EP2175968A1 - VERFAHREN ZUR ENTFERNUNG VON CO, H2 UND/ODER CH4 AUS DEM ANODENABGAS EINER BRENNSTOFFZELLE MIT MISCHOXIDKATALYSATOREN UMFASSEND Cu, Mn UND GEGEBENENFALLS MINDESTENS EIN SELTENERDMETALL - Google Patents

VERFAHREN ZUR ENTFERNUNG VON CO, H2 UND/ODER CH4 AUS DEM ANODENABGAS EINER BRENNSTOFFZELLE MIT MISCHOXIDKATALYSATOREN UMFASSEND Cu, Mn UND GEGEBENENFALLS MINDESTENS EIN SELTENERDMETALL

Info

Publication number
EP2175968A1
EP2175968A1 EP08786651A EP08786651A EP2175968A1 EP 2175968 A1 EP2175968 A1 EP 2175968A1 EP 08786651 A EP08786651 A EP 08786651A EP 08786651 A EP08786651 A EP 08786651A EP 2175968 A1 EP2175968 A1 EP 2175968A1
Authority
EP
European Patent Office
Prior art keywords
fuel cell
rare earth
earth metal
optionally
catalysts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08786651A
Other languages
English (en)
French (fr)
Inventor
Hans-Georg Anfang
Alberto Cremona
Sandra Reheis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clariant Produkte Deutschland GmbH
Original Assignee
Sued Chemie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sued Chemie AG filed Critical Sued Chemie AG
Publication of EP2175968A1 publication Critical patent/EP2175968A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/864Removing carbon monoxide or hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0668Removal of carbon monoxide or carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/2073Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0208Other waste gases from fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • H01M2250/405Cogeneration of heat or hot water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to fuel cell assemblies and systems, comprising a catalytic exhaust gas burner for combustion of a mixture of anode residual gas, air and / or other admixed gases (eg cathode exhaust gas), wherein a mixed oxide catalyst comprising Cu and Mn is used as the catalyst in the exhaust gas burner, and a method and a use for this.
  • a catalytic exhaust gas burner for combustion of a mixture of anode residual gas, air and / or other admixed gases (eg cathode exhaust gas)
  • a mixed oxide catalyst comprising Cu and Mn is used as the catalyst in the exhaust gas burner
  • Fuel cells offer the possibility of generating electricity from the controlled combustion of hydrogen at high efficiency. At present, however, there is no infrastructure for the future energy source hydrogen. Therefore, there is a need to extract hydrogen from the well-available energy sources natural gas, gasoline, diesel or other hydrocarbons such as biogas, methanol, etc.
  • Methane - the predominant component of natural gas - can be used to generate hydrogen, for example by steam reforming.
  • the resulting gas contains traces of unreacted methane and water, essentially hydrogen, carbon dioxide and carbon monoxide.
  • This gas can be used as fuel gas for a fuel cell. In order to shift the equilibrium in the steam reforming on the side of the hydrogen, this is carried out at temperatures of about 500 0 C - 1000 0 C, wherein for a constant composition of the fuel gas, this temperature range should be maintained as accurately as possible.
  • sulfur compounds present in the fuel gas are removed prior to delivery to the fuel cell because most of the fuel cell catalysts used are susceptible to sulfur.
  • a fuel cell arrangement in which the fuel gas produced from methane and water can be used to generate energy is described for example in DE 197 43 075 A1.
  • Such an arrangement includes a number of fuel cells disposed in a fuel cell stack within a closed protective housing.
  • fuel gas Via an anode gas inlet fuel gas is supplied to the fuel cell, which consists essentially of hydrogen, carbon dioxide, carbon monoxide and residues of methane and water.
  • the Fuel gas is generated either in an upstream external reformer or in an internal reformer of methane and water. Internal reforming reactions are often used in high-temperature fuel cells such.
  • MCFC Molten Carbonate Fuel Cell
  • SOFC Solid Oxide Fuel Cell
  • the anode exhaust gas contains, in addition to the reaction products carbon dioxide and water, portions of hydrogen, carbon monoxide and methane gas, depending on the operating state and operating time.
  • the anode exhaust gas is first mixed with air and then fed to a catalytic exhaust gas burner, in which the remaining methane and traces of hydrogen burned to water and carbon dioxide become.
  • a catalytic exhaust gas burner in which the remaining methane and traces of hydrogen burned to water and carbon dioxide become.
  • B. cathode exhaust gas are admixed.
  • the released thermal energy can be used in various ways.
  • precious metals such as platinum and / or palladium
  • This catalytic combustion has the advantage that it is very uniform and without temperature peaks.
  • the combustion of palladium catalysts proceeds at temperatures ranging from about 450 to 550 0 C.
  • the equilibrium shifts Pd / PdO favor of palladium metal whereby the activity of the catalyst decreases (see Catalysis Today 47 (1999) 29-44).
  • a loss of activity is also observed by the occurrence of sintering or the caking of the catalyst particles.
  • noble metal catalysts have the disadvantage of very high raw material prices.
  • EP 0 270 203 A1 discloses heat-stable catalysts for the catalytic combustion of, for example, methane. These are based on alkaline earth hexaaluminates which contain fractions of Mn, Co, Fe, Ni, Cu or Cr. These catalysts are characterized by a high activity and resistance even at temperatures of more than 1200 0 C. However, the activity of the catalyst is relatively low at lower temperatures. In order to be able to provide sufficient catalytic activity even at lower temperatures, small amounts of platinum metals are added, for example Pt, Ru, Rh or Pd.
  • the ideal temperature range for operating a high temperature fuel cell is in the range of about 400 to 1000 ° C.
  • the heat generated during anode-off-gas combustion can be used in various applications, for example, to evaporate water for steam reforming, providing heat energy for endothermic steam reforming , Heat utilization in cogeneration applications or the like.
  • the completely oxidized anode exhaust gas which in particular no longer contains hydrogen gas, can be fed to the cathode as cathode gas after it leaves the burner. This is described for example in DE 197 43 075 A1
  • a low cost, active and long term stable fuel cell array catalyst including a catalytic exhaust gas combustor for combusting a mixture of residual anode gas, air, and optionally other gases, such as cathode gases, for the methane, CO, and H 2 oxidation in the exhaust gas combustor Temperatures of 400 to 1 100 0 C is stable and active.
  • oxidation catalysts comprising mixed oxides of copper, manganese and optionally one or more rare earth metal (s) are particularly suitable for this purpose.
  • these catalysts enable domestic heat recovery to produce CO 2 for a recycle system of the molten carbonate fuel cell (MCFC) fuel cell type and reduce environmental emissions.
  • MCFC molten carbonate fuel cell
  • the present invention therefore provides a process for removing CO, H 2 and / or CH 4 from the anode exhaust gas of a fuel cell with mixed oxide catalysts comprising Cu, Mn and optionally at least one rare earth metal.
  • the present invention furthermore relates to the use of mixed oxide catalysts comprising Cu, Mn and optionally at least one Rare earth metal for removing CO, H 2 and / or CH 4 from the anode exhaust gas of a fuel cell.
  • Suitable catalysts are described for example in EP 1 197 259, the disclosure of which is hereby incorporated by reference into the present invention.
  • Such catalysts include mixed oxides of Cu, Mn, and rare earth metal (s) in which the metals may assume multiple valence states, which may represent a wt%
  • the rare earth metals in the lowest valence state 60% as MnO, 35-40% as CuO and 2-15% as La 2 O 3 and / or as oxides of the rare earth metals in the lowest valence state.
  • the rare earth metals in the lowest valence state 60% as MnO, 35-40% as CuO and 2-15% as La 2 O 3 and / or as oxides of the rare earth metals in the lowest valence state.
  • Composition 50-60% MnO, 35-40% CuO, 10-12% La 2 O 3 .
  • the individual metals can also assume different oxidation states than those mentioned above.
  • manganese may also be present as MnO 2 .
  • compositions are generally possible, the percentages being percentages by weight, based on the total mass of Mn, Cu and optionally rare earth metals: Mn 80-20%, Cu 20-60%, rare earth metals 0-20%, preferably Mn 75-30 %, Cu 20 - 55%, rare earth metals 5 - 15%.
  • the mass ratio of copper to manganese (calculated as mass Cu to mass Mn) on the finished catalyst may be, for example, 0.4 to 0.9, preferably 0.5 to 0.75.
  • rare earth metals are lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium ( Dy), Holmium (Ho), Erbium (Er), Thulium (Tm), Ytterbium (Yb), Lutetium (Lu). Preference is given to La and Ce.
  • the oxides are supported, for example, on porous inorganic supports such as alumina, silica, silica-alumina, titania or magnesia.
  • the oxides are used in an amount of generally 5 to 50% by weight, preferably 5 to 30 wt .-%, based on the total mass of the catalyst and the oxides carried.
  • the rare earth metal may already be present in the carrier.
  • the predominant role of the rare earth metal is to stabilize the BET surface area of the porous inorganic support.
  • An example known to a person skilled in the art is lanthanum-stabilized aluminum oxide.
  • the catalyst may be prepared by first impregnating the support with a solution of a salt of lanthanum or cerium or other rare earth metal, drying it and then calcining it at a temperature of about 600 ° C. If the carrier already contains a rare earth metal due to the production, this step may be unnecessary. Examples are lanthanum stabilized aluminas.
  • the support is then impregnated with a solution of a copper and manganese salt, then dried at 120 to 200 0 C and calcined at up to 450 0 C.
  • Any soluble salt of the metals can be used.
  • salts are nitrates, formates and acetates.
  • Lanthanum is preferably used as lanthanum nitrate La (NC> 3) 3
  • copper and manganese are preferably used as nitrates, namely Cu (NO 3 ) 2 and Mn (NO 3 ) 3 .
  • the preferred impregnation method is dry impregnation, using an amount of solution that is equal to or less than the pore volume of the support.
  • the initial temperature of the catalyst it may be necessary for the initial temperature of the catalyst to be less than 250 ° C. That is, the catalyst should be able to convert H 2 and CO at a temperature below about 250 ° C. to achieve an exothermic effect needed to initiate the methane combustion reaction. Since the H 2 and CO conversion activity of the catalysts used in this invention is low, doping with small amounts of noble metals may be advantageous. Suitable for this for example platinum (Pt) and / or palladium (Pd). For example, the catalyst may be doped with 0.1 wt% Pt.
  • hopkalite catalysts can be used in the context of the present invention. These are mixed catalysts consisting mainly of manganese dioxide and copper (II) oxide. In addition, you can contain other metal oxides, such as cobalt oxides and silver (l) oxide.
  • the present invention further relates to a fuel cell assembly comprising an exhaust gas burner, wherein the exhaust gas burner comprises mixed oxide catalysts comprising Cu, Mn and optionally at least one rare earth metal.
  • the invention relates to molten carbonate fuel cell (MCFC) or solid oxide fuel cell (SOFC) type fuel cells in which the exhaust gas combustor comprises mixed oxide catalysts comprising Cu, Mn and optionally at least one rare earth metal.
  • the exhaust gas burner of the fuel cell assembly according to the invention preferably comprises as oxidation oxide catalysts oxidation catalysts comprising mixed oxides of copper, manganese and one or more rare earth metal (s), which metals can assume multiple valence states containing a weight percentage composition in terms of CuO, MnO and rare earth metal oxides in which the rare earth metal has the lowest valence, from 35 to 40%, 50 to 60% and 2 to 15%, respectively.
  • oxidation oxide catalysts comprising mixed oxides of copper, manganese and one or more rare earth metal (s), which metals can assume multiple valence states containing a weight percentage composition in terms of CuO, MnO and rare earth metal oxides in which the rare earth metal has the lowest valence, from 35 to 40%, 50 to 60% and 2 to 15%, respectively.
  • the exhaust gas burner may in principle comprise mixed oxides of all the above-mentioned compositions, in particular 20-60% Cu, 80-20% Mn and 0-20% rare earth metal (% by weight, based on the total weight of the stated metals).
  • Fig. 1 shows a steady state test in which the temperature of the catalyst bed is plotted over time. In this case, no reaction gas was passed over the catalyst bed.
  • Figure 2 shows the absolute CH 4 concentration as a function of time-on-stream (TOS) for various Pt / Pd catalyst types on 600 cpsi metal monoliths.
  • TOS time-on-stream
  • Fig. 3 shows the absolute CH 4 concentration as a function of TOS for Cu / La / Mn catalysts.
  • Figure 5 shows CO conversion as a function of catalyst inflow temperature for fresh and aged Cu / La / Mn catalysts.
  • Figure 6 shows H 2 conversion as a function of catalyst inflow temperature for fresh and aged Cu / La / Mn catalysts.
  • FIG. 7 shows the CO, H 2 shows - and CH 4 -conversion as a function of Katalysatoreinströmtemperatur for fresh Cu / La / Mn catalysts, which are doped with 0.1% Pt.
  • Fig. 8 shows a schematic representation of the test setup.
  • test gas mixture is used that is similar to an anode exhaust after mixing with air:
  • the catalytic activity for the anode exhaust gas oxidation of various catalysts is tested in a conventional tubular reactor at atmospheric pressure.
  • the tube reactor has an inside diameter of about 19.05 mm and a heated length of 600 mm and consists of a Ni-based austenitic stainless steel. Above and below the catalyst the gas inlet and gas outlet temperatures are measured during the test.
  • Feedstock and product gas are analyzed online with an IR analyzer: ABB; continuous gas analyzer AO2000; Series: Infrared Analyzer module Uras 14 for CO, CO 2 , H 2 , CH 4 ; OxygenAnalyzer module Magnos 106 for O 2 .
  • This gas analyzer was calibrated with appropriate certified test gases prior to testing.
  • a Pt / Pd catalyst is used for the comparative experiments.
  • the 400 or 600 cpsi metal honeycombs are coated with washcoat according to US 4,900,712, Example 3 (solids content 40-50%) (target load 90 g / l).
  • the coated honeycomb are dried in a drying oven at 120 0 C for two hours and calcined at 550 0 C for three hours (ramp 2 ° C / min).
  • the honeycombs are left in the dip solution overnight (at least 12 hours) to ensure that all Pt is taken up.
  • the honeycombs are then blown out and dried at 120 0 C for two hours in a drying oven and then calcined at 550 0 C for three hours (ramp 2 ° C / min).
  • the dried honeycombs are immersed in the solution for 20 seconds, blown out to the mass of water uptake and weighed. They are then dried at 120 0 C for two hours in a drying oven and then calcined at 550 0 C for three hours (ramp 2 ° C / min).
  • the Cu / Mn / La catalyst to be used in the context of the present invention is first prepared according to EP 1 197 259 A1, Example 1. Afterwards this can be impregnated with Pt.
  • the obtained Triholes coated with Cu / La / Mn (grains with a three-lobed cross-section with mutual holes in the same distance in the lobes, the holes were parallel to the axis of the lobes) into granules with 1 - 2 mm diameter crushed. 20 g of the granules are doped with 0.1% Pt.
  • thermostability of the catalysts to be used in the invention was surprisingly high and the activity of methane conversion at higher temperatures was good.
  • Methane conversion of fresh and aged catalyst is good compared to aged noble metal catalysts.
  • the methane conversion is very stable even after hydrothermal aging and hydrothermal potassium aging.
  • the fresh catalysts have a methane conversion rate of 50% at 490 0 C and a conversion of> 95% at about 650 0 C inflow temperature.
  • Both aged samples show little deactivation in methane oxidation activity but are still very active. In the temperature range above 600 0 C inflow temperature, the deactivation is negligible. The additional influence of potassium on the catalytic activity over 65 hours TOS is negligible.
  • the catalysts to be used in the present invention because of their excellent cost / benefit ratio and their good hydrothermal stability compared to noble metal catalysts are ideally suited for the oxidative treatment of anode exhaust gases in fuel cells.
  • H 2 activity decreases after hydrothermal aging.
  • the potassium-aged catalyst performs better than the normal-aged catalysts in CO and H 2 conversion. Since a permanent inflow temperature below about 250 0 C is necessary, a catalyst is doped with 0.1 wt .-% Pt. The whole

Abstract

Verfahren zur Entfernung von CO, H2 und/oder CH4 aus dem Anodenabgas einer Brennstoffzelle mit Mischoxidkatalysatoren umfassend Cu, Mn und gegebenenfalls mindestens ein Seltenerdmetall sowie Verwendung von Mischoxidkatalysatoren umfassend Cu, Mn und gegebenenfalls mindestens ein Seltenerdmetall zur Entfernung von CO, H2 und/oder CH4 aus dem Anodenabgas einer Brennstoffzelle und Brennstoffzellenanordnung.

Description

Verfahren zur Entfernung von CO, H2 und/oder CH4 aus dem Anodenabgas einer Brennstoffzelle mit Mischoxidkatalysatoren umfassend Cu, Mn und gegebenenfalls mindestens ein Seltenerdmetall
Die vorliegende Erfindung betrifft Brennstoffzellenanordnungen und -Systeme, umfassend einen katalytischen Abgasbrenner zur Verbrennung einer Mischung aus Anodenrestgas, Luft und/oder anderen beigemischten Gasen (z.B. Kathodenabgas), wobei als Katalysator im Abgasbrenner ein Mischoxidkatalysator umfassend Cu und Mn Verwendung findet, sowie ein Verfahren und eine Verwendung hierzu.
Brennstoffzellen bieten die Möglichkeit, bei hohem Wirkungsgrad elektrischen Strom aus der kontrollierten Verbrennung von Wasserstoff zu gewinnen. Zurzeit existiert allerdings noch keine Infrastruktur für den zukünftigen Energieträger Wasserstoff. Deshalb besteht die Notwendigkeit, Wasserstoff aus den gut verfügbaren Energieträgern Erdgas, Benzin, Diesel oder anderen Kohlenwasserstoffen wie Biogas, Methanol etc. zu gewinnen.
Aus Methan - dem überwiegenden Bestandteil von Erdgas - lässt sich beispielsweise durch Dampfreformierung Wasserstoff erzeugen. Das entstandene Gas enthält neben Spuren von nicht umgesetztem Methan und Wasser im Wesentlichen Wasserstoff, Kohlendioxid und Kohlenmonoxid. Dieses Gas kann als Brenngas für eine Brennstoffzelle verwendet werden. Um das Gleichgewicht bei der Dampfreformierung auf die Seite des Wasserstoffs zu verschieben, wird diese bei Temperaturen von etwa 500 0C - 1000 0C durchgeführt, wobei für eine konstante Zusammensetzung des Brenngases dieser Temperaturbereich möglichst exakt eingehalten werden soll.
Üblicherweise werden im Brenngas vorhandene Schwefelverbindungen vor der Zuführung zur Brennstoffzelle entfernt, da die meisten verwendeten Brennstoffzellenkatalysatoren gegenüber Schwefel empfindlich sind.
Eine Brennstoffzellenanordnung, in welcher das aus Methan und Wasser erzeugte Brenngas zur Energieerzeugung genutzt werden kann, ist beispielsweise in der DE 197 43 075 A1 beschrieben. Eine solche Anordnung umfasst eine Anzahl von Brennstoffzellen, die in einem Brennstoffzellenstapel innerhalb eines geschlossenen Schutzgehäuses angeordnet sind. Über einen Anodengaseingang wird den Brennstoffzellen Brenngas zugeführt, welches im Wesentlichen aus Wasserstoff, Kohlendioxid, Kohlenmonoxid und Resten von Methan und Wasser besteht. Das Brenngas wird entweder in einem vorgeschalteten externen Reformer oder in einem internen Reformer aus Methan und Wasser erzeugt. Interne Reformierreaktionen werden oftmals in Hochtemperaturbrennstoffzellen wie z. B. MCFC (Molten Carbonat Fuel Cell) oder SOFC (Solid Oxide Fuel Cell) durchgeführt, da die exotherme elektrochemische Reaktionsenergie der Brennstoffzelle direkt für die stark endotherme Reformierreaktion genutzt werden kann.
In den in DE 197 43 075 A1 sowie in US 2002/0197518 A1 beschriebenen "Molten Carbonate Fuel CeIIs" (MCFC) wird beispielsweise eine interne Reformierung der Kohlenwasserstoffe durchgeführt. Über folgende elektrochemischen Reaktionen erzeugt die Brennstoffzelle Strom und Wärme:
Kathode: V2 O2 + CO2 + 2e" → CO3 2" Anode: H2 + CO3 2" → CO2 + H2O + 2e"
Die elektrochemischen Reaktionen sind exotherm. Im Gegenzug kann deshalb ein Katalysator für die Dampfreformierungsreaktion von Methan direkt in der Zelle angeordnet werden:
CH4 + H2O → CO + 3 H2
CH4 + 2 H2O → CO2 + 4 H2
Diese Reaktion ist stark endotherm und kann die freiwerdende Wärme aus den elektrochemischen Reaktionen direkt verbrauchen. Da die Dampfreformierung eine Gleichgewichtsreaktion ist, kann das Gleichgewicht außerdem durch eine kontinuierliche Wasserstoffabnahme an der Anode verschoben werden. Nur dadurch lassen sich annähernd vollständige Methanumsätze bei relativ geringen Temperaturen von ca. 650 0C erreichen.
Trotz der hohen Effizienz der Brennstoffzelle enthält das Anodenabgas je nach Betriebszustand und Betriebsdauer neben den Reaktionsprodukten Kohlendioxid und Wasser noch Anteile von Wasserstoff, Kohlenmonoxid und Methangas.
Um Reste von Wasserstoff zu entfernen, wird daher das Anodenabgas zunächst mit Luft vermischt und dann einem katalytischen Abgasbrenner zugeführt, in welchem das verbliebene Methan sowie Wasserstoffspuren zu Wasser und Kohlendioxid verbrannt werden. Optional oder alternativ können neben dem Anodenabgas und Luft andere Gase wie z. B. Kathodenabgas zugemischt werden. Die dabei freiwerdende thermische Energie kann auf verschiedene Arten genutzt werden.
Als Katalysatoren im Abgasbrenner werden derzeit einerseits Edelmetalle, beispielsweise Platin und/oder Palladium, verwendet, die auf einem geeigneten Träger in fein verteilter Form bereitgestellt werden. Diese katalytische Verbrennung hat den Vorteil, dass sie sehr gleichmäßig und ohne Temperaturspitzen erfolgt. Die Verbrennung an Palladiumkatalysatoren verläuft bei Temperaturen im Bereich von etwa 450 bis 550 0C. Bei höheren Temperaturen von jenseits von etwa 800 bis 900 0C verschiebt sich das Gleichgewicht Pd/PdO zugunsten von Palladiummetall, wodurch die Aktivität des Katalysators abnimmt (siehe Catalysis Today 47 (1999) 29-44). Ein Aktivitätsverlust ist ferner durch auftretende Sinterung bzw. das Zusammenbacken der Katalysatorteilchen zu beobachten. Grundsätzlich haben Edelmetallkatalysatoren allerdings den Nachteil sehr hoher Rohstoffpreise.
Aus der EP 0 270 203 A1 sind andererseits hitzestabile Katalysatoren für die katalytische Verbrennung von beispielsweise Methan bekannt. Diese beruhen auf Erdalkalihexaaluminaten, welche Anteile von Mn, Co, Fe, Ni, Cu oder Cr enthalten. Diese Katalysatoren zeichnen sich durch eine hohe Aktivität und Beständigkeit auch bei Temperaturen von mehr als 1200 0C aus. Die Aktivität des Katalysators ist jedoch bei niedrigeren Temperaturen relativ gering. Um auch bei niedrigeren Temperaturen eine ausreichende katalytische Aktivität bereitstellen zu können, werden geringe Mengen an Platinmetallen zugegeben, beispielsweise Pt, Ru, Rh oder Pd.
M. Machida, H. Kawasaki, K. Eguchi, H. Arai, Chem. Lett. 1988, 1461-1464 beschreiben ferner mit Mangan substituierte Hexaaluminate A1-XA1 XMnAI11Oi9-0, welche auch nach Calcinierung bei Temperaturen von etwa 1300 0C eine hohe spezifische Oberfläche aufweisen. H. Sadamori, T. Tanioka, T. Matsuhisa, Catalysis Today, 26 (1995) 337-344 beschreiben die Verwendung dieses Hexaaluminats in einem katalytischen Brenner, welcher einer Gasturbine vorgeschaltet ist. Dieser keramische Katalysator zeigt bei der Verbrennung von Methan jedoch eine relativ hohe Entzündungstemperatur von oberhalb 600 0C. Dem keramischen Katalysator werden daher Abschnitte vorgeschaltet, in denen ein edelmetallhaltiger Katalysator angeordnet ist. Schließlich beschreibt die DE 10 2005 062 926 A1 , dass durch eine intensive Vermahlung von Hexaaluminaten deren Aktivität soweit erhöht werden kann, dass bei der Verbrennung von Methan Zündtemperaturen im Bereich von 300 bis 500 0C sowie Betriebstemperaturen im Bereich von etwa 500 bis 1100 0C erreicht werden können.
Der ideale Temperaturbereich für den Betrieb einer Hochtemperaturbrennstoffzelle liegt im Bereich von etwa 400 bis 1000 0C. Die bei der Anodenabgas-Verbrennung entstehende Wärme kann in verschiedenen Anwendungen genutzt werden, beispielsweise zur Verdampfung von Wasser für die Dampfreformierung, Bereitstellung von Wärmeenergie für die endotherme Dampfreformierung, Wärmenutzung in Kraft- Wärme-Kopplung Anwendungen oder ähnliches. Das vollständig oxidierte Anodenabgas, welches insbesondere kein Wasserstoffgas mehr enthält, kann nach dem Austritt aus dem Brenner als Kathodengas der Kathode zugeleitet werden. Dies ist beispielsweise in der DE 197 43 075 A1 beschrieben
Es besteht Bedarf nach einem kostengünstigen, aktiven und langzeitstabilen Katalysator für Brennstoffzellenanordnungen, die einen katalytischen Abgasbrenner zur Verbrennung einer Mischung von Anodenrestgas, Luft und gegebenenfalls anderen Gasen wie Kathodengasen umfassen, der für die Methan-, CO- und H2-Oxidation im Abgasbrenner bei Temperaturen von 400 bis 1 100 0C stabil und aktiv ist.
Überraschend wurde gefunden, dass Oxidationskatalysatoren, umfassend Mischoxide von Kupfer, Mangan und gegebenenfalls einem oder mehreren Seltenerdmetall(en), hierfür besonders geeignet sind.
Insbesondere ermöglichen es diese Katalysatoren Brauchwärme zurückzugewinnen, CO2 für ein Rezirkulationssystem des MCFC (molten carbonate fuel cell)-Brennstoffzellentypus herzustellen und Umweltemissionen zu verringern.
Gegenstand der vorliegenden Erfindung ist daher ein Verfahren zur Entfernung von CO, H2 und/oder CH4 aus dem Anodenabgas einer Brennstoffzelle mit Mischoxidkatalysatoren umfassend Cu, Mn und gegebenenfalls mindestens ein Seltenerdmetall.
Gegenstand der vorliegenden Erfindung ist ferner die Verwendung von Mischoxidkatalysatoren umfassend Cu, Mn und gegebenenfalls mindestens ein Seltenerdmetall zur Entfernung von CO, H2 und/oder CH4 aus dem Anodenabgas einer Brennstoffzelle.
Da das Anodenabgas durch die Entfernung möglicherweise vorhandener Schwefelverbindungen bereits im Brenngas schwefelfrei oder ausreichend schwefelarm ist, besteht keine Notwendigkeit, dass für die vorliegende Erfindung geeignete Katalysatoren unempfindlich gegen Schwefel sind.
Geeignete Katalysatoren sind beispielsweise in der EP 1 197 259 beschrieben, deren Offenbarung hiermit durch Inbezugnahme in die vorliegende Erfindung mit aufgenommen wird. Solche Katalysatoren umfassen Mischoxide von Cu, Mn und Seltenerdmetall(en), in denen die Metalle Mehrfachvalenzzustände annehmen können, die eine Gew.-%-
Zusammensetzung, ausgedrückt als die Oxide, die nachfolgend spezifiziert werden: 50 -
60 % als MnO, 35 - 40 % als CuO und 2 - 15 % als La2O3 und/oder als Oxide der Seltenerdmetalle im niedrigsten Valenzzustand, haben. Vorzugsweise ist die
Zusammensetzung 50 - 60 % MnO, 35 - 40 % CuO, 10 - 12 % La2O3.
Die einzelnen Metalle können auch andere Oxidationsstufen als die oben erwähnten einnehmen. Beispielsweise kann Mangan auch als MnO2 vorliegen.
Möglich sind allgemein folgende Zusammensetzungen, wobei die %-Angaben Gewichtsprozente, bezogen auf die Gesamtmasse an Mn, Cu und gegebenenfalls Seltenerdmetalle, sind: Mn 80 - 20%, Cu 20 - 60%, Seltenerdmetalle 0 - 20%, bevorzugt Mn 75 - 30%, Cu 20 - 55%, Seltenerdmetalle 5 - 15%.
Das Massenverhältnis von Kupfer zu Mangan (berechnet als Masse Cu zu Masse Mn) auf dem fertigen Katalysator kann beispielsweise 0,4 bis 0,9, bevorzugt 0,5 bis 0,75 betragen.
Unter Seltenerdmetalle sind Lanthan (La), Cer (Ce), Praseodym (Pr), Neodym (Nd), Promethium (Pm), Samarium (Sm), Europium (Eu), Gadolinium (Gd), Terbium (Tb), Dysprosium (Dy), Holmium (Ho), Erbium (Er), Thulium (Tm), Ytterbium (Yb), Lutetium (Lu) zu verstehen. Bevorzugt sind La und Ce.
Die Oxide werden beispielsweise an porösen anorganischen Trägern wie Aluminiumoxid, Siliciumdioxid, Siliciumdioxid-Aluminiumoxid, Titandioxid oder Magnesiumoxid getragen.
Die Oxide werden in einer Menge von im Allgemeinen 5 bis 50 Gew.-%, vorzugsweise 5 bis 30 Gew.-%, bezogen auf die Gesamtmasse des Katalysators und der Oxide, getragen. Das Seltenerdmetall kann dabei schon im Träger vorhanden sein. Die vorwiegende Rolle des Seltenerdmetalls liegt in der Stabilisierung der BET-Oberfläche des porösen anorganischen Trägers. Ein dem Fachmann bekanntes Beispiel ist Lanthan stabilisiertes Aluminiumoxid.
Der Katalysator kann hergestellt werden, indem der Träger zunächst mit einer Lösung eines Salzes von Lanthan oder Cer oder einem anderen Seltenerdmetall imprägniert, getrocknet und anschließend bei einer Temperatur um etwa 600 0C calciniert wird. Falls der Träger schon herstellungsbedingt ein Seltenerdmetall enthält, kann sich dieser Schritt erübrigen. Beispiele sind mit Lanthan stabilisierte Aluminiumoxide.
Der Träger wird dann mit einer Lösung eines Kupfer- und Mangan-Salzes imprägniert, anschließend bei 120 bis 200 0C getrocknet und bei bis zu 450 0C calciniert.
Es kann ein beliebiges lösliches Salz der Metalle verwendet werden. Beispiele für Salze sind Nitrate, Formiate und Acetate. Lanthan wird vorzugsweise als Lanthannitrat La(NC>3)3, Kupfer und Mangan werden vorzugsweise als Nitrate, nämlich Cu(NO3)2 und Mn(NO3)3 verwendet.
Bevorzugtes Imprägnierungsverfahren ist die Trockenimprägnierung, wobei eine Lösungsmenge verwendet wird, die gleich oder kleiner dem Porenvolumen des Trägers ist.
Besonders geeignet für die Zwecke der vorliegenden Erfindung ist der nach Beispiel 1 der EP 1 197 259 A1 hergestellte Katalysator, der auf γ-Aluminiumoxid getragen wird und in dem die Mischoxide die folgende Zusammensetzung, ausgedrückt als Gew.-% der im folgenden angegebenen Oxide, haben: La2O3 = 9,3, MnO = 53,2, CuO = 37,5.
In einigen Anwendungsfällen kann es erforderlich sein, dass die Anfangstemperatur des Katalysators weniger als 250 0C beträgt. Das bedeutet, dass der Katalysator in der Lage sein sollte, H2 und CO bei einer Temperatur von unterhalb etwa 250 0C zu konvertieren, um einen exothermen Effekt zu erzielen, der benötigt wird, um die Methanverbrennungsreaktion zu initiieren. Da die H2- und CO-Konvertierungsaktivität der im Rahmen dieser Erfindung verwendeten Katalysatoren gering ist, kann eine Dotierung mit geringen Mengen an Edelmetallen von Vorteil sein. Geeignet sind hierfür beispielsweise Platin (Pt) und/oder Palladium (Pd). Beispielsweise kann der Katalysator mit 0,1 Gew.-% Pt dotiert sein.
Weiterhin können im Rahmen der vorliegenden Erfindung Hopkalit-Katalysatoren verwendet werden. Dies sind Misch-Katalysatoren, die hauptsächlich aus Mangandioxid und Kupfer(ll)-oxid bestehen. Daneben können Sie weitere Metalloxide enthalten, beispielsweise Kobaltoxide und Silber(l)-oxid.
Die vorliegende Erfindung betrifft ferner eine Brennstoffzellenanordnung, umfassend einen Abgasbrenner, wobei der Abgasbrenner Mischoxidkatalysatoren umfassend Cu, Mn und gegebenenfalls mindestens ein Seltenerdmetall aufweist. Insbesondere betrifft die Erfindung Brennstoffzellen vom Typ MCFC (molten carbonate fuel cell) oder SOFC (Solide Oxide Fuel Cell), in denen der Abgasbrenner Mischoxidkatalysatoren umfassend Cu, Mn und gegebenenfalls mindestens ein Seltenerdmetall aufweist.
Der Abgasbrenner der erfindungsgemäßen Brennstoffzellenanordnung weist als Mischoxidkatalysatoren bevorzugt Oxidationskatalysatoren auf, die Mischoxide von Kupfer, Mangan und einem oder mehreren Seltenerdmetall(en) umfassen, wobei die Metalle Mehrfachvalenzzustände annehmen können, die eine gewichtsprozentuale Zusammensetzung, ausgedrückt als CuO, MnO und Seltenerdmetalloxide, in denen das Seltenerdmetall die niedrigste Valenz hat, von 35 bis 40 %, 50 bis 60 % bzw. 2 bis 15 % aufweisen.
Der Abgasbrenner kann grundsätzlich Mischoxide aller oben erwähnten Zusammensetzungen aufweisen, insbesondere 20 - 60 % Cu, 80 - 20 % Mn und 0 - 20 % Seltenerdmetall (Gew.-%-Angaben; bezogen auf das Gesamtgewicht der angegebenen Metalle).
Die Erfindung wird durch die nachfolgenden Figuren und Beispiele näher beschrieben, ohne dass sie durch diese beschränkt werden soll.
Figuren
Fig. 1 zeigt einen stationären Zustandstest, bei dem die Temperatur des Katalysatorbetts über die Zeit aufgetragen ist. Hierbei wurde noch kein Reaktionsgas über das Katalysatorbett geführt. Fig. 2 zeigt die absolute CH4-Konzentration als Funktion der time-on-stream (TOS) für verschiedene Pt/Pd-Katalysatortypen auf 600 cpsi-Metallmonolithen.
Fig. 3 zeigt die absolute CH4-Konzentration als Funktion der TOS für Cu/La/Mn- Katalysatoren.
Fig. 4 zeigt die Methankonvertierung als Funktion der Einströmtemperatur in Cu/La/Mn- Schüttgut.
Fig. 5 zeigt die CO-Konvertierung als Funktion der Katalysatoreinströmtemperatur für frische und gealterte Cu/La/Mn-Katalysatoren.
Fig. 6 zeigt die H2-Konvertierung als Funktion der Katalysatoreinströmtemperatur für frische und gealterte Cu/La/Mn-Katalysatoren.
Fig. 7 zeigt die CO-, H2- und CH4-Konvertierung als Funktion der Katalysatoreinströmtemperatur für frische Cu/La/Mn-Katalysatoren, die mit 0,1% Pt dotiert sind.
Fig. 8 zeigt eine schematische Darstellung des Testaufbaus.
Beispiele
Im Rahmen der folgenden Anwendungsbeispiele wird eine Test-Gasmischung verwendet, die einem Anoden-Abgas nach Vermischung mit Luft ähnlich ist:
CH4: 0,56 Vol.-%
CO: 1 ,13 Vol. -% H2: 2,30 Vol.-%
O2: 16 Vol.-%
N2: Ausgleich
CO2: 9,5 Vol.-%
H2O: 12 Vol.-% Die katalytische Aktivität für die Anodenabgasoxidation verschiedener Katalysatoren wird in einem herkömmlichen Rohrreaktor bei Atmosphärendruck getestet. Der Rohrreaktor hat einen Innendurchmesser von ca. 19,05 mm sowie eine beheizte Länge von 600 mm und besteht aus einem Ni basierten austenitischen Edelstahl. Über und unterhalb des Katalysators werden während des Tests die Gaseintritts- sowie die Gasaustrittstemperatur gemessen.
Die Test-Gasmischung wird dem Rohrreaktor mit einer Gesamt-GHSV (Gas Hourly Space Velocity) von 25.000 NL/h/L im Fall von beschichteten Metallmonolithen (Fa. Emitec, 400 cpsi- und 600 cpsi-Metallmonolite, V = 7,4 ml_) und 18.400 NL/h/L im Fall von Schüttguttest zugeführt (Druck: 50 bis 70 mbarg). Schüttgüter wurden analog der nachfolgenden Beispiele präpariert und in ausgesiebten Korngrößenfraktionen von 1-2 mm Partikeldurchmesser getestet.
Edukt- und Produktgas werden online mit einem IR-Analysator analysiert: Fa. ABB; kontinuierlicher Gasanalysator AO2000; Serie: Infrarot Analysatormodul Uras 14 für CO, CO2, H2, CH4; OxygenAnalyzer Modul Magnos 106 für O2. Dieser Gasanalysator wurde vor Testbeginn mit entsprechenden zertifizierten Prüfgasen kalibriert.
Die Alterung der Katalysatoren findet unter folgenden Bedingungen in Röhren reaktoren statt:
Hydrothermale Alterung:
750 0C in Luft mit 20% Wasserdampf für mindestens 40 Stunden, GHSV von 1000 NL/h/L bezogen auf den Katalysator (182 Stunden TOS für Langzeit-Tests).
Hydrothermale Kaliumalterung:
Auf ein 10 mL-Katalysatorbett wurden 50 mL mit K2CO3 (5,5 Masse-% K) imprägnierte und bei 120 0C 12 Stunden getrocknete AI2O3-Kugeln (SPH 515; Hersteller Rhodia), die zuvor 10 Stunden bei 1300 0C von gamma- auf alpha-AI2θ3 konvertiert wurden, aufgebracht und das Bett mit Luft und 20% Wasserdampf bei 750 0C durchströmt (z.B. 65 Stunden, GHSV von 1000 NL/h/L bezogen auf den Katalysator). Die hydrothermale Kaliumalterung soll den in MCFC-Zellen auftretenden Prozess simulieren, bei dem Kalium aus dem Elektrolyten durch kontinuierliche Verdampfung entweicht und im Anodenabgasstrom wiederzufinden ist. Zum Effekt der Anwesenheit von Kalium in Anodengasen von MCFC-Zellen wird auf S. CAVALLARO et al., Inf. J. Hydrogen Energy, Vol. 17. No. 3, 181-186, 1992; J. R. Rostrup-Nielsen et al., Applied Catalysis A: General 126 (1995) 381- 390; sowie Kimihiko Sugiura et al., Journal of Power Sources 118 (2003) 228-236 verwiesen.
Herstellungsbeispiel 1 - Vergleichskatalysator auf Pt/Pd -Basis
Für die Vergleichsversuche wird ein Pt/Pd-Katalysator verwendet. Hierbei werden die 400 bzw. 600 cpsi-Metallwaben mit Washcoat gemäß US 4 900 712, Beispiel 3 (Feststoffanteil 40-50%) beschichtet (Sollbeladung 90 g/l). Die beschichteten Waben werden im Trockenschrank bei 120 0C zwei Stunden getrocknet und drei Stunden bei 550 0C calciniert (Rampe 2 °C/min). Die calcinierten Waben werden mit Pt als PSA (Platinumsulfiteacid; 0,71 g/l; w (Pt) = 9,98%; Fa. Heraeus, Charge CP113481 ) durch Totaladsorption imprägniert, wobei die Tauchlösung durch eine Verdünnungsreihe herzustellen ist, da die Einwaage ansonsten zu gering ist. Die Waben werden über Nacht (mindestens 12 Stunden) in der Tauchlösung gelassen, um sicher zu stellen, dass das gesamte Pt aufgenommen wird. Anschließend werden die Waben ausgeblasen und bei 120 0C zwei Stunden im Trockenschrank getrocknet und anschließend drei Stunden bei 550 0C calciniert (Rampe 2 °C/min). Die calcinierten Waben werden mit Pd als Palladiumtetraminnitrat (2,13 g/l; w(Pd) = 3,30%; Fa. Umicore, Charge 5069/00-07) imprägniert, wobei die Lösungen für jede Wabe einzeln hergestellt werden. Von den calcinierten Waben wird die Wasseraufnahme bestimmt, indem die Waben 30 Sekunden in Wasser getaucht, ausgeblasen und gewogen werden. Die Konzentration der Lösung richtet sich nach der Wasseraufnahme (z.B. Wasseraufnahme 0,45 g/Wabe → Pd- Beladung für diese Wabe (V = 7,86 ml) = 0,0167 g → w(Pd) = 2,93 %). Die getrockneten Waben werden für 20 Sekunden in die Lösung getaucht, auf die Masse der Wasseraufnahme ausgeblasen und gewogen. Anschließend werden sie bei 120 0C zwei Stunden im Trockenschrank getrocknet und dann drei Stunden bei 550 0C calciniert (Rampe 2 °C/min).
Herstellungsbeispiel 2 - Cu/Mn/La-Katalysator
Der im Rahmen der vorliegenden Erfindung zu verwendende Cu/Mn/La Katalysator wird zunächst gemäß EP 1 197 259 A1 , Beispiel 1 hergestellt. Im Anschluss kann dieser mit Pt imprägniert werden. Dazu werden die mit Cu/La/Mn beschichteten erhaltenen Triholes (Körner mit einem dreilappigen Querschnitt mit wechselseitigen Durchbohrungen in gleichem Abstand in den Lappen, wobei die Bohrungen parallel zur Achse der Lappen waren) zu Granulaten mit 1 - 2 mm Durchmesser zerkleinert. 20 g der Granulate werden mit 0,1 % Pt dotiert. Die Granulate werden dazu mit Pt als Platinethanolamin (w(Pt) = 13,87 %; Fa. Heraeus, Charge 771 10628) durch Totaladsorption imprägniert. Die benötige Menge Pt wird mit VE-Wasser auf 50 ml aufgefüllt. Die Granulate werden zugegeben und über Nacht (mindestens 12 Stunden) in der Tauchlösung gelassen, um sicher zu stellen, dass das gesamte Pt aufgenommen wird. Anschließend werden die Granulate abgesaugt und bei 120 0C im Trockenschrank getrocknet, sodann drei Stunden bei 550 0C calciniert (Rampe 2 °C/min).
Anwendungsbeispiel 1
Mit einem stationären Zustandstest werden die Katalysatoren charakterisiert. Die Versuche werden hierbei bei 250 0C initiiert, die Temperatur schrittweise auf 650 0C erhöht und anschließend schrittweise auf 450 0C erniedrigt. Die Betriebsbedingungen werden einige Stunden bei jedem Temperaturlevel konstant gehalten. Fig. 1 zeigt das entsprechende Diagramm.
Anwendungsbeispiel 2
Eine Reihe von stationären Zustandstests wird mit beschichteten 600 cpsi- Metallmonolithen (Pd und Pd/Pt und Pt auf AI2O3, Ce, La, Y) durchgeführt. Die Ergebnisse sind in Fig. 2 dargestellt, die die katalytische Aktivität der einzelnen Katalysatoren zeigt. Eine breite Verteilung der Methankonvertierung unter den Katalysatoren ist zu erkennen. Ferner ist deutlich zu erkennen, dass ein stationärer Zustand mit diesen Katalysatoren nicht erzielt werden kann. Die Methan-Konvertierung nimmt mit zunehmender TOS stark ab. Die anfängliche Aktivität aller Edelmetallkatalysatoren ist zwar hoch, aber über TOS nicht stabil, sogar bei geringeren Temperaturen. Ein möglicher Grund hierfür könnten Pt/Pd-Sinterprozesse sein.
Im Gegensatz dazu und wie aus Fig. 3 deutlich zu erkennen, war die Thermostabilität der im Rahmen der Erfindung zu verwendenden Katalysatoren überraschend hoch und die Aktivität der Methankonvertierung bei höheren Temperaturen gut. Zu berücksichtigen ist allerdings, dass Anwendungsbeispiel 2 (Wabenkatalysator mit GHSV = 25.000 NL/h/L) nicht direkt mit Anwendungsbeispiel 3 (Schüttgutkatalysator mit GHSV = 18.400 NL/h/L) verglichen werden darf.
Anwendungsbeispiel 3
Fig. 4 zeigt die Methankonvertierung als Funktion der Einströmtemperatur in Cu/La/Mn- Schüttgut. Die Methankonvertierung von frischem sowie gealtertem Katalysator ist im Vergleich zu gealterten Edelmetallkatalysatoren gut. Die Methankonvertierung ist selbst nach hydrothermaler Alterung und hydrothermaler Kaliumalterung sehr stabil. Die frischen Katalysatoren weisen eine Methankonvertierungsrate von 50% bei 490 0C und eine Konvertierung von > 95% bei etwa 650 0C Einströmtemperatur auf. Beide gealterten Proben weisen eine geringe Desaktivierung bei der Methanoxidationsaktivität auf, sind aber immer noch sehr aktiv. Im Temperaturbereich oberhalb von 600 0C Einströmtemperatur ist die Desaktivierung vernachlässigbar. Der zusätzliche Einfluss von Kalium auf die katalytische Aktivität über 65 Stunden TOS ist vernachlässigbar.
Folglich sind die im Rahmen der vorliegenden Erfindung zu verwendenden Katalysatoren aufgrund ihres hervorragenden Kosten/Nutzenverhältnisses und ihrer guten hydrothermalen Stabilität im Vergleich zu Edelmetallkatalysatoren ideal geeignet zur oxidativen Behandlung von Anodenabgasen in Brennstoffzellen.
Anwendungsbeispiel 4
Wie Fig. 5 und 6 zu entnehmen ist, nimmt die CO- und die H2-Aktivität nach hydrothermaler Behandlung ab. Die Anspringtemperatur für 50%ige CO- und H2-
Konvertierung ist anfänglich relativ hoch bei 220 0C (CO) bzw. 250 0C (H2). Die CO- und
H2-Aktivität nehmen nach hydrothermaler Alterung jedoch ab. Interessanterweise zeigt der kaliumgealterte Katalysator bei der CO- und H2-Konvertierung eine bessere Performance als die normal gealterten Katalysatoren. Da eine dauerhafte Einströmtemperatur unterhalb von etwa 250 0C nötig ist, wird ein Katalysator mit 0,1 Gew.-% Pt dotiert. Die gesamte
Konvertierungstemperatur von CO und H2 konnte leicht auf unterhalb von 250 0C reduziert werden (siehe Fig. 7).

Claims

Patentansprüche
1. Verfahren zur Entfernung von CO, H2 und/oder CH4 aus dem Anodenabgas einer Brennstoffzelle mit Mischoxidkatalysatoren umfassend Cu, Mn und gegebenenfalls mindestens ein Seltenerdmetall.
2. Verwendung von Mischoxidkatalysatoren umfassend Cu, Mn und gegebenenfalls mindestens ein Seltenerdmetall zur Entfernung von CO, H2 und/oder CH4 aus dem Anodenabgas einer Brennstoffzelle.
3. Verfahren oder Verwendung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Entfernung von CO, H2 und/oder CH4 aus dem Anodenabgas in einem Abgasbrenner stattfindet.
4. Verfahren oder Verwendung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Brennstoffzelle vom Typ MCFC (molten carbonate fuel cell) oder SOFC (Solide Oxide Fuel Cell) ist.
5. Verfahren oder Verwendung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Seltenerdmetalle Lanthan, Cer sind.
6. Verfahren oder Verwendung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Mischoxidkatalysatoren Oxidationskatalysatoren sind, umfassend Mischoxide von Kupfer, Mangan und gegebenenfalls einem oder mehreren Seltenerdmetall(en), wobei die Metalle Mehrfachvalenzzustände annehmen können, die eine gewichtsprozentuale Zusammensetzung, ausgedrückt als und bezogen auf die Gesamtmasse von Cu, Mn und gegebenenfalls Seltenerdmetall, in denen das Seltenerdmetall die niedrigste Valenz hat, von 20 bis 60 %, 80 bis 20 % bzw. 0 bis 20 %, bevorzugt 20 bis 55%, 75 bis 30% bzw. 5 bis 15% aufweisen.
7. Verfahren oder Verwendung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Oxidationskatalysatoren folgende Zusammensetzung aufweisen (als Gewichtsprozent bezogen auf die genannten Oxide): 35 bis 40 % CuO, 50 bis 60 % MnO und 10 bis 15 % La2O3 und die einzelnen Metalle unterschiedliche Oxidationszustände einnehmen können.
8. Verfahren oder Verwendung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Mischoxide auf inerten, porösen, anorganischen Trägern getragen werden.
9. Brennstoffzellenanordnung, umfassend einen Abgasbrenner, dadurch gekennzeichnet, dass der Abgasbrenner Mischoxidkatalysatoren umfassend Cu, Mn und gegebenenfalls mindestens ein Seltenerdmetall aufweist.
10. Brennstoffzellenanordnung nach vorangehendem Anspruch, dadurch gekennzeichnet, dass die Brennstoffzelle vom Typ MCFC (molten carbonate fuel cell) oder SOFC (Solide Oxide Fuel Cell) ist.
1 1. Brennstoffzellenanordnung nach einem der Ansprüche 9 oder 10, dadurch gekennzeichnet, dass die Mischoxidkatalysatoren Oxidationskatalysatoren sind, umfassend Mischoxide von Kupfer, Mangan und gegebenenfalls einem oder mehreren Seltenerdmetall(en), wobei die Metalle Mehrfachvalenzzustände annehmen können, die eine gewichtsprozentuale Zusammensetzung, ausgedrückt als und bezogen auf Cu, Mn und gegebenenfalls Seltenerdmetall, in denen das Seltenerdmetall die niedrigste Valenz hat, von 20 bis 60%, 80 bis 20% bzw. 0 bis
20%, bevorzugt 20 bis 55%, 75 bis 30% bzw. 5 bis 15% aufweisen.
EP08786651A 2007-08-10 2008-07-30 VERFAHREN ZUR ENTFERNUNG VON CO, H2 UND/ODER CH4 AUS DEM ANODENABGAS EINER BRENNSTOFFZELLE MIT MISCHOXIDKATALYSATOREN UMFASSEND Cu, Mn UND GEGEBENENFALLS MINDESTENS EIN SELTENERDMETALL Withdrawn EP2175968A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007037796A DE102007037796A1 (de) 2007-08-10 2007-08-10 Verfahren zur Entfernung von CO, H2 und/oder CH4 aus dem Anodenabgas einer Brennstoffzelle mit Mischoxidkatalysatoren umfassend Cu, Mn und gegebenenfalls mindestens ein Seltenerdmetall
PCT/EP2008/060024 WO2009021850A1 (de) 2007-08-10 2008-07-30 VERFAHREN ZUR ENTFERNUNG VON CO, H2 UND/ODER CH4 AUS DEM ANODENABGAS EINER BRENNSTOFFZELLE MIT MISCHOXIDKATALYSATOREN UMFASSEND Cu, Mn UND GEGEBENENFALLS MINDESTENS EIN SELTENERDMETALL

Publications (1)

Publication Number Publication Date
EP2175968A1 true EP2175968A1 (de) 2010-04-21

Family

ID=39791458

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08786651A Withdrawn EP2175968A1 (de) 2007-08-10 2008-07-30 VERFAHREN ZUR ENTFERNUNG VON CO, H2 UND/ODER CH4 AUS DEM ANODENABGAS EINER BRENNSTOFFZELLE MIT MISCHOXIDKATALYSATOREN UMFASSEND Cu, Mn UND GEGEBENENFALLS MINDESTENS EIN SELTENERDMETALL

Country Status (8)

Country Link
US (1) US20110207003A1 (de)
EP (1) EP2175968A1 (de)
JP (1) JP5266323B2 (de)
KR (1) KR101410856B1 (de)
CN (1) CN101784330B (de)
CA (1) CA2694774A1 (de)
DE (1) DE102007037796A1 (de)
WO (1) WO2009021850A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10792647B2 (en) * 2009-04-21 2020-10-06 Johnson Matthey Public Limited Company Base metal catalysts for the oxidation of carbon monoxide and volatile organic compounds
US7818969B1 (en) 2009-12-18 2010-10-26 Energyield, Llc Enhanced efficiency turbine
US9327238B2 (en) * 2010-11-18 2016-05-03 Clariant Corporation Method for removing CO, H2 and CH4 from an anode waste gas of a fuel cell and catalyst system useful for removing these gases
ITMI20112387A1 (it) 2011-12-27 2013-06-28 Getters Spa Combinazione di materiali getter e dispositivo getter contenente detta combinazione di materiali getter
US11173451B1 (en) * 2020-10-29 2021-11-16 Air Products And Chemicals, Inc. Removal of hydrogen impurity from gas streams

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3914389A (en) * 1974-03-22 1975-10-21 American Cyanamid Co Lanthanum oxidation catalyst and method for utilizing the same
DE3770920D1 (de) 1986-12-03 1991-07-25 Catalyst And Chemicals Inc Far Feuerfester katalysator und verfahren zu seiner herstellung.
US4900712A (en) 1988-09-30 1990-02-13 Prototech Company Catalytic washcoat and method of preparation of the same
DE69030651T3 (de) * 1989-12-27 2004-02-26 The Standard Oil Co., Cleveland Für Oxydationsreaktionen nützliche elektrochemische Reaktoren und Mehrkomponenten-Membranen
US5271916A (en) * 1991-07-08 1993-12-21 General Motors Corporation Device for staged carbon monoxide oxidation
GB9315679D0 (en) * 1993-07-29 1993-09-15 Rover Group Base metal catalyst,catalytic support and two-stage process for the purification of vehicle exhaust gases
US6060420A (en) * 1994-10-04 2000-05-09 Nissan Motor Co., Ltd. Composite oxides of A-site defect type perovskite structure as catalysts
US5727385A (en) * 1995-12-08 1998-03-17 Ford Global Technologies, Inc. Lean-burn nox catalyst/nox trap system
DE19743075A1 (de) 1997-09-30 1998-12-24 Mtu Friedrichshafen Gmbh Brennstoffzellenanordnung mit interner Kathodengaszirkulation
DE10013895A1 (de) * 2000-03-21 2001-10-04 Dmc2 Degussa Metals Catalysts Cerdec Ag Verfahren zur katalytischen Umsetzung von Kohlenmonoxid in einem Wasserstoff enthaltenden Gasgemisch
US20020061277A1 (en) * 2000-09-25 2002-05-23 Engelhard Corporation Non-pyrophoric water-gas shift reaction catalysts
IT1319198B1 (it) * 2000-10-11 2003-09-26 Sued Chemie Mt Srl Catalizzatori per ossidazione.
US6492045B1 (en) 2001-06-26 2002-12-10 Fuelcell Energy, Inc. Corrugated current collector for direct internal reforming fuel cells
DE10252103A1 (de) * 2002-11-08 2004-05-27 Süd-Chemie AG Ce/Cu/Mn-Katalysatoren
JP3882761B2 (ja) * 2003-02-19 2007-02-21 日産自動車株式会社 燃料電池システム
WO2004103556A1 (de) 2003-05-22 2004-12-02 Universität des Saarlandes Mangan- und cobalthaltige mischoxidkatalysatoren für die co-oxidation
JP2005166580A (ja) * 2003-12-05 2005-06-23 Kawasaki Heavy Ind Ltd 燃料改質装置、燃料電池システム及びそれらの運転制御方法
JP4657645B2 (ja) * 2004-07-28 2011-03-23 日揮触媒化成株式会社 水性ガスシフト反応触媒および該触媒の製造方法。
JP2006116372A (ja) * 2004-10-19 2006-05-11 Seimi Chem Co Ltd 一酸化炭素選択酸化触媒
US7416799B2 (en) * 2004-12-23 2008-08-26 Plug Power Inc. Oxidizer for a fuel cell system
DE102005062926A1 (de) * 2005-12-29 2007-07-05 Süd-Chemie AG Brennstoffzellenanordnung mit edelmetallfreiem Abgasbrenner
JP2008119651A (ja) * 2006-11-15 2008-05-29 Mitsubishi Heavy Ind Ltd 窒素酸化物除去用の触媒、および排ガス処理方法
ITMI20070096A1 (it) * 2007-01-23 2008-07-24 Sued Chemie Catalysts Italia Srl Processo per la decomposizione catalitica di protossido d'azoto.

Also Published As

Publication number Publication date
JP5266323B2 (ja) 2013-08-21
US20110207003A1 (en) 2011-08-25
DE102007037796A1 (de) 2009-02-12
CN101784330B (zh) 2013-03-06
KR20100051854A (ko) 2010-05-18
WO2009021850A1 (de) 2009-02-19
KR101410856B1 (ko) 2014-06-24
CN101784330A (zh) 2010-07-21
JP2010535612A (ja) 2010-11-25
CA2694774A1 (en) 2009-02-19

Similar Documents

Publication Publication Date Title
EP1440731B1 (de) Ce/Cu/Mn-Katalysatoren und Verfahren zu deren Herstellung
DE69913037T2 (de) Reformierungsreaktor
DE60129569T2 (de) Verfahren zur herstellung von synthesegas mit lanthanid-dotierter rhodiumkatalysatoren
EP2049249B1 (de) Katalysator für die tieftemperaturkonvertierung und verfahren zur tieftemperaturkonvertierung von kohlenmonoxid und wasser zu kohlendioxid und wasserstoff
EP1157968B1 (de) Verfahren zur autothermen, katalytischen Dampfreformierung von Kohlenwasserstoffen
DE10013894A1 (de) Verfahren zur katalytischen Umsetzung von Kohlenmonoxid in einem Wasserstoff enthaltenden Gasgemisch mit verbessertem Kaltstartverhalten und Katalysator hierfür
DE10013895A1 (de) Verfahren zur katalytischen Umsetzung von Kohlenmonoxid in einem Wasserstoff enthaltenden Gasgemisch
DE3531757A1 (de) Verfahren zum reformieren von methanol
EP1249275B1 (de) Katalysator und Verfahren zur Entfernung von Kohlenmonoxid aus einem Reformatgas, und Verfahren zur Herstellung des Katalysators
DE60225404T2 (de) Verfahren zur katalytischen autothermen Dampfreformierung von Gemischen von höheren Alkoholen, insbesondere Ethanol mit Kohlenwasserstoffen
EP2175968A1 (de) VERFAHREN ZUR ENTFERNUNG VON CO, H2 UND/ODER CH4 AUS DEM ANODENABGAS EINER BRENNSTOFFZELLE MIT MISCHOXIDKATALYSATOREN UMFASSEND Cu, Mn UND GEGEBENENFALLS MINDESTENS EIN SELTENERDMETALL
Rico-Pérez et al. Preparation, characterisation and N2O decomposition activity of honeycomb monolith-supported Rh/Ce0. 9Pr0. 1O2 catalysts
DE112013001920T5 (de) Katalysator für die Hochtemperaturverbrennung
DE102005062926A1 (de) Brennstoffzellenanordnung mit edelmetallfreiem Abgasbrenner
EP1306351B1 (de) Verfahren zur Herstellung eines schwefelarmen Reformatgases zur Verwendung in einem Brennstoffzellensystem
WO2006077236A1 (de) Katalytisch aktive zusammensetzung zur selektiven methanisierung von kohlenmonoxid und verfahren zu deren herstellung
DE112021000826T5 (de) Katalysator für CO2-Methanisierungsreaktion mit hoher Aktivität und Langzeitstabilität sowie Verfahren dafür
Cifà et al. Catalysts based on BaZrO3 with different elements incorporated in the structure I: BaZr (1− x) PdxO3 systems for total oxidation
DE60224830T2 (de) Behandlung- und filtrationssystem von abgasen aus schmelzcarbonatbrennstoffzellen
DE60024356T2 (de) Verfahren zur selektiven Entfernung von Kohlenmonoxid
WO2008101875A1 (de) Katalysator und verfahren zur selektiven methanisierung von kohlenmonoxid
EP2608882A1 (de) Hochaktive konvertierungskatalysatoren
DE102006018529A1 (de) Modifizierter Hopcalit-Katalysator, Verfahren zu dessen Herstellung und dessen Verwenden
WO2013135662A1 (de) Verfahren zur reduktion von kohlendioxid bei hohen temperaturen an mischmetalloxidkatalysatoren
DE102008021083A1 (de) Verfahren zur Herstellung eines wasserstoffhaltigen Gasgemisches

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100202

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: REHEIS, SANDRA

Inventor name: CREMONA, ALBERTO

Inventor name: ANFANG, HANS-GEORG

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CLARIANT PRODUKTE (DEUTSCHLAND) GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160202