern, eine in einer Ausnehmung des Magnetkerns aufgenommene Magnetspule und einen mit der Magnetspule zusammenwirkenden ein- oder mehrteilig ausgebildeten, hubbeweglichen Anker umfasst. Dabei bewirkt der magnetischen Grundfluss des Permanentmagneten bei Bestromung der Magnetspule eine Verstärkung oder Abschwächung der auf den Anker wirkenden Magnetkraft. Die vorgeschlagene Verwendung geht daher vorzugsweise mit dem Einsatz der Magnetbaugruppe in einem Einspritzventil einher.
- Bevorzugte Ausführungsformen der Erfindung werden nachfolgend anhand der beigefügten Zeichnungen näher beschrieben. Diese zeigen:
- Figur 1
- einen Längsschnitt durch ein aus dem Stand der Technik bekanntes Einspritzventil mit einer Magnetbaugruppe zur direkten Betätigung des Einspritzventilgliedes,
- Figur 2
- einen Teillängsschnitt durch eine erfindungsgemäße Magnetbaugruppe,
- Figur 3
- einen Teillängsschnitt durch eine weitere erfindungsgemäße Magnetbaugruppe, und
- Figur 4
- ein Diagramm zur Darstellung des Strom- bzw. Kraftverlaufs über die Dauer eines Einspritzzyklus eines erfindungsgemäßen Einspritzventils.
- Der
Figur 1 ist ein bereits bekanntes Einspritzventil zu entnehmen, das eine Magnetbaugruppe zur direkten Betätigung eines Einspritzventilgliedes 11 umfasst. Das Einspritzventilglied 11 ist in einer zentralen Bohrung 14 eines Gehäuseteils 15 hubbeweglich aufgenommen, wobei über die Hubbewegung des Einspritzventilgliedes 11 wenigstens eine Einspritzöffnung 12 des Einspritzventils freigebbar oder verschließbar ist. Ein Teilabschnitt der zentralen Bohrung 14 dient der Hochdruckführung, über welche der wenigstens einen Einspritzöffnung 12 unter hohem Druck stehender Kraftstoff zugeführt wird. In die Bohrung 14 gelangt der unter hohem Druck stehende Kraftstoff über einen seitlich angeordneten Hochdruckkanal 16. - An das Gehäuseteil 15, in welchem das Einspritzventilglied 11 aufgenommen ist, schließt sich ein weiteres Gehäuseteil 17 an, in welchem die Magnetbaugruppe angeordnet ist. Die Magnetbaugruppe umfasst einen Magnetkern 1, eine hierin aufgenommene Magnetspule 3 sowie einen Anker 4, der vorliegend aus einem plattenförmigen Bauteil und einem nadelförmigen Bauteil zusammengesetzt ist. In Schließrichtung des Einspritzventilglieds 11 wird der Anker 4 von der Druckkraft eines Federelements 13 beaufschlagt, das am Gehäuseteil 17 abgestützt ist. Bei einer Bestromung der Magnetspule 3 wird der Anker 4 entgegen der Druckkraft des Federelements 13 in Richtung der Magnetspule 3 bewegt. Hierbei zieht das nadelförmige Bauteil des Ankers 4, das über ein hydraulisches Kopplervolumen 18 mit dem Einspritzventilglied 11 gekoppelt ist, das Einspritzventilglied 11 aus seinem Dichtsitz. Da die am nadelförmigen Bauteil ausgebildete hydraulisch wirksame Fläche kleiner als die der Düsennadel ist, erfolgt während dieser ersten Phase des Öffnungshubes des Einspritzventilgliedes 11 eine Kraftverstärkung. Mit Anschlag des Einspritzventilgliedes 11 an einem Übersetzerkolben 19, der das nadelförmige Bauteil des Ankers 4 umgibt und während der ersten Phase des Öffnungshubes am Gehäuseteil 15 abgestützt ist, erfolgt eine Umschaltung von einer Kraftverstärkung auf eine 1/1-Übersetzung. Während dieser zweiten Phase des Öffnungshubes gewährleistet die Magnetbaugruppe einen ausreichenden Hub des Einspritzventilgliedes 11, um eine vollständige Sitzentdrosselung zu bewirken. Um das Einspritzventilglied in seinen Dichtsitz zurückzustellen, wird die Bestromung der Magnetspule 3 beendet und die Rückstellung des Ankers 4 und des Einspritzventilgliedes 11 durch die Federkraft des Federelements 13 bewirkt. Ein weiteres Federelement 13 gewährleistet die Rückstellung des Übersetzerkolbens 19.
- Den
Figuren 2 und3 ist eine erste und eine zweite erfindungsgemäße Magnetbaugruppe für ein Einspritzventil zu entnehmen. Beiden dargestellten Ausführungsformen ist gemein, dass sie einen Magnetkern 1 mit einer Ausnehmung 2 und einer in der Ausnehmung 2 aufgenommenen Magnetspule 3 umfassen. Ferner gehört zur jeweiligen Magnetbaugruppe ein Anker 4, der vorliegend als Ventilschließelement 10 ausgebildet ist, das mit einem Ventilsitz 9 zusammenwirkt. Die in denFiguren 2 und3 dargestellten Magnetbaugruppen bildet somit jeweils ein Magnetventil aus. Vorzugsweise finden diese Magnetbaugruppen daher Einsatz in einem Einspritzventil, dessen Einspritzventilglied 11 indirekt angesteuert wird. Alternativ ist jede der dargestellten Magnetbaugruppen aber auch in Einspritzventilen einsetzbar, deren Einspritzventilglied 11 direkt angesteuert wird. In diesem Fall kann auf die Ausbildung eines Ventilsitzes 9 verzichtet werden. - Die Magnetbaugruppen der
Figuren 2 und3 weisen ferner jeweils einen Permanentmagneten 5 zur Polarisation der Magnetbaugruppe auf. Beide Ausführungsformen einer erfindungsgemäßen Magnetbaugruppe unterscheiden sich lediglich in Bezug auf die jeweilige Anordnung des Permanentmagneten 5 innerhalb der Magnetbaugruppe. - Gemäß der Ausführungsform der
Figur 2 ist der Permanentmagnet 5 in einem Außenpol 6 des Magnetkerns 1 angeordnet. Der Außenpol 6 begrenzt gemeinsam mit einem Innenpol 7 und einem Boden 8 des Magnetkerns 1 die Ausnehmung 2, in welcher die Magnetspule 3 aufgenommen ist. Um die Abmessungen der Ausnehmung 2 beizubehalten, ist der Permanentmagnet 5 flächenbündig in den Außenpol 6 integriert. Vorliegend erstreckt sich der Permanentmagnet 5 in radialer Richtung über die gesamte Breite des Außenpols 6. Alternativ ist auch denkbar, dass der Permanentmagnet 5 eine geringere Breite als der Außenpol 6 aufweist. - Der Permanentmagnet 5 stellt einen magnetischen Grundfluss im Magnetkreis der Magnetbaugruppe bereit, welcher eine magnetische Kraft FPOL erzeugt. Zusammen mit der Federkraft FFED eines Federelements 13, das den Anker 4 in Schließrichtung beaufschlagt, ergibt sich nach der Gleichung Fgeschlossen = FFED - FPOL eine auf den Anker einwirkende Kraft. Diese Kraft ist derart ausgelegt, dass das Magnetventil sicher geschlossen ist. Zum Öffnen des Magnetventils wird die Magnetspule 3 gleichsinnig zur Polarität des Permanentmagneten 5 bestromt. Der magnetische Fluss des durch die Magnetspule 3 erzeugten Magnetkreises ergänzt den magnetischen Grundfluss des Permanentmagneten 5. Dies führt zu einem Ansteigen der auf den Anker 6 wirkenden Magnetkraft, so dass der Anker 4 entgegen der Federkraft des Federelements 13 aus dem Ventilsitz 9 gehoben wird. Sobald der Anker 4 seine äußerste angehobene Position erreicht hat, wird vorzugsweise die Bestromung der Magnetspule 3 soweit abgesenkt, dass die Magnetkraft nur noch geringfügig größer ist als die Federkraft des Federelements 13. Dadurch ist gewährleistet, dass der Anker 4 sicher in der angehobenen Position gehalten wird. Zum Schließen des Magnetventils wird die Magnetspule 3 gegensinnig zur Polarität des Permanentmagneten 5 bestromt, so dass der magnetische Grundfluss des Permanentmagneten 5 geschwächt bzw. vollständig kompensiert wird. Zum Schließen des Ankers 4, d. h. zur Rückstellung des Ankers 4 in den Ventilsitz 9 steht demzufolge die volle Federkraft des Federelements 13 zur Verfügung. Dies hat ein schnelles Schließen und ein schnelles Abklingen von Schließprellern zur Folge.
- Im Unterschied zur Ausführungsform der
Figur 2 ist bei der Ausführungsform derFigur 3 der Permanentmagnet 5 im Innenpol 7 des Magnetkerns 1 angeordnet. Die Wirkungsweise ist jedoch analog zu der zuvor im Zusammenhang mit derFigur 2 beschriebenen Wirkungsweise. Auf eine Wiederholung wird daher verzichtet. - Alternativ zu den dargestellten Ausführungsformen der
Figuren 2 und3 kann der Permanentmagnet 5 auch im Boden 8 des Magnetkerns 1 oder im Anker 4 angeordnet sein. - Das Diagramm der
Figur 4 zeigt den Strom- bzw. Kraftverlauf über die Zeit während eines Öffnungs- bzw. Schließzyklus einer als Magnetventil ausgeführten erfindungsgemäßen Magnetbaugruppe. Der Buchstabe A kennzeichnet dabei die Öffnungsphase, der Buchstabe B die Haltephase und der Buchstabe C die Schließphase des Magnetventils. Im mit "a" bezeichneten Zeitpunkt öffnet das Ventil, während es im mit "c" bezeichneten Zeitpunkt schließt. Die drei dargestellten Graphen bezeichnen den Stromverlauf(mittlerer Graph), den Magnetkraftverlauf (oberer Graph) und den Verlauf der auf den Anker 4 wirkenden Kraft (unterer Graph) während der Phasen eines Öffnungs- bzw. Schließzyklus. Zu Beginn der Öffnungsphase A, das heißt mit Einsetzen der Bestromung der Magnetspule 3, steigen alle drei Graphen an. Nach Überwindung einer anfänglich hohen Schließkraft wird die Bestromung abgesenkt. Zum Halten der Offenstellung des Ventils während der Haltephase B kann die Bestromung der Magnetspule 3 weiter abgesenkt werden. Die auf den Anker 4 wirkende Kraft muss lediglich ein Halten des Ankers 4 in seiner Offenstellung gewährleisten. An die Haltephase B schließt sich die Schließphase C an, in welcher die Bestromung der Magnetspule 3 gegensinnig zur Polarität des Permanentmagneten 5 erfolgt. Der magnetische Grundfluss des Permanentmagneten 5 wird durch die Magnetkraft der Magnetspule 3 vorzugsweise vollständig kompensiert, so dass die gegensinnige Bestromung der Magnetspule 3 das Schließen des Ankers 4 unterstützt. - Eine erfindungsgemäße Magnetbaugruppe kann nicht nur in Einspritzventilen, sondern in alle hydraulischen Ventile eingesetzt werden. Die Vorteile kommen jedoch besonders deutlich bei Einspritzventilen in einem Kraftstoffeinspritzsystem zum Tragen.
Claims (7)
- Magnetbaugruppe für ein Einspritzventil zum Einspritzen von Kraftstoff in den Brennraum einer Brennkraftmaschine mit einem hubbeweglichen Einspritzventilglied (11) zum Freigeben oder Verschließen wenigstens einer Einspritzöffnung (12), wobei die Magnetbaugruppe zur direkten oder indirekten Betätigung des Einspritzventilgliedes (11) einen Magnetkern (1), eine in einer Ausnehmung (2) des Magnetkerns (1) aufgenommene Magnetspule (3) und einen mit der Magnetspule (3) zusammenwirkenden ein- oder mehrteilig ausgebildeten, hubbeweglichen Anker (4) sowie wenigstens einen Permanentmagneten (5) umfasst,
dadurch gekennzeichnet, dass der Permanentmagnet (5) in den Magnetkern (1) oder in den Anker (4) integriert ist und einen magnetischen Grundfluss erzeugt, der bei einer Bestromung der Magnetspule (3) eine Verstärkung oder Abschwächung der auf den Anker (4) wirkenden Magnetkraft bewirkt. - Magnetbaugruppe nach Anspruch 1,
dadurch gekennzeichnet, dass der Permanentmagnet (5) in einen Außenpol (6), einen Innenpol (7) oder einen Boden (8) des Magnetkerns (1) integriert ist, welche die Ausnehmung (2) zur Aufnahme der Magnetspule (3) in radialer und axialer Richtung begrenzen. - Magnetbaugruppe nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass der Permanentmagnet (5) ringförmig ausgebildet ist. - Magnetbaugruppe nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass der Permanentmagnet (5) flächenbündig in den Anker (4) oder in den Magnetkern (1) eingesetzt ist. - Magnetbaugruppe nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass die Magnetbaugruppe Bestandteil eines Magnetventils ist und der mit der Magnetspule (3) zusammenwirkende ein- oder mehrteilig ausgebildete, hubbewegliche Anker (4) ein mit einem Ventilsitz (9) zusammenwirkendes Ventilschließelement (10) umfasst oder als ein solches ausbildet ist. - Einspritzventil zum Einspritzen von Kraftstoff in den Brennraum einer Brennkraftmaschine mit einem hubbeweglichen Einspritzventilglied (11) zum Freigeben oder Verschließen wenigstens einer Einspritzöffnung (12) mit einer Magnetbaugruppe nach einem der vorhergehenden Ansprüche zur direkten oder indirekten Betätigung des Einspritzventilgliedes (11).
- Verwendung eines Permanentmagneten (5) zur Polarisation einer Magnetbaugruppe umfassend einen Magnetkern (1), eine in eine Ausnehmung (2) des Magnetkerns (1) aufgenommene Magnetspule (3) und einen mit der Magnetspule (3) zusammenwirkenden ein- oder mehrteilig ausgebildeten, hubbeweglichen Anker (4), wobei der magnetische Grundfluss des Permanentmagneten (5) bei Bestromung der Magnetspule (3) eine Verstärkung oder Abschwächung der auf den Anker (4) wirkenden Magnetkraft bewirkt.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE201010029595 DE102010029595A1 (de) | 2010-06-01 | 2010-06-01 | Magnetbaugruppe sowie Einspritzventil mit einer Magnetbaugruppe |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2392815A1 true EP2392815A1 (de) | 2011-12-07 |
EP2392815B1 EP2392815B1 (de) | 2014-11-12 |
Family
ID=44276049
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20110166202 Active EP2392815B1 (de) | 2010-06-01 | 2011-05-16 | Magnetbaugruppe sowie Einspritzventil mit einer Magnetbaugruppe |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2392815B1 (de) |
DE (1) | DE102010029595A1 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018084226A (ja) * | 2016-11-14 | 2018-05-31 | 株式会社デンソー | 燃料噴射装置 |
US10920728B2 (en) | 2015-09-11 | 2021-02-16 | Vitesco Technologies GmbH | Fuel injector, method for ascertaining the position of a movable armature, and motor control |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012011975B4 (de) | 2012-06-15 | 2018-09-20 | Rolf Prettl | Ventilanordnung und Tankmodul für ein Harnstoffeinspritzsystem |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4546339A (en) * | 1983-10-04 | 1985-10-08 | Robert Bosch Gmbh | Pole structure for a polarized electromagnet |
GB2213650A (en) * | 1987-12-08 | 1989-08-16 | Lucas Ind Plc | Fuel injection valve |
EP0469385A1 (de) * | 1990-07-28 | 1992-02-05 | Robert Bosch Gmbh | Magnetsystem |
WO1999015780A1 (en) * | 1997-09-25 | 1999-04-01 | Caterpillar Inc. | Control valve having a solenoid with a permanent magnet for a fuel injector |
DE10039076A1 (de) | 2000-08-10 | 2002-02-21 | Bosch Gmbh Robert | Brennstoffeinspritzventil |
DE102007050550A1 (de) * | 2007-10-23 | 2009-04-30 | Robert Bosch Gmbh | Multipol-Magnetaktor |
DE102008001968A1 (de) | 2008-05-26 | 2009-12-03 | Robert Bosch Gmbh | Magnetgruppe für ein Magnetventil |
-
2010
- 2010-06-01 DE DE201010029595 patent/DE102010029595A1/de not_active Withdrawn
-
2011
- 2011-05-16 EP EP20110166202 patent/EP2392815B1/de active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4546339A (en) * | 1983-10-04 | 1985-10-08 | Robert Bosch Gmbh | Pole structure for a polarized electromagnet |
GB2213650A (en) * | 1987-12-08 | 1989-08-16 | Lucas Ind Plc | Fuel injection valve |
EP0469385A1 (de) * | 1990-07-28 | 1992-02-05 | Robert Bosch Gmbh | Magnetsystem |
WO1999015780A1 (en) * | 1997-09-25 | 1999-04-01 | Caterpillar Inc. | Control valve having a solenoid with a permanent magnet for a fuel injector |
DE10039076A1 (de) | 2000-08-10 | 2002-02-21 | Bosch Gmbh Robert | Brennstoffeinspritzventil |
DE102007050550A1 (de) * | 2007-10-23 | 2009-04-30 | Robert Bosch Gmbh | Multipol-Magnetaktor |
DE102008001968A1 (de) | 2008-05-26 | 2009-12-03 | Robert Bosch Gmbh | Magnetgruppe für ein Magnetventil |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10920728B2 (en) | 2015-09-11 | 2021-02-16 | Vitesco Technologies GmbH | Fuel injector, method for ascertaining the position of a movable armature, and motor control |
JP2018084226A (ja) * | 2016-11-14 | 2018-05-31 | 株式会社デンソー | 燃料噴射装置 |
Also Published As
Publication number | Publication date |
---|---|
EP2392815B1 (de) | 2014-11-12 |
CN102360707A (zh) | 2012-02-22 |
DE102010029595A1 (de) | 2011-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3478957B1 (de) | Ventil zum eindüsen von gasförmigem kraftstoff | |
DE102010028835A1 (de) | Kraftstoffinjektor | |
EP2531715B1 (de) | Steuerventilanordnung eines kraftstoffinjektors | |
DE102007047127A1 (de) | Schnell schaltendes Magnetventil | |
EP2462335B1 (de) | Vorrichtung zur kraftstoffhochdruckeinspritzung | |
DE102011003443A1 (de) | Kraftstoffinjektor | |
EP2392815B1 (de) | Magnetbaugruppe sowie Einspritzventil mit einer Magnetbaugruppe | |
DE102016220326A1 (de) | Ventil zum Zumessen eines gasförmigen oder flüssigen Kraftstoffs | |
DE102012220860A1 (de) | Kraftstoffinjektor mit Magnetaktor | |
WO2008049671A1 (de) | Kraftstoffinjektor | |
DE102010040401A1 (de) | Kraftstoffinjektor | |
DE102010041109A1 (de) | Kraftstoffinjektor | |
DE102016220912A1 (de) | Kraftstoffeinspritzventil | |
DE102012222127A1 (de) | Kraftstoffinjektor | |
EP2472096A1 (de) | Einspritzventil zum Einspritzen eines Fluids | |
DE102009029009A1 (de) | Injektor zum Einspritzen von Kraftstoff | |
DE102008041553A1 (de) | Kraftstoff-Injektor | |
DE10005015B4 (de) | Verfahren zum Betreiben eines Brennstoffeinspritzventils | |
DE102012224247A1 (de) | Kraftstoffinjektor und dessen Verwendung | |
DE102013212137A1 (de) | Magnetventil und Kraftstoffinjektor mit einem Magnetventil | |
DE10202324A1 (de) | Magnetventil und Verfahren zu seiner Herstellung | |
EP2204570A1 (de) | Kraftstoff-Injektor | |
WO2016134930A1 (de) | Teildruckausgeglichenes druckregelventil für einen hochdruckspeicher | |
DE102014206210A1 (de) | Kraftstoffinjektor | |
DE102016202957A1 (de) | Kraftstoffinjektor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120608 |
|
17Q | First examination report despatched |
Effective date: 20130107 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20140523 |
|
INTC | Intention to grant announced (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20140626 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 695931 Country of ref document: AT Kind code of ref document: T Effective date: 20141115 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502011004938 Country of ref document: DE Effective date: 20141224 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20141112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141112 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141112 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150212 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150312 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141112 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150312 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141112 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141112 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141112 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141112 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141112 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150213 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141112 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141112 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141112 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141112 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141112 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502011004938 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20150813 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20150516 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150516 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150531 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141112 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150531 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150516 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150516 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141112 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141112 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20110516 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141112 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 695931 Country of ref document: AT Kind code of ref document: T Effective date: 20160516 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141112 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160516 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141112 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240522 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240531 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240726 Year of fee payment: 14 |