EP2221109A1 - Kugelförmige Drehsprühdüse und Herstellungsverfahren dafür - Google Patents
Kugelförmige Drehsprühdüse und Herstellungsverfahren dafür Download PDFInfo
- Publication number
- EP2221109A1 EP2221109A1 EP10154448A EP10154448A EP2221109A1 EP 2221109 A1 EP2221109 A1 EP 2221109A1 EP 10154448 A EP10154448 A EP 10154448A EP 10154448 A EP10154448 A EP 10154448A EP 2221109 A1 EP2221109 A1 EP 2221109A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- stem
- nozzle body
- nozzle
- internal cavity
- supply pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007921 spray Substances 0.000 title claims abstract description 43
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 239000007788 liquid Substances 0.000 claims abstract description 14
- 229920000642 polymer Polymers 0.000 claims abstract description 14
- 238000004891 communication Methods 0.000 claims abstract description 6
- 238000003466 welding Methods 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 10
- 238000010276 construction Methods 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 230000013011 mating Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 6
- 230000000295 complement effect Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 239000004033 plastic Substances 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 239000002033 PVDF binder Substances 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000004851 dishwashing Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B3/00—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
- B05B3/02—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
- B05B3/04—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet
- B05B3/06—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet by jet reaction, i.e. creating a spinning torque due to a tangential component of the jet
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
Definitions
- This invention relates to spray nozzles and, more particularly, a rotating spray nozzle, and method of manufacturing the same, wherein two or more separate, mateable portions comprising a polymer nozzle body are secured together about a stem so that the nozzle body is rotatably captured on a longitudinal portion of the stem between greater diameter annular shoulders thereof.
- Spray nozzles are utilized in many areas where a spray of fluid is required, for example: tank and drum washing; metal washing; foam control; asphalt spraying; vehicle wasting; and dish washing.
- a spray of fluid for example: tank and drum washing; metal washing; foam control; asphalt spraying; vehicle wasting; and dish washing.
- one of the more popular forms of spray nozzles is the self-excited or self-driven rotating spray nozzle assembly.
- Such a nozzle assembly is secured to an end of a supply pipe and the device is inserted into the vessel to be cleaned either by means of entryways specifically designed for the purpose of cleaning the vessel, or by utilizing existing vessel entryways.
- the nozzle assembly comprises a fixed or stationary stem for mounting to the supply pipe, and a rotating nozzle body.
- a bore or passageway extends through the stationary mounting element to outlets that feed the rotating nozzle body rotatably mounted on an outlet end of the stem.
- Rotating spray nozzle assemblies generally have spray outlets, or outlet orifices, that are provided in pairs opposite one another and at an angle to the axis of rotation. This providers driving forces to rotate the nozzle body. The rotation is intended to distribute the spray over a specific area within the vessel to be cleaned. This area may include a portion, or the complete interior, of the vessel to be cleaned, Exemplary of such rotating spray nozzles is the disclosure of the present inventors prior United States Patent No. 5,316,218 .
- rotating spray nozzles are characterized by multi-part construction, with the nozzle body being captured on the stem by means of a separate screw threadingly engaging a correspondingly threaded bore provided in the stem. Furthermore, a conical washer is provided, either integral with the screw or as a separate element therefrom.
- a retaining clip is provided. The clip has a head, a bifurcated shaft and angled engagement surfaces, The angled engagement surfaces are resiliently pressed inwards during insertion of the retaining clip into a bore provided through the stem and, when fully inserted, they spring outwards to engage shoulders inside the stem.
- a rotating spray nozzle comprising an elongate stem securable to a liquid-supply pipe, the stem defining a passageway therethrough for communicating a liquid from the supply pipe, the passageway communicating at least one inlet opening and at least one outlet opening defined in the stem, and a nozzle body freely rotatably mounted on the stem for rotation about a nozzle axis, the nozzle body having an internal cavity in communication with the at least one outlet opening of the stem, and at least one outlet orifice defined through the nozzle body and communicating with the internal cavity, the at least one outlet orifice being offset from the nozzle axis to impart a driving couple to the nozzle body to cause rotation thereof when a liquid from the supply pipe is communicated through the at least one outlet orifice.
- the elongate stem defines a longitudinal portion bounded at opposite ends thereof by integral annular shoulders having diameters greater than the longitudinal portion, and wherein further the nozzle body is comprised of two or more separate, mateable portions which are secured together about the stem so that the nozzle body is rotatably captured on the longitudinal portion of the stem between the greater diameter annular shoulders.
- the nozzle body may be a polymer nozzle body. Further to this embodiment, the polymer nozzle body portions may be secured together about the stem by ultrasonic welding.
- the stem may be made of metal or polymer.
- the stem may, irrespective of the material from which the nozzle is formed, be of monolithic construction.
- the stem may, per yet another feature, comprise a threaded base portion for threaded securement to a supply pipe.
- a supply source such as a supply pipe
- conventional means for connecting the stem to a supply source such as a supply pipe
- conventional means including, without limitation, a sanitary connection, a hose barb, etc.
- the nozzle body whether made from metal, plastic, etc., consists of two separate, mateable portions that are secured together about the stem.
- Each such separate portion of the nozzle body may, according to one embodiment, define a portion of the internal cavity.
- the nozzle body defines a pair of opposed, coaxial openings therethrough for receiving the longitudinal portion of the stem, each of the openings communicating with the internal cavity, and each of the openings of the nozzle body being defined by a pair of semi-circular cut-outs, one of said pair of cut-outs being defined in each of the separate portions of the nozzle body.
- the nozzle body may have a generally spheroidal shape, with generally flat end surfaces oriented perpendicular to the nozzle axis, the internal cavity has a corresponding spheroidal shape, and wherein each separate portion of the nozzle body is semi-spheroidal in shape.
- the present disclosure further comprehends a method of manufacturing such a rotating spray nozzle, comprising the steps of: (1) Providing an elongate stem securable to a liquid-supply pipe, the stem defining a passageway therethrough for communicating a liquid from the supply pipe, the passageway communicating at least one inlet opening and at least one outlet opening defined in the stem, and the elongate stem further defining a longitudinal portion bounded at opposite ends thereof by integral annular shoulders having diameters greater than the longitudinal portion; (2) providing two or more separate portions which are mateable to define a nozzle body having an internal cavity in communication with the at least one outlet opening of the stem, and at least one outlet orifice defined through the nozzle body and communicating with the internal cavity, the at least one outlet orifice oriented so as to impart a driving couple to the nozzle body to cause rotation thereof when a liquid from the supply pipe is communicated through the at least one outlet orifice; and (3) securing the two or more separate, mateable portions together
- the two or more separate, mateable portions may each polymeric.
- the step of securing the two or more separate polymer portions together may comprise securing the polymer portions together via ultrasonic welding.
- the stem may be made of metal or polymer.
- the stem may, irrespective of the material from which the nozzle is formed, be of monolithic construction.
- the stem may, per yet another feature, comprise a threaded base portion for threaded securement to a supply pipe.
- a supply source such as a supply pipe
- conventional means for connecting the stem to a supply source such as a supply pipe
- conventional means including, without limitation, a sanitary connection, a hose barb, etc.
- the nozzle body whether made from metal, plastic, etc., consists of two separate, mateable portions that are secured together about the stem.
- Each such separate portion of the nozzle body may, according to one embodiment, define a portion of the internal cavity, Further to this embodiment, the nozzle body defines a pair of opposed, coaxial openings therethrough for receiving the longitudinal portion of the stem, each of the openings communicating with the internal cavity, and each of the openings of the nozzle body being defined by a pair of semi-circular cut-outs, one of said pair of cut-outs being defined in each of the separate portions of the nozzle body, Further to the foregoing, the nozzle body may have a generally spheroidal shape, with generally flat end surfaces oriented perpendicular to the nozzle axis, the internal cavity has a corresponding spheroidal shape, and wherein each separate portion of the nozzles body is semi-spheroidal in shape.
- the present invention is generally characterized as a rotating spray nozzle (indicated generally at 1) comprising a stem (indicated generally at 10 ) securable to a liquid-supply pipe (not shown), and a nozzle body (indicated generally at 30 ) rotatably mounted on the stem 10 for rotation about a nozzle axis 20 , the nozzle body including at least one outlet orifice defined through the nozzle body and receiving liquid from the liquid-supply pipe, the at least one outlet orifice being offset from the nozzle axis to impart a driving couple to the nozzle body to cause rotation thereof when a liquid from the supply pipe is communicated through the at least one outlet orifice.
- Stem 10 has, according to the illustrated embodiment, a base portion 14 provided with an external screw thread for attachment to corresponding internal threads of the supply pipe.
- internal threads such as shown in US Pat, No. 5,326,218 , the disclosure of which is incorporated herein by reference, may be provided instead where the supply pipe is externally threaded.
- any of a variety of other conventional means for securing stem 10 to a supply pipe may be adapted to the stem 10 of this invention,
- the stem may comprise a sanitary connection, a hose barb, etc.
- stem 10 may also be provided with flat surfaces 15 for engagement of a wrench for secure engagement with the supply pipe.
- the stem 10 defines along its principal length a longitudinal portion 16.
- Longitudinal portion 16 is bounded at opposite ends by integral annular shoulders 17, 18 of the stem having diameters greater than the diameter of the longitudinal portion,
- the nozzle body 30 is captured on the longitudinal portion 16 of the stem 10 between the greater-diameter shoulders 17, 18 in the assembled spray nozzle,
- a lower section 19 of the longitudinal portion 16 proximate the threaded end defines a bearing surface characterized by a diameter greater than that of the rest of the longitudinal portion but smaller than that of either annular shoulder 17, 18.
- the stern 10 defines a passageway 11 therethrough for communicating a liquid from the supply pipe, the passageway 11 communicating at least one inlet opening 12 and at least one outlet opening 13. As shown, inlet opening 12 is disposed proximate the threaded end, while a pair of outlet openings 13 are provided, each disposed along the length of longitudinal portion 16.
- the assembled nozzle body 30 has a generally spheroid shape and, in the illustrated embodiment, comprises two or more separate, mateable portions 31a, 31b of generally semi-spherold configuration that are secured together about the stem 10 in the manner hereinafter described.
- Nozzle body 30 has an internal cavity 32 in communication with the at least one and, as shown, two outlet openings 13 of the stem 10, the internal cavity generally conforming to the overall shape of the nozzle body 30.
- Each separate portion 31a, 31b defines a portion of the internal cavity 32.
- a pair of opposed, coaxial openings 33, 34 communicate with the internal cavity 32, the coaxial openings dimensioned to receive the longitudinal portion 16 of the stem therethrough.
- Each opening 33, 34 is of sufficiently larger diameter than the longitudinal portion 16 so that free rotation of nozzle body 30 about the stem 10 is possible.
- the diameters of coaxial openings 33, 34 further correspond, respectively, to the diameter of the bearing surface 19 and the diameter of the smaller-diameter section of longitudinal portion 16.
- nozzle 30 comprises two separate portions 31a, 31b
- the openings 33, 34 are each defined by a pair of semi-circular cut-outs 33a, 33b, 34a, 34b, as shown, one of each pair of cut-outs being defined in each of the separate portions 31a, 31b.
- nozzle body 30 includes two outlet orifices 35, 36 which are offset from the nozzle axis 20 to impart a driving couple to the nozzle body to cause rotation thereof when a liquid from the supply pipe is communicated through the two or more outlet orifices.
- Outlet orifices 35, 36 in the nozzle body 30 are, in the illustrated embodiment, slat-shaped openings disposed generally oppositely each other, and are further oriented generally tangential with the internal cavity 32 of the nozzle body,
- Each slot-shaped outlet orifice 35, 36 is generally planar and of uniform width, though other configurations, known to those skilled in the art, are possible.
- the outlet orifices 35, 36 are also disposed so as to provide reactionary force on the nozzle body 30 that is offset from its axis 20, the two forces being on the opposite sides of the axis, to develop a couple or moment causing the body 30 to rotate about the axis 20.
- nozzle body 30 in respect of the type and disposition of outlet orifices is not intended to be limiting of the present invention, according to which any of a variety of outlet orifice types and arrangements, all known to those skilled in the art for use in conjunction with rotating spray nozzles, may be adopted.
- the depth of the outlet orifices 35, 36 will determine the angular coverage of the fan spray produced. This can be adjusted as desired.
- each outlet orifice 35, 36 may also be designed to ensure that its spray pattern intersects the nozzle axis 20.
- the stem 10 and nozzle body 30 may each be fabricated from any suitable materials, including metals (e.g., stainless steel) or plastics (such as PVDF or polypropylene). In general, the materials should not be corroded or attacked by materials to which they will be subjected in use.
- the stem 10 is of monolithic construction.
- the stem 10 and nozzle body 30 are both fabricated from plastic and, according to the exemplary embodiment, PVDF more specifically.
- the two or more separate portions 31a, 31b of the nozzle body 30 are positioned about the longitudinal portion 16 of stem 10 in the proper orientation; more particularly, so that the semi-circular cut-outs 33a, 33b are disposed about the larger-diameter bearing surface 19 of the longitudinal portion and the semi-circular cut-outs 34a, 34b are disposed about the smaller-diameter section of the longitudinal portion 16.
- the separate portions 31a, 31b are secured together so as to define the unitary nozzle body 30.
- one or both portions 31a, 31b may be provided with complementary projections and recesses which cooperate in a friction-fit relation to hold the separate portions 31a, 31b together pending securement as described below.
- these complementary projections and recesses take the form of a plurality of ribs 38 projecting outwardly from a mating face 37 of portion 31a, and a plurality of corresponding recessed grooves 39 formed in the mating face 40 of portion 31b.
- Grooves 39 are each characterized by a width and depth approximately the same the width and height of ribs 38.
- Ribs 38 are, as shown, characterized by a thickness less than the thickness of mating face 37. Further according to the illustrated embodiment, ribs 38 are formed proximate the edge of mating face 38 closest to the internal cavity 32, such that the interiorly-faclng surface 39 of each rib is coplanar with the interior surface defining the internal cavity 32. Correspondingly, each groove 39 is formed in the edge of the mating face 40 proximate the internal cavity 2 so as to define a step or shoulder between the interior surface defining the interior cavity and the mating face. According to the thus-described arrangement, it will be understood that when provisionally mated by insertion of ribs into their corresponding grooves, the interior surface defining interior cavity 32 will be substantially smooth.
- ultrasonic welding employs the local application of high-frequency ultrasonic acoustic vibrations to parts held together under pressure to create a solid-state weld. More particularly, the parts are sandwiched between a fixed, shaped-nest (anvil) and a sonotrode (horn) connected to a transducer, and a low-amplitude acoustic vibration is emitted.
- common frequencies used in ultrasonic welding of thermoplastics are 15kHz, 20kHz, 30kHz, 35kHz, 40kHz and 70kHz.
- the preferred frequency for the polymer material, PVDF, of the illustrated embodiment is 20kHz.
- the ultrasonic energy melts the point contact between the parts due to absorption of vibration energy along the joint being welled, thereby creating a joint.
- the inventive method employs, according to the formation of a spray nozzle of the exemplary embodiment, a welding nest 50 having a cavity 51 defined in an upper surface thereof, the cavity 51 complimentary in shape to a portion of the exterior shape of the spray nozzle so that, as shown, the spray nozzle may be placed in the cavity 51 and a portion of nozzle body 30 will be exposed above the upper surface of the nest,
- the longitudinal dimensions of the cavity 51 are such that a portion of the spray nozzle, defined between the upper-end of the stem 10 proximate the shoulder 17 and part-way down the length of the base portion 14 toward the lower end of the stem, is positionable in the cavity 51.
- the hemispherically-shaped portion of cavity 51 complimentary in shape to the nozzle body 30 has defined therein an upwardly-projecting flange or rib 52 dimensioned to be received in one of the slot-shaped outlet orifices 35, 36 of the nozzle body of the exemplary embodiment.
- rib 52 serves to prevent unwanted rotation of the nozzle body 30 within the cavity 51 during the sonic welding process.
- the portions 31a, 31b of nozzle body are oriented so that the interface between mating faces 37 and 40 is oriented in a plane that is either the same as, or generally parallel to and positioned below, the plane defined by the upper surface of the nest 50.
- the horn 60 comprises a longitudinally-extending element having a first, upper end defining an attachment point 61 for connection to a transducer, and an opposite, lower end defining a contact surface with a cut-out 62 for receiving a portion of the nozzle body 30 therein. More particularly, the cut-out 62 defines a convex shape the dimensions of which are complimentary to the shape of the exterior surface of the nozzle body 30 so that the cut-out 62 may be brought into contact with that exterior surface.
- the horn 60 is oriented so that it contacts the nozzle body 30 radially in relation to the nozzle axis 20 defined previously. Following receipt of a portion of the nozzle body 30 in the cut-out 62, the low-amplitude vibration is emitted to form a weld between the mating faces 37, 40 of the body portions 31a, 31b in the manner hereinabove described.
Landscapes
- Nozzles (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/390,796 US8079533B2 (en) | 2009-02-23 | 2009-02-23 | Rotating spray nozzle and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2221109A1 true EP2221109A1 (de) | 2010-08-25 |
EP2221109B1 EP2221109B1 (de) | 2016-02-10 |
Family
ID=42162653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10154448.4A Active EP2221109B1 (de) | 2009-02-23 | 2010-02-23 | Kugelförmige Drehsprühdüse und Herstellungsverfahren dafür |
Country Status (3)
Country | Link |
---|---|
US (1) | US8079533B2 (de) |
EP (1) | EP2221109B1 (de) |
CA (1) | CA2694426C (de) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2869164C (en) * | 2012-04-20 | 2017-01-10 | Jaroslav Belik | Centrifugal applicator |
KR101964646B1 (ko) * | 2012-09-25 | 2019-04-02 | 엘지전자 주식회사 | 식기세척기 |
DE102013021732A1 (de) * | 2013-12-20 | 2015-07-23 | i-clean Technologies GmbH | Reinigungskartusche für Reinigungsvorrichtung in Öfen |
DE102015001534A1 (de) * | 2015-02-06 | 2016-08-11 | Jürgen Burkhard | Sprühvorrichtung |
WO2019094883A1 (en) | 2017-11-10 | 2019-05-16 | Pentair Flow Technologies, Llc | Coupler for use in a closed transfer system |
US10584474B2 (en) * | 2017-11-27 | 2020-03-10 | Raymond Grantham | Septic sensor sprayer |
BR112022000818A2 (pt) * | 2019-07-15 | 2022-03-08 | Spraying Systems Co | Sistema de pulverização de alta eficiência, baixa deriva |
CN115193610B (zh) * | 2022-07-14 | 2023-10-03 | 国家林业和草原局华东调查规划院 | 一种林业病虫害防治用树干石灰喷涂装置 |
USD1037410S1 (en) * | 2023-01-26 | 2024-07-30 | Stoneage, Inc. | Descaler cleaner with smooth body and forward nozzle head |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2194095A (en) * | 1939-01-11 | 1940-03-19 | Lewis D Harbaugh | Chimney borer and soot-churn nozzle |
US2670993A (en) * | 1950-09-18 | 1954-03-02 | Nordenstam Norris | Lawn sprinkler |
US3979066A (en) * | 1975-07-01 | 1976-09-07 | Rain Bird Sprinkler Mfg. Corporation | Governor for rotary sprinkler |
EP0745437A1 (de) * | 1995-06-02 | 1996-12-04 | CMT Costruzioni Meccaniche e Tecnologia S.p.A. | Reinigungsdüse für Lebensmittelverarbeitungsmaschine |
DE20317079U1 (de) * | 2003-11-06 | 2004-01-15 | Becker, Peter, Dipl.-Ing. | Ex-geschützter Reinigungskreisel |
US20060226257A1 (en) * | 2005-04-06 | 2006-10-12 | Luca Lee | Self-rotating spherical sprinkler |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3125297A (en) | 1964-03-17 | Rotary spray head | ||
US2531923A (en) | 1947-01-27 | 1950-11-28 | Frederick H Smith | Hydro jet sprinkler |
US3610532A (en) * | 1969-01-21 | 1971-10-05 | Henry J Modrey | Balljet tank cleaner |
US5096122A (en) | 1990-05-23 | 1992-03-17 | Arthur Products Co. | Spray nozzle |
US5104044A (en) * | 1990-10-12 | 1992-04-14 | Ratell Jr Raymond E | High speed scouring hydroactuated spinner for car wash equipment and the like |
US5326218A (en) | 1993-03-08 | 1994-07-05 | Fallas David M | Robotic arm for handling product |
US5316218A (en) | 1993-05-12 | 1994-05-31 | Bex Engineering Ltd. | Rotating nozzle |
US5505380A (en) * | 1994-09-13 | 1996-04-09 | Ting Yang Enterprise Co., Ltd. | Animal-patterned sprinkling device |
US5918813A (en) | 1997-06-17 | 1999-07-06 | Rucker; David L. | Rotating spray head |
DE19832568C2 (de) * | 1998-07-20 | 2003-04-30 | Anton Jaeger | Rotordüse |
GB9903102D0 (en) * | 1999-02-11 | 1999-03-31 | Sarp Uk Limited | Fluid spraying apparatus |
DE20022545U1 (de) | 2000-09-22 | 2001-12-06 | Alfred Kärcher GmbH & Co., 71364 Winnenden | Rotordüse, insbesondere für ein Hochdruckreinigungsgerät |
JP4832661B2 (ja) * | 2000-10-17 | 2011-12-07 | 株式会社ダイゾー | 回転式エアゾール製品 |
US7384005B1 (en) | 2005-02-02 | 2008-06-10 | Camco Manufacturing, Inc. | Tank spray head assembly |
-
2009
- 2009-02-23 US US12/390,796 patent/US8079533B2/en active Active
-
2010
- 2010-02-23 CA CA2694426A patent/CA2694426C/en active Active
- 2010-02-23 EP EP10154448.4A patent/EP2221109B1/de active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2194095A (en) * | 1939-01-11 | 1940-03-19 | Lewis D Harbaugh | Chimney borer and soot-churn nozzle |
US2670993A (en) * | 1950-09-18 | 1954-03-02 | Nordenstam Norris | Lawn sprinkler |
US3979066A (en) * | 1975-07-01 | 1976-09-07 | Rain Bird Sprinkler Mfg. Corporation | Governor for rotary sprinkler |
EP0745437A1 (de) * | 1995-06-02 | 1996-12-04 | CMT Costruzioni Meccaniche e Tecnologia S.p.A. | Reinigungsdüse für Lebensmittelverarbeitungsmaschine |
DE20317079U1 (de) * | 2003-11-06 | 2004-01-15 | Becker, Peter, Dipl.-Ing. | Ex-geschützter Reinigungskreisel |
US20060226257A1 (en) * | 2005-04-06 | 2006-10-12 | Luca Lee | Self-rotating spherical sprinkler |
Also Published As
Publication number | Publication date |
---|---|
CA2694426C (en) | 2019-06-04 |
EP2221109B1 (de) | 2016-02-10 |
CA2694426A1 (en) | 2010-08-23 |
US20100213277A1 (en) | 2010-08-26 |
US8079533B2 (en) | 2011-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2221109B1 (de) | Kugelförmige Drehsprühdüse und Herstellungsverfahren dafür | |
US12023705B2 (en) | Vee manifold | |
RU2339877C1 (ru) | Форсунка центробежная вихревая | |
RU2409787C1 (ru) | Распылитель акустический | |
US5316218A (en) | Rotating nozzle | |
JP2010507051A (ja) | スリーブ | |
JP2010500509A (ja) | ボルト、ワッシャおよびスリーブからなる組合せ並びにこの種の組合せを形成する方法 | |
US7686022B2 (en) | Nozzle device, and cleaning apparatus equipped with the nozzle device | |
US9233380B2 (en) | Revolvingly spraying device | |
CN113909844B (zh) | 气雾剂产生器孔板到支撑件的安装 | |
CN101754901B (zh) | 用于附件敷贴器的砧座装置 | |
US20140145015A1 (en) | Drizzle type spray apparatus | |
CN210815935U (zh) | 万向喷头组件及万向喷头 | |
US20060214031A1 (en) | Water spray nozzle | |
JP2004351361A (ja) | 散液装置 | |
JP5682042B2 (ja) | 噴霧装置 | |
JP2004344801A (ja) | 流体噴射装置 | |
CN106984456B (zh) | 一种自动旋转喷头 | |
KR101481333B1 (ko) | 유체분사에 의한 회전식 살포장치 | |
US2878068A (en) | Spray nozzle | |
KR102507004B1 (ko) | 주름관과 일반배관을 매개하는 이종관 연결 조립체 | |
CN219309136U (zh) | 喷嘴结构 | |
CN221489768U (zh) | 一种优化装配的豆浆机机头 | |
CN115463916B (zh) | 清洗装置及烹饪设备 | |
CN109203076B (zh) | 一种pvc管道打孔用冷却设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
17P | Request for examination filed |
Effective date: 20110225 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B05B 3/06 20060101AFI20150608BHEP |
|
INTG | Intention to grant announced |
Effective date: 20150715 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: BOWEN, DEREK |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 774381 Country of ref document: AT Kind code of ref document: T Effective date: 20160215 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602010030502 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602010030502 Country of ref document: DE Representative=s name: HERNANDEZ, YORCK, DIPL.-ING., DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20160210 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 774381 Country of ref document: AT Kind code of ref document: T Effective date: 20160210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160210 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160510 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160210 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160210 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160210 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160511 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160210 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160229 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160210 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160613 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160210 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160210 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160210 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160610 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160210 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160229 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160210 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160210 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160229 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602010030502 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160210 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160210 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160210 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160210 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160210 |
|
26N | No opposition filed |
Effective date: 20161111 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20160510 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160223 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20170102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160210 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160510 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160411 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160510 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160210 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20100223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160210 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160229 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160223 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160210 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160210 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240228 Year of fee payment: 15 |