Hochdruck-Doppelmembranpumpe und Membranelement für eine solche Pumpe
Die Erfindung betrifft eine Hochdruck-Doppelmembranpumpe mit einem Zentralgehäuse, zwei zylindrischen Pumpkammern, einer im Pumpbetrieb in- und hergehende Koppelstange mit Pumpkolben, zwei je eine der Pumpkammern in eine Produkt- und eine Druckluftkammer mit wechselndem Volumina aufteilende Membranen, deren elastomerer Membrankörper peripher eingespannt ist, wobei im zentralen Bereich des Membrankörpers ein starrer Implantatkörper eingebettet ist, der mit einem Zapfen versehen ist, der mit einem Ende der Koppelstange verbunden ist, und einer pneumatischen Steuereinheit zur wechselnden Beaufschlagung der Druckluftkammern mit Druckluft.
Die Erfindung bezieht sich außerdem auf ein Membranelement für eine solche Doppelmembranpumpe.
Eine Membranpumpe der vorgenannten Art, bei der sich allerdings die Erfindung auf die spezielle Membran beschränkt, zeigt die DE 94 06 216 Ul.
Bei der Membran ist ein scheibenförmiger Implantatkörper vorhanden, dessen Durchmesser gegenüber dem Gesamtmembran-Durchmesser relativ klein ist.
Es hat sich gezeigt, dass bei Membranpumpen, bei denen ein Übersetzungsverhältnis von Eingangsdruck der Druckluft zu Ausgangsdruck des geförderten Mediums größer ist als 1 : 3 oder höher, die bekannten und üblicherweise verwendeten Membranen sehr stark beansprucht werden. Insbesondere im Zwischenbereich zwischen dem äußeren Einspannpunkt und der Peripherie des Implantatkörpers werden die elastomeren Werkstoffe gewalkt und stark beansprucht, so dass nach kurzer Zeit ein Bruch der Membrane auftritt und die Pumpe ausfällt.
Es stellt sich die Aufgabe, die Standzeit und die Zahl der Hübe, die die Membran durchführen kann, wesentlich zu erhöhen, ohne das Druckverhältnis von 1 : 3 oder höher wesentlich zu verringern.
Diese Aufgabe wird gelöst bei einer Doppelmembranpumpe der eingangs genannten Art sowie durch ein Membranelement, die dadurch gekennzeichnet sind, dass im Bereich der Druckluftkammern je eine starre Stützscheibe zwischen dem Ende der Koppelstange und der Innenseite der Membran auf den Zapfen aufgeschoben ist, deren Durchmesser zwischen 50% und 95 % des Durchmessers der Arbeitsfläche der Membran beträgt und deren Peripherie als eine von dem Membrankörper abgewandt gerundete Schulter geformt ist.
Die Stützscheibe verhindert eine übermäßige Verkippung der Membrane und damit eine zu große asymmetrische Verformung der Membranoberfläche. Insbesondere die gerundete Schulter der Stützscheibe nimmt einen Teil der überzöge-
nen Verformung der Membran auf und stützt diese damit, ohne dass die Effizienz der Pumpe damit wesentlich verringert wird. Das Verdichtungsverhältnis einer derartigen Membrane ist also demnach nicht eingeschränkt.
Vorzugsweise ist der Durchmesser der Stützscheibe zwischen 70 und 85 % des Durchmessers der Arbeitsfläche der Membran. Die Stützscheibe sollte nicht die gesamte Arbeitsfläche ausfüllen. Auch sollte der Durchmesser der Stützscheibe größer sein als der Durchmesser des Implantatkörpers .
Die Stützscheibe ist vorzugsweise nicht mit der Membran fest verbunden. Vorzugsweise ist sie mit einem Mittelloch versehen, dessen Durchmesser größer ist als der Durchmesser des Zapfens, so dass eine Bewegung entlang der Zapfenachse in Richtung der Bewegungsachse der Koppelstange erlaubt ist.
Die Form der Schulter richtet sich auch nach der Form der Membran. Vorzugsweise geht die Schulter der Stützscheibe von einem flachen Mittelbereich aus und läuft im Querschnitt nach außen in einen Teilkreis aus. Dabei ist vorzugsweise der Teilkreis so gerundet, dass - im Querschnitt gese- hen - eine Tangente an die Schrägfläche in deren Endpunkt einen Winkel von 20 bis 60° mit der Bewegungsachse der Koppelstange einschließt.
Ist, wie bei gängigen Membranen üblich, die Membran un- tertassenförmig zur Luftkammer hin gewölbt, so ist es vorteilhaft, die Stützscheibe in den konkaven Bereich der Membranwölbung einzulegen, so dass sich der Membran- Außenringbereich bei Druckbeaufschlagung um die Schulter schmiegen kann.
Als Material für die Stützscheibe eignet sich Metall, vorzugsweise rostfreier oder vernickelter Stahl. Es ist jedoch auch möglich, die Stützscheibe aus hochfestem, gewebeverstärktem Kunststoff herzustellen. Wesentlich ist, dass die Stützscheibe wesentlich starrer und unelastischer ist als das Material der Membran außerhalb des Implantatkörpers .
Die Stützscheibe kann verschiedene Formen aufweisen, insbesondere auch polygonal gestaltet sein. Auch sind Ausschnitte oder Materialverdünnungen möglich.
Insbesondere sollte auch die zur Membran zeigende Außenseite der Stützscheibe glatt sein, um eine möglichst große Auflagefläche zu schaffen.
Weitere Unteransprüche beziehen sich auf das Membranelement als solches, das ebenfalls Gegenstand der Erfindung ist.
Eine weitere Erläuterung der Erfindung erfolgt anhand der Zeichnung. Die Figuren der Zeichnung zeigen im Einzelnen:
Figur 1 in schematischer Darstellung eine geschnitten gezeichnete Hochdruck-Doppelmembranpumpe gemäß Erfindung;
Figur 2 einen Schnitt durch ein Membranelement einer Doppelmembranpumpe gemäß Figur 1 ;
Figur 3 in auseinandergezogener Darstellung erfindungswesentliche Teile der erfindungsgemäßen Doppelmembranpumpe .
Die in Figur 1 dargestellte Hochdruck-Doppelmembranpumpe arbeitet mit Druckluft, die beispielsweise mit 5 Bar Überdruck von einem Kompressor eingespeist wird und über eine pneumatische Steuereinheit (hier nicht dargestellt) bestimmten Elementen der Doppelmembranpumpe - wie an sich bekannt - zugeleitet wird.
Die Hochdruck-Doppelmembranpumpe verfügt über ein Zentralgehäuse 3, in dessen Zentrum sich eine bei Pumpenbetrieb hin- und hergehende Koppelstange 4 mit einem Pumpkolben 9 befindet. Die Koppelstange 4 ist gegenüber dem Zentralgehäuse 3 abgedichtet. Der Pumpkolben 9 wird richtungswechselnd gesteuert und dabei abwechselnd von beiden Seiten mit Druckluft beaufschlagt.
Die Koppelstange 4 verbindet zwei spiegelbildlich angeordnete Membranen 5 und 6. Wie es dem System von Membranpumpen entspricht, teilen die Membranen 5 und 6 jeweils eine Pumpkammer 7,8 mit wechselndem Volumen auf in eine Produktkammer 11,12 und eine Druckluftkammer 1,2. In der Figur 1 steht demnach die eine Membrane 5 in einer Saugstellung und die andere Membrane 6 in einer Druckstellung. Der Membrankörper besteht aus einem Elastomer und ist peripher eingespannt, wie die Figur 1 zeigt. Hierfür weist die Membrane 5 an ihrer Peripherie einen verdickten Randwulst 10 auf.
Einen Schnitt durch die Membrane 5 zeigt die Figur 2. Der den Hauptteil der Membrane bildende elastomere Membrankörper 15 besteht beispielsweise aus zwei Schichten 15.1 und 15.2, nämlich einer Hauptschicht 15.1 aus einem Gummiwerkstoff und einer relativ zur Hauptschicht dünneren
Schutzschicht 15.2, die aus einem PTFE-Kunststoff besteht.
Im zentralen Bereich des Membrankörpers 15 ist ein starrer Implantatkörper 17 eingebettet, der mit einem Gewindezapfen 18 versehen ist. Dieser ist mit einem Ende der Koppelstange 4 verbunden. Der Implantatkörper 17 füllt nur einen zentralen Bereich des Membrankörpers 15 aus.
Im Ausführungsbeispiel hat der Implantatskörper 17 etwa einen Durchmesser, der 10 bis 20% des Durchmessers des Membrankörpers 15 beträgt.
Es hat sich gezeigt, dass bei dem Betrieb von Hochdruck- Membranpumpen mit einem Druckverhältnis von 1 : 3 und höher ein schneller Verschleiß des Membrankörpers 15 auftrat. Im Bereich der peripheren Anbindung der Membrane traten Brüche und andere Zerstörungen auf, da wegen des Walkens und »Aufblasens« der Membrane im hoch beanspruchten Bereich diese nach kurzer Zeit verschlissen war. Die gleiche Erscheinung trat bei einem Betrieb mit einem Druckverhältnis im Bereich 1 : 1 zwischen Druckluft und Produktdruck nicht auf. Wird dagegen aufgrund der Größenverhältnisse von Kolben und aktiver Membranfläche das Verhältnis beispielsweise auf 1 : 3 hochgeschraubt, so zeigten sich sehr schnell Brüche und Risse, die zu einer Funktionsunfähigkeit der Pumpe führten.
Eine wesentliche Verbesserung der Standzeit ergibt sich durch eine Stützscheibe 20, die auf der der Druckluft zugewandten Seite auf den Zapfen im Bereich der Membran 5 aufgeschoben ist. Die Stützscheibe 20 hat einen Durchmesser D, der gemäß Ausführungsbeispiel etwa 80% des Durchmessers der Arbeitsfläche der Membran 5 beträgt, wobei
dieses Verhältnis vorzugsweise zwischen 50% und 90% variierbar ist. Jedenfalls ist der Durchmesser der Stützscheibe 20 kleiner als der Durchmesser der Arbeitsfläche der Membran.
Der Durchmesser der Stützscheibe 20 ist größer als der Durchmesser der scheibenförmigen Fläche des Implantatkörpers 17, das heißt, sie liegt etwa bei 150% bis 210% des Durchmessers des Implantatkörpers 17.
Normalerweise handelt es sich bei der Stützscheibe 20 um ein geschlossenes, lediglich mit einer Zentralöffnung versehenes Gebilde. Es soll aber nicht ausgeschlossen werden, dass die Stützscheibe 20 auch Ausschnitte oder Materialverdünnungen aufweist. Auf ihrer zur Membran 5 zeigenden Seite ist die Stützscheibe glatt. Sie ist im vorliegenden Fall entweder aus rostfreiem Stahl oder aus einem mit einer vernickelten Oberfläche versehenen Stahlmaterial gefertigt. Sie ist im Ausführungsbeispiel kreisrund. Es soll aber nicht ausgeschlossen werden, dass sie auch eine Polygon- oder Sternform aufweist.
Wesentlich ist, dass die Stützscheibe 20 eine Peripherie besitzt, die vom Membrankörper 15 abgewandt eine gerundete Schulter 21 aufweist.
Aus der Figur 2 ist ersichtlich, dass die Stützscheibe einen flachen Mittelbereich 23 aufweist, der die Zentralöffnung 22 besitzt. Im dargestellten Querschnitt läuft die Oberfläche vom Mittelbereich 23 zum Rand hin an der Schulter 21 in einen Teilkreis oder einen Bogenabschnitt aus. Der Teilkreis oder Bogenabschnitt endet jedoch nicht im rechten Winkel zur Ebene des flachen Mittelbereiches, sondern läuft in eine Schrägfläche aus, die - im Quer-
schnitt gesehen - eine Tangente T in ihrem Endpunkt hat, die einen Winkel von 20 bis 60° mit der Bewegungsachse A der Koppelstange 4 einschließt.
Wie aus der Figur 1 zu erkennen, kann dann, wenn der Membrankörper 15 untertassenförmig zur Luftkammer hin gewölbt ist, die Stützscheibe 20 in den konkaven Bereich der Membranwölbung eingelegt sein, so dass sich der Membran-Außenringbereich bei Druckbeaufschlagung um die Schulter 21 der Stützscheibe 20 schmiegt.
Damit wird der Membrankörper 15 gestützt, wenn ein erheblicher Druck auf ihn einwirkt. Der Außenbereich des Membrankörpers 15 wird nicht zu stark verformt. Bei der Gegenbewegung, bei der sich der Membrankörper von der lose auf dem Gewindezapfen 18 liegenden Stützscheibe 20 löst, kann aber die Membran 5 die Form annehmen, die unter den herrschenden Druckverhältnissen optimal ist.
Die in bestimmter Position gegebene Starrheit des aus der Membran und der Stützscheibe 20 bestehenden Membranelementes 100 verhindert eine unnötige Walkarbeit und Druckbelastung im Walkbereich W. Der Membrankörper 15 braucht auch weniger Walkwärme im Walkbereich abzuführen, was e- benfalls der Materialermüdung entgegenwirkt.
Figur 3 zeigt in Explosionsdarstellung die zur Erfindung gehörenden, wesentlichen Teile. Die äußeren Begrenzungen der Pumpkammern bilden die Pumpendeckel 31 und 32. In den Pumpräumen angeordnet sind die Membranen 5, 6, die mit der aufgelegten Stützscheibe 20 versehen sind. Das Zentralgehäuse 3 der Pumpe ist bestückt mit dem Pumpkolben 9, in dem zentrisch die Koppelstange 4 angeordnet ist. Den Abschluss bildet die der Pumpendeckel 32. Wie-
derum wird hierdurch und durch die Abschlusswand 33 ein Pumpraum begrenzt, in dem sich die Membran 6 mit der Stützscheibe 20 bewegt.