EP2229006B2 - Dispositif d'inspection de ligne de haut-parleur - Google Patents

Dispositif d'inspection de ligne de haut-parleur Download PDF

Info

Publication number
EP2229006B2
EP2229006B2 EP08703062.3A EP08703062A EP2229006B2 EP 2229006 B2 EP2229006 B2 EP 2229006B2 EP 08703062 A EP08703062 A EP 08703062A EP 2229006 B2 EP2229006 B2 EP 2229006B2
Authority
EP
European Patent Office
Prior art keywords
impedance
signal
test signal
loudspeaker line
loudspeakers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08703062.3A
Other languages
German (de)
English (en)
Other versions
EP2229006B1 (fr
EP2229006A1 (fr
EP2229006A4 (fr
Inventor
Kazuma Asada
Hirotomo Andoh
Tsuyoshi Ogawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toa Corp
Original Assignee
Toa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40852897&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2229006(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toa Corp filed Critical Toa Corp
Priority to EP13151672.6A priority Critical patent/EP2584792B2/fr
Publication of EP2229006A1 publication Critical patent/EP2229006A1/fr
Publication of EP2229006A4 publication Critical patent/EP2229006A4/fr
Publication of EP2229006B1 publication Critical patent/EP2229006B1/fr
Application granted granted Critical
Publication of EP2229006B2 publication Critical patent/EP2229006B2/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements
    • H04R29/001Monitoring arrangements; Testing arrangements for loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements
    • H04R29/007Monitoring arrangements; Testing arrangements for public address systems

Definitions

  • This invention relates to a public address systems having a loudspeaker line examination system for examining whether there are any problems such as line breakage or short-circuiting in loudspeaker lines in a public address system built in a building or the like.
  • Patent Literature 1 An example of prior examination systems of the above-described type is disclosed in Patent Literature 1.
  • a public address system according to Patent Literature 1, a plurality of loudspeakers are connected to a loudspeaker line in parallel with each other, and a power amplifier is connected to the loudspeaker line.
  • An audio signal and a test signal are combined in a stage preceding a power amplifier, and the power amplifier amplifies the resultant composite signal and applies it to the loudspeaker line.
  • the test signal is a signal at a constant voltage.
  • a detecting circuit is disposed in the output of the power amplifier, which includes a filter deriving test signal current flowing to respective loudspeakers through the loudspeaker line.
  • an output signal of the filter represents a composite impedance of the loudspeaker line and the respective loudspeakers.
  • the value of the output signal of the filter is compared with a threshold value for use in detecting line breakage and a threshold value for use in detecting short-circuiting, to judge whether line breakage or short-circuiting has occurred.
  • the examination system uses, as a reference value, the value of the filter output signal developed when the loudspeaker line operates properly, and uses a value resulting from adding a first predetermined value to the reference value as the line breakage detection threshold value, and a value resulting from subtracting a second predetermined value from the reference value as the short-circuiting detection threshold value.
  • Patent Literature 1 JP 2007-37024 A
  • the background art examination system determines the two threshold values, using the value of the output signal of the filter developed when the loudspeaker line is in the proper operating state, and, therefore, in order to detect line breakage and short-circuiting with high accuracy, these threshold values must be set accurately.
  • the output signal value measured by the described examination system for determination of the threshold values and the output signal value measured thereafter in the normal operating state in which there is no loudspeaker line breakage or short-circuiting occurred.
  • the examination system of the background art may make an erroneous judgment as if there were line breakage or short-circuiting, while the loudspeaker line is in the proper operating conditions, which erroneous judgment is caused by accurate setting of the first and second values.
  • An object of the present invention is to provide an examination system which can make accurate detection of line breakage or impedance decrease in a loudspeaker line, with such erroneous judgment minimized as much as possible.
  • the test signal may be an analog signal, or an analog signal resulting from converting a digital signal by a digital-to-analog converter.
  • the test signal is combined with the audio signal in a combiner, and the resultant composite is supplied to the amplifier.
  • the amplified audio and test signals are supplied to the respective loudspeakers through the loudspeaker line.
  • Impedance determining means derives the test signal component contained in the output signal of the amplifier and determines the impedance viewed from the output of the amplifier toward the respective loudspeakers, based on the derived test signal component.
  • the impedance determining means can determine one or more impedances by deriving a voltage and current of the test signal contained in the amplifier output.
  • the impedance determining means may perform frequency analysis of the amplifier output as described later, to derive a frequency component of the test signal, to thereby determine one or more impedances corresponding to the frequency of the test signal.
  • Judging means compares the impedance determined by the impedance determining means with a predetermined threshold value and judges the presence of at least one of line breakage and impedance decrease in the loudspeaker line. For example, when the line breakage detection threshold value is used, it is judged that line breakage of the loudspeaker line or inadequate connection of some loudspeaker has occurred if the measured impedance is larger than the line breakage threshold value.
  • the impedance decrease detection threshold value When the impedance decrease detection threshold value is used, it is judged that impedance decrease has occurred in the loudspeaker line if the determined impedance is lower than the impedance decrease detection threshold value. It can be arranged that both the line breakage detection threshold value and the impedance decrease detection threshold value may be prepared so as to enable judgment of both.
  • threshold revising means revises the threshold value in the direction to lower the degree of accuracy of judgment made in the judging means. The threshold value is set based on the impedance measured, while only the test signal is being supplied from the amplifier to the loudspeaker line.
  • the ratio of the composite signal to the test signal being large means that the proportion of the audio signal in the composite signal is large, and that the impedances of the loudspeaker line and the loudspeakers are under the influence of the audio signal. Therefore, erroneous judgment may result if the current threshold value is used, which is the reason why the threshold value is revised.
  • the threshold revising means may raise the degree of judgment accuracy which was lowered when the composite signal was increasing. In this case, the rate of change in the direction to lower the judgment accuracy is larger, and the rate of change in the direction to raise the judgment accuracy is smaller.
  • a loudspeaker line examination system is also installed in a public address system of the same arrangement as the one described with reference to the previous embodiment.
  • the examination system includes a test signal source, too, but the test signal contains both frequencies near the lowest and highest frequencies of the human audio frequency band.
  • the test signal is combined with the audio signal in a combiner, and the resultant composite signal is supplied to the amplifier.
  • the impedance determining means derives the two frequency components of the test signal contained in the output signal of the amplifier, and determines, based on the derived frequency components, the impedance viewed from the output of the amplifier toward the loudspeakers.
  • This impedance determining means is similar to the impedance determining means described with respect to the previous embodiment.
  • Judging means compares the determined impedance with a predetermined threshold value and judges that the loudspeaker line and the loudspeakers have been open-circuited and/or that the impedance has decreased.
  • test signal contains different frequency components
  • impedances are determined based on these two frequency components, with these impedances being compared with the threshold value, it is possible to judge, with a higher degree of accuracy, at least one of open-circuiting of the loudspeaker line and the loudspeakers and impedance decrease.
  • the impedance determining means may determine the impedance in a time period during which the audio signal source stops operating.
  • threshold setting means sets the threshold value based on the determined impedance.
  • Second judging means judges whether the determined impedance is within a predetermined allowable range.
  • the impedances of the loudspeaker line and loudspeakers change with time. Accordingly, if the threshold value set on the basis of the impedances of the loudspeaker line and loudspeakers determined at a certain time is continuously used, a difference may be arisen between the actual impedances of the loudspeaker line and loudspeakers and the impedance of the loudspeaker line and loudspeakers determined for use in determining the threshold value. Therefore the impedance of the loudspeaker line and loudspeakers is determined during a time period during which no audio signal is supplied, and the threshold value is set on the basis of the thus determined impedance, in order to avoid erroneous judgment. Furthermore, by using the second judging means to judge whether the thus determined impedance Z is within the allowable range or not, it is possible to know when the loudspeakers should be replaced.
  • the impedance determining means may include current detecting mean for detecting current flowing through the loudspeaker line, and voltage detecting means for detecting a voltage applied to the loudspeaker line.
  • frequency component detecting means detects the frequency components of the test signal contained in the detected current and in the detected voltage. The detection of the frequency components may be done by the cross-spectrum analysis of the detected current and voltage, for example.
  • Operating means computes the impedance from the detected test signal frequency components.
  • the impedance of the loudspeaker line and loudspeakers is measured based on the test signal components as described above, the impedance of the loudspeaker line and loudspeakers can be measured without being affected by the audio signal.
  • An examination system is embodied in a public address system like the one shown in FIGURE 1 .
  • the public address system is a system for announcing in various places in, for example, a large-scale store.
  • the public address system includes a signal source 2 providing an audio signal.
  • the signal source 2 may be, for example, a sound source for providing background music over the store, or a microphone through which information about the store and emergency announcement is given.
  • the audio signal from the signal source 2 is applied through a notch filter 3 to an amplifier, e.g. a power amplifier 4, where the audio signal is amplified, and applied to a plurality of loudspeakers 8 through a loudspeaker line 6 connected to the output of the power amplifier 4.
  • the notch filter 3 is used to attenuate those frequency components of the audio signal which are the same as frequency components of a later-described test signal for the purpose of avoiding interference with the test signal. Accordingly, a circuit arrangement may be employed in which the audio signal is inputted to the amplifier through the notch filter 3 only when the test signal is being outputted, and is inputted to the amplifier without passing through the notch filter 3 while the test signal is not being outputted. In place of the notch filter 3, a low-pass filter and/or a high-pass filter may be used.
  • the loudspeakers are disposed at various locations in the store. In FIGURE 1 , although only one loudspeaker line 6 is shown, the loudspeaker line 6 is actually composed of a pair of lines. The loudspeakers 8 are actually connected between the pair of loudspeaker lines 6 in parallel with each other.
  • the examination system includes a DSP (digital signal processor) 10 functioning as a signal source of the test signal at an inaudible frequency.
  • the DSP 10 provides a digital test signal as the test signal.
  • the digital test signal is converted to an analog test signal in a D/A (digital-to-analog) converter 12.
  • the analog test signal and the audio signal from the signal source 2 are combined in a combiner 13.
  • the resultant composite signal from the combiner 13 is applied to the power amplifier 4.
  • the analog test signal is a signal containing two frequency components at, for example, 40 Hz and 20 KHz, and has a constant voltage value.
  • the human audio frequency band is from 20 Hz to 20 KHz.
  • the loudspeakers 8 are so designed as to give optimum sound in this human audio frequency band.
  • the test signal is used for the purpose of measuring a composite impedance of the loudspeaker line and loudspeakers 8 connected in parallel to the loudspeaker line. Accordingly, although the frequency of the test signal desirably is within the audio frequency band, it is not desirable for the test signal components in the resultant signal, which results from combining the test signal with the audio signal, to be delivered as noise to human ears. Then, it is desirable to use, as the frequency of the test signal, either one or both of a frequency near the lowest frequency or a frequency near the highest frequency within the audio frequency band which is or are hard for human ears to sense.
  • the loudspeakers 8 are supplied with the audio signal and the test signal as amplified in the power amplifier 4.
  • the test signal is continuously supplied to the combiner 13 from the D/A converter 12.
  • the audio signal is not supplied to the combiner 13 when it is not required.
  • the audio signal from the signal source 2 may be A/D (analog-to-digital) converted before being combined with the test signal. In such case, the resultant composite signal is applied to the D/A converter 12.
  • a current detecting circuit 14 is connected in series in the output of the power amplifier 4.
  • the current detecting circuit 14 detects the output current supplied from the power amplifier 4 to the loudspeaker line 6.
  • a voltage detecting circuit 16 is disposed in parallel in the output of the power amplifier 4. The voltage detecting circuit 16 detects the output voltage applied from the power amplifier 4 to the loudspeaker line 6.
  • the output signal of the current detecting circuit 14 and the output signal of the voltage detecting circuit 16 are digitized in A/D converters 18 and 20, respectively, before being applied to the DSP 10.
  • the digitized version of the output signal of the current detecting circuit 14 is referred to as a digital current detection signal
  • the digitized version of the output signal of the voltage detecting circuit 16 is referred to as a digital voltage detection signal.
  • the DSP 10 processes the digital current detection signal, the digital voltage detection signal and the digital test signal, and judges whether the respective loudspeakers 8 and the loudspeaker line 6 are broken or short-circuited, or whether the impedance of the loudspeakers 8 and the loudspeaker line 6 have significantly decreased.
  • the result of judgment is notified by a notification device 28.
  • the notification device may be, for example, a display device, on which the result of judgment is displayed.
  • noise frequency components are first removed from the digital current detection and digital voltage detection signals in a band-pass filter (Step S2). Then, the digital current detection and digital voltage detection signals from which noise frequency components have been removed are averaged (Step S4).
  • the DSP 10 is provided therein with memories equal in number to the digital current detection and digital voltage detection signals in one cycle of the test signal, and each time the digital current detection and digital voltage detection signals are supplied to the DSP 10 from the band-pass filter, they are stored in the corresponding memories over a plurality of cycles. The stored values in the memories are divided by the number of the plural cycles.
  • Step S6 The thus averaged digital current detection and digital voltage detection signals are subjected to cross-spectrum analysis to determine the correlation between the test signals contained in the digital current detection and digital voltage detection signals, and an impedance Z1 at the frequency of 20 KHz, an impedance Z2 at the frequency of 40 Hz, and the coherence of the digital current detection and digital voltage detection signals in the test signal are computed (Step S6). It should be noted that when the DSP 10 has high processing ability, Steps S2 and S4 may be skipped, and only the cross-spectrum analysis in Step S6 is sufficient.
  • the DSP 10 raises the voltage of the constant-voltage test signal.
  • Step S8 the root-mean-square values Vrms and Irms of the digital voltage detection and digital current detection signals are computed as shown in FIGURE 3 (Step S8).
  • a predetermined threshold value e.g. a short-circuiting current value Isl of the loudspeaker line
  • the measured impedance Z1 is smaller than a predetermined threshold value, e.g. a short-circuiting impedance Z1sl at 20 KHz of the loudspeaker line 6 and the loudspeakers 8, and, at the same time, the measured impedance Z2 is larger than a predetermined threshold value, e.g. a short-circuiting impedance Z2sl at 40 Hz of the loudspeaker line 6 and the loudspeakers 8 (Step S14).
  • a predetermined threshold value e.g. a short-circuiting current value Isl of the loudspeaker line
  • the short-circuiting current Isl and the short-circuiting impedances Z1sl and Z2sl are predetermined in view of the protection of the loudspeaker line 6 and the loudspeakers 8. If the answer to the query in Step S14 is YES, from which it is judged that there is short-circuiting in the loudspeaker line 6 etc., such short-circuiting is indicated on the display device (Step S16), and this judgment processing is ended.
  • Step S18 judgment is made as to whether the measured impedance Z1 is smaller than the lower limit value Z1 inc for 20 KHz or whether the impedance Z2 is smaller than the lower limit value Z2inc for 40 Hz.
  • the lower limit values Z1inc and Z2inc are explained later.
  • Step S22 judgment is made as to whether the measured impedance Z1 is larger than the upper limit value Z1open for 20 KHz or whether the impedance Z2 is larger than the upper limit value Z2open for 40 Hz.
  • the upper limit values Z1open and Z2open are explained later.
  • the upper limit values Z1open and Z2open and the lower limit values Z1inc and Z2inc are used. These values are determined, based on a reference impedance Z1 ave at 20 KHz and a reference impedance Z2ave at 40 Hz of the loudspeaker line 6 and loudspeakers 8, respectively.
  • the reference impedances Z1 ave and Z2ave are set by a worker when the worker initializes the public address system on the first use after its installation, or are set by the worker when the public address system is re-initialized for some reason.
  • the upper limit values Z1open and Z2open and the lower limit values Z1 inc and Z2inc which are prepared based on the reference impedances Z1ave and Z2ave, are subjected to revising processing.
  • Step S26 judgment is first made as to whether the root-mean-square value Vrms of the digital voltage detection signal is larger, by a predetermined factor, e.g. 1.2, or more, than the root-mean-square voltage value Vtest of the digital test signal. If the answer is YES, it is judged that many components at the same frequencies as the test signal are contained in the audio signal. Then, the computation processing for revising the upper limit values Z1open and Z2open and the lower limit values Z1 inc and Z2inc is executed (Step S28). It should be noted that the predetermined factor is not limited to 1.2.
  • a degree of measurement accuracy Ra of the measured impedances Z1 and Z2 is used.
  • the unit of the degree of measurement accuracy Ra is percent (%). The smaller the value, the degree of measurement accuracy of the impedance Z1, Z2 is higher, and the larger the value, the degree of measurement accuracy Ra of the impedance Z1, Z2 is lower.
  • the degree of measurement accuracy Ra is set to the smallest value, for example, 5 %, when Vrms is equal to Vtest. As shown in FIGURE 6 , judgment is made, in the revision computation processing in Step S28, as to whether the digital voltage detection signal Vrms is larger than the digital voltage detection signal ⁇ Vrms used in the previous revision computation processing (Step S30).
  • the function f(Vrms/Vtest) is a function with an argument Vrms/Vtest, and its value increases when the value of Vrms/Vtest is increasing and decreases when the value of Vrms/Vtest is decreasing.
  • ⁇ f(Vrms/Vtest) in the revised degree of measurement accuracy Ra is large, and, the revised degree of measurement accuracy Ra increases rapidly when the value of Vrms/Vtest is increasing, as shown in the first half portion of FIGURE 7 .
  • Step S36 the computations of Z1open, Z2open, Z1inc and Z2inc are performed.
  • Vrms is memorized as ⁇ Vrms (Step S38).
  • Step S40 The impedance open-circuiting proportion initial value Rul is expressed in percent (%), and is a proportion of the upper limit impedance to the reference impedance (Z1ave, Z2ave).
  • the upper limit impedance is the impedance at which the loudspeaker line 6 etc. can be considered to have been open-circuited, with the degree of measurement accuracy Ra being highest, or, in other words, with Ra having the smallest value.
  • the impedance open-circuiting proportion initial value Rul is set by the worker at the time of initialization or re-initialization of the system, and is used for both Z1open and Z2open.
  • Step S46 judgment is made as to whether Z1open is larger than an upper limit value Z1ul of the impedance at 20 KHz.
  • the upper limit impedance value Z1ul is the upper limit value of the impedance expected to actually occur at 20 KHz when the loudspeaker line 6 etc. are open-circuited.
  • the upper limit value Z1ul is manually set by the worker at the time of initialization or re-initialization of the system. Alternatively, Z1ave measured by DSP 10 at the time of initialization or re-initialization of the system is multiplied by a factor greater than 1, and the resultant product is set as the upper limit value Z1ul.
  • Step S46 The reason why the judgment in Step S46 is done is that it is sometimes possible for the value of Z1open revised based on the degree of measurement accuracy Ra to be an impossible value.
  • Z1open is used as Z1ul (Step S48) since it is impossible that Z1open is greater than Z1ul.
  • Step S50 judgment is made as to whether the degree of measurement accuracy Ra is larger than an impedance increase proportion initial value RII (Step S50).
  • the impedance increase proportion initial value RII is a value resulting from subtracting 1 (unity) from the reciprocal of the proportion of the reference impedance (Z1ave or Z2ave) to the impedance at which the impedance of the loudspeaker line 6 and the loudspeakers 8, when the degree of measurement accuracy Ra is highest, can be considered to have decreased.
  • the impedance increase proportion initial value RII is expressed in percent (%).
  • Step S52 or S54 judgment is made as to whether Z1inc is smaller than a lower limit value Z1II of the impedance Z1 at 20 KHz (Step S56).
  • the impedance lower limit value Z1II is the lower limit value at 20 KHz at which impedance decrease is expected to actually occur while no short-circuiting has occurred in the loudspeaker line 6 or the loudspeakers 8.
  • the lower limit value Z1II is manually set by the worker at the time of initialization or re-initialization of the system.
  • Step S56 is executed since Z1inc revised in Step S54 sometimes takes a value which it cannot actually take. If the answer to the query made in Step S56 is YES, Z1inc is adopted as Z1II (Step S58) since it is impossible for Z1inc to be smaller than Z1II.
  • Step S58 is finished or if the answer to the query made in Step S56 is NO, the processing for computing Z1open and Z2open is ended.
  • Z2open and Z2inc are computed, using the impedance open-circuiting proportion initial value Rul, the impedance increase proportion initial value RII, an upper limit value Z2ul of the impedance Z2 at 40 Hz, a lower limit value Z2II of the impedance Z2 at 40 Hz, and the reference impedance Z2ave of the impedance Z2 at 40 Hz. Description of this processing is not made.
  • Z2ave is 1,000 ⁇
  • Z2ul is 2,000 ⁇
  • Z2II is 500 ⁇
  • Z2sl is 20 ⁇
  • Z1ave is 1,500 ⁇
  • Z1ul is 3,000 ⁇
  • Z1II is 750 Z2
  • Z1sl is 30 ⁇
  • Isl is 5 A
  • Rul is 10 %
  • RII is 10 %
  • Ra is 5 %
  • Vtest is 5 V.
  • the Ra of 5 % is the highest degree of accuracy.
  • the measured impedance Z2 is 1,000 ⁇ and the measured impedance Z1 is 1,500 ⁇ , it is judged by the processing shown in FIGURE 4 that the loudspeaker line is in the proper state.
  • the measured impedances Z2 and Z1 are 1,100 ⁇ and 1,500 ⁇ , respectively, it is judged by the processing shown in FIGURE 4 that open-circuiting is present.
  • the measured impedances Z2 and Z1 are 1,100 ⁇ and 1,600 ⁇ , respectively, it is judged by the processing shown in FIGURE 4 that open-circuiting is present.
  • the measured impedances Z2 and Z1 are 1,000 ⁇ and 1,400 ⁇ , respectively, it is judged by the processing shown in FIGURE 4 that increase has occurred. If the measured impedances Z2 and Z1 are 15 ⁇ and 10 ⁇ , respectively, it is judged by the processing shown in FIGURE 4 that short-circuiting has occurred.
  • the measured impedance Z2 is 1,100 ⁇ and the measured impedance Z1 is 1,600 ⁇ , it is judged by the processing shown in FIGURE 4 that the loudspeaker line is in the normal state. If the measured impedances Z2 and Z1 are 2,300 ⁇ and 1,000 ⁇ , respectively, it is judged by the processing shown in FIGURE 4 that open-circuiting has occurred. If the measured impedances Z2 and Z1 are 1,400 ⁇ and 600 ⁇ , respectively, it is judged by the processing shown in FIGURE 4 that current has increased. If the measured impedances Z2 and Z1 are 15 ⁇ and 10 ⁇ , respectively, it is judged by the processing shown in FIGURE 4 that short-circuiting has occurred.
  • the measured impedance Z2 is 1,000 ⁇ and the measured impedance Z1 is 1,600 ⁇ , it is judged by the processing shown in FIGURE 4 that the loudspeaker line is normal. If the measured impedances Z2 and Z1 are 2,500 ⁇ and 2,800 ⁇ , respectively, it is judged by the processing shown in FIGURE 4 that open-circuiting has occurred. If the measured impedances Z2 and Z1 are 400 ⁇ and 1,000 ⁇ , respectively, it is judged by the processing shown in FIGURE 4 that current has increased. If the measured impedances Z2 and Z1 are 15 ⁇ and 10 ⁇ , respectively, it is judged by the processing shown in FIGURE 4 that short-circuiting has occurred.
  • the loudspeakers 8 generate heat due to a large value of Vrms, and it takes a long time for the temperature of the loudspeakers 8 to return to the temperature before they began to generate heat, erroneous judgment can be avoided since it takes a long time for Z1open, Z2open, Z1 inc and Z2inc to return to their values before the heat generation occurred.
  • the reference impedances Z1 ave and Z2ave at 20 KHz and 40 Hz of the loudspeaker line 6 and the loudspeakers 8 are measured prior to the application of the audio signal, and judgment is made as to whether the reference impedance Z1 ave is between predetermined allowable aging upper and lower limit values Z1UL and Z1LL for 20 KHz, or whether the reference impedance Z2ave is between predetermined allowable aging upper and lower limit values Z2UL and Z2LL for 40 Hz.
  • the impedance of the loudspeakers 8 changes due to aging, and the reference impedances Z1 ave and Z2ave also change as the impedance of the loudspeakers 8 changes. Judgment is made as to whether the reference impedance Z1 ave is within an allowable range defined by the allowable upper limit Z1 UL and the allowable lower limit Z1LL, which are the limits for 20 KHz indicating the necessity for replacement of the loudspeakers, or whether the reference impedance Z2ave is within an allowable range defined by the allowable upper limit Z2UL and the allowable lower limit Z2LL, which are the limits for 40 Hz indicating the necessity for replacement of the loudspeakers.
  • an indication to recommend the replacement of loudspeakers is displayed on the notification device 28.
  • Such judgment is made at a time when the public address system is not in use. For example, if the public address system is installed in a store, the judgment is made everyday at a given time within a time period after the store is closed and before the store is opened.
  • Step S60 whether the time for examination comes or not is judged. If the answer to the query made in Step S60 is NO, the processing is ended. If the answer is YES, the DSP 10 provides the test signal (Step S62). Then, the reference impedances Z1 ave and Z2ave are measured in the manner described with reference to FIGURE 2 (Step S64). Judgment is made as to whether Z1 ave is within the above-described allowable range defined by Z1UL and Z1LL and, at the same time, whether Z2ave is within the above-described allowable range defined by Z2UL and Z2LL (Step S66).
  • Step S68 If the answer to the query made in Step S66 is NO, an error notification is displayed on the notification device 28 (Step S68) to recommend replacement of a loudspeaker. If the answer is YES, the measured Z1 ave and Z2ave are stored (Step S70). The execution of the processing of Step S70 renews Z1 ave and Z2ave for use in computing Z1open, Z2open, Z1 inc and Z2inc in the processing shown in FIGURE 8 in later stages. This prevents erroneous judgment which would be caused by influence given by changes in impedance caused by aging.
  • cross-spectrum analysis is used to determine the impedances Z1, Z2, Z1ave and Z2ave, but the impedances may be determined by using a band-pass filter having a narrow band capable of deriving the test signal to derive current and voltage of the test signal, and determine the impedances from the derived current and voltage, for example.
  • the test signal used has frequencies of 40 Hz and 20 KHz, but a test signal at either one of 40 Hz and 20 KHz, for example, may be used instead.
  • the digital test signal from the DSP 10 is digital-to-analog converted and the resultant analog test signal is applied to the combiner 13.
  • an analog test signal source is additionally used and a test signal from this analog test signal source may be applied to the combiner 13.
  • the analog test signal is analog-to-digital converted and the resultant digital signal is applied to the DSP 10.
  • open-circuiting and decrease in impedance of the loudspeaker line and loudspeakers are determined, but only one of them may be determined, instead.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Circuit For Audible Band Transducer (AREA)

Claims (4)

  1. Système de diffusion publique comprenant :
    une source de signal (2) d'un signal audio ;
    un amplificateur (4) afin d'amplifier ledit signal audio ;
    une ligne de haut-parleur (6) à travers laquelle est transmis un signal de sortie dudit amplificateur ;
    une pluralité de haut-parleurs (8) connectés les uns aux autres en parallèle à ladite ligne de haut-parleur ; et
    un système d'inspection de lignes de haut-parleurs, ledit système d'inspection étant destiné à l'inspection de ladite ligne de haut-parleur (6) et comprenant :
    une source de signal (10) d'un signal d'essai contenant une fréquence proche de la plus basse fréquence d'une bande de fréquence audio humaine et/ou une fréquence proche de la fréquence la plus élevée de la bande de fréquence audio humaine ;
    un combineur (13) permettant la combinaison dudit signal d'essai avec ledit signal audio et l'application d'un signal résultant audit amplificateur ;
    un moyen de détermination d'impédance (10, 14, 16) permettant la dérivation d'une composante dudit signal d'essai contenu dans un signal de sortie dudit amplificateur et la détermination, à partir de la composante de signal d'essai dérivée, d'une impédance vue depuis la sortie dudit amplificateur vers lesdits haut-parleurs ;
    un moyen d'évaluation permettant la comparaison de l'impédance déterminée à une valeur de seuil limite supérieure prédéterminée à utiliser pour la détection d'une ouverture de circuit de ladite ligne de haut-parleur (6) et des haut-parleurs (8), et une valeur seuil limite prédéterminée à utiliser pour la détection d'une diminution d'impédance de ladite ligne de haut-parleur (6) et des haut-parleurs (8), pour évaluer si l'un des ouvertures de circuit et une diminution d'impédance de ladite ligne de haut-parleur et des haut-parleurs est survenu ; et
    un moyen de révision de valeur seuil permettant la modification de l'une desdites valeurs seuil limite supérieure et limite inférieure dans une direction afin de diminuer une précision d'évaluation dudit moyen d'évaluation si une proportion dudit signal résultant audit signal d'essai est supérieure à une valeur prédéterminée et audit signal résultant augmente.
  2. Système de diffusion publique selon la revendication 1, dans lequel ledit moyen de révision de valeur seuil, lorsqu'un état dudit signal résultant passe d'un état dans lequel ledit signal résultant augmente à un état dans lequel ledit signal résultant diminue, augmente ladite précision d'évaluation diminuée lorsque ledit signal résultant augmente, une taux de variation dans une direction pour diminuer ladite précision d'évaluation qui est plus grande, un taux variation dans une direction pour augmenter ladite précision d'évaluation qui est plus petite.
  3. Système de diffusion publique selon la revendication 1, dans lequel :
    ledit moyen de détermination d'impédance détermine ladite impédance dans une période de temps pendant laquelle ladite source de signal de signal audio ne fonctionne pas ; et
    ledit système de diffusion publique comprend en outre :
    un moyen d'établissement de valeur seuil permettant l'établissement desdites valeurs seuil de limite supérieure et/ou inférieure en fonction de l'impédance déterminée ; et
    un second moyen d'évaluation permettant l'évaluation du fait que l'impédance déterminée est dans une plage autorisée prédéterminée.
  4. Système de diffusion publique selon la revendication 1, dans lequel ledit moyen de détermination d'impédance comprend :
    un moyen de détection de courant permettant la détection du courant circulant dans ladite ligne de haut-parleur ;
    un moyen de détection de tension permettant la détection d'une tension appliquée à ladite ligne de haut-parleur ;
    un moyen de détection de composante de fréquence permettant la détection d'une composante de fréquence dudit signal d'essai contenu dans le courant tel que détecté par ledit moyen de détection de courant et dans la tension telle que détectée par ledit moyen de détection de tension ; et
    un moyen de calcul permettant le calcul de ladite impédance à partir des composantes de fréquence du signal d'essai dans lesdits courant et tension détectés.
EP08703062.3A 2008-01-10 2008-01-10 Dispositif d'inspection de ligne de haut-parleur Active EP2229006B2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13151672.6A EP2584792B2 (fr) 2008-01-10 2008-01-10 Dispositif d'inspection de ligne de haut-parleur

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/050198 WO2009087772A1 (fr) 2008-01-10 2008-01-10 Dispositif d'inspection de ligne de haut-parleur

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP13151672.6A Division EP2584792B2 (fr) 2008-01-10 2008-01-10 Dispositif d'inspection de ligne de haut-parleur
EP13151672.6A Division-Into EP2584792B2 (fr) 2008-01-10 2008-01-10 Dispositif d'inspection de ligne de haut-parleur

Publications (4)

Publication Number Publication Date
EP2229006A1 EP2229006A1 (fr) 2010-09-15
EP2229006A4 EP2229006A4 (fr) 2012-08-08
EP2229006B1 EP2229006B1 (fr) 2013-11-20
EP2229006B2 true EP2229006B2 (fr) 2019-02-27

Family

ID=40852897

Family Applications (2)

Application Number Title Priority Date Filing Date
EP13151672.6A Active EP2584792B2 (fr) 2008-01-10 2008-01-10 Dispositif d'inspection de ligne de haut-parleur
EP08703062.3A Active EP2229006B2 (fr) 2008-01-10 2008-01-10 Dispositif d'inspection de ligne de haut-parleur

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP13151672.6A Active EP2584792B2 (fr) 2008-01-10 2008-01-10 Dispositif d'inspection de ligne de haut-parleur

Country Status (3)

Country Link
EP (2) EP2584792B2 (fr)
JP (1) JP5123319B2 (fr)
WO (1) WO2009087772A1 (fr)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3076545B1 (fr) 2010-02-10 2020-12-16 Goodix Technology (HK) Company Limited Systeme et procede pour adapter un signal de haut-parleur
CN102420711B (zh) * 2010-09-28 2014-04-30 鸿富锦精密工业(深圳)有限公司 网络通信设备及其侦测负载异常的方法
US9352499B2 (en) 2011-04-12 2016-05-31 Valinge Innovation Ab Method of manufacturing a layer
WO2013153484A1 (fr) * 2012-04-10 2013-10-17 Koninklijke Philips N.V. Procédé et système de vérification d'un transducteur acoustique
JP5924116B2 (ja) * 2012-05-17 2016-05-25 ヤマハ株式会社 半導体集積回路及び信号増幅装置
JP5772721B2 (ja) 2012-05-24 2015-09-02 アンデン株式会社 車両接近通報装置
WO2013190632A1 (fr) * 2012-06-19 2013-12-27 Toa株式会社 Dispositif de haut-parleur
CN104428169B (zh) * 2012-07-04 2016-08-24 松下知识产权经营株式会社 接近报警装置、接近报警系统、移动体装置、接近报警系统的故障诊断方法
DE102012220137A1 (de) * 2012-11-06 2014-05-08 Robert Bosch Gmbh Schaltungsanordnung und Verfahren zum Prüfen eines Mikrofons sowie System zum Betreiben eines Mikrofons mit einer derartigen Schaltungsanordnung
EP2733685B1 (fr) * 2012-11-20 2015-06-17 Bombardier Transportation GmbH Lecture audio sécurisée dans une interface homme-machine
US9119005B2 (en) * 2013-04-11 2015-08-25 Bose Corporation Connection diagnostics for parallel speakers
US9860638B2 (en) 2013-09-20 2018-01-02 Panasonic Intellectual Property Management Co., Ltd. Acoustic device, acoustic system, moving body device, and malfunction diagnosis method for acoustic system
US9247345B2 (en) 2014-04-14 2016-01-26 Apple Inc. Multi-channel audio system having a shared current sense element for estimating individual speaker impedances
US9332343B2 (en) 2014-04-14 2016-05-03 Apple Inc. Multi-channel audio system having a shared current sense element for estimating individual speaker impedances using test signals
CN108419173A (zh) * 2017-02-09 2018-08-17 钰太芯微电子科技(上海)有限公司 一种扬声器自适应调节系统及方法
WO2018187269A1 (fr) 2017-04-05 2018-10-11 Carrier Corporation Supervision électrique active d'interface audio
EP3503591B1 (fr) 2017-12-19 2021-02-03 Honeywell International Inc. Dispositif permettant de connecter et de déconnecter électriquement des portions d'une ligne électrique, système d'adresse publique, procédé de détection d'une défaillance dans une ligne électrique
JP7409122B2 (ja) * 2020-01-31 2024-01-09 ヤマハ株式会社 管理サーバー、音響管理方法、プログラム、音響クライアントおよび音響管理システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2507711Y2 (ja) * 1988-03-09 1996-08-21 日本無線株式会社 スピ―カ回線監視回路
JPH09218233A (ja) * 1996-02-08 1997-08-19 Harness Sogo Gijutsu Kenkyusho:Kk 車両における負荷の断線検出装置
JP2001036995A (ja) * 1999-07-21 2001-02-09 Toa Corp スピーカ回線の異常検知装置
JP2003274491A (ja) * 2002-03-18 2003-09-26 Mitsubishi Electric Corp スピーカ断線検出装置
JP2005241349A (ja) * 2004-02-25 2005-09-08 Matsushita Electric Ind Co Ltd 制御装置
KR100619055B1 (ko) * 2004-11-16 2006-08-31 삼성전자주식회사 오디오/비디오 시스템의 스피커 모드 자동 설정 방법 및장치
JP4493564B2 (ja) * 2005-07-28 2010-06-30 ティーオーエー株式会社 スピーカライン検査装置及びスピーカライン検査装置用端末装置
JP2007037024A (ja) * 2005-07-29 2007-02-08 Toa Corp スピーカラインの検査装置

Also Published As

Publication number Publication date
JPWO2009087772A1 (ja) 2011-05-26
EP2229006B1 (fr) 2013-11-20
EP2229006A1 (fr) 2010-09-15
JP5123319B2 (ja) 2013-01-23
EP2584792B1 (fr) 2014-04-16
EP2229006A4 (fr) 2012-08-08
EP2584792B2 (fr) 2018-09-12
EP2584792A1 (fr) 2013-04-24
WO2009087772A1 (fr) 2009-07-16

Similar Documents

Publication Publication Date Title
EP2229006B2 (fr) Dispositif d'inspection de ligne de haut-parleur
EP2465112B1 (fr) Procédé, produit de programme d'ordinateur et système pour la détermination d'une qualité perçue d'un système audio
US9025781B2 (en) Sound quality evaluation apparatus and method thereof
JP3015395B2 (ja) オーディオ信号処理システムを点検する装置
EP3631388B1 (fr) Procédé et système de test de bruit, de vibrations et de secousses (nvh) d'un véhicule
CN102124759B (zh) 助听适合度判断装置、助听处理调整系统及助听适合度判断方法
US9472202B2 (en) Method of and apparatus for evaluating intelligibility of a degraded speech signal
US8041044B2 (en) Method and apparatus for checking a measuring situation in the case of a hearing apparatus
Scollie et al. Evaluation of electroacoustic test signals I: Comparison with amplified speech
US8566082B2 (en) Method and system for the integral and diagnostic assessment of listening speech quality
JP6644201B1 (ja) 加工状態検出装置、レーザ加工機および機械学習装置
JP6868773B2 (ja) 音響特性評価方法
Sottek Sound quality evaluation of noises with spectro-temporal patterns
CN113259811B (zh) 用于检测音调的方法和音频处理单元及其用途
JP3579866B2 (ja) 周波数分解能測定装置
JP3569175B2 (ja) 周波数分解能測定装置
Völk Loudness and noise rating: How may standardization bridge the gap between science and engineering?
KR20050119290A (ko) 전자기기의 소음측정장치 및 그 측정방법
CN116055975A (zh) 一种基于心理声学的耳机质量的评估方法
JP2024057456A (ja) 震度推定装置、震度推定プログラム及び震度推定方法
Torres Rapid sound-quality assessment of background noise
JPH07124137A (ja) 聴覚機能検査装置
Townsend et al. Comparison of Total Harmonic Distortion Measures among Hearing Aid Test Systems
CN117676446A (zh) 一种感知音频质量测量方法
JPS6411122B2 (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100331

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20120709

RIC1 Information provided on ipc code assigned before grant

Ipc: H04R 3/00 20060101AFI20120703BHEP

Ipc: H04R 29/00 20060101ALI20120703BHEP

17Q First examination report despatched

Effective date: 20130219

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130710

RIN1 Information on inventor provided before grant (corrected)

Inventor name: OGAWA, TSUYOSHI

Inventor name: ANDOH, HIROTOMO

Inventor name: ASADA, KAZUMA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 642234

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008028819

Country of ref document: DE

Effective date: 20140116

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20131120

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 642234

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131120

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140220

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140320

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602008028819

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140110

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

26 Opposition filed

Opponent name: NOVAR GMBH

Effective date: 20140820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602008028819

Country of ref document: DE

Effective date: 20140820

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602008028819

Country of ref document: DE

Representative=s name: PATENTANWAELTE LIPPERT, STACHOW & PARTNER, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 602008028819

Country of ref document: DE

Representative=s name: LIPPERT STACHOW PATENTANWAELTE RECHTSANWAELTE , DE

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PLAP Information related to despatch of examination report in opposition + time limit deleted

Free format text: ORIGINAL CODE: EPIDOSDORE2

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

PLAH Information related to despatch of examination report in opposition + time limit modified

Free format text: ORIGINAL CODE: EPIDOSCORE2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140221

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080110

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20190227

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 602008028819

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231130

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231212

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231205

Year of fee payment: 17