EP2221268B1 - Method and assembly for testing that a lift is functioning correctly - Google Patents

Method and assembly for testing that a lift is functioning correctly Download PDF

Info

Publication number
EP2221268B1
EP2221268B1 EP20100153413 EP10153413A EP2221268B1 EP 2221268 B1 EP2221268 B1 EP 2221268B1 EP 20100153413 EP20100153413 EP 20100153413 EP 10153413 A EP10153413 A EP 10153413A EP 2221268 B1 EP2221268 B1 EP 2221268B1
Authority
EP
European Patent Office
Prior art keywords
distance
measuring device
elevator
car
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20100153413
Other languages
German (de)
French (fr)
Other versions
EP2221268A1 (en
Inventor
Matthias Gehrke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dekra eV
Original Assignee
Dekra eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102009001057A external-priority patent/DE102009001057A1/en
Priority claimed from DE102009001055A external-priority patent/DE102009001055A1/en
Priority claimed from DE102009001056A external-priority patent/DE102009001056A1/en
Priority claimed from DE200910026992 external-priority patent/DE102009026992A1/en
Priority claimed from DE200910028596 external-priority patent/DE102009028596A1/en
Application filed by Dekra eV filed Critical Dekra eV
Priority to EP13176188.4A priority Critical patent/EP2650245B1/en
Publication of EP2221268A1 publication Critical patent/EP2221268A1/en
Application granted granted Critical
Publication of EP2221268B1 publication Critical patent/EP2221268B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/0006Monitoring devices or performance analysers
    • B66B5/0037Performance analysers

Definitions

  • the invention relates to a method for testing the proper functioning, in particular a driving ability, overdrive, safety gear and the like.
  • An elevator in which a car in a zugsschachtgrubenraum on an elevator shaft is movable, and wherein for determining the proper functioning of the elevator below predetermined Test conditions a characteristic value is determined.
  • the EP 1 749 781 A1 relates to a cable slip detector for an elevator in which a car is movable in an elevator shaft having an elevator shaft shaft, the car is provided with a safety gear and is connected via at least one guided over a drive pulley e rope with a counterweight.
  • a distance between the car and a fixed measuring point in the elevator shaft is measured by means of an optical distance measuring device. By differentiating the measured distance values over time, the speed of the car can be determined.
  • the DE 101 50 284 A1 discloses a method for the diagnosis of elevator installations.
  • the car is provided with an accelerometer.
  • the acceleration values measured with the accelerometer are transmitted to an evaluation unit arranged outside the car.
  • the DE 10 2006 011 395 A1 discloses a measuring device for a driving capability measurement on an elevator installation.
  • the measuring device has a fastening device for positioning on a plurality of supporting cables. It also comprises a fixing device for at least one of the support cables.
  • the DE 39 11 391 C1 describes a method and an apparatus for checking the driving ability.
  • a force signal generator via the cable on him transmitted force determined until the rope begins to slide on the traction sheave.
  • a first WegumblenaufĂȘt with a rope of the cable and a second Wegumblenaufillon be connected to the traction sheave.
  • the devices necessary for the implementation of the known methods require a relatively high outlay during assembly of the transducers.
  • the implementation of the conventional method is associated with a high expenditure of time.
  • the object of the present invention is to eliminate the disadvantages of the prior art.
  • a method which is as simple and efficient as possible for testing the proper functioning of an elevator should be specified.
  • a change in the distance is measured by means of an optical distance measuring device between the car and a fixed measuring point in the elevator shaft in order to determine the characteristic value.
  • This makes it possible, in a surprisingly simple way, to carry out the method for checking the proper functioning of the elevator quickly and efficiently.
  • a complicated and time-consuming attachment of measuring devices to ropes and / or the traction sheave and / or the laying of cables to a sensor outside the hoistway can be dispensed with.
  • the proposed method is also particularly universal, since the design of the elevator shaft is defined by standards. As a result, lift shafts hardly differ even in a different design of elevators. This further simplifies the inspection of the proper functioning of the elevator.
  • the fixed measuring point is located in the hoistway pit space, in which case the distance to a car underside of the car is measured.
  • the hoistway pit area is easily accessible to the test engineer. There can be arranged for measuring the change in distance suitable distance measuring device without great effort.
  • the change of the distance is measured by means of an optical distance measuring device.
  • the distance measuring device expediently comprises a clock, which z. B. allows a time-resolved measurement of the distance of the car to a fixed measuring point.
  • the clock generator can for example be part of a computer to which the distance measuring device is connected for the transmission and evaluation of the measured values measured therewith.
  • the distance measuring device it has proven to be expedient to use the distance measuring device to measure and record at least 500, preferably 700 to 2500, distance values per second. Conveniently, 800 to 1200 distance values per second are measured and evaluated with a downstream evaluation. With the proposed acquisition frequency of the measurements, it is possible to accurately capture the dynamic behavior of the car in test routines required for the proper functioning test. The results obtained are much more accurate than those achievable with conventional test routines. At the same time, the process can be carried out more easily and inexpensively.
  • the distance values, expediently 900 to 1100 per second can also be recorded as a function of measured values supplied by a force-measuring device. Here too, the aforementioned measurement frequency can be used.
  • the distance measuring device forms the fixed measuring point. This simplifies the procedure. It eliminates complex adjustments compared to a z. B. designed as a mirror fixed measuring point and possibly required cable laying work to a computer.
  • the distance measuring device is placed in a hoistway pit space which is bounded by a floor of the hoistway, its walls and an imaginary surface which rests on an upper surface of bumpers supported on the ground.
  • the lift pit mine is relatively easy to walk on. Below the imaginary surface, which rests on top of the buffer, the distance measuring device can be safely accommodated. Even with a placement of the car or the counterweight on the buffers damage to the distance measuring device is not to be feared.
  • the distance measuring device is supported on the floor of the hoistway pit area.
  • an optical distance sensor is used as the distance measuring device, which comprises a along an optical axis transmitting light rays emitting sensor, at least one oscillator for modulating the transmitted light beams and a receiving light beam receiving receiver with means for determining the transit time of the reflected from the car bottom receiving light beams having.
  • the transmitting and the receiving light beam are not pulsed in this embodiment.
  • the distance measurement is done by frequency measurement.
  • Such a frequency measurement can be accomplished with little circuit complexity. It is thus possible to measure the change over time of a distance between the underside of the car and the fixed measuring point particularly accurately and with high resolution.
  • the means for determining the transit time comprise a phase difference detector, which is connected to the receiver via an electrical signal path.
  • an electronic signal delay unit can be turned on, with which a phase difference between transmitting and receiving light beams is set or adjusted to a predetermined value.
  • at least one synchronous rectifier is expediently provided between transmitting and receiving light beams.
  • the transmitter can be modulated by a preceding oscillator at a constant frequency, so that the output of a clock oscillator is fed to the synchronous rectifier, wherein the frequency of the clock oscillator is adjustable by feedback of the output signal of the synchronous rectifier.
  • the phase difference between the signals of the oscillator and the clock oscillator can be determined and evaluated in the evaluation unit as a measure of the distance. It may also be that for determining the phase shift between transmitting and receiving light beams, the modulation frequency of the transmitted light beams is adjustable by the integrated output signal of the synchronous rectifier is fed back on a transmitter upstream of the oscillator, wherein the set in the oscillator modulation frequency in the evaluation unit as a measure of the Distance is evaluated.
  • a distance measuring device with the aforementioned features is particularly suitable for measuring the distance of the car relative to the fixed measuring point. A measurement frequency achievable thereby enables a measurement of the temporal change of the distance in the millisecond range.
  • the proposed distance measuring device is thus universally suitable for determining all speed and / or acceleration-dependent characteristic values when testing the proper functioning of an elevator.
  • the optical distance sensor is supported on the floor of the hoistway pit, and a reflector is attached to the underside of the car.
  • the support of the optical distance sensor on the shaft bottom can be accomplished particularly easily. Cumbersome installation work is not required.
  • an evaluation unit for evaluating the received signals present at the output of the receiver.
  • the receiver may have a photosensitive surface whose normal vector is tilted by a predetermined tilt angle to the optical axis. This can be avoided that light is reflected by the receiver in the region of the optical axis, which could lead to a falsification of Messergehnisse.
  • the tilt angle is suitably in the range of 10 to 30 °.
  • the distance is measured as a function of time and from this an acceleration of the car is determined.
  • the acceleration can be determined simply and accurately by twice the derivative of the distance values measured over time.
  • a multiplicity of characteristic values reproduced for the proper functioning of an elevator can be determined.
  • the delay of the car when the safety gear is triggered can be determined particularly accurately.
  • the process can be carried out surprisingly easily. In particular, it is not necessary to attach a measuring device to a cable, the traction sheave or the like.
  • the downward movement is carried out with unladen car.
  • the safety gear is triggered in a lower half, preferably a lower third, more preferably in a lower quarter of a travel path of the car. Because of the increasing rope length between traction sheave and car, the safety gear is particularly heavily stressed in a lower portion of the driveway. For the functionality of the safety gear results in a lower portion of the track particularly meaningful values.
  • the downward movement is carried out at rated speed. This further simplifies the proposed method.
  • the proposed method can be carried out surprisingly easily and quickly.
  • it can be dispensed with the time-consuming installation of transducers on ropes, the traction sheave or the like.
  • the driving ability of the traction sheave when triggering the braking device can be determined with improved accuracy.
  • the term "braking device” is understood to mean a traction disk brake acting directly on the traction sheave or else a transmission or engine brake acting indirectly on the traction sheave.
  • the term “elevator shaft” is also generally understood in the sense of the present invention. This includes both fully and partially reinforced lift shafts.
  • the "distance” is a distance measured essentially in the direction of movement of the car.
  • An “elevator” is understood to mean both an elevator with a car which can be moved in the vertical direction and an inclined elevator, in which the car can be moved at least 15 ° obliquely in relation to the horizontal.
  • the driving capability for emergency stop in the sense of DIN EN 81-1 can be determined.
  • the distance of the car over time when moving the car is measured directly and triggered the braking device.
  • the delay of the movement after release of the braking device can be determined from the measured distance by two-fold derivation after the time.
  • the movement is carried out with the car unloaded. This further increases the efficiency of the proposed method.
  • it is also possible to load the car, for example, with nominal load.
  • the moving of the car is carried out at rated speed. This further simplifies the proposed method.
  • the car is moved up to determine the driving ability T.
  • the method according to the invention it is also possible to determine the driving ability of a downward movement of the car with a high accuracy.
  • the method according to the invention which forms a test sequence, can be combined with further test sequences.
  • the force measuring devices are thus also introduced into the elevator shaft pit and are thus in the vicinity of the distance measuring device.
  • the establishment of a force measuring devices, the distance measuring device and the computer comprehensive measuring device in the hoistway pit can be performed quickly and easily. With such a measuring device all required to check the proper functioning of an elevator characteristics can be determined.
  • the distance measuring device provided according to the invention, it is also advantageously possible in a particularly simple manner to calculate the respective proportionate cable weight on the counterweight side and / or on the car side and to take this into consideration when determining the characteristic values.
  • the proposed further test sequence can also be carried out quickly and easily using the measuring device described above.
  • the other test sequences can be advantageously carried out with unladen car. This further simplifies and speeds up the proposed procedure.
  • an arrangement for testing the proper functioning of an elevator, in which a car is movable in an elevator shaft, and wherein an optical distance measuring device for measuring a change in a distance of the car relative to a fixed measuring point in the elevator shaft is arranged in the elevator shaft ,
  • the proposed arrangement can be produced easily and quickly. For this purpose, for example, it is only necessary to set down a distance measuring device on a floor of the hoistway pit space, and to adjust with respect to a car underside. A time-consuming, cumbersome and complicated attachment of transducers on ropes, the traction sheave or the like. Is not required in the inventive arrangement.
  • the arrangement according to the invention can be produced particularly easily with a measuring device in which the optical distance sensor and a computer for recording and evaluating the recorded measured values are accommodated or combined in a suitcase in the manner of a kit.
  • a reflector and at least one force measuring device can also be accommodated.
  • the test engineer merely has to deposit the suitcase on the floor of the hoistway pit, attach the reflector, which can be provided with a magnetic foil, to the underside of the car and record the optical distance sensor received in the case, by means of a laser beam radiated from it, for example Adjust the reflector attached to the underside of the car.
  • the distance measuring device may be provided with an adjusting device. It may be three mounted on the underside of the distance measuring device supports, which are variable in their length, for example in the manner of adjusting screws.
  • test engineer can initiate a predetermined sequence of movements of the car. From the measured values recorded with the measurement error, all characteristic values necessary for checking the proper functioning of an elevator can be automatically or partially automatically determined.
  • Fig. 1 shows schematically and in a perspective partial view of a measuring device according to the invention for testing the driving ability of an elevator.
  • Fig. 1 are guided over a traction sheave 1 more ropes 2.
  • the one ends of the cables 2 are attached to a car 3, the other ends to a counterweight 4.
  • Reference numeral 5 denotes a drive and brake device for driving and braking the traction sheave 1.
  • An optical distance sensor 7 is located on a shaft bottom 6 of an elevator shaft (not shown here).
  • a transmitted light beam 8 for measuring a distance is reflected, for example, by means of a reflector on an underside of the car 3 and as a received light beam by a receiver 10 of the optical distance sensor 7 receive.
  • the optical distance sensor 7 is connected to a computer 9 for recording the distance values measured therewith over time.
  • Reference numeral 10 denotes a first buffer for damping a downward movement of the counterweight 4.
  • a second buffer 11 serves to dampen the downward movement of the elevator car 3.
  • the first 10 and the second buffer 11 are supported on the shaft floor 6 of the hoistway.
  • a first force measuring device 12 and on the second buffer 11, a second force measuring device 13 is arranged on the first buffer 10.
  • the force measuring devices 12, 13 may be conventional load cells.
  • the force measuring devices 12, 13 are connected to the computer 9.
  • the computer 9 and the optical distance sensor 7 are arranged in an elevator shaft space, which is located between the shaft bottom 6 and an imaginary surface, which runs approximately parallel to the shaft bottom 6 and simultaneously rests on an upper side of the first 10 and second puff 11.
  • Fig. 3 shows a partial perspective view of the elevator in a measurement of the overdrive using the measuring device.
  • the counterweight 4 is supported on the first buffer 10 via the first force measuring device 12. It is measured by means of the first force measuring device 12, the force acting on the first buffer 10 force over time. At the same time, the distance between the car 3 and the force can be measured with the optical distance sensor 7.
  • the traction sheave 1 is rotated in a lift the car 3 direction until the rope slip. From the force measured with the first force measuring device 12 at the time of the cable slip, the so-called over-driving capability T2 '/ T1' according to formula (2) can be determined.
  • Fig. 4 shows a third partial perspective view of the elevator and the measuring device.
  • the car 3 is placed with the bottom of the car floor on the recorded on the second buffer 11 second force measuring device 13.
  • the second force measuring device 13 (not visible here), the force exerted on the second buffer 11 is measured.
  • the distance to the underside of the car floor is measured.
  • the traction sheave 1 is moved in a counterweight 4 lifting direction until the rope slip.
  • the minimum driveability T2 "/ T1" can be determined according to formula (3).
  • the characteristic of the second buffer 11 can be determined.
  • Fig. 5 shows an example of a recorded with the computer 9 measurement of the distance between the optical distance sensor 7 and the car 3 over time and their first derivative-V over time. From the slope of the first derivative of the count in a time interval t1 to t2 after the triggering of the safety gear, the delay s of the car 3 can be determined. Given the weight on the car side, ie the weight of the car 3 and given nominal load can be determined according to the formula (1) the delay Vf for the laden with nominal load car 3 in free fall as a characteristic value.
  • Fig. 6 shows an exemplary recorded with the computer 9 buffer characteristic.
  • a measurement of the distance of a bottom of the car 3 with respect to the shaft bottom 6 in particular also allows consideration of the rope weights.
  • Fig. 7 schematically shows a cable arrangement.
  • the rope weights can be considered according to formula (4) for 1: 1 or 1: 2 suspended lifts. All distances from the optical distance sensor (7) can be detected automatically.
  • the specific rope weight can be taken from a table by this is recorded against a rope diameter.
  • an optical distance sensor 7 which determines the temporal change of a distance between the pit and a bottom of the car 3 from a phase shift between a transmitting 8 and a received light beam, can be particularly fast, efficient and easy to check the proper Operability of an elevator can be performed.
  • the efficiency of the proposed method can be further increased if the optical distance sensor 7 is combined with force measuring devices 12, 13.
  • the relevant rope weights can be determined automatically with the distance measurement. Only the number of ropes and the rope diameter must be entered manually.
  • the half-load compensation can be determined automatically by the counterweight 4 is lowered with the brake open on the buffer 10 with the force measuring device 12.
  • the car weight can be determined automatically using the following methods:
  • the counterweight 4 is driven in the vicinity of the buffer 10, for example, the car 3 is moved to the top stop.
  • the brake of the drive is now opened.
  • the counterweight 4 is braked by the force measuring device 12, which lies on the buffer 10.
  • the first force Fm1 applied to the force measuring device 10 is measured.
  • the delay a1 can again be determined by the second derivative of the measured distance after the time.
  • the two methods are also suitable for determining the counterweight.
  • the determined values such as counterweight, car weight, proportionate rope weights, speed and head are automatically provided for the calculation of the dynamic driving ability, the driving ability when loading the car 3, the overdrive capability and the buffer characteristic. The expert no longer has to search the data in the test book.
  • the Fig. 8 to 10 show path / time diagrams obtained on a test elevator using a distance measuring device with an optical distance sensor.
  • a car 3 is connected to a counterweight 4 via a plurality of ropes 2 guided by a traction sheave.
  • the car 3 has a safety gear.
  • a drive device for driving the traction sheave 1 is provided with a braking device.
  • a change in the distance A has been measured with the optical distance sensor with respect to a car underside time-resolved. The measured values have been stored on a computer 9 and subsequently evaluated.
  • Fig. 8 shows a path / time diagram of a complete sequence.
  • the car 3 has been moved for calibration purposes, first from a first floor S1 to the next higher floors S2, S3, S4.
  • the cable masses mA, mB, mC and mD can be determined.
  • the point S5 describes a so-called "Überfahrweg, in which the counterweight rests on the corresponding buffer.
  • the braking device has been released and the safety device has been triggered at point M2.
  • the braking device has been released and the braking device has been actuated at point M4.
  • the car 3 rests on the corresponding buffer in the shaft pit.
  • Fig. 9 shows the path / time diagram in higher resolution according to Fig. 8 in the area of point M2. Further, to the path / time curve, the derivative of the velocity / time curve has been calculated and also shown. The approximately at the time 237.2 s observable increase in the path of the car 3 is caused by the falling counterweight 4. This shows, conversely, that the counterweight 4 has no influence on the measurement of the deceleration s according to regulations.
  • the delay Vf can be determined by determining the slope of the substantially rectilinear region in the velocity / time diagram.
  • Fig. 10 shows the path / time diagram according to Fig. 8 with higher resolution in the area of point M4. Again, the first derivative of the path / time curve is shown. A delay at point M4 can also be achieved by applying the in Fig. 10 shown tangent Tg be determined at the linear region in the velocity / time diagram while determining their slope. From the determined deceleration S2, according to the formula (2), the driving capability T can be determined.

Description

Die Erfindung betrifft ein Verfahren zur PrĂŒfung der ordnungsgemĂ€ĂŸen FunktionsfĂ€higkeit, insbesondere einer TreibfĂ€higkeit, ÜbertreibfĂ€higkeit, Fangvorrichtung und dgl., eines Aufzugs, bei dem ein Fahrkorb in einem einen Auf zugsschachtgrubenraum aufweisenden Aufzugsschacht bewegbar ist, und wobei zur Bestimmung der ordnungsgemĂ€ĂŸen FunktionsfĂ€higkeit des Aufzugs unter vorgegebenen PrĂŒfbedingungen ein Kennwert ermittelt wird.The invention relates to a method for testing the proper functioning, in particular a driving ability, overdrive, safety gear and the like., An elevator in which a car in a zugsschachtgrubenraum on an elevator shaft is movable, and wherein for determining the proper functioning of the elevator below predetermined Test conditions a characteristic value is determined.

Die EP 1 749 781 A1 betrifft einen Seilschlupfdetektor fĂŒr einen Aufzug, bei dem ein Fahrkorb in einem einen Aufzugs schachtgrubenraum aufweisenden Aufzugsschacht bewegbar ist, wobei der Fahrkorb mit einer Fangvorrichtung versehen und ĂŒber zumindest ein ĂŒber eine Treibscheib e gefĂŒhrtes Seil mit einem Gegengewicht verbunden ist. Zur Ermittlung des Seilschlupfs wird mittels einer optischen Abstandsmesseinrichtung ein Abstand zwischen dem Fahrkorb und einem festen Messpunkt im Aufzugsschacht gemessen. Durch eine Differenzierung der gemessenen Abstandswerte ĂŒber der Zeit kann die Geschwindigkeit des Fahrkorbs ermittelt werden.The EP 1 749 781 A1 relates to a cable slip detector for an elevator in which a car is movable in an elevator shaft having an elevator shaft shaft, the car is provided with a safety gear and is connected via at least one guided over a drive pulley e rope with a counterweight. To determine the cable slip, a distance between the car and a fixed measuring point in the elevator shaft is measured by means of an optical distance measuring device. By differentiating the measured distance values over time, the speed of the car can be determined.

Die DE 101 50 284 A1 offenbart ein Verfahren zur Diagnose von Aufzugsanlagen. Dabei wird der Fahrkorb mit einem Beschleunigungsaufnehmer versehen. Die mit dem Beschleunigungsaufnehmer gemessenen Beschleunigungswerte werden an eine außerhalb des Fahrkorbs angeordnete Auswerteeinheit ĂŒbermittelt.The DE 101 50 284 A1 discloses a method for the diagnosis of elevator installations. The car is provided with an accelerometer. The acceleration values measured with the accelerometer are transmitted to an evaluation unit arranged outside the car.

Die DE 10 2006 011 395 A1 offenbart eine Messvorrichtung fĂŒr eine TreibfĂ€higkeitsmessung an einer Aufzugsanlage. Die Messvorrichtung weist eine Befestigungsvorrichtung zur Positionierung an mehreren Tragseilen auf. Sie umfasst ferner eine Fixiervorrichtung fĂŒr zumindest eines der Tragseile.The DE 10 2006 011 395 A1 discloses a measuring device for a driving capability measurement on an elevator installation. The measuring device has a fastening device for positioning on a plurality of supporting cables. It also comprises a fixing device for at least one of the support cables.

Die DE 39 11 391 C1 beschreibt ein Verfahren und eine Vorrichtung zum ÜberprĂŒfen der TreibfĂ€higkeit. Dabei wird zwischen wenigstens einem Seil des Seilzugs und einem Festpunkt mittels eines Kraftmesssignalgebers die ĂŒber den Seilzug auf ihn ĂŒbertragene Kraft ermittelt, bis das Seil auf der Treibscheibe zu rutschen beginnt. Zu diesem Zweck können zusĂ€tzlich ein erster Wegstreckenaufnehmer mit einem Seil des Seilzugs und ein zweiter Wegstreckenaufnehmer mit der Treibscheibe verbunden sein.The DE 39 11 391 C1 describes a method and an apparatus for checking the driving ability. In this case, between at least one cable of the cable and a fixed point by means of a force signal generator via the cable on him transmitted force determined until the rope begins to slide on the traction sheave. For this purpose, in addition a first Wegstreckenaufnehmer with a rope of the cable and a second Wegstreckenaufnehmer be connected to the traction sheave.

Die zur DurchfĂŒhrung der bekannt en Verfahr en notwendigen Vorrichtungen erfordern bei der Montage der Messwertaufnehmer einen relativ hohen Aufwand. Die DurchfĂŒhrung der herkömmlichen Verfahren ist mit einem hohen Zeitaufwand verbunden.The devices necessary for the implementation of the known methods require a relatively high outlay during assembly of the transducers. The implementation of the conventional method is associated with a high expenditure of time.

Aufgabe der vorliegenden Erfindung ist es, die Nachteile nach dem Stand der Technik zu beseitigen. Es soll insbesondere ein möglichst einfach und effizient durchfĂŒhrbares Verfahren zur PrĂŒfung der ordnungsgemĂ€ĂŸen FunktionsfĂ€higkeit eines Aufzugs angegeben werden.The object of the present invention is to eliminate the disadvantages of the prior art. In particular, a method which is as simple and efficient as possible for testing the proper functioning of an elevator should be specified.

Diese Aufgabe wird durch die Merkmale der AnsprĂŒche 1 und 2 gelöst. ZweckmĂ€ĂŸige Ausgestaltungen der Erfindung ergeben sich aus den Merkmalen der AnsprĂŒche 3 bis 18.This object is solved by the features of claims 1 and 2. Advantageous embodiments of the invention will become apparent from the features of claims 3 to 18.

Nach Maßgabe der Erfindung wird bei einem Verfahren zur PrĂŒfung der ordnungsgemĂ€ĂŸen FunktionsfĂ€higkeit eines Aufzugs insbesondere vorgeschlagen, dass zur Ermittlung des Kennwerts eine Änderung des Abstands mittels einer optischen Abstandsmesseinrichtung zwischen dem Fahrkorb und einem festen Messpunkt im Aufzugsschacht gemessen wird. - Damit gelingt es auf ĂŒberraschend einfache Weise, das Verfahren zur PrĂŒfung der ordnungsgemĂ€ĂŸen FunktionsfĂ€higkeit des Aufzugs schnell und effizient durchzufĂŒhren. Nach dem vorgeschlagenen Verfahren kann insbesondere auf ein kompliziertes und zeitaufwĂ€ndiges Anbringen von Messeinrichtungen an Seilen und/oder der Treibscheibe und/ oder das Verlegen von Kabeln zu einem Messwertaufnehmer außerhalb des Aufzugsschachts verzichtet werden. - Das vorgeschlagene Verfahren ist darĂŒber hinaus besonders universell, da die Ausgestaltung des Aufzugsschachts durch Normen festgelegt ist. Infolgedessen unterscheiden sich AufzugsschĂ€chte auch bei einer unterschiedlichen Ausgestaltung von AufzĂŒgen kaum. Das vereinfacht weiter die PrĂŒfung der ordnungsgemĂ€ĂŸen FunktionsfĂ€higkeit des Aufzugs.According to the invention, in a method for testing the proper functioning of an elevator, it is proposed, in particular, that a change in the distance is measured by means of an optical distance measuring device between the car and a fixed measuring point in the elevator shaft in order to determine the characteristic value. This makes it possible, in a surprisingly simple way, to carry out the method for checking the proper functioning of the elevator quickly and efficiently. According to the proposed method, a complicated and time-consuming attachment of measuring devices to ropes and / or the traction sheave and / or the laying of cables to a sensor outside the hoistway can be dispensed with. - The proposed method is also particularly universal, since the design of the elevator shaft is defined by standards. As a result, lift shafts hardly differ even in a different design of elevators. This further simplifies the inspection of the proper functioning of the elevator.

Nach einer vorteilhaften Ausgestaltung befindet sich der feste Messpunkt im Aufzugsschachtgrubenraum, wobei in diesem Fall der Abstand zu einer Fahrkorbunterseite des Fahrkorbs gemessen wird. Der Aufzugsschachtgrubenraum ist fĂŒr den PrĂŒfingenieur einfach zugĂ€nglich. Dort kann ohne großen Aufwand eine zur Messung der Änderung des Abstands geeignete Abstandsmesseinrichtung angeordnet werden.According to an advantageous embodiment, the fixed measuring point is located in the hoistway pit space, in which case the distance to a car underside of the car is measured. The hoistway pit area is easily accessible to the test engineer. There can be arranged for measuring the change in distance suitable distance measuring device without great effort.

Die Änderung des Abstands wird mittels einer optischen Abstandsmesseinrichtung gemessen. Die Abstandsmesseinrichtung umfasst zweckmĂ€ĂŸigerweise einen Taktgeber, welcher z. B. eine zeitaufgelöste Messung des Abstands des Fahrkorbs gegenĂŒber einem festen Messpunkt ermöglicht. Der Taktgeber kann beispielsweise Bestandteil eines Computers sein, an den die Abstandsmesseinrichtung zur Übermittlung und Auswertung der damit gemessenen Messwerte angeschlossen ist.The change of the distance is measured by means of an optical distance measuring device. The distance measuring device expediently comprises a clock, which z. B. allows a time-resolved measurement of the distance of the car to a fixed measuring point. The clock generator can for example be part of a computer to which the distance measuring device is connected for the transmission and evaluation of the measured values measured therewith.

Es hat sich als zweckmĂ€ĂŸig erwiesen, mit der Abstandsmesseinrichtung zumindest 500, vorzugsweise 700 bis 2500, Abstandswerte pro Sekunde zu messen und aufzuzeichnen. ZweckmĂ€ĂŸigerweise werden 800 bis 1200 Abstandswerte pro Sekunde gemessen und mit einer nachgeschalteten Auswerteelektronik ausgewertet. Mit der vorgeschlagenen Erfassungsfrequenz der Messwerte kann exakt das dynamische Verhalten des Fahrkorbs in fĂŒr die PrĂŒfung der ordnungsgemĂ€ĂŸen FunktionsfĂ€higkeit vorgeschriebenen PrĂŒfroutinen erfasst werden. Die dabei erzielten Ergebnisse sind wesentlich genauer als die mit herkömmlichen PrĂŒfroutinen erreichbaren Ergebnisse. Gleichzeitig lĂ€sst sich das Verfahren einfacher und kostengĂŒnstiger durchfĂŒhren. Die Abstandswerte, zweckmĂ€ĂŸigerweise 900 bis 1100 pro Sekunde, können auch in AbhĂ€ngigkeit von von einer Kraftmesseinrichtung gelieferten Messwerten aufgezeichnet werden. Auch dabei kann die vorerwĂ€hnte Messfrequenz verwendet werden.It has proven to be expedient to use the distance measuring device to measure and record at least 500, preferably 700 to 2500, distance values per second. Conveniently, 800 to 1200 distance values per second are measured and evaluated with a downstream evaluation. With the proposed acquisition frequency of the measurements, it is possible to accurately capture the dynamic behavior of the car in test routines required for the proper functioning test. The results obtained are much more accurate than those achievable with conventional test routines. At the same time, the process can be carried out more easily and inexpensively. The distance values, expediently 900 to 1100 per second, can also be recorded as a function of measured values supplied by a force-measuring device. Here too, the aforementioned measurement frequency can be used.

ZweckmĂ€ĂŸigerweise bildet die Abstandsmesseinrichtung den festen Messpunkt. Das vereinfacht das Verfahren. Es entfallen aufwĂ€ndige Justierarbeiten gegenĂŒber einem z. B. als Spiegel ausgebildeten festen Messpunkt sowie ggf. erforderliche Kabelverlegearbeiten zu einem Computer.Conveniently, the distance measuring device forms the fixed measuring point. This simplifies the procedure. It eliminates complex adjustments compared to a z. B. designed as a mirror fixed measuring point and possibly required cable laying work to a computer.

In der Praxis hat es sich als besonders vorteilhaft erwiesen, dass die Abstandsmesseinrichtung in einen Aufzugsschachtgrubenraum gesetzt wird, welcher durch einen Boden des Aufzugsschachts, dessen WĂ€nde und eine gedachte FlĂ€che begrenzt ist, welche auf einer Oberseite von auf dem Boden abgestĂŒtzten Puffern aufliegt. Der Aufzugsschachtgrubenraum ist relativ einfach begehbar. Unterhalb der gedachten FlĂ€che, welche auf der Oberseite der Puffer aufliegt, kann die Abstandsmesseinrichtung sicher untergebracht werden. Selbst bei einem Aufsetzen des Fahrkorbs oder des Gegengewichts auf den Puffern ist eine BeschĂ€digung der Abstandsmessvorrichtung nicht zu befĂŒrchten. Nach einer besonders einfachen Ausgestaltung wird die Abstandsmesseinrichtung auf dem Boden des Aufzugsschachtgrubenraums abgestĂŒtzt.In practice, it has proved to be particularly advantageous that the distance measuring device is placed in a hoistway pit space which is bounded by a floor of the hoistway, its walls and an imaginary surface which rests on an upper surface of bumpers supported on the ground. The lift pit mine is relatively easy to walk on. Below the imaginary surface, which rests on top of the buffer, the distance measuring device can be safely accommodated. Even with a placement of the car or the counterweight on the buffers damage to the distance measuring device is not to be feared. According to a particularly simple embodiment, the distance measuring device is supported on the floor of the hoistway pit area.

Nach einer weiteren besonders vorteilhaften Ausgestaltung der Erfindung wird als Abstandsmesseinrichtung ein optischer Distanzsensor verwendet, welcher einen entlang einer optischen Achse Sendelichtstrahlen emittierenden Sensor, wenigstens einen Oszillator zur Modulation der Sendelichtstrahlen und einen Empfangslichtstrahl empfangenden EmpfĂ€nger mit Mitteln zur Bestimmung der Laufzeit der von der Fahrkorbunterseite reflektierten Empfangslichtstrahlen aufweist. Mit dem vorgeschlagenen optischen Distanzsensor kann insbesondere die zeitliche Änderung des Abstands des Fahrkorbs aus der Phasendifferenz zwischen Sende- und Empfangslichtstrahl bestimmt werden.According to a further particularly advantageous embodiment of the invention, an optical distance sensor is used as the distance measuring device, which comprises a along an optical axis transmitting light rays emitting sensor, at least one oscillator for modulating the transmitted light beams and a receiving light beam receiving receiver with means for determining the transit time of the reflected from the car bottom receiving light beams having. With the proposed optical distance sensor, in particular the time change of the distance of the car from the phase difference between the transmitted and received light beam can be determined.

Der Sende- und der Empfangslichtstrahl sind bei dieser Ausgestaltung nicht gepulst. Die Entfernungsmessung erfolgt durch Frequenzmessung.The transmitting and the receiving light beam are not pulsed in this embodiment. The distance measurement is done by frequency measurement.

Eine solche Frequenzmessung kann mit geringem Schaltungsaufwand bewerkstelligt werden. Es ist damit möglich, die zeitliche Änderung eines Abstands zwischen der Fahrkorbunterseite und dem festen Messpunkt besonders exakt und mit hoher Auflösung zu messen.Such a frequency measurement can be accomplished with little circuit complexity. It is thus possible to measure the change over time of a distance between the underside of the car and the fixed measuring point particularly accurately and with high resolution.

Nach einer weiteren Ausgestaltung der Erfindung ist vorgesehen, dass die Mittel zur Bestimmung der Laufzeit einen Phasendifferenzdetektor umfassen, welcher mit dem EmpfĂ€nger ĂŒber einen elektrischen Signalweg verbunden ist. In den elektrischen Signalweg kann eine elektronische Signalverzögerungseinheit eingeschaltet sein, mit der eine Phasendifferenz zwischen Sende- und Empfangslichtstrahlen auf einen vorgegebenen Wert eingestellt oder eingeregelt wird. Zur Bestimmung der Phasenverschiebung ist zweckmĂ€ĂŸigerweise zwischen Sende- und Empfangslichtstrahlen wenigstens ein Synchrongleichrichter vorgesehen. Der Sender kann durch einen vorgeschalteten Oszillator mit einer konstanten Frequenz moduliert sein, so dass der Ausgang eines Taktoszillators auf den Synchrongleichrichter gefĂŒhrt ist, wobei die Frequenz des Taktoszillators durch RĂŒckkopplung des Ausgangssignals des Synchrongleichrichters einstellbar ist. In einem Phasendetektor kann die Phasendifferenz zwischen den Signalen des Oszillators und des Taktoszillators bestimmt und in der Auswerteeinheit als Maß fĂŒr den Abstand ausgewertet werden. Es kann auch sein, dass zur Bestimmung der Phasenverschiebung zwischen Sende- und Empfangslichtstrahlen die Modulationsfrequenz der Sendelichtstrahlen einstellbar ist, indem auf einem den Sender vorgeschalteten Oszillator das integrierte Ausgangssignal des Synchrongleichrichters rĂŒckgekoppelt ist, wobei die im Oszillator eingestellte Modulationsfrequenz in der Auswerteinheit als Maß fĂŒr den Abstand ausgewertet wird. Eine Abstandsmesseinrichtung mit den vorgenannten Merkmalen eignet sich zur Messung des Abstands des Fahrkorbs gegenĂŒber dem festen Messpunkt besonders gut. Eine damit erreichbare Messfrequenz ermöglicht eine Messung der zeitlichen Änderung des Abstands im Millisekundenbereich. Damit können Verzögerungen und/oder Beschleunigungen erfasst werden, wie sie beispielsweise beim Auslösen einer Fangvorrichtung, bei Nothalt oder dgl., auftreten. Die vorgeschlagene Abstandsmesseinrichtung eignet also universell zur Ermittlung aller geschwindigkeits- und/oder beschleunigungsabhĂ€ngigen Kennwerte bei der PrĂŒfung der ordnungsgemĂ€ĂŸen FunktionsfĂ€higkeit eines Aufzugs.According to a further embodiment of the invention, it is provided that the means for determining the transit time comprise a phase difference detector, which is connected to the receiver via an electrical signal path. In the electrical signal path, an electronic signal delay unit can be turned on, with which a phase difference between transmitting and receiving light beams is set or adjusted to a predetermined value. For determining the phase shift, at least one synchronous rectifier is expediently provided between transmitting and receiving light beams. The transmitter can be modulated by a preceding oscillator at a constant frequency, so that the output of a clock oscillator is fed to the synchronous rectifier, wherein the frequency of the clock oscillator is adjustable by feedback of the output signal of the synchronous rectifier. In a phase detector, the phase difference between the signals of the oscillator and the clock oscillator can be determined and evaluated in the evaluation unit as a measure of the distance. It may also be that for determining the phase shift between transmitting and receiving light beams, the modulation frequency of the transmitted light beams is adjustable by the integrated output signal of the synchronous rectifier is fed back on a transmitter upstream of the oscillator, wherein the set in the oscillator modulation frequency in the evaluation unit as a measure of the Distance is evaluated. A distance measuring device with the aforementioned features is particularly suitable for measuring the distance of the car relative to the fixed measuring point. A measurement frequency achievable thereby enables a measurement of the temporal change of the distance in the millisecond range. This delay and / or accelerations can be detected, as they occur, for example, when triggering a safety gear, emergency stop or the like .. The proposed distance measuring device is thus universally suitable for determining all speed and / or acceleration-dependent characteristic values when testing the proper functioning of an elevator.

Vorteilhafterweise ist der optische Distanzsensor auf dem Boden der Aufzugsschachtgrube abgestĂŒtzt und an der Fahrkorbunterseite ist ein Reflektor angebracht. Das AbstĂŒtzen des optischen Distanzsensors auf dem Schachtboden lĂ€sst sich besonders einfach bewerkstelligen. UmstĂ€ndliche Montagearbeiten sind nicht erforderlich.Advantageously, the optical distance sensor is supported on the floor of the hoistway pit, and a reflector is attached to the underside of the car. The support of the optical distance sensor on the shaft bottom can be accomplished particularly easily. Cumbersome installation work is not required.

Nach einer weiteren Ausgestaltung ist eine Auswerteeinheit zur Auswertung der am Ausgang des EmpfĂ€ngers anstehenden Empfangssignale vorgesehen. Der EmpfĂ€nger kann eine lichtempfindliche FlĂ€che aufweisen, deren Normalvektor um einen vorgegebenen Kippwinkel zur optischen Achse geneigt ist. Damit kann vermieden werden, dass vom EmpfĂ€nger Licht in den Bereich der optischen Achse reflektiert wird, was zu einer VerfĂ€lschung der Messergehnisse fĂŒhren könnte. Der Kipp winkel liegt zweckmĂ€ĂŸigerweise im Bereich von 10 bis 30°.In accordance with a further embodiment, an evaluation unit is provided for evaluating the received signals present at the output of the receiver. The receiver may have a photosensitive surface whose normal vector is tilted by a predetermined tilt angle to the optical axis. This can be avoided that light is reflected by the receiver in the region of the optical axis, which could lead to a falsification of Messergehnisse. The tilt angle is suitably in the range of 10 to 30 °.

Zur Auswertung der Messwerte hat es sich als besonders vorteilhaft erwiesen, einen Tiefpassfilter, vorzugsweise einen SG- FIR-Tiefpassfilter, zu verwenden und die Messwerte damit zu filtern. Die Kombination des optischen Distanzsensors mit dem vorgeschlagenen Filter fĂŒhrt zu besonders zuverlĂ€ssigen Ergebnissen.To evaluate the measured values, it has proven to be particularly advantageous to use a low-pass filter, preferably an SG-FIR low-pass filter, and to filter the measured values with it. The combination of the optical distance sensor with the proposed filter leads to particularly reliable results.

Zur Ermittlung des Kennwerts wird der Abstand in AbhĂ€ngigkeit der Zeit gemessen und daraus eine Beschleunigung des Fahrkorbs ermittelt. Die Beschleunigung kann dabei einfach und exakt durch zweifache Ableitung der ĂŒber der Zeit gemessenen Abstandswerte ermittelt werden. Auf der Grundlage einer derart ermittelten Beschleunigung können eine Vielzahl von die ordnungsgemĂ€ĂŸe FunktionsfĂ€higkeit eines Aufzugs wiedergegebenen Kennwerten ermittelt werden.To determine the characteristic value, the distance is measured as a function of time and from this an acceleration of the car is determined. The acceleration can be determined simply and accurately by twice the derivative of the distance values measured over time. On the basis of such ascertained acceleration, a multiplicity of characteristic values reproduced for the proper functioning of an elevator can be determined.

Nach einer ersten Alternative des Verfahrens werden bei einem zu prĂŒfenden Aufzug, bei dem der Fahrkorb mit einer Fangvorrichtung versehen und ĂŒber zumindest ein ĂŒber eine Treibscheibe gefĂŒhrtes Seil mit einem Gegengewicht verbunden ist, zur Ermittlung eines die FunktionsfĂ€higkeit der Fangvorrichtung wiedergebenden Kennwerts die folgenden Schritte durchgefĂŒhrt:

  • AbwĂ€rtsbewegen des Fahrkorbs;
  • Auslösen der Fangvorrichtung;
  • Messen eines Abstands des Fahrkorbs gegenĂŒber dem festen Messpunkt gegenĂŒber der Zeit; und
  • Ermitteln der durch das Auslösen der Fangvorrichtung bewirkten Verzögerung Vf des Fahrkorbs aus den Messwerten.
According to a first alternative of the method, in an elevator to be tested, in which the car is provided with a safety gear and connected via at least one cable guided by a traction sheave with a counterweight, the following steps are carried out to determine a characteristic value representing the functionality of the safety gear:
  • Moving the car down;
  • Triggering the safety gear;
  • Measuring a distance of the car from the fixed measuring point with respect to time; and
  • Determining the caused by the triggering of the safety gear delay Vf of the car from the measured values.

Indem unmittelbar eine AbstandsĂ€nderung des Fahrkorbs gegen ĂŒber dem festen Messpunkt ĂŒber der Zeit gemessen wird, kann die Verzögerung des Fahrkorbs beim Auslösen der Fangvorrichtung besonders genau ermittelt werden. Das Verfahren lĂ€sst sich ĂŒberraschend einfach durchfĂŒhren. Insbesondere ist es nicht erforderlich, eine Messvorrichtung an einem Seil, der Treibscheibe oder dgl., anzubringen.By directly measuring a distance change of the car relative to the fixed measuring point over time, the delay of the car when the safety gear is triggered can be determined particularly accurately. The process can be carried out surprisingly easily. In particular, it is not necessary to attach a measuring device to a cable, the traction sheave or the like.

Nach einer vorteilhaften Ausgestaltung wird das AbwĂ€rtsbewegen mit unbeladenem Fahrkorb durchgefĂŒhrt. Das vereinfacht das erfindungsgemĂ€ĂŸe Verfahren. ZweckmĂ€ĂŸigerweise wird die Fangvorrichtung in einer unteren HĂ€lfte, vorzugsweise einem unteren Drittel, besonders bevorzugt in einem unteren Viertel, eines Fahrwegs des Fahrkorbs ausgelöst. Wegen der damit zunehmenden SeillĂ€nge zwischen Treibscheibe und Fahrkorb wird die Fangvorrichtung in einem unteren Abschnitt des Fahrwegs besonders stark beansprucht. FĂŒr die FunktionsfĂ€higkeit der Fangvorrichtung ergeben sich in einem unteren Abschnitt des Fahrwegs besonders aussagekrĂ€ftige Werte.According to an advantageous embodiment, the downward movement is carried out with unladen car. This simplifies the method according to the invention. Conveniently, the safety gear is triggered in a lower half, preferably a lower third, more preferably in a lower quarter of a travel path of the car. Because of the increasing rope length between traction sheave and car, the safety gear is particularly heavily stressed in a lower portion of the driveway. For the functionality of the safety gear results in a lower portion of the track particularly meaningful values.

Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung wird das AbwĂ€rtsbewegen mit Nenngeschwindigkeit durchgefĂŒhrt. Das vereinfacht weiter das vorgeschlagene Verfahren.According to a further advantageous embodiment of the invention, the downward movement is carried out at rated speed. This further simplifies the proposed method.

Die Verzögerung Vf fĂŒr den mit Nennlast beladenen Fahrkorb kann nach der folgenden Formel ermittelt werden: Vf = mFK * s š + mFK * g / mFK + NL - g

Figure imgb0001

wobei gilt:

NL
= Im Fahrkorb angegebene Nennlast
g
= Erdbeschleunigung
s
= 2te Ableitung des gemessenen Abstands nach der Zeit und
mFK
= Masse des Fahrkorbs
The delay Vf for the nominal load car may be determined by the following formula: Vf = MFK * s š + MFK * G / MFK + NL - G
Figure imgb0001

where:
NL
= Nominal load stated in the car
G
= Gravitational acceleration
s
= 2nd derivative of the measured distance with time and
MFK
= Mass of the car

Nach einer zweiten Alternative des Verfahrens werden, bei einem zu prĂŒfenden Aufzug, bei dem der Fahrkorb ĂŒber zumindest ein ĂŒber eine Treibscheibe gefĂŒhrtes Seil mit einem Gegengewicht verbunden und eine Bremseinrichtung zum Abbremsen der Treibscheibe vorgesehen ist, die folgenden Schritte zur Ermittlung eines eine TreibfĂ€higkeit T der Treibscheibe beschreibenden Kennwerts durchgefĂŒhrt:

  • Bewegen des Fahrkorbs;
  • Auslösen der Bremseinrichtung;
  • Messen eines Abstands des Fahrkorbs gegenĂŒber einem festen Messpunkt ĂŒber der Zeit; und
  • Ermittlung der TreibfĂ€higkeit T der Treibscheibe aus den gemessenen Werten.
According to a second alternative of the method, in an elevator to be tested, in which the car is connected via at least one cable guided via a traction sheave to a counterweight and a braking device for braking the traction sheave is provided, the following steps for determining a descriptive of a driving capability T of the traction sheave characteristic carried out:
  • Moving the car;
  • Triggering the braking device;
  • Measuring a distance of the car from a fixed measuring point over time; and
  • Determination of the driving capability T of the traction sheave from the measured values.

Indem vorteilhafterweise der Abstand der Fahrkorbunterseite gemessen wird, lĂ€sst sich das vorgeschlagene Verfahren ĂŒberraschend einfach und schnell durchfĂŒhren. Es kann insbesondere auf die zeitaufwĂ€ndige Montage von Messwertaufnehmern an Seilen, der Treibscheibe oder dgl. Verzichtet werden. Abgesehen davon kann aus einer Messung der Änderung des Abstands des Fahrkorbs gegenĂŒber einem festen Messpunkt die TreibfĂ€higkeit der Treibscheibe beim Auslösen der Bremseinrichtung mit verbesserter Genauigkeit ermittelt werden.By advantageously measuring the distance of the underside of the car, the proposed method can be carried out surprisingly easily and quickly. In particular, it can be dispensed with the time-consuming installation of transducers on ropes, the traction sheave or the like. Apart from that, from a measurement of the change in the distance of the car from a fixed measuring point, the driving ability of the traction sheave when triggering the braking device can be determined with improved accuracy.

Im Sinne der vorliegenden Erfindung wird unter dem Begriff "Bremseinrichtung" eine direkt auf die Treibscheibe wirkende Treibscheibenbremse oder auch eine indirekt auf die Treibscheibe wirkende Getriebe- oder Motorbremse verstanden. Der Begriff "Aufzugsschacht" ist im Sinne der vor liegenden Erfindung ebenfalls allgemein zu verstehen. Darunter werden sowohl voll- als auch teilumwehrte AufzugsschĂ€chte verstanden. Im Sinne der vorliegenden Erfindung handelt es sich bei dem "Abstand" um eine im Wesentlichen in Bewegungsrichtung des Fahrkorbs gemessene Distanz. Unter einem "Aufzug" wird sowohl ein Aufzug mit einem in vertikaler Richtung verfahrbaren Fahrkorb als auch ein SchrĂ€gaufzug verstanden, bei dem der Fahrkorb um zumindest 15° schrĂ€g gegenĂŒber der Waagerechten verfahrbar ist.For the purposes of the present invention, the term "braking device" is understood to mean a traction disk brake acting directly on the traction sheave or else a transmission or engine brake acting indirectly on the traction sheave. The term "elevator shaft" is also generally understood in the sense of the present invention. This includes both fully and partially reinforced lift shafts. For the purposes of the present invention, the "distance" is a distance measured essentially in the direction of movement of the car. An "elevator" is understood to mean both an elevator with a car which can be moved in the vertical direction and an inclined elevator, in which the car can be moved at least 15 ° obliquely in relation to the horizontal.

Mit dem vorgeschlagenen Verfahren kann insbesondere die TreibfĂ€higkeit bei Nothalt im Sinne der DIN EN 81-1 ermittelt werden. zu diesem Zweck wird unmittelbar der Abstand des Fahrkorbs ĂŒber der Zeit beim Bewegen des Fahrkorbs gemessen und die Bremseinrichtung ausgelöst. Die Verzögerung der Bewegung nach Auslösen der Bremseinrichtung lĂ€sst sich aus dem gemessenen Abstand durch zweifache Ableitung nach der Zeit ermitteln.With the proposed method, in particular the driving capability for emergency stop in the sense of DIN EN 81-1 can be determined. For this purpose, the distance of the car over time when moving the car is measured directly and triggered the braking device. The delay of the movement after release of the braking device can be determined from the measured distance by two-fold derivation after the time.

Im Gegensatz zum Stand der Technik ist es hier nicht erforderlich, zur Berechnung auf Integrationskonstanten zurĂŒckzugreifen. Die Verwendung von Integrationskonstanten fĂŒhrt bei der Berechnung zu Ungenauigkeiten.In contrast to the prior art, it is not necessary here to resort to calculation constants of integration. The use of integration constants leads to inaccuracies in the calculation.

Vorteilhafterweise wird das Bewegen mit unbeladenem Fahrkorb durchgefĂŒhrt. Das erhöht weiter die Effizienz des vorgeschlagenen Verfahrens. SelbstverstĂ€ndlich ist es auch möglich, den Fahrkorb beispielsweise mit Nennlast zu beladen.Advantageously, the movement is carried out with the car unloaded. This further increases the efficiency of the proposed method. Of course, it is also possible to load the car, for example, with nominal load.

Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung wird das Bewegen des Fahrkorbs mit Nenngeschwindigkeit durchgefĂŒhrt. Das vereinfacht weiter das vorgeschlagene Verfahren.According to a further advantageous embodiment of the invention, the moving of the car is carried out at rated speed. This further simplifies the proposed method.

ZweckmĂ€ĂŸigerweise wird der Fahrkorb zur Ermittlung der TreibfĂ€higkeit T aufwĂ€rts bewegt. Mit dem erfindungsgemĂ€ĂŸen Verfahren ist es aber auch möglich, die TreibfĂ€higkeit einer AbwĂ€rtsbewegung des Fahrkorbs mit einer hohen Genauigkeit zu bestimmen.Conveniently, the car is moved up to determine the driving ability T. With the method according to the invention, it is also possible to determine the driving ability of a downward movement of the car with a high accuracy.

Die TreibfĂ€higkeit T wird zweckmĂ€ĂŸigerweise nach der folgenden Formel ermittelt: T = T ⁹ 2 T ⁹ 1 = mGG * s š + g V - mC * g - mD * g + F m ⁹ 2 g + mFK * g + mC + mD * V * s š mFK * g - s š V - mB * g + mA * g - mA + mB * V * s š

Figure imgb0002

, wobei gilt:

s
= a(t) = ermittelte Verzögerung zum Zeitpunkt t
A
= gemessener Abstand von der Schachtgrube zum Boden des Fahrkorbs
FH
= gemessene Förderhöhe
AH
= errechnete Höhe des Antriebs nach Eingabe der Etagenposition des Abtriebs
mFK
= Masse des Fahrkorbs
mGG
= Masse des Gegengewichts
V
= AufhÀngungsverhÀltnis, 1 :1 oder 2:1
n
= Seilanzahl
sg
= spezifisches Seilgewicht in Kg/m
g
= Beschleunigung
mA
= (FH-A) *sg*n
mB
= (FH-AH) *sg*n
mC
= (FH-AH) *sg*n
mD
= A*sg*n
The driving ability T is expediently determined according to the following formula: T = T ⁹ 2 T ⁹ 1 = MGG * s š + G V - mC * G - mD * G + F m ⁹ 2 G + MFK * G + mC + mD * V * s š MFK * G - s š V - mB * G + mA * G - mA + mB * V * s š
Figure imgb0002

where:
s
= a (t) = determined delay at time t
A
= measured distance from the pit to the bottom of the car
FH
= measured head
AH
= calculated height of the drive after entering the floor position of the output
MFK
= Mass of the car
MGG
= Mass of the counterweight
V
= Suspension ratio, 1: 1 or 2: 1
n
= Number of ropes
sg
= specific rope weight in kg / m
G
= Acceleration
mA
= (FH-A) * sg * n
mB
= (FH-AH) * sg * n
mC
= (FH-AH) * sg * n
mD
= A * sg * n

Zur PrĂŒfung der ordnungsgemĂ€ĂŸen FunktionsfĂ€higkeit eines Aufzugs ist es neben dem erlĂ€uterten Verfahren zur PrĂŒfung der TreibfĂ€higkei bei Nothalt außerdem erforderlich, weitere Kennwerte zu ermitteln. zu diesem Zweck kann das erfindungsgemĂ€ĂŸe Verfahren, welches eine PrĂŒfsequenz bildet, mit weiteren PrĂŒfsequenzen kombiniert werden. Dazu hat es sich als zweckmĂ€ĂŸig erwiesen, auf zumindest einem zum Gegengewicht korrespondierenden ersten Puffer eine erste Kraftmesseinrichtung und auf zumindest einem zum Fahrkorb korrespondierenden zweiten Puffer eine zweite Kraftmesseinrichtung abzustĂŒtzen. Die Kraftmesseinrichtungen werden also ebenfalls in die Aufzugsschachtgrube eingebracht und befinden sich damit in der NĂ€he der Abstandsmesseinrichtung. Das ermöglicht es vorteilhafterweise, die Messwerte der Abstandsmesseinrichtung und/oder der Kraftmesseinrichtungen mittels eines damit verbundenen, vorzugsweise in den Aufzugsschachtgrubenraum gesetzten, Computers zu erfassen und auszuwerten. Das Einrichten einer die Kraftmesseinrichtungen, die Abstandsmesseinrichtung sowie den Computer umfassenden Messeinrichtung in der Aufzugsschachtgrube lĂ€sst sich schnell und einfach durchfĂŒhren. Mit einer solchen Messeinrichtung können sĂ€mtliche zur PrĂŒfung der ordnungsgemĂ€ĂŸen FunktionsfĂ€higkeit eines Aufzugs erforderlichen Kennwerte ermittelt werden.To test the proper functioning of an elevator, it is also necessary, in addition to the described method for testing the TreibfĂ€higkei emergency stop, to determine other characteristics. For this purpose, the method according to the invention, which forms a test sequence, can be combined with further test sequences. For this purpose, it has proven expedient to support a first force measuring device on at least one first buffer corresponding to the counterweight and a second force measuring device on at least one second buffer corresponding to the car. The force measuring devices are thus also introduced into the elevator shaft pit and are thus in the vicinity of the distance measuring device. This advantageously makes it possible to record and evaluate the measured values of the distance measuring device and / or of the force measuring devices by means of a computer connected thereto, preferably in the elevator shaft pit space. The establishment of a force measuring devices, the distance measuring device and the computer comprehensive measuring device in the hoistway pit can be performed quickly and easily. With such a measuring device all required to check the proper functioning of an elevator characteristics can be determined.

So kann in einer weiteren PrĂŒfungssequenz die ÜbertreibfĂ€higkeit des Aufzugs gemessen werden. Bei einem zu prĂŒfenden Aufzug, bei dem der Fahrkorb ĂŒber zumindest ein ĂŒber eine Treibscheibe gefĂŒhrtes Seil mit einem Gegengewicht verbunden ist, können zur Ermittlung eines eine ÜbertreibfĂ€higkeit des Aufzugs beschreibenden Kennwerts die folgenden Schritte durchgefĂŒhrt werden:

  • Absetzen des Gegengewichts auf die erste Kraftmesseinrichtung;
  • Bewegen der Treibscheibe in eine den Fahrkorb anhebende Richtung bis zum Seilschlupf;
  • Messen der auf die erste Kraftmesseinrichtung wirkenden Kraft ĂŒber der Zeit; und
  • Ermitteln der ÜbertreibfĂ€higkeit aus den gemessenen Werten.
Thus, in another test sequence, the overdrive capability of the elevator can be measured. In the case of an elevator to be tested, in which the car is connected to a counterweight via at least one rope guided by a traction sheave, the following steps can be carried out to determine a characteristic value describing an overdrive of the elevator:
  • Settling the counterweight on the first force measuring device;
  • Moving the traction sheave in a car lift direction to rope slippage;
  • Measuring the force acting on the first force measuring device over time; and
  • Determine the overdrive capability from the measured values.

Die vorgeschlagene zweite PrĂŒfungssequenz kann einfach und schnell mit der oben beschriebenen Messeinrichtung durchgefĂŒhrt werden. Die ÜbertreibfĂ€higkeit T' kann nach der folgenden Formel ermittelt werden: TÊč = T ⁹ 2 ⁹ Êč T ⁹ 1 ⁹ Êč = mFK V * g + mA - mB * g mGG V * g + mD - mC * g - FmÊč V

Figure imgb0003

, wobei gilt:

mGG
= Masse des Gegengewichts
Fm'
= gemessene Kraft beim Seilschlupf
mFK
= Masse des Fahrkorbs
A
= gemessener Abstand von der Schachtgrube zum Boden des Fahrkorbs
FH
= gemessene Förderhöhe
AH
= errechnete Höhe des Antriebs nach Eingabe der Etagenposition des Antriebs
V
= AufhÀngungsverhÀltnis, 1:1 oder 2:1
n
= Seilanzahl
sg
= spezifisches Seilgewicht In Kg/m
g
= Erdbeschleunigung
mA
= (FH - A)*sg*n
mB
= (FH - AH) *sg*n
mC
= (FH - AH) *sg*n
mD
= A*sg*n
The proposed second test sequence can be easily and quickly performed with the measuring device described above. The overdrive capability T 'can be determined according to the following formula: T ' = T ⁹ 2 ⁹ ' T ⁹ 1 ⁹ ' = MFK V * G + mA - mB * G MGG V * G + mD - mC * G - Fm' V
Figure imgb0003

where:
MGG
= Mass of the counterweight
fm '
= measured force during rope slip
MFK
= Mass of the car
A
= measured distance from the pit to the bottom of the car
FH
= measured head
AH
= calculated height of the drive after entering the floor position of the drive
V
= Suspension ratio, 1: 1 or 2: 1
n
= Number of ropes
sg
= specific rope weight In kg / m
G
= Gravitational acceleration
mA
= (FH - A) * sg * n
mB
= (FH - AH) * sg * n
mC
= (FH - AH) * sg * n
mD
= A * sg * n

Ferner kann das erfindungsgemĂ€ĂŸe Verfahren mit einer weiteren PrĂŒfungssequenz kombiniert werden. Dabei können bei einem zu prĂŒfenden Aufzug, bei dem der Fahrkorb ĂŒber zumindest ein ĂŒber eine Treibscheibe gefĂŒhrtes Seil mit einem Gegengewicht verbunden ist, zur Ermittlung eines eine MindesttreibfĂ€higkeit des Aufzugs beschreibenden Kennwerts die folgenden Schritte durchgefĂŒhrt werden:

  • Absetzen des Fahrkorbs auf die zweite Kraftmesseinrichtung;
  • Bewegen der Treibscheibe in eine das Gegengewicht anhebende Richtung bis zum Seilschlupf;
  • Messen der auf die zweite Kraftmesseinrichtung wirkenden Kraft ĂŒber der Zeit; und
  • Ermitteln der MindesttreibfĂ€higkeit aus den gemessenen Werten.
Furthermore, the method according to the invention can be combined with a further examination sequence. In the case of an elevator to be tested, in which the car is connected to a counterweight via at least one cable guided by a traction sheave, the following steps can be carried out to determine a characteristic value describing a minimum driving capability of the elevator:
  • Placing the car on the second force measuring device;
  • Moving the traction sheave in a counterweight lifting direction to rope slippage;
  • Measuring the force acting on the second force measuring device over time; and
  • Determine the minimum drivability from the measured values.

Auch die vorgeschlagene weitere PrĂŒfungssequenz kann einfach und schnell mit der oben beschriebenen Messeinrichtung durchgefĂŒhrt werden. Dabei kann die MindesttreibfĂ€higkeit T" nach der folgenden Formel ermittelt werden: TÊčÊč = T ⁹ 2 ⁹ ÊčÊč T ⁹ 1 ⁹ ÊčÊč = mGG V * g + mD - mC * g mFK V * g + mA - mB * g - FmÊčÊč V

Figure imgb0004

, wobei gilt:

mGG
= Masse des Gegengewichts
Fm"
= gemessene Kraft beim Seilschlupf
mFK
= Masse des Fahrkorbs
A
= gemessener Abstand von der Schachtgrube zum Boden des Fahrkorbs
FH
= gemessene Förderhöhe
AH
= errechnete Höhe des Antriebs nach Eingabe der Etagenposition des Antriebs
V
= AufhÀngungsverhÀltnis, 1:1 oder 2 :1
n
= Seilanzahl
sg
= spezifisches Seilgewicht in Kg/m
g
= Erdbeschleunigung
mA
= (FH - A) *sg*n
mB
= (FH - AH) *sg*n
mC
= (FH - AH) *sg*n
mD
= A*sg*n
The proposed further test sequence can be carried out easily and quickly with the measuring device described above. In this case, the minimum drivability T "can be determined according to the following formula: T'' = T ⁹ 2 ⁹ '' T ⁹ 1 ⁹ '' = MGG V * G + mD - mC * G MFK V * G + mA - mB * G - Fm'' V
Figure imgb0004

where:
MGG
= Mass of the counterweight
fm "
= measured force during rope slip
MFK
= Mass of the car
A
= measured distance from the pit to the bottom of the car
FH
= measured head
AH
= calculated height of the drive after entering the floor position of the drive
V
= Suspension ratio, 1: 1 or 2: 1
n
= Number of ropes
sg
= specific rope weight in kg / m
G
= Gravitational acceleration
mA
= (FH - A) * sg * n
mB
= (FH - AH) * sg * n
mC
= (FH - AH) * sg * n
mD
= A * sg * n

Ein Gewicht des Fahrkorbs kann nach der folgenden Formel ermittelt werden: g * mFK = F m ⁹ 1 S š

Figure imgb0005

, wobei gilt:

g
= Erdbeschleunigung
Fm1
= gemessene Kraft zum Zeitpunkt t 1
s
= Verzögerung zum Zeitpunkt t 1
mFK
= Masse des Fahrkorbs
A weight of the car can be determined by the following formula: G * MFK = F m ⁹ 1 S š
Figure imgb0005

where:
G
= Gravitational acceleration
Fm1
= measured force at time t 1
s
= Delay at time t 1
MFK
= Mass of the car

Ferner kann ein Gewicht des Fahrkorbs auch nach der folgenden Formel ermittelt werden: mFK = F m ⁹ 1 - F m ⁹ 2 g + mFK * g - F m ⁹ 2 g + mFK * a 1 a 1 - g = F m ⁹ 1 - F m ⁹ 2 - F m ⁹ 2 * a 1 g 2 * a 1

Figure imgb0006
, wobei

mFK
= Masse des Fahrkorbs
Fm1
= gemessene erste Kraft an der Kraftmesseinrichtung zum Zeitpunkt tl
Fm2
= gemessene zweite Kraft an der Kraftmesseinrichtung
g
= Erdbeschleunigung
a1
= Verzögerung zum Zeitpunkt t1
Furthermore, a weight of the car can also be determined according to the following formula: MFK = F m ⁹ 1 - F m ⁹ 2 G + MFK * G - F m ⁹ 2 G + MFK * a 1 a 1 - G = F m ⁹ 1 - F m ⁹ 2 - F m ⁹ 2 * a 1 G 2 * a 1
Figure imgb0006
, in which
MFK
= Mass of the car
Fm1
= measured first force on the force measuring device at time tl
fm 2
= measured second force on the force measuring device
G
= Gravitational acceleration
a1
= Delay at time t1

Mit der erfindungsgemĂ€ĂŸ vorgesehenen Abstandsmesseinrichtung ist es vorteilhafterweise ferner besonders einfach möglich, das jeweils anteilige Seilgewicht auf der Gegengewichtsseite und/oder auf der Fahrkorbseite zu berechnen und bei der Bestimmung der Kennwerte zu berĂŒcksichtigen.With the distance measuring device provided according to the invention, it is also advantageously possible in a particularly simple manner to calculate the respective proportionate cable weight on the counterweight side and / or on the car side and to take this into consideration when determining the characteristic values.

Ferner kann das erfindungsgemĂ€ĂŸe Verfahren mit einer weiteren PrĂŒfungssequenz kombiniert werden. Dabei können bei einem zu prĂŒfenden Aufzug, bei dem ein Fahrkorb ĂŒber zumindest ein ĂŒber eine Treibscheibe gefĂŒhrtes Seil mit einem Gegengewicht verbunden ist, zur Messung einer Kennlinie der Puffer die folgenden Schritte durchgefĂŒhrt werden:

  • AbstĂŒtzen des Fahrkorbs oder des Gegengewichts auf die auf dem jeweiligen Puffer aufgenommene Kraftmesseinrichtung;
  • Bewegen der Treibscheibe in eine zum abgestĂŒtzten Gegengewicht oder Fahrkorb weisende Richtung bis zum Seilschlupf;
  • Messen der auf die Kraftmesseinrichtung wirkenden Kraft ĂŒber dem Abstand zwischen dem festen Messpunkt und dem auf dem Puffer abgestĂŒtzten Gegengewicht oder Fahrkorb; und
  • Ermitteln der Pufferkennlinie aus den gemessenen Werten.
Furthermore, the method according to the invention can be combined with a further examination sequence. In this case, in the case of an elevator to be tested, in which a car is connected to a counterweight via at least one cable guided via a traction sheave, the following steps can be carried out to measure a characteristic curve of the buffers:
  • Supporting the car or the counterweight on the force measuring device received on the respective buffer;
  • Moving the traction sheave in a direction pointing towards the supported counterweight or car to rope slippage;
  • Measuring the force acting on the force measuring device over the distance between the fixed measuring point and the counterweight or car supported on the buffer; and
  • Determining the buffer characteristic from the measured values.

Auch die vorgeschlagene weitere PrĂŒfungssequenz kann schnell und einfach unter Verwendung der oben beschriebenen Messeinrichtung durchgefĂŒhrt werden. Dabei können auch die weiteren PrĂŒfungssequenzen vorteilhafterweise mit unbeladenem Fahrkorb durchgefĂŒhrt werden. Das vereinfacht und beschleunigt weiter das vorgeschlagene Verfahren.The proposed further test sequence can also be carried out quickly and easily using the measuring device described above. In this case, the other test sequences can be advantageously carried out with unladen car. This further simplifies and speeds up the proposed procedure.

Nach weiterer Maßgabe der Erfindung ist eine Anordnung zur PrĂŒfung der ordnungsgemĂ€ĂŸen FunktionsfĂ€higkeit eines Aufzugs vorgesehen, bei der ein Fahrkorb in einem Aufzugsschacht bewegbar ist, und wobei im Aufzugsschacht eine optische Abstandsmesseinrichtung zur Messung einer Änderung eines Abstands des Fahrkorbs gegenĂŒber einem festen Messpunkt im Aufzugsschacht angeordnet ist.According to another aspect of the invention, an arrangement is provided for testing the proper functioning of an elevator, in which a car is movable in an elevator shaft, and wherein an optical distance measuring device for measuring a change in a distance of the car relative to a fixed measuring point in the elevator shaft is arranged in the elevator shaft ,

Die vorgeschlagene Anordnung lĂ€sst sich einfach und schnell herstellen. Zu diesem Zweck ist es beispielsweise lediglich erforderlich, eine Abstandsmesseinrichtung auf einem Boden des Aufzugsschachtgrubenraums abzusetzen, und gegenĂŒber einer Fahrkorbunterseite zu justieren. Ein zeitaufwĂ€ndiges, umstĂ€ndliches und kompliziertes Anbringen von Messwertaufnehmern an Seilen, der Treibscheibe oder dgl. ist bei der erfindungsgemĂ€ĂŸen Anordnung nicht erforderlich.The proposed arrangement can be produced easily and quickly. For this purpose, for example, it is only necessary to set down a distance measuring device on a floor of the hoistway pit space, and to adjust with respect to a car underside. A time-consuming, cumbersome and complicated attachment of transducers on ropes, the traction sheave or the like. Is not required in the inventive arrangement.

Wegen der vorteilhaften Ausgestaltungen der Abstandsmesseinrichtung, insbesondere der Verwendung eines optischen Distanzsensors sowie der Ausgestaltungen des optischen Distanzsensors wird auf die vorangegangene Beschreibung zum erfindungsgemĂ€ĂŸen Verfahren verwiesen. Die dort offenbarten Merkmale zu den Ausgestaltungen der Abstandsmesseinrichtung bilden gleichfalls Ausgestaltungsmerkmale der erfindungsgemĂ€ĂŸen Anordnung.Because of the advantageous embodiments of the distance measuring device, in particular the use of an optical distance sensor and the embodiments of the optical distance sensor, reference is made to the preceding description of the method according to the invention. The features disclosed there to the embodiments of the distance measuring device also form design features of the arrangement according to the invention.

Die erfindungsgemĂ€ĂŸe Anordnung kann besonders einfach mit einer Messeinrichtung hergestellt werden, bei der nach Art eines Kits in einem Koffer der optische Distanzsensor und ein Computer zur Aufzeichnung und Auswertung der aufgenommenen Messwerte untergebracht bzw. zusammengefasst sind. Im Koffer können ferner ein Reflektor sowie zumindest eine Kraftmesseinrichtung aufgenommen sein. Zur Herstellung der erfindungsgemĂ€ĂŸen Anordnung muss der PrĂŒfingenieur lediglich den Koffer auf den Boden der Aufzugsschachtgrube absetzen, den Reflektor, welcher mit einer magnetischen Folie versehen sein kann, an der Fahrkorbunterseite anbringen und den im Koffer aufgenommenen optischen Distanzsensor, mittels eines davon beispielsweise abgestrahlten Laserstrahls, in Bezug auf den der Fahrkorbunterseite angebrachten Reflektor justieren. Zu diesen Zweck kann die Abstandsmesseinrichtung mit einer Justiereinrichtung versehen sein. Es kann sich dabei um drei an der Unterseite der Abstandsmesseinrichtung angebrachte StĂŒtzen handeln, die in ihrer LĂ€nge, beispielsweise nach Art von Justierschrauben, verĂ€nderbar sind.The arrangement according to the invention can be produced particularly easily with a measuring device in which the optical distance sensor and a computer for recording and evaluating the recorded measured values are accommodated or combined in a suitcase in the manner of a kit. In the suitcase, a reflector and at least one force measuring device can also be accommodated. To produce the arrangement according to the invention, the test engineer merely has to deposit the suitcase on the floor of the hoistway pit, attach the reflector, which can be provided with a magnetic foil, to the underside of the car and record the optical distance sensor received in the case, by means of a laser beam radiated from it, for example Adjust the reflector attached to the underside of the car. For this purpose, the distance measuring device may be provided with an adjusting device. It may be three mounted on the underside of the distance measuring device supports, which are variable in their length, for example in the manner of adjusting screws.

Ferner ist es möglich, eine oder mehrere Kraftmesseinrichtungen auf den Puffern abzustĂŒtzen und diese ĂŒber eine Kabelverbindung mit der Messvorrichtung zu verbinden.Furthermore, it is possible to support one or more force measuring devices on the buffers and to connect them via a cable connection with the measuring device.

Anschließend kann der PrĂŒfingenieur eine vorgegebene Bewegungssequenz des Fahrkorbs veranlassen. Aus den mit der Messeirrrichtung aufgezeichneten Messwerten können alle fĂŒr die PrĂŒfung der ordnungsgemĂ€ĂŸen FunktionsfĂ€higkeit eines Aufzugs erforderlichen Kennwerte automatisch oder teilweise automatisch ermittelt werden.Subsequently, the test engineer can initiate a predetermined sequence of movements of the car. From the measured values recorded with the measurement error, all characteristic values necessary for checking the proper functioning of an elevator can be automatically or partially automatically determined.

Nachfolgend werden AusfĂŒhrungsbeispiele der Erfindung anband der Zeichnungen nĂ€her erlĂ€utert. Es zeigen:

Fig. 1
eine erste perspektivische Teilansicht eines Aufzugs mit einer Messeinrichtung,
Fig. 2
den gemessenen Abstand ĂŒber der Zeit und die Ableitung der gemessenen Kurve,
Fig. 3
eine zweite perspektivische Teilansicht des Aufzugs sowie der Messeinrichtung,
Fig. 4
eine dritte perspektivische Teilansicht des Aufzugs und der Messeinrichtung,
Fig. 5
den gemessenen vertikalen Abstand ĂŒber der Zeit und die Ableitung der gemessenen Kurve,
Fig. 6
die gemessene Kraft ĂŒber dem Abstand,
Fig. 7
eine schematische Ansicht einer Seilanordnung,
Fig. 8
ein Weg/Zeit-Diagramm einer PrĂŒfsequenz,
Fig. 9
das Weg/Zeit-Diagramm gemĂ€ĂŸ Fig. 8 im Punkt M2 und
Fig. 10
das Weg/Zeit-Diagramm gemĂ€ĂŸ Fig. 8 im Punkt M4.
Hereinafter, embodiments of the invention will be explained in more detail of the drawings. Show it:
Fig. 1
a first perspective partial view of an elevator with a measuring device,
Fig. 2
the measured distance over time and the derivative of the measured curve,
Fig. 3
a second perspective partial view of the elevator and the measuring device,
Fig. 4
a third partial perspective view of the elevator and the measuring device,
Fig. 5
the measured vertical distance over time and the derivative of the measured curve,
Fig. 6
the measured force over the distance,
Fig. 7
a schematic view of a cable arrangement,
Fig. 8
a path / time diagram of a test sequence,
Fig. 9
the way / time diagram according to Fig. 8 in the point M2 and
Fig. 10
the way / time diagram according to Fig. 8 at point M4.

Fig. 1 zeigt schematisch und in perspektivischer Teilansicht eine erfindungsgemĂ€ĂŸe Messeinrichtung zur PrĂŒfung der TreibfĂ€higkeit eines Aufzugs. In Fig. 1 sind ĂŒber eine Treibscheibe 1 mehrere Seile 2 gefĂŒhrt. Die einen Enden der Seile 2 sind an einem Fahrkorb 3, die anderen Enden an einem Gegengewicht 4 angebracht. Fig. 1 shows schematically and in a perspective partial view of a measuring device according to the invention for testing the driving ability of an elevator. In Fig. 1 are guided over a traction sheave 1 more ropes 2. The one ends of the cables 2 are attached to a car 3, the other ends to a counterweight 4.

Mit dem Bezugszeichen 5 ist eine Antriebs-und Bremseinrichtung zum Antreiben und Abbremsen der Treibscheibe 1 bezeichnet. Auf einem Schachtboden 6 eines hier nicht nĂ€her gezeigten) Aufzugsschachts befindet sich ein optischer Distanzsensor 7. Ein davon emittierter Sendelichtstrahl 8 zur Messung eines Abstands wird beispielsweise mittels eines Reflektors an einer Unterseite des Fahrkorbs 3 reflektiert und als Empfangslichtstrahl von einem EmpfĂ€nger 10 des optischen Distanzsensors 7 empfangen. Der optische Distanzsensor 7 ist mit einem Computer 9 zur Aufzeichnung der damit gemessenen Abstandswerte ĂŒber der Zeit verbunden. Mit dem Bezugszeichen 10 ist ein erster Puffer zum DĂ€mpfen einer AbwĂ€rtsbewegung des Gegengewichts 4 bezeichnet. Ein zweiter Puffer 11 dient der DĂ€mpfung der AbwĂ€rtsbewegung des Fahrkorbs 3. Der erste 10 und der zweite Puffer 11 sind auf dem Schachtboden 6 des Aufzugsschachts abgestĂŒtzt. Auf dem ersten Puffer 10 ist eine erste Kraftmesseinrichtung 12 und auf dem zweiten Puffer 11 eine zweite Kraftmesseinrichtung 13 angeordnet. Bei den Kraftmesseinrichtungen 12, 13 kann es sich um herkömmliche Kraftmessdosen handeln. Die Kraftmesseinrichtungen 12, 13 sind mit dem Computer 9 verbunden. Der Computer 9 sowie der optische Distanzsensor 7 sind in einem Aufzugsschachtraum angeordnet, welcher sich zwischen dem Schachtboden 6 und einer gedachten FlĂ€che befindet, welche etwa parallel zum Schachtboden 6 verlĂ€uft und gleichzeitig auf einer Oberseite des ersten 10 und des zweiten Puffes 11 aufliegt.Reference numeral 5 denotes a drive and brake device for driving and braking the traction sheave 1. An optical distance sensor 7 is located on a shaft bottom 6 of an elevator shaft (not shown here). A transmitted light beam 8 for measuring a distance is reflected, for example, by means of a reflector on an underside of the car 3 and as a received light beam by a receiver 10 of the optical distance sensor 7 receive. The optical distance sensor 7 is connected to a computer 9 for recording the distance values measured therewith over time. Reference numeral 10 denotes a first buffer for damping a downward movement of the counterweight 4. A second buffer 11 serves to dampen the downward movement of the elevator car 3. The first 10 and the second buffer 11 are supported on the shaft floor 6 of the hoistway. On the first buffer 10, a first force measuring device 12 and on the second buffer 11, a second force measuring device 13 is arranged. The force measuring devices 12, 13 may be conventional load cells. The force measuring devices 12, 13 are connected to the computer 9. The computer 9 and the optical distance sensor 7 are arranged in an elevator shaft space, which is located between the shaft bottom 6 and an imaginary surface, which runs approximately parallel to the shaft bottom 6 and simultaneously rests on an upper side of the first 10 and second puff 11.

Fig. 2 zeigt beispielhaft eine mit dem Computer 9 aufgenommene Messung des Abstands zwischen dem optischen Distanzsensor 7 und dem Fahrkorb 3 ĂŒber der Zeit sowie deren erste Ableitung-V nach der Zeit. Aus der Steigung der ersten Ableitung des Grafen in einem Zeitintervall t1 bis t2 nach dem Auslösen der Bremseinrichtung 5 kann die Verzögerung a ermittelt werden. Bei gegebener Gewichtskraft auf der Gegengewichtsseite,
d. h. der Gewichtskraft des Gegengewichts 4 sowie des auf der Gegengewichtsseite vorhandenen anteiligen Seilgewichts, sowie der Gewichtskraft auf der Fahrkorbseite, d. h. der Gewichtskraft des Fahrkorbs 3 sowie der anteiligen Gewichtskraft des Seils 2 auf der Fahrkorbseite, kann nach der Formel T = T ⁹ 2 T ⁹ 1 = mGG * g ⁹ s š + g V - mC * g - mD * g + mC + mD * V * s š mFK * g - s š V - mB * g + mA * g - mA + mB * V * s š

Figure imgb0007

die TreibfĂ€higkeit T gemĂ€ĂŸ DIN EN 81-1 bei Nothalt ermittelt werden. Dabei gilt:

s
= ermittelte Verzögerung zum Zeitpunkt t
A
= gemessener Abstand von der Schachtgrube zum Boden des Fahrkorbs
FH
= gemessene Förderhöhe
AH
= errechnete Höhe des Antriebs nach Eingabe der Etagenposition des Abtriebs
mFK
= Masse des Fahrkorbs
mGG
= Masse des Gegengewichts
V
= AufhÀngungsverhÀltnis, 1:1 oder 1: 2
n
=Seilanzahl
sg
= spezifisches Seilgewicht in Kg/m
g
= Erdbeschleunigung
mA
= (FH A) *sg*n
mB
= (FH AH) *sg*n
mC
= (FH AH}*sg*n
mD
= A*sg*n
Fig. 2 shows an example of a recorded with the computer 9 measurement of the distance between the optical distance sensor 7 and the car 3 over time and their first derivative-V over time. From the slope of the first derivative of the count in a time interval t1 to t2 after the triggering of the braking device 5, the delay a can be determined. For a given weight on the counterweight side,
ie the weight of the counterweight 4 and the present on the counterweight side proportionate rope weight, and the weight on the car side, ie the weight of the car 3 and the proportionate weight of the rope 2 on the car side, can according to the formula T = T ⁹ 2 T ⁹ 1 = MGG * G ⁹ s š + G V - mC * G - mD * G + mC + mD * V * s š MFK * G - s š V - mB * G + mA * G - mA + mB * V * s š
Figure imgb0007

the driving capability T according to DIN EN 81-1 at emergency stop can be determined. Where:
s
= determined delay at time t
A
= measured distance from the pit to the bottom of the car
FH
= measured head
AH
= calculated height of the drive after entering the floor position of the output
MFK
= Mass of the car
MGG
= Mass of the counterweight
V
= Suspension ratio, 1: 1 or 1: 2
n
= Number of ropes
sg
= specific rope weight in kg / m
G
= Gravitational acceleration
mA
= (FH A) * sg * n
mB
= (FH AH) * sg * n
mC
= (FH AH} * sg * n
mD
= A * sg * n

Fig. 3 zeigt eine teilweise perspektivische Ansicht des Aufzugs bei einer Messung der ÜbertreibfĂ€higkeit unter Verwendung der Messeinrichtung. Dazu wird das Gegengewicht 4 ĂŒber die erste Kraftmesseinrichtung 12 auf den ersten Puffer 10 abgestĂŒtzt. Es wird mittels der ersten Kraftmesseinrichtung 12 die auf den ersten Puffer 10 wirkende Kraft ĂŒber der Zeit gemessen. Gleichzeitig kann mit dem optischen Distanzsensor 7 der Abstand des Fahrkorbs 3 ĂŒber der Kraft gemessen werden. Im Laufe der Messung wird die Treibscheibe 1 in eine den Fahrkorb 3 anhebende Richtung bis zum Seilschlupf gedreht. Aus der mit der ersten Kraftmesseinrichtung 12 gemessenen Kraft zum Zeitpunkt des Seilschlupfs kann die sogenannte ÜbertreibfĂ€higkeit T2' / T1' nach Formel (2) ermittelt werden. Fig. 3 shows a partial perspective view of the elevator in a measurement of the overdrive using the measuring device. For this purpose, the counterweight 4 is supported on the first buffer 10 via the first force measuring device 12. It is measured by means of the first force measuring device 12, the force acting on the first buffer 10 force over time. At the same time, the distance between the car 3 and the force can be measured with the optical distance sensor 7. In the course of the measurement, the traction sheave 1 is rotated in a lift the car 3 direction until the rope slip. From the force measured with the first force measuring device 12 at the time of the cable slip, the so-called over-driving capability T2 '/ T1' according to formula (2) can be determined.

Sowohl beim Aufsetzen des Gegengewichts 4 auf den ersten Puffer 10 als auch beim Bewegen der Treibscheibe 1 in eine den Fahrkorb 3 anhebende Richtung Ă€ndert sich der Abstand des Fahrkorbs 3 gegenĂŒber dem optischen Distanzsensor 7. Aus der aufgenommenen Änderung des Abstands des Fahrkorbs 3 ĂŒber der gemessenen Kraft kann die Kennlinie des ersten Puffers 10 ermittelt werden.Both when placing the counterweight 4 on the first buffer 10 and when moving the traction sheave 1 in a lift the car 3 direction, the distance of the car 3 relative to the optical distance sensor 7. From the recorded change in the distance of the car 3 above the measured Force the characteristic of the first buffer 10 can be determined.

Fig. 4 zeigt eine dritte perspektivische Teilansicht des Aufzugs und der Messeinrichtung. Hier ist der Fahrkorb 3 mit der Unterseite des Fahrkorbbodens auf die auf dem zweiten Puffer 11 aufgenommene zweite Kraftmesseinrichtung 13 aufgesetzt. Mit der zweiten Kraftmesseinrichtung 13 (hier nicht sichtbar) wird die auf den zweiten Puffer 11 ausgeĂŒbte Kraft gemessen. Fig. 4 shows a third partial perspective view of the elevator and the measuring device. Here, the car 3 is placed with the bottom of the car floor on the recorded on the second buffer 11 second force measuring device 13. With the second force measuring device 13 (not visible here), the force exerted on the second buffer 11 is measured.

Ferner wird mit dem optischen Distanzsensor 7 der Abstand zur Unterseite des Fahrkorbbodens gemessen. WĂ€hrend der Messung wird die Treibscheibe 1 in eine das Gegengewicht 4 anhebende Richtung bis zum Seilschlupf bewegt.Further, with the optical distance sensor 7, the distance to the underside of the car floor is measured. During the measurement, the traction sheave 1 is moved in a counterweight 4 lifting direction until the rope slip.

Aus der zum Zeitpunkt des Seilschlupfs mit der zweiten Kraftmesseirrrichtung 13 gemessenen Kraft kann die MindesttreibfÀhigkeit T2"/T1" nach Formel (3) ermittelt werden.From the force measured at the time of the cable slip with the second force measuring device 13, the minimum driveability T2 "/ T1" can be determined according to formula (3).

Ferner kann aus der gemessenen Änderung des Abstands des Fahrkorbs 3 ĂŒber der Kraft die Kennlinie des zweiten Puffers 11 ermittelt werden.Furthermore, from the measured change in the distance of the car 3 over the force, the characteristic of the second buffer 11 can be determined.

Fig. 5 zeigt beispielhaft eine mit dem Computer 9 aufgenommene Messung des Abstands zwischen dem optischen Distanzsensor 7 und dem Fahrkorb 3 ĂŒber der Zeit sowie deren erste Ableitung-V nach der Zeit. Aus der Steigung der ersten Ableitung des Grafs in einem Zeitintervall t1 bis t2 nach dem Auslösen der Fangvorrichtung kann die Verzögerung s des Fahrkorbs 3 ermittelt werden. Bei gegebener Gewichtskraft auf der Fahrkorbseite, d. h. der Gewichtskraft des Fahrkorbs 3 und gegebener Nennlast kann nach der Formel (1) die Verzögerung Vf fĂŒr den mit Nennlast beladenen Fahrkorb 3 im freien Fall als Kennwert ermittelt werden. Fig. 5 shows an example of a recorded with the computer 9 measurement of the distance between the optical distance sensor 7 and the car 3 over time and their first derivative-V over time. From the slope of the first derivative of the count in a time interval t1 to t2 after the triggering of the safety gear, the delay s of the car 3 can be determined. Given the weight on the car side, ie the weight of the car 3 and given nominal load can be determined according to the formula (1) the delay Vf for the laden with nominal load car 3 in free fall as a characteristic value.

Fig. 6 zeigt beispielhaft eine mit dem Computer 9 aufgenommene Pufferkennlinie. Eine Messung des Abstands einer Unterseite des Fahrkorbs 3 gegenĂŒber dem Schachtboden 6 ermöglicht insbesondere auch eine BerĂŒcksichtigung der Seilgewichte. Fig. 6 shows an exemplary recorded with the computer 9 buffer characteristic. A measurement of the distance of a bottom of the car 3 with respect to the shaft bottom 6 in particular also allows consideration of the rope weights.

Fig. 7 zeigt schematisch eine Seilanordnung. Die Seilgewichte können nach der Formel (4) fĂŒr 1:1 oder 1:2 gehĂ€ngte AufzĂŒge berĂŒcksichtigt werden. Dabei können alle AbstĂ€nde vom optischen Distanzsensor (7) automatisch erfasst werden. Fig. 7 schematically shows a cable arrangement. The rope weights can be considered according to formula (4) for 1: 1 or 1: 2 suspended lifts. All distances from the optical distance sensor (7) can be detected automatically.

Zur automatischen BerĂŒcksichtigung der Seilgewichte mA, mB, mC, mD ist es lediglich noch erforderlich, das spezifische Seilgewicht einzugeben. Das spezifische Seilgewicht kann aus einer Tabelle entnommen werden, indem dieses gegenĂŒber einem Seildurchmesser verzeichnet ist.For the automatic consideration of the rope weights mA, mB, mC, mD it is only necessary to enter the specific rope weight. The specific rope weight can be taken from a table by this is recorded against a rope diameter.

Insbesondere bei einer Verwendung eines optischen Distanzsensors 7, welcher die zeitliche Änderung eines Abstands zwischen der Schachtgrube und einer Unterseite des Fahrkorbs 3 aus einer Phasenverschiebung zwischen einem Sende- 8 und einem Empfangslichtstrahl ermittelt, kann besonders schnell, effizient und einfach eine PrĂŒfung der ordnungsgemĂ€ĂŸen FunktionsfĂ€higkeit eines Aufzugs durchgefĂŒhrt werden. Die Effizienz des vorgeschlagenen Verfahrens kann weiter gesteigert werden, wenn der optische Distanzsensor 7 mit Kraftmesseinrichtungen 12, 13 kombiniert wird.In particular, when using an optical distance sensor 7, which determines the temporal change of a distance between the pit and a bottom of the car 3 from a phase shift between a transmitting 8 and a received light beam, can be particularly fast, efficient and easy to check the proper Operability of an elevator can be performed. The efficiency of the proposed method can be further increased if the optical distance sensor 7 is combined with force measuring devices 12, 13.

Die jeweils relevanten Seilgewichte können mit der Wegmessung automatisch ermittelt werden. Lediglich die Seilanzahl und der Seildurchmesser mĂŒssen manuell eingegeben werden.The relevant rope weights can be determined automatically with the distance measurement. Only the number of ropes and the rope diameter must be entered manually.

Der Halblastausgleich kann automatisch ermittelt werden, indem das Gegengewicht 4 bei geöffneter Bremse auf den Puffer 10 mit der Kraftmesseinrichtung 12 abgesenkt wird. Die Kraftmesseinrichtung 12 misst dann: ⇔ Fp = mGG * g V + mD * g - mC * g - mFK V * g - mA * g + mB * g

Figure imgb0008
Fm = Fp - mD * g + mC * g + mA * g - mB * g
Figure imgb0009
The half-load compensation can be determined automatically by the counterweight 4 is lowered with the brake open on the buffer 10 with the force measuring device 12. The force measuring device 12 then measures: ⇔ fp = MGG * G V + mD * G - mC * G - MFK V * G - mA * G + mB * G
Figure imgb0008
fm = fp - mD * G + mC * G + mA * G - mB * G
Figure imgb0009

Bei Halblastausgleich muss der gemessene Wert 50 % der angegebenen Nennlast sein. Der Lastausgleich in Prozent: La = Fm / NL * g * 100

Figure imgb0010

, wobei gilt:

Fp
= gemessene Kraft am Puffer des Gegengewichts
Fm
= ermittelte Kraft auf dem Puffer ohne Seilgewichte
mFK
= Masse des Fahrkorbs
mGG
= Masse des Gegengewichts
La
= Lastausgleich in Prozent
NL
= im Fahrkorb angegebene Nennlast
V
= AufhÀngungsverhÀltnis, 1:1 oder 1 :2
g
= Erdbeschleunigung
mA
= (FH A)*sg*n
rnB
= (FH AH) *sg*n
mc
= (FH - AH) *sg*n
mD
= A*sg*n
In the case of half-load compensation, the measured value must be 50% of the specified rated load. The load balance in percent: La = fm / NL * G * 100
Figure imgb0010

where:
fp
= measured force at the buffer of the counterweight
fm
= determined force on the buffer without rope weights
MFK
= Mass of the car
MGG
= Mass of the counterweight
La
= Load compensation in percent
NL
= Nominal load stated in the car
V
= Suspension ratio, 1: 1 or 1: 2
G
= Gravitational acceleration
mA
= (FH A) * sg * n
RNB
= (FH AH) * sg * n
mc
= (FH - AH) * sg * n
mD
= A * sg * n

Das Fahrkorbgewicht kann nach den folgenden Methoden automatisch ermittelt werden:The car weight can be determined automatically using the following methods:

Methode 1 :Method 1:

Der Fahrkorb 3 wird auf den Puffer 11 gefahren, so dass eine Verzögerung > 1g erreicht wird. g * mFK = F m ⁹ 1 S š

Figure imgb0011

, wobei gilt:

g
= Erdbeschleunigung
Fm1
= gemessene Kraft zum Zeitpunkt t 1
s
= Verzögerung zum Zeitpunkt t 1
mFK
= Masse des Fahrkorbs
The car 3 is moved to the buffer 11, so that a delay> 1 g is achieved. G * MFK = F m ⁹ 1 S š
Figure imgb0011

where:
G
= Gravitational acceleration
Fm1
= measured force at time t 1
s
= Delay at time t 1
MFK
= Mass of the car

Methode 2 :Method 2:

Das Gegengewicht 4 wird in der NÀhe des Puffers 10 gefahren, beispielsweise wird der Fahrkorb 3 in die oberste Haltestelle gefahren. Die Bremse des Antriebs wird nun geöffnet. Das Gegengewicht 4 wird von der Kraftmesseinrichtung 12, welche auf dem Puffer 10 liegt, abgebremst. Es entsteht eine Verzögerung a1 zum Zeitpunkt t1. Zudem wird bei t1 die an der Kraftmesseinrichtung 10 anstehende erste Kraft Fm1 gemessen. Bei einer Verzögerung von a1 < 1g gilt (hier zur Einfachheit mit vernachlÀssigten Seilgewichten und 1: 1 AufhÀngung) F m ⁹ 1 = mGG * g + mGG * a 1 - mFK * g + mFK * a 1

Figure imgb0012
⇔ mFK = F m ⁱ 1 - mGG * g - mGG * a 1 a 1 - g
Figure imgb0013
The counterweight 4 is driven in the vicinity of the buffer 10, for example, the car 3 is moved to the top stop. The brake of the drive is now opened. The counterweight 4 is braked by the force measuring device 12, which lies on the buffer 10. There is a delay a1 at time t1. In addition, at t1, the first force Fm1 applied to the force measuring device 10 is measured. With a delay of a1 <1g (here for simplicity with neglected rope weights and 1: 1 suspension) F m ⁹ 1 = MGG * G + MGG * a 1 - MFK * G + MFK * a 1
Figure imgb0012
⇔ MFK = F m ⁱ 1 - MGG * G - MGG * a 1 a 1 - G
Figure imgb0013

Wenn der Fahrkorb 3 still steht und das Gegengewicht 4 auf der Kraftmesseinrichtung 12 am Puffer 10 aufliegt, kann die zweite Kraft Fm2 gemessen werden und es gilt: ⇔ mGG = F m ⁱ 2 g + mFK

Figure imgb0014
When the car 3 stops and the counterweight 4 rests on the force measuring device 12 on the buffer 10, the second force Fm2 can be measured and the following applies: ⇔ MGG = F m ⁱ 2 G + MFK
Figure imgb0014

Durch Einsetzen ergibt sich: ⇔ mFK = F m ⁱ 1 - F m ⁱ 2 g + mFK * g - F m ⁱ 2 g + mFK * a 1 a 1 - g = F m ⁱ 1 - F m ⁱ 2 - F m ⁱ 2 * a 1 g 2 * a 1

Figure imgb0015

, wobei

mGG
= Masse des Gegengewichts
mFK
= Masse des Fahrkorbs
Fm1
= gemessene erste Kraft an der Kraftmesseinrichtung zum Zeitpunkt t 1
Fm2
= gemessene zweite Kraft an der Kraftmesseinrichtung
G
= Erdbeschleunigung
a1
= Verzögerung zum Zeitpunkt t 1
By inserting results: ⇔ MFK = F m ⁱ 1 - F m ⁱ 2 G + MFK * G - F m ⁱ 2 G + MFK * a 1 a 1 - G = F m ⁱ 1 - F m ⁱ 2 - F m ⁱ 2 * a 1 G 2 * a 1
Figure imgb0015

, in which
MGG
= Mass of the counterweight
MFK
= Mass of the car
Fm1
= measured first force on the force measuring device at time t 1
fm 2
= measured second force on the force measuring device
G
= Gravitational acceleration
a1
= Delay at time t 1

Die Verzögerung a1 kann wieder durch die zweite Ableitung des gemessenen Abstands nach der Zeit ermittelt werden.The delay a1 can again be determined by the second derivative of the measured distance after the time.

Die beiden Methoden eigen sich selbstverstĂ€ndlich auch zur Ermittlung des Gegengewichts. Die ermittelten Werte wie Gegengewicht, Fahrkorbgewicht, anteilige Seilgewichte, Geschwindigkeit und Förderhöhe werden automatisch fĂŒr die Berechnung der dynamischen TreibfĂ€higkeit, der TreibfĂ€higkeit beim Beladen des Fahrkorbs 3, der ÜbertreibfĂ€higkeit und der Pufferkennlinie bereitgestellt. Der SachverstĂ€ndige muss nicht mehr im PrĂŒfbuch die Daten suchen.Of course, the two methods are also suitable for determining the counterweight. The determined values such as counterweight, car weight, proportionate rope weights, speed and head are automatically provided for the calculation of the dynamic driving ability, the driving ability when loading the car 3, the overdrive capability and the buffer characteristic. The expert no longer has to search the data in the test book.

Die Fig. 8 bis 10 zeigen Weg/Zeit-Diagramme, welche an einem Testaufzug unter Verwendung einer Abstandsmesseinrichtung mit einem optischen Distanzsensor gewonnen worden sind. Bei dem Testaufzug ist ein Fahrkorb 3 ĂŒber mehrere ĂŒber eine Treibscheibe gefĂŒhrte Seile 2 mit einem Gegengewicht 4 verbunden. Der Fahrkorb 3 weist eine Fangvorrichtung auf. Eine Antriebsvorrichtung zum Antreiben der Treibscheibe 1 ist mit einer Bremseinrichtung versehen. - Eine Änderung des Abstands A ist mit dem optischen Distanzsensor gegenĂŒber einer Fahrkorbunterseite zeitaufgelöst gemessen worden. Die Messwerte sind auf einem Computer 9 gespeichert und nachfolgend ausgewertet worden.The Fig. 8 to 10 show path / time diagrams obtained on a test elevator using a distance measuring device with an optical distance sensor. In the test elevator, a car 3 is connected to a counterweight 4 via a plurality of ropes 2 guided by a traction sheave. The car 3 has a safety gear. A drive device for driving the traction sheave 1 is provided with a braking device. - A change in the distance A has been measured with the optical distance sensor with respect to a car underside time-resolved. The measured values have been stored on a computer 9 and subsequently evaluated.

Fig. 8 zeigt ein Weg/ Zeit-Diagramm einer kompletten Sequenz. Hier ist der Fahrkorb 3 zu Kalibrierzwecken zunĂ€chst von einem ersten Stockwerk S1 zu den nĂ€chsthöheren Stockwerken S2, S3, S4 bewegt worden. So können die Seilmassen mA, mB, mC und mD ermittelt werden. Der Punkt S5 beschreibt einen sogenannten "Überfahrweg, bei dem das Gegengewicht auf dem dazu korrespondierenden Puffer aufliegt. Fig. 8 shows a path / time diagram of a complete sequence. Here, the car 3 has been moved for calibration purposes, first from a first floor S1 to the next higher floors S2, S3, S4. Thus, the cable masses mA, mB, mC and mD can be determined. The point S5 describes a so-called "Überfahrweg, in which the counterweight rests on the corresponding buffer.

Im Punkt M1 ist die Bremseinrichtung gelöst und im Punkt M2 die Fangvorrichtung ausgelöst worden. Im Punkt M3 ist wiederum die Bremseinrichtung gelöst und im Punkt M4 die Bremseinrichtung betÀtigt worden. Im Punkt S6 liegt der Fahrkorb 3 auf dem dazu korrespondierenden Puffer in der Schachtgrube auf.At point M1, the braking device has been released and the safety device has been triggered at point M2. At point M3, in turn, the braking device has been released and the braking device has been actuated at point M4. At point S6, the car 3 rests on the corresponding buffer in the shaft pit.

Fig. 9 zeigt in höherer Auflösung das Weg/Zeit-Diagramm gemĂ€ĂŸ Fig. 8 im Bereich des Punkts M2. Ferner ist zur Weg/ZeitKurve die durch Ableitung gewonnene Geschwindigkeit / ZeitKurve berechnet und ebenfalls dargestellt worden. Die etwa zum Zeitpunkt 237,2 s beobachtbare Zunahme des Wegs beim Fahrkorb 3 wird durch das zurĂŒckfallende Gegenwicht 4 bewirkt. Das zeigt im Umkehrschluss, dass das Gegengewicht 4 vorschriftsmĂ€ĂŸig keinen Einfluss auf die Messung der Verzögerung s hat. Die Verzögerung Vf kann durch Ermitteln der Steigung des im Wesentlichen geradlinigen Bereichs im Geschwindigkeit/Zeit - Diagramm ermittelt werden. Fig. 9 shows the path / time diagram in higher resolution according to Fig. 8 in the area of point M2. Further, to the path / time curve, the derivative of the velocity / time curve has been calculated and also shown. The approximately at the time 237.2 s observable increase in the path of the car 3 is caused by the falling counterweight 4. This shows, conversely, that the counterweight 4 has no influence on the measurement of the deceleration s according to regulations. The delay Vf can be determined by determining the slope of the substantially rectilinear region in the velocity / time diagram.

Fig. 10 zeigt das Weg/Zeit-Diagramm gemĂ€ĂŸ Fig. 8 mit höherer Auflösung im Bereich des Punkts M4. Auch hier ist die erste Ableitung der Weg/Zeit-Kurve gezeigt. Eine Verzögerung im Punkt M4 kann hier ebenfalls durch Anlegen der in Fig. 10 gezeigten Tangente Tg an den linearen Bereich im Geschwindigkeit/Zeit-Diagramm unter Ermitteln deren Steigung bestimmt werden. Aus der ermittelten Verzögerung S2 kann gemĂ€ĂŸ der Formel (2) die TreibfĂ€higkeit T ermittelt werden. Fig. 10 shows the path / time diagram according to Fig. 8 with higher resolution in the area of point M4. Again, the first derivative of the path / time curve is shown. A delay at point M4 can also be achieved by applying the in Fig. 10 shown tangent Tg be determined at the linear region in the velocity / time diagram while determining their slope. From the determined deceleration S2, according to the formula (2), the driving capability T can be determined.

Claims (18)

  1. Method for testing the proper operational capability of an elevator, in which an elevator car (3) is movable inside an elevator shaft having an elevator shaft pit area, wherein the elevator car (3) is provided with a safety device and is connected to a counterweight (4) via at least one rope (2) passing over a traction sheave (1), wherein a characteristic value (Vf) is established for determining the proper operational capability of the elevator under given testing conditions,
    wherein a change in a distance (A) is measured by means of an optical distance measuring device (7) between the elevator car (3) and a fixed measurement point inside the elevator shaft in order to establish the characteristic value (Vf), and wherein the distance (A) is measured as a function of time and from that an acceleration (s̈) of the elevator car (3) is established in order to establish the characteristic value (Vf),
    characterized in that the following steps are performed in order to establish a characteristic value (Vf) reproducing the operational capability of the safety device:
    Downward movement of the elevator car (3);
    Triggering of the safety device;
    Measurement of the distance (A) of the elevator car (3) from the fixed measurement point over time; and
    Establishing from the measured values the deceleration (Vf) of the elevator car (3) effected by the triggering of the safety device.
  2. Method for testing the proper operational capability of an elevator, in which an elevator car (3) is movable inside an elevator shaft having an elevator shaft pit area, wherein the elevator car (3) is connected to a counterweight (4) via at least one rope (2) passing over a traction sheave (1) and a braking device is provided for decelerating said traction sheave (1), wherein a characteristic value (T) describing a traction capacity of the traction sheave (1) is established for determining the proper operational capability of the elevator under given testing conditions,
    wherein a change in a distance (A) is measured by means of an optical distance measuring device (7) between the elevator car (3) and a fixed measurement point inside the elevator shaft for establishing the characteristic value (T), and wherein the distance (A) is measured as a function of time and from that an acceleration (s̈) of the elevator car (3) is established for establishing the characteristic value (T),
    characterized in that the following steps are performed to establish the characteristic value (T) describing the traction capacity of the traction sheave (1):
    Movement of the elevator car (3);
    Triggering of the braking device;
    Measurement of the distance of the elevator car (3) relative to the fixed measurement point over time; and
    Establishing the traction capacity (T) of the traction sheave (1) from the measured values.
  3. Method according to claim 1 or 2, wherein the fixed measurement point is located inside the elevator shaft pit area and the distance (A) from an elevator car underside of an elevator car (3) is measured.
  4. Method according to one of the preceding claims, wherein at least 500, and preferably 700 to 2500, distance values per second are measured and recorded with the distance measuring device (7).
  5. Method according to one of the preceding claims, wherein the distance measuring device (7) forms the fixed measurement point.
  6. Method according to one of the preceding claims, wherein the distance measuring device (7) is placed into the elevator shaft pit area which is limited by a floor (6) of the elevator shaft, its walls and an imaginary surface contacting an upper side of buffers (10, 11) supported on the floor (6).
  7. Method according to one of the preceding claims, wherein the distance measuring device (7) is supported on the floor (6).
  8. Method according to one of the preceding claims, wherein an optical distance sensor is used as the distance measuring device and has a transmitter emitting transmitted light beams (8) along an optical axis, at least one oscillator for modulation of the transmitted light beams (8), and a receiver receiving received light beams with means for determining the propagation time of received light beams reflected from the underside of the elevator car.
  9. Method according to claim 8, wherein the means for determining the propagation time comprise a phase difference detector which is connected to the receiver via an electric signal path.
  10. Method according to claim 9, wherein an electronic signal delay unit can be inserted into the electric signal path, using which a phase difference between the transmitted (8) and the received light beams can be set to a predetermined value.
  11. Method according to claim 8, wherein the phase shift between the transmitted (8) and the received light beams is determined by means of a synchronous rectifier.
  12. Method according to one of the preceding claims, wherein a reflector is attached to the elevator car underside for reflecting the transmitted light beams.
  13. Method according to one of the preceding claims, wherein an evaluation unit is provided for evaluating the reception signals present at the output of the receiver, and wherein the receiver has a light-sensitive surface, of which the normal vector is inclined relative to the optical axis by a given tilt angle.
  14. Method according to claim 13, wherein the tilt angle is in the range from 10° to 30°.
  15. Method according to one of the preceding claims, wherein a low-pass filter, preferably an SG-FIR low-pass filter, is used for evaluation of the measured values.
  16. Method according to one of the preceding claims, wherein a first force measuring device (12) is supported on at least one first buffer (10) corresponding to the counterweight (4), and a second force measuring device (13) on at least one second buffer (11) corresponding to the elevator car (3).
  17. Method according to claim 16, wherein the distance (A) is measured as a function of the force measured by means of the first force measuring device (12) and/or the second force measuring device (13) to establish the characteristic values (Vf, T, T', T'').
  18. Method according to claim 17, wherein the measured values of the distance measuring device (7) and/or of the force measuring devices (12, 13) are recorded and evaluated by means of a computer (9) connected thereto and preferably placed in the elevator shaft pit area.
EP20100153413 2009-02-20 2010-02-12 Method and assembly for testing that a lift is functioning correctly Active EP2221268B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13176188.4A EP2650245B1 (en) 2009-02-20 2010-02-12 Method and assembly for testing that a lift is functioning correctly

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE102009001057A DE102009001057A1 (en) 2009-02-20 2009-02-20 Proper operational characteristics e.g. traction characteristics, testing method for lift, involves measuring change of distance between lift cage and fixed measurement point in lift shaft mine opening for determining characteristic values
DE102009001055A DE102009001055A1 (en) 2009-02-20 2009-02-20 Proper operational characteristics e.g. traction characteristics, testing method for lift, involves measuring change of distance between lift cage and fixed measurement point in lift shaft mine opening for determining characteristic values
DE102009001056A DE102009001056A1 (en) 2009-02-20 2009-02-20 Proper operational characteristics e.g. traction characteristics, testing method for lift, involves measuring change of distance between lift cage and fixed measurement point in lift shaft mine opening for determining characteristic values
DE200910026992 DE102009026992A1 (en) 2009-06-17 2009-06-17 Proper operational characteristics e.g. traction characteristics, testing method for lift, involves measuring change of distance between lift cage and fixed measurement point in lift shaft mine opening for determining characteristic values
DE200910028596 DE102009028596A1 (en) 2009-08-17 2009-08-17 Proper operational characteristics e.g. traction characteristics, testing method for lift, involves measuring change of distance between lift cage and fixed measurement point in lift shaft mine opening for determining characteristic values

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP13176188.4A Division-Into EP2650245B1 (en) 2009-02-20 2010-02-12 Method and assembly for testing that a lift is functioning correctly
EP13176188.4A Division EP2650245B1 (en) 2009-02-20 2010-02-12 Method and assembly for testing that a lift is functioning correctly

Publications (2)

Publication Number Publication Date
EP2221268A1 EP2221268A1 (en) 2010-08-25
EP2221268B1 true EP2221268B1 (en) 2014-04-16

Family

ID=42226611

Family Applications (2)

Application Number Title Priority Date Filing Date
EP20100153413 Active EP2221268B1 (en) 2009-02-20 2010-02-12 Method and assembly for testing that a lift is functioning correctly
EP13176188.4A Active EP2650245B1 (en) 2009-02-20 2010-02-12 Method and assembly for testing that a lift is functioning correctly

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP13176188.4A Active EP2650245B1 (en) 2009-02-20 2010-02-12 Method and assembly for testing that a lift is functioning correctly

Country Status (1)

Country Link
EP (2) EP2221268B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9599467B2 (en) 2011-12-15 2017-03-21 Dekra E.V. (Eingetragener Verein) Method and arrangement for testing the proper functionality of an elevator

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011076241A1 (en) * 2011-03-07 2012-09-13 Dekra Industrial Gmbh Method and device for checking the proper functioning of an elevator
DE102014101381B4 (en) 2014-02-05 2017-08-17 Dekra E.V. Measuring system and measuring method for testing the safety gear of an elevator
CN105883519B (en) * 2016-06-22 2018-07-17 æœ—æ Œć°”ç””æąŻæœ‰é™ć…Źćž Elevator safety management method and its system
US10745244B2 (en) 2017-04-03 2020-08-18 Otis Elevator Company Method of automated testing for an elevator safety brake system and elevator brake testing system
EP4332039A1 (en) 2022-08-30 2024-03-06 TÜV SÜD Industrie Service GmbH Elevator testing by means of measuring the acceleration curve

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1094623A (en) * 1954-01-06 1955-05-23
DE3911391C5 (en) 1989-04-07 2010-04-29 TÜV SÜD Industrie Service GmbH Method and device for checking the driving ability
DE4211289C2 (en) * 1992-04-03 1994-01-05 Tech Ueberwachungs Verein Hann Method for measuring the driving ability of a conveyor drive
BE1014144A3 (en) * 2001-04-27 2003-05-06 Visee Christian METHOD AND DEVICE FOR EVALUATING A PARAMETER OF A MOVING OBJECT.
DE10150284A1 (en) 2001-10-12 2003-04-30 Henning Gmbh Diagnostic device and method for diagnosing elevator systems
ES2376168T3 (en) * 2004-05-28 2012-03-09 Mitsubishi Denki Kabushiki Kaisha ELEVATOR ROPE SLIDE DETECTOR AND ELEVATOR SYSTEM.
JP5172077B2 (en) * 2005-05-06 2013-03-27 ケă‚șăƒ“ăƒ«æ ȘćŒäŒšç€Ÿ Distance / speed meter and distance / speed measurement method
DE102006011395B4 (en) 2006-03-09 2014-12-31 TÜV Rheinland Industrie Service GmbH Measuring device for a driving capability measurement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9599467B2 (en) 2011-12-15 2017-03-21 Dekra E.V. (Eingetragener Verein) Method and arrangement for testing the proper functionality of an elevator

Also Published As

Publication number Publication date
EP2221268A1 (en) 2010-08-25
EP2650245A3 (en) 2014-01-15
EP2650245B1 (en) 2015-09-02
EP2650245A2 (en) 2013-10-16

Similar Documents

Publication Publication Date Title
EP2221268B1 (en) Method and assembly for testing that a lift is functioning correctly
DE102014101381B4 (en) Measuring system and measuring method for testing the safety gear of an elevator
EP0391174B1 (en) Arrangement and method to detect physical parameters of an elevator
EP2683612B1 (en) Method and device for testing the proper working order of an elevator
US5233139A (en) Measurement of traction, operation of brake, friction safety gear, and cable forces of an elevator
EP0755894B1 (en) Method and apparatus for measuring the load in an elevator car
AT503454B1 (en) DYNAMIC SPEEDY TESTING
US9599467B2 (en) Method and arrangement for testing the proper functionality of an elevator
DE102009002678A1 (en) Test method for bogies as well as test and assembly stand
EP2393746B1 (en) Device for carrying out a load test in a lift assembly and method for carrying out such a test
DE102015101634A1 (en) Measuring system and method for determining a relative cable force distribution of an elevator
EP2316776B1 (en) Method for placing into operation an elevator system
DE102015226702A1 (en) Device and method for detecting at least one motion parameter of an elevator of a wind turbine
DE102009026992A1 (en) Proper operational characteristics e.g. traction characteristics, testing method for lift, involves measuring change of distance between lift cage and fixed measurement point in lift shaft mine opening for determining characteristic values
EP1902992A2 (en) Slippage/tractability indicator
DE102009028596A1 (en) Proper operational characteristics e.g. traction characteristics, testing method for lift, involves measuring change of distance between lift cage and fixed measurement point in lift shaft mine opening for determining characteristic values
DE102006011395B4 (en) Measuring device for a driving capability measurement
DE102009001055A1 (en) Proper operational characteristics e.g. traction characteristics, testing method for lift, involves measuring change of distance between lift cage and fixed measurement point in lift shaft mine opening for determining characteristic values
DE10306375B3 (en) Safety gear inspection procedures
DE102007009602A1 (en) Lift facility&#39;s operating parameter testing method, involves introducing excess force initiated in supporting cable of lift facility by using testing device, and loading adjacent supporting cable along section
DE102009001057A1 (en) Proper operational characteristics e.g. traction characteristics, testing method for lift, involves measuring change of distance between lift cage and fixed measurement point in lift shaft mine opening for determining characteristic values
DE102009001056A1 (en) Proper operational characteristics e.g. traction characteristics, testing method for lift, involves measuring change of distance between lift cage and fixed measurement point in lift shaft mine opening for determining characteristic values
DE102017119599B4 (en) Procedure for testing the traction of a traction sheave
SU721693A1 (en) Horizontal stand for impact testing of articles
JPS62105882A (en) Test apparatus for elevator balance device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20101231

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DEKRA INDUSTRIAL GMBH

17Q First examination report despatched

Effective date: 20110824

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20131107

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DEKRA E.V.

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 662391

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010006647

Country of ref document: DE

Effective date: 20140528

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140416

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140717

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140816

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140416

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140416

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140416

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140416

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140416

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140818

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010006647

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140416

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140416

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140416

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140416

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140416

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140416

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010006647

Country of ref document: DE

Effective date: 20150119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140416

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150212

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140416

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140416

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100212

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140416

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230227

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230227

Year of fee payment: 14

Ref country code: AT

Payment date: 20230224

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230208

Year of fee payment: 14

Ref country code: GB

Payment date: 20230227

Year of fee payment: 14

Ref country code: DE

Payment date: 20230228

Year of fee payment: 14

Ref country code: BE

Payment date: 20230227

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230402

Year of fee payment: 14

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230703

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240220

Year of fee payment: 15