EP2199713B1 - Laborzentrifuge - Google Patents

Laborzentrifuge Download PDF

Info

Publication number
EP2199713B1
EP2199713B1 EP09015245.5A EP09015245A EP2199713B1 EP 2199713 B1 EP2199713 B1 EP 2199713B1 EP 09015245 A EP09015245 A EP 09015245A EP 2199713 B1 EP2199713 B1 EP 2199713B1
Authority
EP
European Patent Office
Prior art keywords
container
cooling
layer
heat
laboratory centrifuge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09015245.5A
Other languages
English (en)
French (fr)
Other versions
EP2199713A3 (de
EP2199713A2 (de
Inventor
Bert-Olaf Grimm
Peter Zehnel
Kai Marschner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eppendorf SE
Original Assignee
Eppendorf SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eppendorf SE filed Critical Eppendorf SE
Priority to PL09015245T priority Critical patent/PL2199713T3/pl
Publication of EP2199713A2 publication Critical patent/EP2199713A2/de
Publication of EP2199713A3 publication Critical patent/EP2199713A3/de
Application granted granted Critical
Publication of EP2199713B1 publication Critical patent/EP2199713B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B15/00Other accessories for centrifuges
    • B04B15/02Other accessories for centrifuges for cooling, heating, or heat insulating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/006Thermal coupling structure or interface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D31/00Other cooling or freezing apparatus
    • F25D31/006Other cooling or freezing apparatus specially adapted for cooling receptacles, e.g. tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/06Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with the heat-exchange conduits forming part of, or being attached to, the tank containing the body of fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F2013/005Thermal joints
    • F28F2013/006Heat conductive materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2270/00Thermal insulation; Thermal decoupling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making

Definitions

  • the present invention relates to a laboratory centrifuge according to the preamble of claim 1.
  • the present invention relates to laboratory centrifuges, i. Centrifuges used, for example, in chemical, biological, biochemical or biotechnological laboratories.
  • the present invention can be advantageously used in large-scale centrifuges and mechanical stirring devices and all devices in which a good is to be cooled at least indirectly.
  • the invention does not relate to cookware, frying pans or the like containers which serve to heat a good that can be arranged in the container.
  • the ambient air is passed directly through the centrifuge bowl at the centrifuge rotor, with the rotor acting as a kind of radial fan.
  • the centrifuge lid and / or centrifuge bowl has an inlet opening near the axis and an outlet opening arranged at a distance from the axis of rotation.
  • the centrifuge tank must have an outlet opening for it, which, however, also permits a material outlet.
  • Such boilers are thus not suitable for stirring devices or the like, in which materials are to be mixed directly and must therefore be formed closed all around.
  • a disadvantage of direct cooling results from the use of the ambient air as a coolant: the good can be cooled only to the maximum temperature of the ambient air.
  • indirect cooling the rotor is enclosed in the centrifuge vessel under the centrifuge lid and no cooling channel or the like is provided.
  • the air circulates therefore only within the centrifuge bowl. Cooling is now achieved by a second medium, which is passed on the outside of the boiler.
  • This can either be ambient air, which is conducted past the outside of the boiler, as is realized, for example, in the case of the centrifuge 5424 from Eppendorf AG.
  • a special coolant is routed past the boiler via conduits spiraling against the boiler, ie the side walls and the bottom plate of the boiler, to remove heat.
  • An advantage of indirect cooling is the better controllability of the temperature to be set compared to direct cooling.
  • the EP 0 224 238 A discloses a laboratory centrifuge according to the preamble of claim 1.
  • the JP 2000 015142 A discloses a laboratory centrifuge having a container having two thermally conductive contacting container layers having different thermal conductivity, wherein the higher thermal conductivity layer is disposed on the container exterior to be cooled by the cooling means.
  • the object of the present invention is to provide a laboratory centrifuge that allows efficient indirect cooling and is simple and inexpensive to produce.
  • Container in the context of the present invention are all devices in which a good to be cooled can be arranged directly or indirectly via a separate enclosure and which can be cooled by means of indirect cooling via a standing in heat conductive contact cooling device.
  • the container according to the invention may be designed differently with respect to the outer shape. It can be round or kettle-shaped. In such a case, the container has a round bottom plate from which pulls up a side wall at the outer edge. The top of the container is closed by an openable lid. In an alternative embodiment, the container is angular, ie designed rectangular or square.
  • the top of the container is closed with a top plate.
  • either at least one of the side walls is designed as an openable door or the top of the container, ie the upper plate is formed as an openable lid.
  • this term also includes the plural, ie "sidewalls”.
  • Heat conductive contact in the context of the present invention means that the contact must be such that the heat transfer can be carried out by heat conduction. So there must be a material contact, but this does not mean that this contact must exist directly - so between the two layers can also be arranged one or more intermediate layers.
  • heat-transferring contact means, for example, that the contact must be such that heat transfer can take place at least by one of the three principal heat transfer mechanisms, heat conduction, radiation or convection. It does not necessarily have to be a material contact.
  • Direct contact between two objects in the context of the present invention means that two objects at least partially abut each other directly and thus touch each other. If, in the context of the present invention, the term “contact” or “contact point” is generally used, ie without the preceding words “heat-conducting" or "heat-transferring”, this always means direct contact.
  • the laboratory centrifuge according to the invention comprises a container, wherein the container is not integrally connected to a cooling device of the laboratory centrifuge and has a container body which has at least two in heat-conductive contact container layers with different thermal conductivity.
  • the two container layers create a large contact area that improves heat transfer during cooling. Because the layer with higher thermal conductivity is arranged on the outside of the container to be cooled, wherein the layer with higher thermal conductivity has a thickness of less than 1 mm, the heat flow is in the direction of only in regions in heat conductive contact with the container surface to be cooled Cooling device increased. This results in an overall increased cooling efficiency.
  • the thermal conductivities should differ by a factor greater than 10, preferably greater than 20, in particular greater than 100.
  • the layer with lower thermal conductivity is formed from a material comprising stainless steel, steel, ceramic, glass and / or plastic and the layer with higher thermal conductivity is made of a material aluminum, gold, carbon, including its modifications graphite, diamond, diamond-like carbon and carbon nanotubes, copper, magnesium, brass, silver and / or silicon or their alloys formed. Then a particularly efficient heat transfer can be ensured and the boiler is also easy to produce.
  • the layer with higher thermal conductivity as a film advantageous, for example as a pyrolytic graphite foil (PGS), since this manufacturing technology is easily applied to the layer with lower thermal conductivity.
  • PPS pyrolytic graphite foil
  • nanolayers can be used, that is to say a layer which was produced using nanotechnology. In the following, such a layer is understood to consist of a "nanomaterial".
  • the layer with higher thermal conductivity has a small thickness of less than 0.5 mm and in particular less than 0.2 mm. It should be noted that, depending on the layer material, the heat flow decreases if the layers are too thick and the heat transport may be disturbed if the layers are too thin, so that there is an optimum with respect to the minimum thickness for each layer material, which the skilled person will experience on the basis of experiments and calculations will find out.
  • the container is surrounded by a tubular conduit, which is preferably wound helically around the container.
  • tubular includes round tubes as well as tubes with at least one flattened side, in particular also rectangular tubes.
  • On in some areas in the context of the present invention means that the contact area between the cooling device and the cooled outer surface of the container is smaller than the cooled outer surface of the container.
  • the cooling device can also be formed by a plurality of separately operating devices, but their total contact area should be smaller than the cooled container outer surface.
  • indirect heat transfer according to the invention can also be coupled with a direct heat transfer, for example, the known rotor air assisted centrifugal cooling.
  • Q ⁇ the heat flow through the solid
  • the thermal conductivity, which is a material constant
  • A the size of the solid's cross-sectional area
  • s the thickness of the solid
  • ⁇ T the temperature difference between the input and output sides of the heat flow.
  • FIG. 1 This principle is purely schematic for a known and partially shown in the prior art centrifuge vessel with a Boiler wall 1, which is in contact with a cooling line 2 explained.
  • the possibilities are also available to reduce the wall thickness s 1 and s 2 and / or the boiler wall 1 made of a material with a very high thermal conductivity ⁇ 1 (eg Copper or silver), but the first possibility is technically limited by the functional design of the components and is usually exhausted and the second option is usually not possible for application reasons and the intended application, since, for example, copper or silver is not chemically are inert.
  • ⁇ 1 eg Copper or silver
  • an additional heat conducting layer is provided on the outer wall of the boiler by the inventors, as in Fig. 2 again purely schematically for the resulting and illustrated by the arrows heat flow is shown in sections.
  • an additional contact point with a large contact surface is inserted.
  • Fig. 1 So here is in addition to the interior of the boiler bounding inner boiler layer 10 with the thickness s 10 applied an additional outer shell layer 11 with the thickness s 11 of good heat conducting material as boiler outer wall.
  • the cooling line 12 has the thickness s 12 .
  • a laboratory centrifuge 5415R from Eppendorf AG which has as cooling line 2, 12 a spiral rectangular tube with a width of 9.5 mm, a height of 5.5 mm and a material thickness of 0.5 mm.
  • a serial centrifuge vessel 1 with a diameter of 185 mm, a height of 70 mm and a wall thickness of 1 mm (article No. 5426 123.101-00) from Eppendorf AG was used, which was made of V2A stainless steel (thermal conductivity about 15 W / m * K) and with thermal grease (thermal conductivity about 15 W / m * K) provided in the cooling line 2 was arranged to form the comparative example.
  • the standard stainless steel centrifuge vessel 10 (article No. 5426 123.101-00) from Eppendorf AG was provided with a 0.1 mm thick copper coating 11 (thermal conductivity about 350 W / m.sup.K), otherwise it was the experimental setup is the same, ie The centrifuge vessel was connected to the rectangular cooling line 12 by means of thermal paste (thermal conductivity also about 15 W / m * K).
  • the centrifuge 5415R was operated with a conventional rotor F45-24-11 from Eppendorf AG for one hour at a maximum of 13200 rpm. The minimum achievable sample temperature was measured with the temperature meter. The results are recorded in the table. ⁇ U> Table ⁇ / u> 5415R with centrifuge bowl without Cu coating 5415R with centrifuge bowl with Cu coating Room temperature [° C] 25 26 Sample temperature [° C] 3.9 0.4
  • the present invention allows much more efficient indirect cooling from the exterior of the container to the interior of the container.
  • the improvement of the heat conduction and the heat transfer of centrifuge boilers results in cooled centrifuges a reduction of the necessary performance of the refrigeration system. Due to the higher efficiency of the centrifuge, a higher rotational speed can be run for the same centrifuging product temperatures and / or the absorbed power of the cooling unit can be reduced with the same centrifuging product temperature and the same rotational speed.
  • the principle according to the invention is based on the finding that with indirect cooling of a container surface which is larger than the contact surface between the container and the cooling device, the cooling effect can be increased if the container has a layer with higher thermal conductivity in addition to the layer with low thermal conductivity and the layer with higher thermal conductivity is arranged on the container outer surface to be cooled and is in conductive contact with the cooling device.
  • the cooling capacity is better transferred to the interior of the container to be cooled there Good.
  • An alternative solution is to make the contact area between the cooling device and the cooled surface of the container at least equal to the cooled container surface. This can be realized by virtue of the fact that the cooling device is part of the layer of the container with greater thermal conductivity.
  • the second layer consists of a solid, such as copper or the like, and the cooling device is arranged directly in this layer.
  • the cooling device can also be arranged in a liquid, gel or the like which is in heat-conducting contact with the layer of lower thermal conductivity and which itself has a higher thermal conductivity.
  • the container has a layer which has, between itself and the layer with lower thermal conductivity, a cavity which can be filled with a liquid, gel or the like, in which the cooling device is arranged (the thermal conductivity of this further layer is insignificant, as it relates to FIG the cooling device is outside).
  • the container does not itself comprise the liquid, gel or the like, but it is provided with the cooling means housed therein in a device in which the container can be arranged to heat the liquid, gel or the like with the layer of low heat conductivity is in managerial contact.
  • the container in the sense of a bath itself preferably to the edge completely, are immersed in the liquid, gel or the like or the liquid, gel or the like is in contact only with a part of the container outer surface.
  • the liquid, gel or the like and the layer with low thermal conductivity may also be arranged a further layer with higher thermal conductivity.
  • the liquid, gel or the like with the Cooling device may be disposed within a copper cladding, which is either integrated directly into the container or provided in the device, where then the container with this copper cladding is brought into direct contact. This can also achieve the seal.
  • liquids or gels include both Newtonian liquids and non-Newtonian liquids, sols, dispersions, suspensions, as well as any combination of two or more of these listed substances.
  • a liquid or gel can be selected from the following group: water, ionic liquids, suspensions of carbon nanotubes, cooling brines, eutectics or eutectic mixtures and similar materials.
  • Antifrogen N, Antifrogen L and Antifrogen SOL) or potassium formate (Antifrogen KF) Furthermore, find ionic liquids, such as 1-ethyl-3-methylimidazolium chloride, 1-ethyl-3-methylimidazolium methanesulfonate, 1-butyl-3-methylimidazolium chloride , 1-Butyl-3-methylimidazolium methanesulfonate, 1-ethyl-2,3-dimethylimidazolium ethylsulfate (marketed under the brand Basionics® BASF SE, 67063 Ludwigshafen, DE) can also be used polyalkylene glycol derivatives.
  • the advantage of this alternative solution is that the cooling device no longer has to be in direct contact with the container surface to be cooled, possibly mediated by the intermediary of a thermal compound. As a result, there are no such great demands on the accuracy of, for example, the winding geometry of a cooling tube with respect to the container outer contour, which reduces costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Centrifugal Separators (AREA)

Description

  • Die vorliegende Erfindung betrifft eine Laborzentrifuge nach dem Oberbegriff von Anspruch 1.
  • Die vorliegende Erfindung bezieht sich auf Laborzentrifugen, d.h. Zentrifugen, die beispielsweise in chemischen, biologischen, biochemischen oder biotechnologischen Laboren Verwendung finden. Andererseits kann die vorliegende Erfindung vorteilhaft auch bei großtechnischen Zentrifugen und mechanischen Rührvorrichtungen eingesetzt werden und allen Vorrichtungen, bei denen ein Gut zumindest mittelbar gekühlt werden soll.
  • Die Erfindung betrifft insbesondere keine Kochgeschirre, Bratpfannen oder dergleichen Behälter, die der Erwärmung eines in dem Behälter anordenbaren Gutes dienen.
  • Hintergrund der Erfindung
  • Bei der Zentrifugation entsteht während der Drehung des Zentrifugenrotors im Zentrifugenkessel Wärme durch Luftreibung und elektrische Verlustleistung. Da der Zentrifugenkessel zum Verhindern eines Austritts von Zentrifugiergut mit einem Deckel verschlossen ist, kann dieser Wärmeeintrag nicht ohne weiteres abgeführt werden und führt zur Erhöhung der Temperatur des Zentrifugiergutes.
    Diese Temperaturerhöhung ist jedoch zumeist unerwünscht. Daher wurden schon in der Vergangenheit Vorkehrungen zur Vermeidung einer Erhöhung der Zentrifugierguttemperatur getroffen. Dies kann zum einen durch direkt Kühlung erfolgen oder durch indirekte Kühlung mittels Wärmetauscherprinzip. Bei der indirekten Kühlung (mittelbare Kühlung) besteht also kein direkter Kontakt zwischen Kühlmedium und zu kühlendem Gut bzw. Umhüllung des zu kühlenden Gutes.
  • Bei der direkten Kühlung wird die Umgebungsluft unmittelbar am Zentrifugenrotor durch den Zentrifugenkessel geleitet, wobei der Rotor als eine Art Radiallüfter wirkt. Dazu weist der Zentrifugendeckel und/oder Zentrifugekessel achsennah eine Einlassöffnung und eine in Bezug auf die Rotationsachse entfernter angeordnete Auslassöffnung auf. Eine solche direkte Kühlung hat sich zwar bewährt, jedoch muss der Zentrifugenkessel dazu eine Auslassöffnung aufweisen, die allerdings auch einen Materialaustritt gestattet. Solche Kessel sind damit auch nicht für Rührvorrichtungen oder dergleichen verwendbar, in denen Materialien direkt vermengt werden sollen und die damit ringsum geschlossen ausgebildet sein müssen. Ein Nachteil der direkten Kühlung ergibt sich aus der Verwendung der Umgebungsluft als Kühlmittel: das Gut kann maximal nur auf die Temperatur der Umgebungsluft abgekühlt werden.
  • Bei der mittelbaren Kühlung ist der Rotor im Zentrifugenkessel unter dem Zentrifugendeckel eingeschlossen und es ist kein Kühlkanal oder dergleichen vorgesehen. Die Luft zirkuliert daher nur innerhalb des Zentrifugenkessels. Eine Kühlung wird nun durch ein zweites Medium erreicht, das an der Außenseite des Kessels vorbeigeführt wird. Dabei kann es sich entweder um Umgebungsluft handeln, die am Kesseläußeren vorbeigeleitet wird, wie es z.B. bei der Zentrifuge 5424 der Eppendorf AG verwirklicht ist. Alternativ wird ein spezielles Kühlmittel über Rohrleitungen, die spiralförmig an dem Kessel, d.h. den Seitenwänden und der Bodenplatte des Kessels, anliegen, an dem Kessel vorbeigeführt, um Wärme abzutransportieren. Bei letzterer Variante der mittelbaren Kühlung ist auch eine Abkühlung des Guts auf eine Temperatur unter die Temperatur der Umgebungsluft möglich. Ein Vorteil der mittelbaren Kühlung ist die bessere Regelbarkeit der einzustellenden Temperatur im Vergleich zur direkten Kühlung.
  • Der mit der mittelbaren Kühlung erzielte Kühleffekt ist jedoch bisher noch nicht so effizient, wie bei der direkten Kühlung, weshalb der Energieaufwand bei gleicher Kühlleistung entsprechend hoch ist. Dies ist eine Folge des flächenmäßig begrenzten Kontakts des Kühlmediums, das an der Außenseite des Kessels vorbeigeführt wird.
  • Bereits aus dem Stand der Technik sind Bemühungen bekannt, die mittelbare Kühlung zu verbessern. So beschreibt die US 5,477,704 A einen Zentrifugenkessel, an dessen äußeren Seitenwänden und der Bodenplatte Kühlschlangen aus Kupfer mittels eines Aluminium-gefüllten Epoxidharzes geklebt sind. Das Aluminiumgefüllte Epoxidharz weist eine hohe Wärmeleitfähigkeit auf und dient der Unterstützung der Wärmeableitung aus dem Zentrifugenkessel. Die in der US 5,477,704 A offenbarten Kühlschlangen, die an den Kessel geklebt werden, zeichnen sich durch ihre besondere Ausgestaltung aus: die an der Kesselseitenwand bzw. and der Bodenplatte anliegende Seite der Kühlschlange ist abgeflacht, um so die Kontaktfläche zwischen Kühlschlange und Kessel zu vergrößern. Ein Epoxidharz ist allerdings schwierig auf Kupferrohre aufzubringen und es bedarf einer gewissen Aushärtezeit, bevor ein solcher Kessel nutzbar bzw. weiter verarbeitet werden kann. Dazu kommt, dass der Kessel und der Verbund Epoxidharz/Kupfer unterschiedliche Wärmeausdehnungskoeffizienten aufweisen. Das führt dazu, dass bei einer Temperaturveränderung Knackgeräusche auftreten können, die beim Benutzer ein Unsicherheitsgefühl hinsichtlich der Betriebssicherheit der Zentrifuge hinterlassen können.
  • Die EP 0 224 238 A offenbart eine Laborzentrifuge nach dem Oberbegriff von Anspruch 1.
  • Die JP 2000 015142 A offenbart eine Laborzentrifuge mit einem Behälter, der zwei in Wärme leitendem Kontakt stehende Behälterschichten mit unterschiedlicher Wärmeleitfähigkeit aufweist, wobei die Schicht mit höherer Wärmeleitfähigkeit an der durch die Kühleinrichtung zu kühlenden Behälteraußenseite angeordnet ist.
  • Die Aufgabe der vorliegenden Erfindung besteht daher darin, eine Laborzentrifuge bereit zu stellen, die eine effiziente mittelbare Kühlung erlaubt und einfach und möglichst kostengünstig herzustellen ist.
    Behälter im Sinne der vorliegenden Erfindung sind alle Einrichtungen, in denen ein zu kühlendes Gut direkt oder über eine gesonderte Umhüllung indirekt angeordnet werden kann und der mittels mittelbarer Kühlung über eine im Wärme leitenden Kontakt stehende Kühleinrichtung gekühlt werden kann. Der erfindungsgemäße Behälter kann bezüglich der äußeren Form verschiedenartig ausgestaltet sein. Er kann rund bzw. kesselförmig sein. In einem solchen Falle weist der Behälter eine runde Bodenplatte auf, von der sich am äußeren Rand eine Seitenwand hochzieht. Die Oberseite des Behälters ist verschließbar durch einen öffenbaren Deckel. In einer alternativen Ausgestaltung ist der Behälter eckig, d.h. rechteckig bzw. quadratisch ausgestaltet. Er besitzt dann eine rechteckige bzw. quadratische Bodenplatte, von deren äußeren Rand sich jeweils vier Seitenwände erstrecken. Die Oberseite des Behälters ist mit einer oberen Platte verschlossen. Je nach Verwendung des Behälters ist entweder wenigstens eine der Seitenwände als öffenbare Tür ausgestaltet oder die Oberseite des Behälters, d.h. die obere Platte ist als öffenbarer Deckel ausgebildet. Wenn im Weiteren von "Seitenwand" die Rede ist, umfasst dieser Begriff auch den Plural, d.h. "Seitenwände".
  • Kurzbeschreibung der Erfindung
  • Überraschenderweise wurde gefunden, dass diese Aufgabe gelöst wird durch eine Laborzentrifuge mit einem zumindest zweischichtigen Behälter gemäß Anspruch 1. Dies ist deswegen überraschend, weil bisher keinerlei Hinweise vorlagen, dass ein zumindest zweischichtiger Zentrifugenkessel eine solche enorme Verbesserung der mittelbaren Kühlung bei einer Zentrifuge erbringen kann.
  • Die Erfindung betrifft somit eine Laborzentrifuge gemäß Anspruch 1. "Wärme leitender Kontakt" heißt im Zusammenhang der vorliegenden Erfindung, dass der Kontakt so beschaffen sein muss, dass die Wärmeübertragung durch Wärmeleitung erfolgen kann. Es muss also ein stofflicher Kontakt vorhanden sein, was jedoch nicht bedeutet, dass dieser Kontakt unmittelbar bestehen muss - zwischen den beiden Schichten können also auch noch ein oder mehrere Zwischenschichten angeordnet sein. "Wärme übertragender Kontakt" heißt dagegen im Zusammenhang der vorliegenden Erfindung, dass der Kontakt so beschaffen sein muss, dass eine Wärmeübertragung zumindest durch eine der drei prinzipiellen Wärmeübertragungsmechanismen, Wärmeleitung, -strahlung oder -konvektion, erfolgen kann. Es muss dabei also nicht zwingend ein stofflicher Kontakt bestehen. "Direkter Kontakt" zwischen zwei Objekten heißt im Rahmen der vorliegenden Erfindung, dass zwei Objekte zumindest bereichsweise direkt aneinander anliegen und sich somit berühren. Wenn im Rahmen der vorliegenden Erfindung allgemein von "Kontakt" oder "Kontaktstelle" die Rede ist, d.h. ohne die voranstehenden Worte "Wärme leitend" bzw. "Wärme übertragend", ist damit immer ein direkter Kontakt gemeint.
    Vorteilhafte Weiterbildungen sind in den abhängigen Ansprüchen angegeben.
  • Kurzbeschreibung der Figuren
  • Die Erfindung wird anhand der nachfolgenden Figuren illustriert, die zusätzlich auch in der detaillierten Beschreibung der Erfindung näher erläutert sind. Dabei zeigen
  • Fig. 1
    eine schematische, ausschnittsweise Darstellung eines herkömmlichen Zentrifugenkessel in Kontakt mit einer Kühlleitung und
    Fig. 2
    eine schematische, ausschnittsweise Darstellung eines erfindungsgemäßen Zentrifugenkessel in Kontakt mit einer Kühlleitung.
    Detaillierte Beschreibung der Erfindung
  • Die erfindungsgemäße Laborzentrifuge umfasst einen Behälter, wobei der Behälter mit einer Kühleinrichtung der Laborzentrifuge nicht einstückig verbunden ist und einen Behälterkörper aufweist, der zumindest zwei in Wärme leitendem Kontakt stehende Behälterschichten mit unterschiedlicher Wärmeleitfähigkeit aufweist. Durch die zwei Behälterschichten wird eine große Kontaktfläche geschaffen, die die Wärmeübertragung bei der Kühlung verbessert. Dadurch, dass die Schicht mit höherer Wärmeleitfähigkeit an der zu kühlenden Behälteraußenseite angeordnet ist, wobei die Schicht mit höherer Wärmeleitfähigkeit eine Dicke von weniger als 1 mm aufweist, wird der Wärmestrom in Richtung zu der nur bereichsweise in Wärme leitendem Kontakt mit der zu kühlenden Behälterfläche stehenden Kühleinrichtung erhöht. Dadurch ergibt sich insgesamt eine erhöhte Kühleffizienz.
  • Um eine besonders effiziente Kühlung zu ermöglichen, sollen sich die Wärmeleitfähigkeiten um einen Faktor größer 10, bevorzugt größer 20, insbesondere größer 100 unterscheiden.
  • In einer besonders bevorzugten Ausgestaltung ist die Schicht mit niedrigerer Wärmeleitfähigkeit aus einem Material umfassend Edelstahl, Stahl, Keramik, Glas und/oder Kunststoff gebildet und die Schicht mit höherer Wärmeleitfähigkeit ist aus einem Material Aluminium, Gold, Kohlenstoff, einschließlich dessen Modifikationen Graphit, Diamant, diamantähnlicher Kohlenstoff und Kohlenstoff-Nanoröhrchen, Kupfer, Magnesium, Messing, Silber und/oder Silizium oder deren Legierungen umfassend gebildet. Dann lässt sich eine besonders effiziente Wärmeübertragung sicherstellen und der Kessel ist auch leicht herstellbar. Insbesondere ist auch eine Ausgestaltung der Schicht mit höherer Wärmeleitfähigkeit als Folie vorteilhaft, beispielsweise als pyrolytische Graphitfolie (PGS), da diese fertigungstechnisch einfach auf die Schicht mit niedrigerer Wärmeleitfähigkeit aufbringbar ist. Als Schicht mit niedrigerer Wärmeleitfähigkeit können alternativ auch sogenannte Nanoschichten verwendet werden, also eine Schicht, die mit Nanotechnologie erzeugt wurde. im weiteren wird eine solche Schicht aus einem "Nanomaterial" bestehend aufgefasst.
  • Die Herstellungskosten lassen sich bei guter Effizienz dadurch reduzieren, dass die Schicht mit höherer Wärmeleitfähigkeit eine geringe Dicke von weniger als 0,5 mm und insbesondere weniger als 0,2 mm aufweist. Dabei ist zu beachten, dass in Abhängigkeit vom Schichtmaterial der Wärmestrom bei zu dicken Schichten abnimmt und der Wärmetransport bei zu dünnen Schichten möglicherweise gestört ist, so dass bezüglich der minimalen Dicke für jedes Schichtmaterial ein Optimum besteht, das der Fachmann anhand von Versuchen und Berechnungen routiniert herausfinden wird.
  • Vorteilhafterweise ist der Behälter von einer rohrförmigen Leitung umgeben, die vorzugsweise spiralförmigen um den Behälter gewickelt ist. Der Begriff "rohrförmig" umfasst runde Rohre sowie auch Rohre mit zumindest einer abgeflachten Seite, insbesondere auch Rechteckrohre.
  • "Nur bereichsweise" bedeutet im Zusammenhang der vorliegenden Erfindung, dass die Kontaktfläche zwischen der Kühleinrichtung und der gekühlten Außenfläche des Behälters kleiner ist als die gekühlte Außenfläche des Behälters. Die Kühleinrichtung kann dabei auch durch mehrere getrennt arbeitende Einrichtungen gebildet sein, wobei jedoch deren gesamte Kontaktfläche kleiner sein soll als die gekühlte Behälteraußenfläche.
  • Aufgrund der Effizienz der ermöglichten mittelbaren Kühlung kann auf die Vorsehung von Kühlleitungen am Boden des Behälters verzichtet werden. Allerdings steigt die Temperatur beispielsweise in einem Zentrifugenkessel in Abhängigkeit von der Rotationsgeschwindigkeit exponentiell an, so dass für sehr hohe Drehzahlen und/oder angestrebte sehr tiefe Auskühlungen zusätzliche Kühlleitungen am Kesselboden vorgesehen werden können.
  • Selbstverständlich kann die erfindungsgemäße mittelbare Wärmeübertragung auch mit einer direkten Wärmeübertragung, beispielsweise die bekannte Rotorluft gestützte Zentrifugenkühlung gekoppelt werden.
  • Zusammenfassend kann festgehalten werden, dass die Erfinder erkannt haben, dass bei der mittelbaren Kühlung die Effektivität ganz wesentlich von der Wärmeübertragung zwischen den Elementen des Wärmetauschers abhängt, wie im Folgenden dargelegt wird. Dabei wird zur Beschreibung der Vorgänge bei der Wärmeübertragung nur die Wärmeleitung berücksichtigt und die Wärmestrahlung und Wärmekonvektion werden außer Acht gelassen.
  • Der Wärmestroms innerhalb eines Festkörpers ist definiert als: Q ˙ = λ A s Δ T ,
    Figure imgb0001
    wobei der Wärmestrom durch den Festkörper, λ die Wärmeleitfähigkeit, die eine Materialkonstante ist, A die Größe der Querschnittsfläche des Festkörpers, s die Dicke des Festkörpers und ΔT die Temperaturdifferenz zwischen der Eingangs- und Ausgangsseite des Wärmestroms sind.
  • Das erfindungsgemäße Prinzip mit seinen Vorteilen wird im Folgenden anhand der Zeichnung am Beispiel von Zentrifugenkesseln näher erläutert.
  • Anhand von Fig. 1 wird dieses Prinzip rein schematisch für einen nach Stand der Technik bekannten und ausschnittsweise dargestellten Zentrifugenkessel mit einer Kesselwand 1, der mit einer Kühlleitung 2 in Kontakt steht, erläutert. Dabei fließt der anhand der Pfeile verdeutlichte Wärmestrom von der Kesselinnenseite 3 mit einer Temperatur T1 durch die Kesselwand 1, die eine Wandstärke s1 aufweist, über die Kontaktfläche A zwischen Kesselwand 1 und Kühlleitung 2 mit einer Temperatur TA durch das Kühlmedium führende Material der Kühlleitung 2, die eine Wandstärke s2 besitzt, wobei das Kühlmedium die Temperatur T2 aufweist.
  • Zur Vereinfachung werden weiterhin die Annahmen getroffen, dass die Wandstärken s1 und s2 gleich sind, und zwar s = 1 mm, der Querschnitt der Kontaktfläche A = 1 mm2 beträgt und der Wärmestrom außerhalb der Kontaktfläche A gleich Null ist, dort also ein Luftspalt vorliegt. Damit kann der Wärmestrom durch die Kesselwand 1 nur durch die Kontaktfläche A erfolgen und für den Wärmestrom durch die Kesselwand 1 ergibt sich dann: Q ˙ 1 = λ 1 T 1 T A
    Figure imgb0002
    und für den Wärmestrom durch das Kühlmedium führende Material der Kühlleitung 2: Q ˙ 2 = λ 2 T A T 2
    Figure imgb0003
  • Nach dem Kontinuitätsprinzip ist Q ˙ 1 = Q ˙ 2 .
    Figure imgb0004
  • Nach dem Einsetzen ergibt sich: λ 1 T 1 T A = λ 2 T A T 2 .
    Figure imgb0005
  • Mit T 1 - TA = ΔT 1 und TA - T 2 = ΔT 2 folgt schließlich: λ 1 Δ T 1 = λ 2 Δ T 2 .
    Figure imgb0006
  • Wenn λ 1 < λ 2 gewählt wird, muss folglich ΔT 1 > ΔT 2 sein.
  • Im Anwendungsfall einer Zentrifuge wird T2 mittels Kühlmittel konstant niedrig gehalten. Das bedeutet im Umkehrschluss, dass die Temperatur im Kesselinneren T1 einen wesentlich höheren Temperaturabstand zur Temperatur der Kontaktstelle TA haben wird.
  • Um nun die Temperatur im Kesselinneren T1 noch weiter absenken zu können, stehen zwar prinzipiell auch die Möglichkeiten zur Verfügung, die Wandstärken s1 und s2 zu verringern und/oder die Kesselwand 1 aus einem Material mit sehr hoher Wärmeleitfähigkeit λ 1 (z.B. aus Kupfer oder Silber) zu fertigen, jedoch ist die erste Möglichkeit technisch durch die funktionelle Auslegung der Bauteile begrenzt und wird in der Regel auch ausgeschöpft und die zweite Möglichkeit ist zumeist aus anwendungstechnischen Gründen und dem vorgesehenen Einsatzbereich nicht möglich, da z.B. Kupfer oder Silber nicht chemisch inert sind.
  • Damit verbleibt die praktikable Möglichkeit, die Kontaktfläche A zu vergrößern. Dazu können Rechteckrohre an Stelle von Rundrohren verwendet werden, denn üblicherweise wird rundes Kupferrohr für die Kühlmittel führenden Bauteile verwendet und bei der Verwendung von Rechteckrohr erfolgt eine wesentliche Vergrößerung der Kontaktfläche A. Allerdings ist es in der praktischen Ausführung jedoch derzeit technologisch nicht möglich, einen vollständigen Kontakt der eckigen Rohrwandung mit dem Zentrifugenkessel herzustellen. Es bleiben immer Spalte, an denen effektiv gesehen kein Wärmeübergang stattfindet.
  • Als erfindungsgemäße Lösung wird durch die Erfinder eine zusätzliche Wärmeleitschicht an der Kesselaußenwand vorgesehen, wie in Fig. 2 wiederum rein schematisch für den sich ergebenden und anhand der Pfeile verdeutlichten Wärmestrom ausschnittsweise dargestellt ist. Hierdurch wird eine zusätzliche Kontaktstelle mit großer Kontaktfläche eingefügt.
    Im Unterschied zum Zentrifugenkessel nach Fig. 1 ist hier also neben der das Kesselinnere begrenzenden inneren Kesselschicht 10 mit der Dicke s10 eine zusätzliche äußere Kesselschicht 11 mit der Dicke s11 aus gut Wärme leitendem Material als Kesselaußenwand aufgebracht. Die Kühlleitung 12 weist die Dicke s12 auf.
    Zur Vereinfachung gelten auch hier die Annahmen von Fig. 1, dass die Wandstärken alle gleich s = 1 mm sind, der Querschnitt der zwischen der äußeren Kesselschicht 11 und der Kühlleitung 12 angeordneten Kontaktfläche A = 1 mm2 beträgt und der Wärmestrom außerhalb der Kontaktfläche A gleich Null ist, also dort ein Luftspalt vorliegt.
    Zusätzlich ergibt sich hier jedoch eine Kontaktfläche B zwischen den Kesselschichten 10, 11, die sehr viel größer ist als die andere Kontaktfläche A. Der Wärmestrom geht jetzt durch die drei Materialien der inneren Kesselschicht 10, der äußeren Kesselschicht 11 und der Kühlleitung 12 sowie durch die zwei dazwischen liegenden Kontaktstellen A, B, die sich von ihrer Größe erheblich unterscheiden.
    Nach dem Kontinuitätsprinzip gilt auch hier: Q ˙ 1 = Q ˙ B A = Q ˙ 2 .
    Figure imgb0007
    Mit dem Einsetzten der Formel für den Wärmestrom ergibt sich: λ 1 B T 1 T B = λ A B A T B T A = λ 2 A T A T 2 .
    Figure imgb0008
    Unter der weiteren Vereinfachung, dass die Materialien der äußeren Kesselschicht 11 und der Kühlleitung 12 dieselben sind und daher λ A-B = λ 2 gilt, vereinfacht sich der Zusammenhang zu: λ 1 B T 1 T B = λ 2 A 2 T B T 2 ,
    Figure imgb0009
    und mit T 1 - TB = ΔT 1 und TB - T 2 = ΔT 2 zu: λ 1 B Δ T 1 = λ 2 A 2 Δ T 2 .
    Figure imgb0010
  • D.h. wenn wiederum λ 1 < λ 2 gewählt wird, muss folglich wiederum ΔT 1 > ΔT 2 sein. Allerdings wird hier ein Teil der erforderlichen Temperaturdifferenz durch die wesentlich größere Kontaktfläche B abgefangen. Oder anders formuliert ist B Δ T 1 > A 2 Δ T 2 .
    Figure imgb0011
  • Im Anwendungsfall einer Zentrifuge mit Kühlung wird T2 mittels Kühlmittel konstant niedrig gehalten. Das bedeutet aber im Umkehrschluss, dass die Temperatur im Kesselinneren T1 zwar einen höheren Temperaturabstand zur Temperatur der Kontaktstelle TB haben muss, jedoch ist der wiederum geringer als im Zusammenhang mit Fig.1 beschrieben, da B >> A.
  • Auch wenn das erfindungsgemäße Prinzip vorliegend anhand von zwei Behälterschichten mit unterschiedlicher Wärmeleitfähigkeit beschrieben wurde, ist doch klar, dass auch drei oder mehr Schichten verwendet werden können. Dabei kann es sich insbesondere um Korrosionsschutz-, Verschmutzungsschutz- oder dergleichen Schichten handeln. Wichtig ist nur, dass die Schicht mit höherer Wärmeleitfähigkeit an der zu kühlenden Behälteraußenfläche angeordnet ist. Es können aber sowohl zwischen der Schicht mit höherer und der Schicht mit niedrigerer Wärmeleitfähigkeit als auch auf der Schicht mit niedrigerer Wärmeleitfähigkeit noch ein oder mehrere weitere Schichten angeordnet sein, um den Behälter an besondere Einsatzbedingungen anzupassen.
  • Beispiel
  • Nachfolgend werden die Wirkungen der Erfindung anhand eines bevorzugten Ausführungsbeispiels verglichen mit einem aus dem Stand der Technik bekannten Vergleichsbeispiel geschildert.
  • Es wurde eine Laborzentrifuge 5415R der Firma Eppendorf AG verwendet, die als Kühlleitung 2, 12 ein spiralförmiges Rechteckrohr mit einer Breite von 9,5 mm, einer Höhe von 5,5 mm und einer Materialstärke von 0,5 mm aufweist. Dazu wurde ein serienmäßiger Zentrifugenkessel 1 mit 185 mm Durchmesser, 70 mm Höhe und einer Wandstärke von 1 mm (Art.-Nr. 5426 123.101-00) der Firma Eppendorf AG verwendet, der aus V2A-Edelstahl (Wärmeleitfähigkeit ca. 15 W/m*K) besteht und mit Wärmeleitpaste (Wärmeleitfähigkeit ca. 15 W/m*K) versehen in der Kühlleitung 2 angeordnet wurde, um das Vergleichsbeispiel zu bilden. Für das erfindungsgemäße Ausführungsbeispiel wurde der serienmäßige Edelstahl-Zentrifugenkessel 10 (Art.-Nr. 5426 123.101-00) der Firma Eppendorf AG mit einer 0,1 mm dicken Kupferbeschichtung 11 (Wärmeleitfähigkeit ca. 350 W/m*K) versehen, ansonsten war der Versuchsaufbau gleich, d.h. der Zentrifugenkessel wurde mittels Wärmeleitpaste (Wärmeleitfähigkeit ebenfalls ca. 15 W/m*K) mit der rechteckigen Kühlleitung 12 verbunden.
  • In beiden Fällen wurde die Zentrifuge 5415R mit einem gebräuchlichen Rotor F45-24-11 der Firma Eppendorf AG für eine Stunde bei maximal 13200 U/min betrieben. Die minimal erreichbare Probentemperatur wurde jeweils mit dem Temperaturmesser gemessen. Die Ergebnisse sind in der Tabelle festgehalten. Tabelle:
    5415R mit Zentrifugenkessel ohne Cu-Beschichtung 5415R mit Zentrifugenkessel mit Cu-Beschichtung
    Raumtemperatur [°C] 25 26
    Probentemperatur [°C] 3,9 0,4
  • Die Ergebnisse zeigen, dass durch die Kupferbeschichtung 11 des Zentrifugenkessels 10 bei gleicher Kühlleistung eine wesentlich niedrigere Probentemperatur erreicht wird. Durch die Kupferbeschichtung 11 wird die Wärmeleitfähigkeit des Zentrifugenkessels 10 und damit der Wirkungsgrad der Kühlanlage verbessert. Es wird bei gleichem elektrischen Energieverbrauch eine geringere Probentemperatur erreicht.
  • Somit wurde gezeigt, dass die vorliegende Erfindung eine wesentlich effizientere mittelbare Kühlung vom Behälteräußeren in das Behälterinnere erlaubt. Die Verbesserung der Wärmeleitung und des Wärmeübergangs von Zentrifugenkesseln ergibt bei gekühlten Zentrifugen eine Verminderung der notwendigen Leistung der Kälteanlage. Durch die höhere Leistungsfähigkeit der Zentrifuge kann für gleiche Zentrifugierguttemperaturen eine höhere Drehzahl gefahren und/oder bei gleicher Zentrifugierguttemperatur und gleicher Drehzahl die aufgenommene Leistung des Kühlaggregats reduziert werden.
  • Das erfindungsgemäße Prinzip beruht auf der Erkenntnis, dass bei mittelbarer Kühlung einer Behälterfläche, die größer ist als die Kontaktfläche zwischen dem Behälter und der Kühleinrichtung, die Kühlwirkung dann erhöht werden kann, wenn der Behälter neben der Schicht mit niedriger Wärmeleitfähigkeit eine Schicht mit höherer Wärmeleitfähigkeit aufweist und dabei die Schicht mit höherer Wärmeleitfähigkeit an der zu kühlenden Behälteraußenfläche angeordnet ist und mit der Kühleinrichtung in Wäre leitendem Kontakt steht. So wird die Kühlleistung besser in das Behälterinnere auf das dort zu kühlende Gut übertragen.
  • Eine alternative Lösung besteht darin, die Kontaktfläche zwischen der Kühleinrichtung und der gekühlten Fläche des Behälters zumindest gleich groß der gekühlten Behälterfläche zu machen. Dies kann dadurch verwirklicht werden, dass die Kühleinrichtung ein Teil der Schicht des Behälters mit größerer Wärmeleitfähigkeit ist.
  • Dazu kann beispielsweise vorgesehen sein, dass die zweite Schicht aus einem Feststoff, wie Kupfer oder dergleichen besteht und die Kühleinrichtung direkt in dieser Schicht angeordnet ist.
  • Andererseits kann die Kühleinrichtung auch in einer Flüssigkeit, Gel oder dergleichen angeordnet sein, die mit der Schicht mit niedrigerer Wärmeleitfähigkeit in Wärme leitendem Kontakt steht und selbst eine höhere Wärmeleitfähigkeit aufweist. Dazu weist entweder der Behälter eine Schicht auf, die zwischen sich und der Schicht mit niedrigerer Wärmeleitfähigkeit einen mit einer Flüssigkeit, Gel oder dergleichen füllbaren Hohlraum aufweist, in dem die Kühleinrichtung angeordnet ist (die Wärmeleitfähigkeit dieser weiteren Schicht ist unerheblich, da sie in Bezug auf die Kühleinrichtung außerhalb liegt). Oder der Behälter weist nicht selbst die Flüssigkeit, Gel oder dergleichen auf, sondern diese ist mit der darin aufgenommenen Kühleinrichtung in einer Vorrichtung vorgesehen, in der der Behälter so anordenbar ist, dass die Flüssigkeit, Gel oder dergleichen mit der Schicht mit niedriger Wärmeleitfähigkeit in Wärme leitendem Kontakt steht. Dazu kann beispielsweise der Behälter im Sinne eines Bades selbst, bevorzugt bis zum Rand vollständig, in die Flüssigkeit, Gel oder dergleichen eingetaucht werden oder die Flüssigkeit, Gel oder dergleichen steht nur mit einem Teil der Behälteraußenfläche in Kontakt. Für einen Transport sollte bevorzugt darauf geachtet werden, dass eine ausreichende Abdichtung der Flüssigkeit, Gel oder dergleichen erfolgt.
  • Zwischen der Flüssigkeit, Gel oder dergleichen und der Schicht mit niedriger Wärmeleitfähigkeit kann auch eine weitere Schicht mit höherer Wärmeleitfähigkeit angeordnet sein. Beispielsweise kann die Flüssigkeit, Gel oder dergleichen mit der Kühleinrichtung innerhalb einer Kupferumhüllung angeordnet sein, die entweder direkt in den Behälter integriert ist oder in der Vorrichtung vorgesehen wird, wo dann der Behälter mit dieser Kupferumhüllung in direkten Kontakt bringbar ist. Dadurch lässt sich auch die Abdichtung erzielen. Unter die Begriffe "Flüssigkeiten" bzw. "Gele" fallen sowohl Newtonsche Flüssigkeiten wie auch Nicht-Newtonsche Flüssigkeiten, Sole, Dispersionen, Suspensionen, so wie auch jegliche Kombination von zwei oder mehr dieser aufgeführten Substanzen. Insbesondere kann eine Flüssigkeit bzw. Gel ausgewählt sein aus nachstehender Gruppe: Wasser, ionische Flüssigkeiten, Suspensionen von Kohlenstoff-Nanoröhrchen" Kühlsole, Eutektika bzw. eutektische Gemische und ähnliche Materialien. Insbesondere kommen in Frage Antifrogene, d.h. Wärmeträger-Flüssigkeiten auf Basis von Glykolen (Antifrogen N, Antifrogen L und Antifrogen SOL) bzw. Kaliumformiat (Antifrogen KF). Weiterhin finden ionische Flüssigkeiten, wie beispielsweise 1-Ethyl-3-methylimidazolium chloride, 1-Ethyl-3-methylimidazolium methanesulfonate, 1-Butyl-3-methylimidazolium chloride, 1-Butyl-3-methylimidazolium methanesulfonate, 1-Ethyl-2,3-di-methylimidazolium ethylsulfate (vertrieben unter der Marke Basionics® der BASF SE, 67063 Ludwigshafen, DE) Anwendung. Ebenfalls eingesetzt werden können Polyalkylenglykol-Derivate.
  • Der Vorteil dieser alternativen Lösung liegt darin, dass die Kühleinrichtung nicht mehr selbst in direktem Kontakt, der ggf. durch Vermittlung einer Wärmeleitpaste vermittelt wird, mit der zu kühlenden Behälterfläche stehen muss. Dadurch bestehen keine so großen Anforderungen an die Genauigkeit beispielsweise der Wicklungsgeometrie eines Kühlrohrs bezüglich der Behälteraußenkontur, was die Kosten reduziert.

Claims (7)

  1. Laborzentrifuge mit einem Behälter, wobei der Behälter mit einer Kühleinrichtung der Laborzentrifuge nicht einstückig verbunden ist und einen Behälterkörper aufweist, dadurch gekennzeichnet, dass der Behälterkörper zumindest zwei in Wärme leitendem Kontakt stehende Behälterschichten (10, 11) mit unterschiedlicher Wärmeleitfähigkeit aufweist, wobei die Schicht mit höherer Wärmeleitfähigkeit (11) an der durch die Kühleinrichtung zu kühlenden Behälteraußenseite angeordnet ist, wobei die Schicht mit höherer Wärmeleitfähigkeit (11) eine Dicke von weniger als 1 mm aufweist.
  2. Laborzentrifuge nach Anspruch 1, dadurch gekennzeichnet, dass die Wärmeleitfähigkeiten sich um einen Faktor größer 10, bevorzugt größer 20, insbesondere größer 100 unterscheiden.
  3. Laborzentrifuge nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Schicht mit niedrigerer Wärmeleitfähigkeit (10) aus einem Material umfassend Edelstahl, Stahl, Keramik, Glas, Nanomaterial und/oder Kunststoff gebildet ist und die Schicht mit höherer Wärmeleitfähigkeit (11) aus einem Material unfassend Aluminium, Gold, Kohlenstoff, Kupfer, Magnesium, Messing, Silber und/oder Silizium oder deren Legierungen gebildet ist.
  4. Laborzentrifuge nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Schicht mit höherer Wärmeleitfähigkeit (11) eine Dicke von weniger als 0,5 mm und insbesondere weniger als 0,2 mm aufweist.
  5. Laborzentrifuge nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Behälter an seiner Seitenwand und/oder seinem Boden von einer rohrförmigen, ein Kühlmedium führenden Kühlleitung (12) umgeben ist, die vorzugsweise spiralförmig um die Seitenwand und/oder auf den Boden gewickelt ist.
  6. Laborzentrifuge nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Wärme leitende Kontakt zwischen dem Behälter und der Kühleinrichtung durch eine Wärmeleitpaste vermittelt wird.
  7. Laborzentrifuge nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Wärme leitende Kontakt zwischen dem Behälter und der Kühleinrichtung durch eine Flüssigkeit oder ein Gel vermittelt wird.
EP09015245.5A 2008-12-22 2009-12-09 Laborzentrifuge Active EP2199713B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL09015245T PL2199713T3 (pl) 2008-12-22 2009-12-09 Wirówka laboratoryjna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13988008P 2008-12-22 2008-12-22
DE102008064178A DE102008064178A1 (de) 2008-12-22 2008-12-22 Behälter und Vorrichtung für mittelbare Gutkühlungen sowie Verfahren zur Herstellung des Behälters

Publications (3)

Publication Number Publication Date
EP2199713A2 EP2199713A2 (de) 2010-06-23
EP2199713A3 EP2199713A3 (de) 2012-05-02
EP2199713B1 true EP2199713B1 (de) 2018-08-29

Family

ID=43334663

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09015245.5A Active EP2199713B1 (de) 2008-12-22 2009-12-09 Laborzentrifuge

Country Status (4)

Country Link
US (2) US20100155037A1 (de)
EP (1) EP2199713B1 (de)
DE (1) DE102008064178A1 (de)
PL (1) PL2199713T3 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111572980B (zh) * 2020-05-19 2021-07-13 西安交通大学 一种环保型深紫外杀菌智能配送箱
US20210380390A1 (en) * 2020-06-05 2021-12-09 Pepsico, Inc. Chiller for cooling a beverage

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1806839A1 (de) * 1968-11-04 1970-09-17 Bauknecht Gmbh G Kuehlmoebel
EP0222176A1 (de) * 1985-11-15 1987-05-20 ARMCO S.p.A. Wärmetauscher, insbesondere Verdampfer und Verfahren zu seiner Herstellung
EP0224238A2 (de) * 1985-11-27 1987-06-03 E.I. Du Pont De Nemours And Company Gekühlte Zentrifuge mit abnehmbarem Gehäuse
US4738113A (en) * 1985-10-18 1988-04-19 The Cola-Cola Company Combination cooler and freezer for refrigerating containers and food in outer space

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU177645B (en) * 1979-07-12 1981-11-28 Huetoegepgyar Setup for water tight insulating evaporator of the refrigerators in particular of the absorption machines
JPH0225045U (de) * 1988-07-29 1990-02-19
US5504007A (en) * 1989-05-19 1996-04-02 Becton, Dickinson And Company Rapid thermal cycle apparatus
JPH07503662A (ja) 1992-12-11 1995-04-20 ベックマン インスツルメンツ インコーポレーテッド 遠心器のための冷媒冷却組立体
GB9702473D0 (en) 1997-02-07 1997-03-26 Junair Spraybooths Ltd Spraybooth
IT1291271B1 (it) * 1997-02-10 1998-12-30 Raco Spa Metodo per la realizzazione di evaporatore per impianti di refrigerazione e rispettivo evaporatore od apparato che lo
JP2000015142A (ja) * 1998-07-01 2000-01-18 Tomy Seiko:Kk 遠心分離機
JP4611750B2 (ja) * 2002-12-20 2011-01-12 コーニング インコーポレイテッド キャピラリー・アッセイ・デバイスおよび方法
KR20040069476A (ko) * 2003-01-29 2004-08-06 엘지전자 주식회사 직냉식 냉장고용 열교환기
DE202004014916U1 (de) * 2004-09-24 2004-12-30 Tall & Stout Industrial Corp., Banchiau Innentank-Konstruktion eines Trinkwasserspenders
DE202007014916U1 (de) 2007-10-26 2008-03-27 Kew Kunststofferzeugnisse Gmbh Wilthen Dämmstoffhalter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1806839A1 (de) * 1968-11-04 1970-09-17 Bauknecht Gmbh G Kuehlmoebel
US4738113A (en) * 1985-10-18 1988-04-19 The Cola-Cola Company Combination cooler and freezer for refrigerating containers and food in outer space
EP0222176A1 (de) * 1985-11-15 1987-05-20 ARMCO S.p.A. Wärmetauscher, insbesondere Verdampfer und Verfahren zu seiner Herstellung
EP0224238A2 (de) * 1985-11-27 1987-06-03 E.I. Du Pont De Nemours And Company Gekühlte Zentrifuge mit abnehmbarem Gehäuse

Also Published As

Publication number Publication date
US8845967B2 (en) 2014-09-30
EP2199713A3 (de) 2012-05-02
DE102008064178A1 (de) 2010-07-01
EP2199713A2 (de) 2010-06-23
US20120264582A1 (en) 2012-10-18
US20100155037A1 (en) 2010-06-24
PL2199713T3 (pl) 2019-03-29

Similar Documents

Publication Publication Date Title
DE102012102959B4 (de) Umgossene Heat-Pipe
DE112008000296T5 (de) Mikrowellenrotationsdünnschichtkonzentrator
EP3266098B1 (de) Antriebssystem mit mindestens einem wärmerohr und verwendung desselben bei einem antriebssystem
EP2689946A1 (de) Heizvorrichtung
EP1094911B1 (de) Verfahren und vorrichtung zum herstellen von weichlotpulver
EP2199713B1 (de) Laborzentrifuge
EP3056847A1 (de) Vorrichtung und verfahren zur temperierung eines körpers
WO2020057699A1 (de) Kühlkörper für einen elektrischen motor, elektrischer motor und verfahren zum kühlen des motors
EP2507897A2 (de) Doppelwandiger gusskörper für eine flüssigkeitsgekühlte elektrische maschine
EP2384374B1 (de) Rohrtarget
DE3614318A1 (de) Waermespeicher, insbesondere fuer durch motorabwaerme gespeiste kraftfahrzeugheizungen
WO1997029899A1 (de) Verfahren und vorrichtung zum kühlen und gegebenenfalls kalibrieren von gegenständen aus kunststoff
EP3417227B1 (de) Wärmetauscher, insbesondere wasser-luft-wärmetauscher oder öl-wasser-wärmetauscher
EP0294500A1 (de) Wärmespeicher, insbesondere für durch Motorabwärme gespeiste Kraftfahrzeugheizungen
DE3341156A1 (de) Elektrode mit integriertem waermetransportrohr
DE1758658B1 (de) Lanze zum Einblasen von Gas in eine Metallschmelze
WO2009006972A1 (de) Vorrichtung zur erzeugung eines plasma-jets
DE102011105878A1 (de) Zentrifuge mit Kompressorkühlung
EP1150773B1 (de) Verdampferanordung mit einer probengefäss-haltevorrichtung und verfahren zum verdampfen einer probe
DE2603480C2 (de) Dünnschichtverdampfer, insbesondere für hochsiedende Produkte
AT522892A1 (de) Vorrichtung und Verfahren zur Herstellung eines Gussstückes bevorzugt als Vormaterial
DE102021122883B3 (de) Rohr für den Kühlflüssigkeitstransport mit verbesserter Vermischung der Kühlflüssigkeit sowie zugehöriges Herstellungsverfahren
DE1601084C3 (de) Vorrichtung zum Herstellen von Feineis aus Wasser o.dgl
EP3700697B1 (de) Verfahren zur herstellung von gussteilen mit mikrokanälen
DE102021102959A1 (de) Verfahren zur Herstellung eines Wärmerohres

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIC1 Information provided on ipc code assigned before grant

Ipc: B04B 15/02 20060101ALI20120326BHEP

Ipc: F25D 31/00 20060101ALI20120326BHEP

Ipc: F25D 19/00 20060101AFI20120326BHEP

17P Request for examination filed

Effective date: 20121030

17Q First examination report despatched

Effective date: 20150330

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180320

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1035595

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009015227

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180829

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181229

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181129

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181129

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009015227

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181209

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1035595

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091209

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180829

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502009015227

Country of ref document: DE

Owner name: EPPENDORF SE, DE

Free format text: FORMER OWNER: EPPENDORF AG, 22339 HAMBURG, DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231221

Year of fee payment: 15

Ref country code: DE

Payment date: 20231214

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231130

Year of fee payment: 15