EP2229690B1 - Verfahren zur herstellung eines drahtteils in einer integrierten elektronischen schaltung - Google Patents
Verfahren zur herstellung eines drahtteils in einer integrierten elektronischen schaltung Download PDFInfo
- Publication number
- EP2229690B1 EP2229690B1 EP08804548A EP08804548A EP2229690B1 EP 2229690 B1 EP2229690 B1 EP 2229690B1 EP 08804548 A EP08804548 A EP 08804548A EP 08804548 A EP08804548 A EP 08804548A EP 2229690 B1 EP2229690 B1 EP 2229690B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- layer
- wire
- seed material
- exposed
- stack
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- 238000000034 method Methods 0.000 title claims abstract description 41
- 230000008569 process Effects 0.000 title claims abstract description 41
- 238000010438 heat treatment Methods 0.000 claims abstract description 4
- 239000000463 material Substances 0.000 claims description 129
- 239000000758 substrate Substances 0.000 claims description 29
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 21
- 229910052710 silicon Inorganic materials 0.000 claims description 21
- 239000010703 silicon Substances 0.000 claims description 21
- 229910000577 Silicon-germanium Inorganic materials 0.000 claims description 12
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 claims description 12
- 229910045601 alloy Inorganic materials 0.000 claims description 12
- 239000000956 alloy Substances 0.000 claims description 12
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 10
- 229910052732 germanium Inorganic materials 0.000 claims description 8
- 230000002093 peripheral effect Effects 0.000 claims description 5
- 239000011347 resin Substances 0.000 claims description 5
- 229920005989 resin Polymers 0.000 claims description 5
- 230000001590 oxidative effect Effects 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract description 3
- 230000000717 retained effect Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 136
- 239000002070 nanowire Substances 0.000 description 41
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 19
- 238000005530 etching Methods 0.000 description 11
- 239000000377 silicon dioxide Substances 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000001459 lithography Methods 0.000 description 5
- 229910021419 crystalline silicon Inorganic materials 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 239000002210 silicon-based material Substances 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 3
- 239000002178 crystalline material Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- 239000007800 oxidant agent Substances 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 229910000927 Ge alloy Inorganic materials 0.000 description 2
- 241001632427 Radiola Species 0.000 description 2
- 229910000676 Si alloy Inorganic materials 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000007792 gaseous phase Substances 0.000 description 2
- QUZPNFFHZPRKJD-UHFFFAOYSA-N germane Chemical compound [GeH4] QUZPNFFHZPRKJD-UHFFFAOYSA-N 0.000 description 2
- 229910052986 germanium hydride Inorganic materials 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910020750 SixGey Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- MROCJMGDEKINLD-UHFFFAOYSA-N dichlorosilane Chemical compound Cl[SiH2]Cl MROCJMGDEKINLD-UHFFFAOYSA-N 0.000 description 1
- 238000011066 ex-situ storage Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000012686 silicon precursor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- -1 xenon ions Chemical class 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0657—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
- H01L29/0665—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0657—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
- H01L29/0665—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
- H01L29/0669—Nanowires or nanotubes
- H01L29/0673—Nanowires or nanotubes oriented parallel to a substrate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/762—Nanowire or quantum wire, i.e. axially elongated structure having two dimensions of 100 nm or less
Definitions
- the invention relates to a process for forming a wire portion in an integrated electronic circuit. It relates more specifically to a process for forming such wire portion with cross-sectional diameter of about 10 to 30 nanometers. A wire with such diameter is called nanowire hereafter.
- Nanowires are intended to be used for several applications within integrated circuits.
- One of the most important among these applications is the manufacturing of MOS transistors with channels composed of nanowires. Such transistors do not exhibit so-called short channel effect and consequently provide a better control of the electrical conduction of the channel.
- Other applications are the manufacturing of electrically conducting connections, resistors with resistance value controlled via the diameter of the resistive portion, stretch-sensors, etc.
- a stack comprising a layer of silicon superposed on a layer of silica is formed on a substrate of an integrated electronic circuit. Then the layer of silicon is etched from the top surface of the circuit in side parts of the stack so as to form a silicon track. Then, the silica material is selectively etched under a center portion of the track, so that a gap appears between this center portion of the silicon track and the substrate beneath. Afterwards the circuit is heated so as to make the cross-section of the center portion of the silicon track round. The silicon material is oxidized at the surface of the track and the silica material thus formed is selectively etched. Oxidizing and etching steps are alternately repeated so as to reduce progressively the diameter of the track in the center portion.
- a second process involves a stack structure including hard masks.
- One of the hard masks has an opening with two opposite edges that are apart from each other with a separation gap smaller than opposite edges of an underlying silicon layer portion.
- the silicon layer portion is etched through the mask opening, thereby producing two parallel silicon wires along the edges of the mask.
- a third process consists in growing ex-situ nanowires on a seed surface of silicon or germanium which supports nanoparticles of a catalyst, for example nanoparticles of gold.
- a catalyst for example nanoparticles of gold.
- a nanowire grows from each catalyst nanoparticle with longitudinal direction of said nanowire oriented perpendicular to the seed surface.
- a nanowire Once a nanowire has reached a desired length, it is brought to the desired location on a circuit substrate. Handling of the nanowire from the growth location to the final location on the substrate can be performed using a tip similar to that of an atomic force microscope. But it is difficult to form a nanowire quite long using such process, and the shape of the nanowire portion is not well-controlled.
- a process of forming a urine portion according to the preamble of claim 1 is known from US 2006/0197 163 .
- An object of the present invention is to produce an integrated electrical circuit with at least one nanowire in a practical manner, with reduced increase in the production cost of the circuit.
- the invention according to the claims provides a process for forming a wire portion in an integrated electronic circuit, which process comprises the following steps:
- the wire portion is grown in situ on the substrate by selective lateral epitaxial growth from the exposed crystalline seed material. Therefore, no difficult and time-consuming transportation step is required for transporting the wire portion to its final location on the circuit substrate.
- the layer portion of the seed material be crystalline in its entirety. Indeed, it is sufficient that the seed material be crystalline in the part of the layer portion of seed material which is exposed. Furthermore, this crystalline part may not correspond to all seed material which is exposed at the side surface of the stack, but it may be only part of this latter.
- the layer portion of seed material may be provided in step /1/ so as it is amorphous in an initial stage, and then part of the seed material exposed at the side surface of the stack may be selectively crystallized in a further stage before step /2/.
- a process of the invention may be used for producing a MOS transistor with transistor channel of nanowire-type.
- an electrically insulating layer is formed at a peripheral surface of a wire portion formed according to the invention.
- a gate portion of the transistor is formed about the peripheral surface of the wire portion.
- Such transistor does not exhibit short channel effect. It can also support high currents and has a short switching time.
- Another application of the invention is the manufacturing of single-electron transistors.
- Such transistors include two facing electrically conducting nanotips. These nanotips are adapted so that a passage of one single electron from one tip to the other can be controlled.
- circuit parts that are represented on these figures are not in relation with actual dimensions or actual dimension ratios.
- identical reference numbers indicated on different figures refer to identical elements or elements with identical functions.
- the circuit is located in the bottom parts of the figures, with active surface facing upwards.
- N indicates a vertical direction oriented from bottom to top of the figures. Words “on”, “above”, “below”, “lower” and “upper” are used hereafter in reference with direction N.
- circuit processing steps are cited in a correct order so as to reproduce the invention. Details of the individual processing steps which are well known to a circuit manufacturer are not reported. One would refer to the numerous appropriate documents that are available, including instructions that are provided with the circuit processing tools by the suppliers of these tools.
- a substrate for an integrated electronic circuit comprises a base portion 100, a first passive layer 2 and an upper layer of crystalline seed material 1.
- Such substrate may be a commercially available SOI ("Silicon On Isolator") substrate.
- passive layer 2 is called buried oxide, and is composed of silica (SiO 2 ).
- Layer 1 is of single crystalline silicon (Si).
- the upper surface S of layer 1 may be put into contact with an oxidizing agent, so as to form an upper oxide layer 3.
- the layer 3 is then of silica and may be 2 nanometers thick. Remaining silicon thickness of layer 1 may be about 10-15 nm.
- Layer 3 forms a second passive layer of a stack comprising layers 1-3. N corresponds to the stacking direction.
- Layers 3 and 1 are etched according to a pattern with edges that correspond to the layout of nanowires to be formed. Masking, lithographic and etching steps are executed in a known manner, so as to expose a side surface of layer 1 limited by boundaries B2 and B3 of layer 1 respectively with layers 2 and 3 ( Figure 2 ). The exposed side surface of layer 1 is then a strip oriented perpendicular to the upper surface of the base portion 100, and runs parallel to this latter surface.
- selected segments of the strip of exposed crystalline material of layer 1 may be submitted to an ionic beam, so as to make it turn from crystalline structure to amorphous structure.
- the ionic beam to be used may be similar to that used for implanting doping ions, but it is now operated with heavy ions such as silicon, germanium or xenon ions.
- the ions selected are suitable for amorphizing locally the layer 1 where it is impacted, via kinetic energy transfer occurring during collisions between these ions and the lattice of layer 1.
- the ion beam is focussed and directed from upwards onto the strip segments to convert to amorphous structure, with angular tilt of about 30° to 50° so as to impact on the side surface of layer 1.
- Reference signs S1 and S2 denote such amorphous segments of the side surface of layer 1.
- implanting elements such as oxygen or germanium, for example, may also be used for amorphizing parts of the crystalline seed material of layer 1 which are exposed.
- An alloy of silicon and germanium (Si x Ge y ) is then grown epitaxially on the exposed crystalline material of layer 1. Lateral epitaxial growth is thus achieved, and the crystalline material of layer 1, which is single crystalline silicon in the present implementation, is called seed material.
- the circuit is heated to about 550°C to 750°C and is contacted with a gaseous stream containing dichlorosilane molecules (SiH 2 Cl 2 ) and germanium hydride molecules (GeH 4 ), at pressure of about 10 to 100 Torr.
- the epitaxial material which is grown forms portions 10a-10c of nanowires.
- a crystalline alloy of silicon and germanium is formed on the exposed single crystalline silicon of layer 1, selectively with respect to the passive materials of layers 2 and 3 and with respect to the amorphous material of strip segments S1 and S2 ( Figure 3 ). Portions 10a-10c are separated from each other along the edge of the stack by gaps located in front of the amorphous segments S1 and S2.
- the crystallographic axis [1 0 0] of silicon in portion 1 is oriented parallel to direction N.
- the inventors have observed that the epitaxial growth of the nanowire material on the side surface of the portion 1 produces faceting.
- the nanowire portions 10a-10c as grown have a triangular cross section, with growth faces oriented obliquely.
- the growth faces of the portions 10a-10c may form an angle of 54.11° ° with direction N when a usual SOI substrate is used.
- the epitaxial growth of the portions 10a-10c may be stopped when the cross-sectional dimensions of these portions are about 10 nm. Actually, the epitaxial growth is limited by the boundaries B2 and B3, as the growth faces of the portions 10a-10c reach these boundaries.
- Remaining parts of layers 3 and 1 are then removed.
- the circuit is first contacted with a liquid solution containing silica etching species. An etching duration is selected so that layer 3 is completely removed due to its very small thickness whereas layer 2 is substantially unchanged. Then, silicon material of layer 1 is removed selectively with respect to the silicon-germanium alloy of the portions 10a-10c. Configuration of the circuit which is represented on Figure 4 is obtained, where the nanowire portions 10a-10c lie on the upper surface of layer 2.
- parts of the nanowire portions 10a-10c may be selectively removed, depending on the desired final layout of the nanowires.
- a mask may be formed on the circuit, which protects parts of the portions 10a-10c that are to remain, and the unprotected parts of the portions 10a-10c are removed using an appropriate etching process.
- the forming of the nanowires may be completed by heating the circuit between about 700°C to 900°C. At such temperature, capillary forces at the surface of the portions 10a-10c cause their cross-section to change in shape, becoming more round ( Figure 5 ). Each portion 10a-10c forms a nanowire which can be used as a current conducting element within the integrated circuit, for example.
- the cross-sectional diameter of each portion 10a-10c may be reduced, for example down to values below 10 nm or even 7 nm.
- the circuit may be contacted with an oxidizing agent preferably in gaseous phase.
- the oxidation time is selected so as to change a very thin layer at the surface of the portions 10a-10c into oxide.
- the oxide layer may be selectively removed, thereby leading to a reduction in the diameter of each nanowire portion composed of metallic silicon-germanium alloy. If necessary, the operations of oxidizing and etching of the oxide formed may be repeated to further reduce the diameter of the portions 10a-10c.
- Figures 6-10 refer to a first implementation of the invention for producing a multichannel MOS field effect transistor.
- Figures 6-10 represent a half of the circuit being produced, with section plane being the front plane of the figures.
- the circuit substrate comprises a base portion 100 with an overlying first passive layer 2 1 .
- a stack of layer portions arranged on the layer 2 1 comprises: a first seed portion layer 1 1 , a second passive layer portion 2 2 , a second seed portion layer 1 2 , and a third passive layer portion 3.
- Layer portions 1 1 and 1 2 may be of single crystalline silicon, and layer portions 2 1 , 2 2 and 3 may be of silica.
- a support portion 101 is also arranged on the layer 2 1 , so as to be in solid contact with each layer portion of the stack.
- the width of the stack, parallel to the surface of the base portion 100, is denoted I. It may be defined via a lithographic resin mask. Then, each one of the layer portions 1 1 and 1 2 has opposite side surfaces which are separated from each other by the width I, which is at least equal to the pitch of the lithography technology that has been used.
- the width I may be further reduced, down to values as low as 25 nm or even 10 nm for example, by implementing a lateral shrinking of the resin mask after it has been formed by lithography on the circuit substrate provided with the initial layers 2 1 , 1 1 , 2 2 , 1 2 and 3.
- Such mask shrinking process is well-known in the art for producing circuit parts smaller than the lithography pitch. It consists in progressively etching the resin mask parallel to the substrate surface by exposing the mask to a plasma.
- Silicon-germanium alloy is grown on the exposed side surfaces of the seed material layer portions 1 1 and 1 2 .
- nanowire portions are formed on each side of the layer portions 1 1 and 1 2 , thereby leading to four nanowire portions denoted 10 1 , 11 1 , 10 2 and 11 2 ( Figure 7 ).
- the support portion 101 may be then encapsulated within a protective mask M, with the stack together with the nanowire portions extending outside this mask.
- the mask M may be composed of lithographic resin, for example.
- the layer portions 3, 1 2 , 2 2 and 1 1 , together with the exposed part of the layer 2 1 are selectively removed based on chemical selection of silica and silicon with respect to silicon-germanium alloy and mask material.
- the circuit configuration represented on Figure 8 is obtained, with the nanowire portion extending outwardly from the support portion 101 covered with the mask M, and supported at their end parts by this support portion.
- Mask M is dissolved and the circuit is heated above 700°C for making the nanowire portions becoming rounded in cross-section ( Figure 9 ).
- a thin electrically insulating oxide layer (not represented) at the surface of the nanowire portions 10 1 , 11 1 , 10 2 and 11 2 and on the exposed surfaces of the support portion 101 and the base portion 100.
- a surrounding portion 102 is formed, for example of polycrystalline silicon (Si-poly), about the nanowires portions 10 1 , 11 1 , 10 2 and 11 2 , between the support portion 101 and another support portion arranged symmetrically with this latter ahead of the front plane of the perspective views.
- both supporting portions form a source portion and a drain portion of the transistor
- the surrounding portion 102 forms the gate portion of the transistor
- the nanowires 10 1 , 11 1 , 10 2 and 11 2 form respective parallel channel wires.
- the nanowires 10 1 , 11 1 , 10 2 and 11 2 may be each 10 nm in diameter, 200 nm long and 25 down to 10 nanometers apart from each other.
- the final transistor will have a channel composed of 4xn nanowires, where n denotes the number of stacks.
- the specific design of the part of the layer portion of crystalline seed material which is exposed at the side surface of the layer stack may be varied.
- This design may include one ore more strip segments, aligned along a common direction or with varying directions, but also any other pattern depending on the particular layout of the integrated circuit being produced. Such other pattern may be obtained from a seed layer portion with non-uniform thickness, for example.
- connection Figures 11-15 An example is now given in connection Figures 11-15 , for implementing the invention so as to produce at the same time a wire portion oriented parallel to the substrate surface and a wire portion oriented perpendicular to this surface.
- Such implementation leads to 3-dimensional wire design and may be useful within the connection levels of an integrated electrical circuit.
- a circuit base portion 100 is provided with a layer stack comprising, from bottom to top along the direction N: a first passive layer 2, a layer of crystalline seed material 1 a and a second layer of passive material 3a.
- Layers 2 and 3a may be of silica, and layer 1 a may be of crystalline silicon-germanium alloy.
- Substrates including the base portion 100 and the layers 2 and 1 a are commercially available.
- Layer 3a is added in a manner known per se, for example for obtaining highly dense material for this layer.
- a cavity C1 is formed within layer 3a ( Figure 12 ), which extends along the direction N from the top surface of layer 3a to the bottom surface of the same, in contact with layer 1 a. Thus, a part of the top surface of layer 1 a is exposed in cavity C1.
- Cavity C1 may be formed using a lithographic mask (not shown) arranged on layer 3a, and then implementing a directional etching process through an aperture of the mask.
- the cavity C1 may be rectangular within a plane perpendicular to direction N, with a length X longer than a width y of this cavity. The lithographic mask is then removed.
- silicon-germanium alloy is growth epitaxially within the cavity C1, from the exposed part of the top surface of layer 1 a, so as to fill the cavity C1 ( Figure 13 ).
- the portion of silicon-germanium alloy which is added in this manner is referenced 1 b. It is in contact with layer 1a, so that one can consider that the layer 1 a together with the portion 1 b forms a single layer portion with varying thickness.
- the resulting thickness-varying layer portion is composed of seed material, and thus is referenced 1 again.
- This portion 1 has a total thickness e 2 at the location of the cavity C1, which is the sum of the thickness e 1a of layer 1 a and the thickness e 3a of layer 3a.
- y and X are also the in-plane dimensions of portion 1 b.
- the upper surface of the circuit may be planarized by polishing.
- Layer 3b is continuous over the portion 1b and may be composed of silica or silicon nitride (Si 3 N 4 ). It is in contact with layer 3a, so that one can consider that layer 3a together with layer 3b form a single layer portion with varying thickness. The resulting thickness-varying passive layer portion is referenced 3.
- Another cavity C2 is formed from the top surface of layer 3b ( Figure 14 ), using another lithographic mask (not shown) and an appropriate directional etching process.
- the cavity C2 is also rectangular within a plane perpendicular to the direction N, and is located so that it crosses the portion 1 b of silicon-germanium alloy.
- the cavity C2 has a length Y which is longer than the width y of the portion 1b, and a width x which is less than the length X of the portion 1 b.
- the cavity C2 extends down to the interface between the layers 1 a and 2. Parts of layer 1 a and portion 1 b, i.e. parts of the seed layer portion 1 are thus exposed within the cavity C2.
- B2 and B3 denote again the boundaries of the exposed parts of the seed layer portion 1 with the layer portion 2 and the layer portion 3, respectively.
- Boundary B3 is stepwise at the corners of the cavity C2, in accordance with the varying thickness of the seed layer portion 1.
- the exposed parts of the seed layer portion 1 are hatched on the figure.
- Silicon is then grown epitaxially within the cavity C2 from the exposed parts of the seed layer portion 1, selectively with respect to the exposed passive materials. Such growth occurs when silicon precursors enter into the cavity C2, for example in gaseous phase, and then react on the exposed parts of the seed layer portion 1.
- a wire portion 10 composed of silicon with complex shape is thus formed, corresponding to the exposed parts of layer 1 a and portion 1 b.
- the wire portion 10 remains isolated on the layer 2 ( Figure 15 ). It comprises two first parts 10a which extend respectively on the exposed parts of the seed layer portion 1 where this latter has the thickness value e 1a . It further comprises two second parts 10b which extend respectively on the exposed parts of the seed layer portion 1 where it has the thickness value e 2 .
- the parts 10a of the wire portion 10 may form two electrically conducting tracks within a connection level of the circuit, and the parts 10b may form two electrically conducting vias oriented perpendicular to said connection level of the circuit.
- the materials that have been cited may be varied in a great extend, provided that the wire material has a crystalline network compatible with that of the seed material, while being different.
- any couple of materials selected among pure or electrically doped silicon, pure or electrically doped germanium, pure or electrically doped silicon-germanium alloy, silicon with varying boron contents, and germanium with varying boron content may be used for the nanowire material and the seed material.
- couples of semiconducting materials from series III-V, based for example on the combination of arsenic with gallium may be used as seed material and wire material.
- wire portions formed by implementing the invention may not be limited to the shapes and the numbers of constituting parts that have been described.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Ceramic Engineering (AREA)
- Computer Hardware Design (AREA)
- Materials Engineering (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Thin Film Transistor (AREA)
- Recrystallisation Techniques (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Electrodes Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Claims (13)
- Verfahren zur Herstellung eines Drahtteils (10a, 10b) in einer integrierten elektronischen Schaltung, umfassend die folgenden Schritte:/1/ Vorsehen eines Substrats, aus dem die Schaltung hergestellt werden soll, wobei das Substrat einen Schichtenstapel mit einem Schichtbereich aus Keimmaterial (1) und zwei Schichtbereichen aus passiven Materialien (2, 3), die auf jeweiligen gegenüberliegenden Flächen des Schichtbereichs aus Keimmaterial befindlich sind, umfasst, so dass ein kristalliner Teil des Schichtbereichs aus Keimmaterial an einer Seitenfläche des Stapels zwischen Grenzen (B2, B3) mit den passiven Materialien freigelegt ist;/2/ epitaxiales Aufwachsen eines Drahtmaterials auf das an der Seitenfläche des Stapels freigelegte Keimmaterial, selektiv hinsichtlich der passiven Materialien, zur Ausbildung des sich auf und entlang des freigelegten kristallinen Teils des Schichtbereichs aus Keimmaterial erstreckenden Drahtteils (10a, 10b), wobei das Drahtmaterial und das Keimmaterial jeweils unterschiedliche chemische Zusammensetzungen aufweisen; und/3/ hinsichtlich des Drahtmaterials selektives Entfernen des Schichtbereichs aus Keimmaterial (1), während der Drahtteil (10a, 10b) fest auf dem Schaltungssubstrat beibehalten wird,
dadurch gekennzeichnet, dass
der an der Seitenfläche des Stapels freigelegte kristalline Teil des Schichtbereichs aus Keimmaterial (1) eine sich verändernde Dicke (e1, e2) zwischen den Grenzen (B2, B3) mit den passiven Materialien (2, 3) aufweist, die parallel zu einer Stapelrichtung (N) des Schichtenstapels an unterschiedlichen Stellen in dem freigelegten kristallinen Teil des Schichtbereichs aus Keimmaterial gemessen wird. - Verfahren nach Anspruch 1, wobei sich mindestens ein erster Teil des Drahtteils (10a) auf dem freigelegten kristallinen Teil des Schichtbereichs aus Keimmaterial (1) erstreckt, wobei der freigelegte kristalline Teil einen ersten Dickenwert (e1) aufweist und der erste Teil des Drahtteils eine elektrisch leitende Bahn innerhalb einer Verbindungsebene der Schaltung bildet, und
wobei sich mindestens ein zweiter Teil des Drahtteils (10b) auf dem freigelegten kristallinen Teil des Schichtbereichs aus Keimmaterial (1) erstreckt, wobei der freigelegte kristalline Teil einen zweiten Dickenwert (e2) aufweist, der größer ist als der erste Dickenwert, und der zweite Teil des Drahtteils einen elektrisch leitenden Verbindungskontakt bildet, der senkrecht zur Verbindungsebene der Schaltung ausgerichtet ist. - Verfahren zur Herstellung mehrerer Drahtteile (101, 102) in einer integrierten elektronischen Schaltung, umfassend die folgenden Schritte:/1/ Vorsehen eines Substrats, aus dem die Schaltung hergestellt werden soll, wobei das Substrat einen Schichtenstapel mit mehreren Schichtbereichen aus Keimmaterial (11, 12) umfasst, die abwechselnd mit Schichtbereichen aus passiven Materialien (21, 22, 3) gestapelt sind, wobei zwei der Schichtbereiche aus passiven Materialien auf jeweiligen gegenüberliegenden Flächen jedes Schichtbereichs aus Keimmaterial befindlich sind, so dass mehrere kristalline Teile aus Keimmaterial voneinander getrennt an der Seitenfläche des Stapels, welcher jeweils den Schichtbereichen aus Keimmaterial entspricht, zwischen Grenzen mit den passiven Materialien freigelegt sind;/2/ epitaxiales Aufwachsen eines Drahtmaterials auf das an der Seitenfläche des Stapels freigelegte Keimmaterial, selektiv hinsichtlich der passiven Materialien, zur Ausbildung der sich auf und entlang der freigelegten kristallinen Teile der Schichtbereiche aus Keimmaterial erstreckenden Drahtteile (101, 102), wobei das Drahtmaterial und das Keimmaterial jeweils unterschiedliche chemische Zusammensetzungen aufweisen; und/3/ hinsichtlich des Drahtmaterials selektives Entfernen der Schichtbereiche aus Keimmaterial (11, 12), während die Drahtteile (101, 102) fest auf dem Schaltungssubstrat beibehalten werden;
wobei Schritt /2/ derart ausgeführt wird, dass Drahtmaterial gleichzeitig auf jeden der an der Seitenfläche des Stapels freigelegten kristallinen Teile aus Keimmaterial aufgewachsen wird, wodurch die Vielzahl entsprechender, parallel zu einer Stapelrichtung (N) des Schichtenstapels verschobenen Drahtteile (101, 102) gebildet wird, und wobei Schritt /3/ zum Entfernen jedes Schichtbereichs aus Keimmaterial (11, 12) ausgeführt wird. - Verfahren nach einem der vorangegangenen Ansprüche, wobei jeder Schichtbereich aus Keimmaterial (1; 11, 12) eine Dicke von ca. 10 bis 30 Nanometer aufweist, insbesondere weniger als 20 Nanometer, gemessen parallel zu einer Stapelrichtung (N) des Schichtenstapels.
- Verfahren nach einem der vorangegangenen Ansprüche, wobei der an der Seitenfläche des Stapels freigelegte kristalline Teil jedes Schichtbereichs aus Keimmaterial (1; 11, 12) eine mindestens ein Streifensegment umfassende Gestalt aufweist.
- Verfahren nach einem der vorangegangenen Ansprüche, wobei das Drahtmaterial (10a, 10b; 101, 102) elektrisch leitend ist.
- Verfahren nach einem der vorangegangenen Ansprüche, wobei das Keimmaterial (1; 11, 12) und das Drahtmaterial (10a, 10b; 101, 102) ausgewählt sind aus Silizium, Germanium, Silizium-Germanium-Legierungen sowie aus aus diesen erhaltenen dotierten Materialien.
- Verfahren nach einem der vorangegangenen Ansprüche, weiterhin umfassend den folgenden Schritt:/4/ Erwärmen jedes Drahtteils (10a, 10b; 101, 102) zum Verändern einer Querschnittsform des Drahtteils.
- Verfahren nach einem der vorangegangenen Ansprüche, weiterhin umfassend die folgenden Schritte:- Oxidieren des Drahtmaterials an einer Umfangsfläche jedes Drahtteils (10a, 10b; 101, 102); und- selektives Entfernen oxidierten Drahtmaterials hinsichtlich nicht oxidierten Drahtmaterials.
- Verfahren nach einem der vorangegangenen Ansprüche, wobei in Schritt /2/ mindestens zwei Drahtteile (10a 10b; 101, 102) auf jeweiligen an gegenüberliegenden Seitenflächen des Schichtenstapels freigelegten kristallinen Teilen jedes Schichtbereichs aus Keimmaterial (1; 11, 12) gebildet werden.
- Verfahren nach Anspruch 10, wobei die gegenüberliegenden Seitenflächen des Schichtenstapels durch Schrumpfen einer auf dem Schaltungssubstrat ausgebildeten Harzmaske definiert sind.
- Verfahren nach einem der vorangegangenen Ansprüche, weiterhin umfassend den folgenden, zwischen den Schritten /1/ und /2/ ausgeführten Schritt:- Amorphisieren eines Segments des an der Seitenfläche des Schichtenstapels freigelegten kristallinen Teils des Schichtbereichs aus Keimmaterial zur Ausbildung von zwei Segmenten aus freigelegtem kristallinen Keimmaterial, die durch ein Segment aus amorphem Keimmaterial voneinander getrennt sind,
und wobei Schritt /2/ derart ausgeführt wird, dass das Drahtmaterial auf beide Segmente aus kristallinem Keimmaterial selektiv hinsichtlich des Segments aus amorphem Keimmaterial aufgewachsen wird. - Verfahren nach einem der vorangegangenen Ansprüche, weiterhin umfassend- Ausbilden einer elektrisch isolierenden Schicht an einer Umfangsfläche des Drahtteils (101, 102); und- Ausbilden eines die Umfangsfläche des Drahtteils umgebenden Gate-Bereichs (102),
so dass der Drahtteil einen Kanal eines MOS-Transistors umfassend den Drahtteil und den Gate-Bereich bildet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08804548A EP2229690B1 (de) | 2007-09-26 | 2008-09-22 | Verfahren zur herstellung eines drahtteils in einer integrierten elektronischen schaltung |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07301401 | 2007-09-26 | ||
EP08804548A EP2229690B1 (de) | 2007-09-26 | 2008-09-22 | Verfahren zur herstellung eines drahtteils in einer integrierten elektronischen schaltung |
PCT/EP2008/062622 WO2009040328A1 (en) | 2007-09-26 | 2008-09-22 | Process for forming a wire portion in an integrated electronic circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2229690A1 EP2229690A1 (de) | 2010-09-22 |
EP2229690B1 true EP2229690B1 (de) | 2011-04-20 |
Family
ID=40091357
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08804548A Not-in-force EP2229690B1 (de) | 2007-09-26 | 2008-09-22 | Verfahren zur herstellung eines drahtteils in einer integrierten elektronischen schaltung |
Country Status (6)
Country | Link |
---|---|
US (1) | US7960255B2 (de) |
EP (1) | EP2229690B1 (de) |
JP (1) | JP2010541229A (de) |
AT (1) | ATE506696T1 (de) |
DE (1) | DE602008006465D1 (de) |
WO (1) | WO2009040328A1 (de) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8680510B2 (en) * | 2010-06-28 | 2014-03-25 | International Business Machines Corporation | Method of forming compound semiconductor |
GB201321949D0 (en) | 2013-12-12 | 2014-01-29 | Ibm | Semiconductor nanowire fabrication |
US9543440B2 (en) * | 2014-06-20 | 2017-01-10 | International Business Machines Corporation | High density vertical nanowire stack for field effect transistor |
US9449820B2 (en) * | 2014-12-22 | 2016-09-20 | International Business Machines Corporation | Epitaxial growth techniques for reducing nanowire dimension and pitch |
KR102537527B1 (ko) | 2018-09-10 | 2023-05-26 | 삼성전자 주식회사 | 집적회로 소자 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3854731B2 (ja) * | 1998-03-30 | 2006-12-06 | シャープ株式会社 | 微細構造の製造方法 |
US7163864B1 (en) * | 2000-10-18 | 2007-01-16 | International Business Machines Corporation | Method of fabricating semiconductor side wall fin |
US7358121B2 (en) * | 2002-08-23 | 2008-04-15 | Intel Corporation | Tri-gate devices and methods of fabrication |
US7078299B2 (en) * | 2003-09-03 | 2006-07-18 | Advanced Micro Devices, Inc. | Formation of finFET using a sidewall epitaxial layer |
KR100585157B1 (ko) | 2004-09-07 | 2006-05-30 | 삼성전자주식회사 | 다수의 와이어 브릿지 채널을 구비한 모스 트랜지스터 및그 제조방법 |
JP4367358B2 (ja) * | 2005-02-28 | 2009-11-18 | セイコーエプソン株式会社 | 半導体装置の製造方法 |
-
2008
- 2008-09-22 EP EP08804548A patent/EP2229690B1/de not_active Not-in-force
- 2008-09-22 WO PCT/EP2008/062622 patent/WO2009040328A1/en active Application Filing
- 2008-09-22 JP JP2010526260A patent/JP2010541229A/ja active Pending
- 2008-09-22 AT AT08804548T patent/ATE506696T1/de not_active IP Right Cessation
- 2008-09-22 US US12/679,882 patent/US7960255B2/en not_active Expired - Fee Related
- 2008-09-22 DE DE602008006465T patent/DE602008006465D1/de active Active
Also Published As
Publication number | Publication date |
---|---|
DE602008006465D1 (de) | 2011-06-01 |
US20100203712A1 (en) | 2010-08-12 |
EP2229690A1 (de) | 2010-09-22 |
ATE506696T1 (de) | 2011-05-15 |
JP2010541229A (ja) | 2010-12-24 |
WO2009040328A1 (en) | 2009-04-02 |
US7960255B2 (en) | 2011-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8742511B2 (en) | Double gate planar field effect transistors | |
CN103871894B (zh) | 半导体器件及其形成方法 | |
JP3854731B2 (ja) | 微細構造の製造方法 | |
CN108557758B (zh) | 一种循环交替刻蚀同质多级坡面台阶引导生长纳米线阵列的方法 | |
DE112012001742B4 (de) | Halbleiterstruktur mit einem graphennanoband und verfahren zu dessen herstellung | |
EP2229690B1 (de) | Verfahren zur herstellung eines drahtteils in einer integrierten elektronischen schaltung | |
JP6773795B2 (ja) | カプセル化ナノ構造及び作製方法 | |
CN104576396A (zh) | 利于制造环绕式栅极纳米线场效电晶体的方法 | |
JP2012517693A (ja) | 半導体デバイスの形成方法及びエッチング・マスク | |
US7189635B2 (en) | Reduction of a feature dimension in a nano-scale device | |
CN105793968A (zh) | 包括形成在体上的源极/漏极和形成在氧化物层上的栅极通道的半导体器件 | |
CN102347350A (zh) | 一种半导体结构及其制造方法 | |
US9570299B1 (en) | Formation of SiGe nanotubes | |
JP3763021B2 (ja) | 電子ビーム微細加工方法 | |
US7329115B2 (en) | Patterning nanoline arrays with spatially varying pitch | |
CN102332451B (zh) | 一种纳米线堆叠结构及其形成方法和半导体层图形化方法 | |
US20150179583A1 (en) | Semiconductor devices comprising edge doped graphene and methods of making the same | |
Cerofolini et al. | Terascale integration via a redesign of the crossbar based on a vertical arrangement of poly-Si nanowires | |
EP1602126A1 (de) | Verfahren zur herstellung eines elementes in einer mikroelektronischen schaltung | |
WO2010076191A1 (en) | Methods of fabricating nanostructures | |
CN114664820A (zh) | 集成电路器件 | |
JP3811323B2 (ja) | 量子細線の製造方法 | |
KR102041830B1 (ko) | 반도체 나노와이어의 제조방법 및 그를 이용한 반도체 나노와이어 센서의 제조방법 | |
JP3484177B2 (ja) | 半導体装置とその製造方法 | |
US20240162079A1 (en) | Multi-function etching sacrificial layers to protect three-dimensional dummy fins in semiconductor devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20100317 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 602008006465 Country of ref document: DE Date of ref document: 20110601 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602008006465 Country of ref document: DE Effective date: 20110601 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20110420 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20110420 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110420 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110420 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110822 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110720 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110420 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110420 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110420 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110420 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110820 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110420 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110731 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110420 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110420 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110721 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110420 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110420 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110420 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20111007 Year of fee payment: 4 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110420 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110420 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110420 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110420 |
|
26N | No opposition filed |
Effective date: 20120123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110930 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602008006465 Country of ref document: DE Effective date: 20120123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110420 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110922 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20120827 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110420 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20120922 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110922 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110720 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20130531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120930 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120922 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110420 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110420 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602008006465 Country of ref document: DE Effective date: 20140401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140401 |