WO2006077236A1 - Katalytisch aktive zusammensetzung zur selektiven methanisierung von kohlenmonoxid und verfahren zu deren herstellung - Google Patents

Katalytisch aktive zusammensetzung zur selektiven methanisierung von kohlenmonoxid und verfahren zu deren herstellung Download PDF

Info

Publication number
WO2006077236A1
WO2006077236A1 PCT/EP2006/050312 EP2006050312W WO2006077236A1 WO 2006077236 A1 WO2006077236 A1 WO 2006077236A1 EP 2006050312 W EP2006050312 W EP 2006050312W WO 2006077236 A1 WO2006077236 A1 WO 2006077236A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalytically active
methanation
catalyst
carbon monoxide
active composition
Prior art date
Application number
PCT/EP2006/050312
Other languages
English (en)
French (fr)
Inventor
Christian Kuhrs
Markus HÖLZLE
Till Gerlach
Michael Hesse
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to US11/814,581 priority Critical patent/US7560496B2/en
Priority to CA002595466A priority patent/CA2595466A1/en
Priority to JP2007551673A priority patent/JP2008528250A/ja
Priority to EP06707761A priority patent/EP1843844A1/de
Publication of WO2006077236A1 publication Critical patent/WO2006077236A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8906Iron and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • C01B3/58Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction
    • C01B3/586Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction the reaction being a methanation reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/648Vanadium, niobium or tantalum or polonium
    • B01J23/6482Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6525Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/656Manganese, technetium or rhenium
    • B01J23/6562Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/847Vanadium, niobium or tantalum or polonium
    • B01J23/8472Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/0445Selective methanation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • Catalytically active composition for the selective methanation of carbon monoxide and process for its preparation
  • the invention relates to a catalytic composition and a process for the selective methanation of carbon monoxide, in particular for use in fuel cell systems.
  • Low-temperature fuel cells can only be operated with hydrogen or hydrogen-rich gases of a defined quality.
  • the CO concentration depends on the energy source used and the reforming process used. The removal of higher CO concentrations is possible with the shift process with further formation of hydrogen. However, depending on the method design, a residual concentration of CO remains, generally in the range from 0.5 to 1.5% by volume. When using Cu catalysts, for example, CO removal can be made possible down to 3,000 ppm. The CO content in the hydrogen-rich gas must be further reduced as much as possible in order to avoid poisoning of the anode catalyst.
  • the CO methanation (hydrogenation of carbon monoxide to methane) is carried out according to the reaction equation:
  • the particular challenge for selective CO methanation is that preferably CO should be hydrogenated and not CO 2 , as this would consume more hydrogen.
  • the CO methanation is opposite the CO 2 methanation preferred. It is known that below a limit of 200 to 300 ppm CO concentration in the fuel gas does not use the CO 2 methanation.
  • the CO concentration in the fuel gas is about 10,000 ppm, which is 50 times higher than the specified limit.
  • the CO 2 content is about 15 to 25 vol .-% an order of magnitude above the CO content. Accordingly, a CO-selective catalyst is indispensable.
  • EP-A-1174486 combines a methanation step with a selective oxidation unit for the purpose of lower oxygen consumption and lower CO 2 methanation rate.
  • WO 97/43207 describes the combination of a first stage for selective oxidation with a subsequent methanation stage. With this combination, both processes can be operated under optimal conditions.
  • JP-A-2004097859 describes catalysts for the removal of CO in hydrogen-containing gas streams by reaction with H 2 .
  • Catalysts mentioned are inorganic see support on which one or more metals selected from the group Ru, Ni and Co, are applied.
  • Support materials are TiO 2 , ZrO 2 , Al 2 O 3 and zeolites.
  • JP-A-2002068707 relates to a process for removing CO from hydrogen-containing gas by selective methanation of CO using a catalyst having a Ru component and an alkali metal and / or alkaline earth metal on a refractory inorganic oxide support.
  • coal as a catalyst carrier has not previously been described for the methanation of carbon monoxide.
  • the object of the invention was therefore to provide a catalyst for the selective CO methanation, which receives its selectivity and activity in a wide temperature range.
  • a catalytically active composition which contains as the active component ruthenium, rhodium, nickel or cobalt and a support material based on coal and is optionally doped.
  • the invention thus provides a catalytically active composition for the selective methanation of carbon monoxide, which is characterized in that it contains as active component at least one element selected from the group consisting of ruthenium, rhodium, nickel and cobalt, and a support material based on coal.
  • Objects of the invention are also the use of this catalytically active composition for the selective methanation of carbon monoxide and for use in fuel cell applications.
  • the catalytically active composition contains as active component at least one element selected from the group consisting of Ru, Rh, Ni and Co, preferably Ru.
  • Coal such as activated carbon acid activated activated carbon, graphite or pyrolytic carbon is used as support material according to the invention, preferably activated carbon moldings are used.
  • the loading of the carrier material with the active component is preferably 0.1 to 20 wt .-%, particularly preferably 1 to 10 wt .-%.
  • the active component and / or the carrier material can be doped.
  • iron, niobium, manganese, molybdenum and zirconium are suitable as doping elements. Preference is given to doping with iron.
  • the doping elements are used in an amount of preferably 0.1 to 20 wt .-%, particularly preferably 1 to 10 wt .-%.
  • the preparation of the catalyst according to the invention is carried out in a customary manner, for example by bringing the active components, preferably in the form of their salts / hydrates, into solution and then applying them to the carbon carrier in a suitable manner, for example by impregnation. Thereafter, the catalyst is dried, possibly calcined, optionally reduced and passivated if necessary.
  • the CO carried in a temperature range of preferably 100 to 300 0 C, the selective methanation.
  • the catalytically active composition is therefore particularly suitable for use in hydrogen production for fuel cell applications.
  • the selectivity is the quotient of the amount of CO converted and the amount of methane produced (in% by volume).
  • the indication "ve” means that CO 2 is fully preserved, and sales are based on CO.
  • Activated carbon strands with a diameter of 3 mm and a length of about 2 to 5 mm were introduced and soaked in drops of the prepared solution. Carrier and impregnation solution were well mixed throughout the impregnation process.
  • the catalyst was dried in a rotary kiln at 90 ° C with 150 l / h of nitrogen for six hours. Immediately after the drying process the catalyst was reduced in the rotary kiln with a flow of 15 l / h of hydrogen and 60 l / h of nitrogen. The oven was heated to 500 ° C within two hours and then held at 500 0 C for three hours. Thereafter, the catalyst was cooled to room temperature under nitrogen. Gradually more and less air and less nitrogen were fed in over 2 hours, whereby the catalyst was passivated. The temperature of the catalyst was not more than 15 ° C above room temperature. For the activity test described under 2 a), the catalyst was comminuted to 1-2 mm chippings.
  • the catalyst mixture consisted of 10 g of catalyst (as 1 to 2 mm grit), which in the case of the catalyst according to Example 1 corresponds to a volume of about 21 ml, with about 10 ml steatite spheres with a diameter of
  • the catalyst was initially at 90 l / h of nitrogen and 10 l / h of hydrogen at
  • the gas composition chosen for the experiment is typical of the exit of the cryogenic post stage after reforming of methane: 33 vol.% H 2 ; 28% by volume of N 2 ; 25% by volume H 2 O; 13% by volume of CO 2 ; 0.5% by volume of CO; 0.5% by volume of CH 4 .
  • a load of 5 lg Ka t "1 h " 1 was chosen.
  • the catalyst according to Example 3 a) was first activated in the reactor with a hydrogen / nitrogen gas mixture and then at a load of 2.5 l g ⁇ at "1 h " 1 in a gas stream with 33 vol .-% H 2 ; 25% by volume H 2 O; 28.25 vol.% N 2 ; 13% by volume of CO 2 ; 0.25% by volume of CO; 0.5 vol .-% CH 4 operated.
  • the temperature was varied between 120 and 220 0 C in 10 K increments.
  • the measurement results for selectivity, conversion and final CO concentration are shown in the following table.
  • the very wide temperature window in which the catalyst can be operated becomes clear.
  • the catalyst of the invention according to Example 1 was at the load of 2.5 lg cat "1 h " 1 and the following gas composition (33 vol .-% H 2 ; 25 vol .-% H 2 O; 28.25 Vol.% N 2 , 13% by volume of CO 2 , 0.25% by volume of CO, 0.5% by volume of CH 4 ) were operated for a period of 1000 hours at a temperature of 175 ° C. Over the runtime, a CO concentration of ⁇ 50 ppm was realized. Over time, CO 2 was unaffected by the reaction. The concentration of 50 ppm CO is the limit for the operation of fuel cells based on polymer electrolyte membranes.
  • Example 5 emphasizes the long-term stability of the catalyst.
  • the inventive catalyst according to Example 1 was operated in series with a commercially usable catalyst for the low-temperature conversion.
  • the catalyst for the selective methanization underwent a load of 2.5 l g ⁇ at "1 h " 1 .
  • Example 5 a) shows the values for the operation of a TTK catalyst at 210 ° C.
  • 5 b) for the operation of a TTK catalyst at 220 ° C.
  • the inventive catalyst according to Example 1 was subjected to a series of atmospheric changes under operating conditions.
  • a gas composition 1 (2.5 l g ⁇ at "1 h " 1 , 33% by volume H 2 , 25% by volume H 2 O, 28.25% by volume N 2 , 13% by volume of CO 2 , 0.25% by volume of CO, 0.5% by volume of CH 4 ) were converted to air after brief purging with nitrogen. After renewed nitrogen purge was switched back to the original gas composition 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Industrial Gases (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

Die Erfindung betrifft eine katalytisch aktive Zusammensetzung für die selektive Methanisierung von Kohlenmonoxid, die dadurch gekennzeichnet ist, dass sie als Aktivkomponente wenigstens ein Element, ausgewählt aus der Gruppe bestehend aus Ruthenium, Rhodium, Nickel und Cobalt, und ein Trägermaterial auf Kohlebasis enthält. Gegenstände der Erfindung sind weiterhin die Verwendung dieser katalytisch aktiven Zusammensetzung für die selektive Methanisierung von Kohlenmonoxid sowie der Einsatz bei der Wasserstofferzeugung für Brennstoffzellenanwendungen.

Description

Katalytisch aktive Zusammensetzung zur selektiven Methanisierung von Kohlen- monoxid und Verfahren zu deren Herstellung
Beschreibung
Die Erfindung betrifft eine katalytische Zusammensetzung und ein Verfahren zur selektiven Methanisierung von Kohlenmonoxid, insbesondere für die Verwendung in Brennstoffzellensystemen.
Niedertemperatur-Brennstoffzellen können nur mit Wasserstoff oder wasserstoffreichen Gasen einer definierten Qualität betrieben werden. Die CO-Konzentration hängt vom eingesetzten Energieträger und vom verwendeten Reformierungsverfahren ab. Die Entfernung von höheren CO-Konzentrationen ist mit dem Shiftprozess unter weiterer Bildung von Wasserstoff möglich. Es verbleibt aber in Abhängigkeit von der Verfah- rensauslegung eine Restkonzentration an CO, in der Regel im Bereich von 0,5 bis 1 ,5 Vol.-%. Bei Verwendung von Cu-Katalysatoren kann beispielsweise eine CO- Entfemung bis hinunter zu 3.000 ppm ermöglicht werden. Der CO-Gehalt im wasserstoffreichen Gas muss so weit wie möglich weiter reduziert werden, um eine Vergiftung des Anodenkatalysators zu vermeiden.
Die Reduzierung des enthaltenen CO aus dem Gasstrom bis unter die erforderlichen Grenzwerte erfolgt üblicherweise in einer Feinreinigungsstufe. Dabei ist heute die selektive Oxidation die gängige CO-Entfernungsmethode. Die selektive Oxidation weist einen hohen Entwicklungsstand auf, besitzt aber neben dem Nachteil einer nur mäßi- gen Selektivität die Notwendigkeit einer exakt dosierten Luftzufuhr, woraus ein hoher mess- und regelungstechnischer Aufwand resultiert. Dazu kommt über die Zumischung des Oxidationsmittels Sauerstoff zum Gas eine sicherheitstechnische Problematik. Die Entfernung des CO durch Reaktion mit H2 (Methanisierung) hat gegenüber der selektiven CO-Oxidation durch ihre verfahrenstechnisch anspruchslose Realisierung erhebli- che Vorteile.
Die CO-Methanisierung (Hydrierung von Kohlenstoffmonoxid zu Methan) erfolgt nach der Reaktionsgleichung:
CO + 3H2 → CH4 + H2O ΔH = -206,2 kJ/mol
Als Konkurrenzreaktion läuft die Umwandlung von CO2 zu Methan ab:
CO2 + 4H2 → CH4 + 2H2O ΔH = -164,9 kJ/mol
Die besondere Herausforderung für die selektive CO-Methanisierung liegt darin, dass bevorzugt CO hydriert werden soll und nicht CO2, da dies weiteren Wasserstoff verbrauchen würde. Nach der Thermodynamik wird die CO-Methanisierung gegenüber der CO2-Methanisierung bevorzugt. Es ist bekannt, dass unterhalb eines Grenzwertes von 200 bis 300 ppm CO-Konzentration im Brenngas die CO2-Methanisierung nicht einsetzt. Die CO-Konzentration liegt im Brenngas bei ca. 10.000 ppm, also um den Faktor 50 höher als die angegebene Grenze. Der CO2-Gehalt liegt mit ca. 15 bis 25 Vol.-% eine Größenordnung über dem CO-Gehalt. Dementsprechend ist ein CO- selektiver Katalysator unabdingbar.
Die selektive Methan isierung von CO ist seit langem bekannt. Zunächst wurde CO am Ni-Katalysator methanisiert, wobei CO2 jedoch zuvor ausgewaschen werden musste. 1968 wurde ein Ruthen iumkatalysator zur selektiven CO-Methanisierung von Baker et al. beansprucht (US-A-3615164), wobei dort ein Ruthenium- oder Rhodiumkatalysator auf einem Aluminiumoxid-Trägermaterial verwendet wird. Ebenso ist in Chemical Abstracts, Band 74, 1971, Nr. 35106u, die selektive Methanisierung von CO in einem Gasgemisch, das Wasserstoff, Kohlendioxid und Kohlenmonoxid enthält, bei Tempera- turen im Bereich zwischen 125 und 3000C unter Verwendung rutheniumhaltiger Katalysatoren beschrieben. In US-A-3663162 von 1972 wird ein Raney-Nickel-Katalysator für diese Reaktion beansprucht.
In EP-A-1174486 wird eine Methan isierungsstufe mit einer Einheit zur selektiven Oxi- dation mit dem Ziel eines geringeren Sauerstoffverbrauches und einer geringeren CO2- Methanisierungsrate kombiniert.
In EP-A-0946406 werden zwei Methanisierungsstufen unterschiedlicher Temperaturniveaus zusammengeschaltet. Vorteil soll hier sein, dass bei der Hochtemperaturstufe noch kein oder weniger CO2 methanisiert, aber schon ein großer Teil des Kohlenmon- oxids abgebaut wird. In der sich anschließenden Tieftemperaturmethanisierung erfolgt die Restentfernung von CO.
WO 97/43207 beschreibt die Kombination einer ersten Stufe zur selektiven Oxidation mit einer nachfolgenden Methanisierungsstufe. Mit dieser Kombination sollen sich beide Prozesse unter optimalen Bedingungen betreiben lassen.
Weitere neuere Anmeldungen, wie beispielsweise EP-A-1246286, in der als letzte Prozessstufe einer Gasreinigung ein Methanisierungsreaktor einer Einheit zur selektiven Oxidation mit der Begründung des einfacheren Aufbaus und der einfacheren Betreib- barkeit bevorzugt wird, beinhalten ebenfalls optimierte Verfahrensstufen, verwenden jedoch auch herkömmliche Katalysatoren, überwiegend auf Ruthenium- oder Nickelbasis.
JP-A-2004097859 beschreibt Katalysatoren zur Entfernung von CO in wasserstoffhalti- gen Gasströmen durch Reaktion mit H2. Als Katalysatoren genannt werden anorgani- sehe Träger, auf denen ein oder mehrere Metalle, ausgewählt aus der Gruppe Ru, Ni und Co, aufgebracht sind. Trägermaterialien sind TiO2, ZrO2, AI2O3 sowie Zeolithe.
JP-A-2002068707 betrifft ein Verfahren zur Entfernung von CO aus wasserstoffhalti- gern Gas durch selektive Methanisierung des CO unter Verwendung eines Katalysators mit einer Ru-Komponente und einem Alkalimetall und/oder Erdalkalimetall auf einem hitzebeständigen anorganischen Oxidträger.
Die Verwendung von Kohle als Katalysatorträger wurde bisher für die Methanisierung von Kohlenmonoxid nicht beschrieben.
Die Verfahren des Standes der Technik gestatten es nicht, eine ausreichende Senkung des CO-Gehaltes unter Schonung des CO2-Gehaltes zu gewährleisten. Die vorgeschlagenen Katalysatoren arbeiten entweder nicht selektiv genug bzw. wirken nur in einem schmalen Temperaturbereich.
Durch die Exothermie der Reaktion kommt es zu Hot-Spots. Aus diesem Grund muss ein breites Temperaturfenster fahrbar sein. Ebenso ein Problem ist die adiabate Temperaturerhöhung in Monolithen, wenn diese als Katalysatorformkörper eingesetzt wer- den, was in der Praxis der Fall ist.
Insbesondere für Brennstoffzellenanwendungen stellen der geforderte CO- Maximalgehalt im eingespeisten wasserstoffreichen Gas und die notwendige hohe Selektivität (Methanisierung von CO, aber nicht von CO2) über ein breites Temperatur- fenster noch ein großes Entwicklungspotential für geeignete deaktivierungsresistente Katalysatoren dar.
Die Aufgabe der Erfindung bestand damit in der Bereitstellung eines Katalysators für die selektive CO-Methanisierung, der seine Selektivität und Aktivität in einem breiten Temperaturbereich erhält.
Die Aufgabe wurde erfindungsgemäß dadurch gelöst, dass für die selektive Methanisierung von Kohlenmonoxid eine katalytisch aktive Zusammensetzung eingesetzt wird, die als Aktivkomponente Ruthenium, Rhodium, Nickel oder Cobalt und ein Trägermate- rial auf Kohlebasis enthält und gegebenenfalls dotiert ist.
Gegenstand der Erfindung ist damit eine katalytisch aktive Zusammensetzung für die selektive Methanisierung von Kohlenmonoxid, die dadurch gekennzeichnet ist, dass sie als Aktivkomponente wenigstens ein Element, ausgewählt aus der Gruppe bestehend aus Ruthenium, Rhodium, Nickel und Cobalt, und ein Trägermaterial auf Kohlebasis enthält. Gegenstände der Erfindung sind weiterhin die Verwendung dieser katalytisch aktiven Zusammensetzung für die selektive Methanisierung von Kohlenmonoxid sowie für den Einsatz in Brennstoffzellenanwendungen.
Es wurde überraschend gefunden, dass ein Ru-, Rh-, Ni- oder Co-haltiger Katalysator auf einem Kohleträger, der gegebenenfalls insbesondere mit Fe dotiert ist, die Methanisierung von CO in einem breiten Temperaturbereich von etwa 100 bis 300°C in einer nahezu konstanten Selektivität über eine lange Zeitspanne gewährleistet. Herkömmliche Katalysatoren zeigen mit zunehmender Temperatur einen deutlichen Selektivitäts- abfall. Durch Anwendung des erfindungsgemäßen Katalysators ist ein deutlich geringerer Regelaufwand erforderlich, da das Temperaturfenster bei der Methanisierung des CO weniger exakt eingehalten werden muss. Darüber hinaus kann ein auch bei hohen Temperaturen gut arbeitender Katalysator direkt der Vorreinigungsstufe (TTK - Tieftemperaturkonvertierung), die bei etwa 220 bis 2800C betrieben wird, nachgeschaltet werden.
Die katalytisch aktive Zusammensetzung enthält als Aktivkomponente wenigstens ein Element, ausgewählt aus der Gruppe bestehend aus Ru, Rh, Ni und Co, vorzugsweise Ru.
Als Trägermaterial wird erfindungsgemäß Kohle, wie beispielsweise Aktivkohle säureaktivierte Aktivkohle, Graphit oder pyrolytischer Kohlenstoff verwendet, vorzugsweise werden Aktivkohleformkörper eingesetzt.
Die Beladung des Trägermaterials mit der Aktivkomponente beträgt vorzugsweise 0,1 bis 20 Gew.-%, besonders bevorzugt 1 bis 10 Gew.-%.
Zur Erhöhung ihrer Aktivität und/oder Selektivität können die Aktivkomponente und/oder das Trägermaterial dotiert werden. Als Dotierelemente eignen sich insbeson- dere Eisen, Niob, Mangan, Molybdän und Zirkonium. Bevorzugt wird mit Eisen dotiert.
Die Dotierelemente werden in einer Menge von vorzugsweise 0,1 bis 20 Gew.-%, besonders bevorzugt 1 bis 10 Gew.-%, eingesetzt.
Die Herstellung des erfindungsgemäßen Katalysators erfolgt auf übliche Art und Weise, beispielsweise indem die Aktivkomponenten, vorzugsweise in Form ihrer Salze/Hydrate, in Lösung gebracht und dann in geeigneter Weise, beispielsweise durch Tränken, auf den Kohleträger aufgetragen werden. Danach wird der Katalysator getrocknet, ggf. kalziniert, ggf. reduziert und ggf. passiviert.
Es entsteht eine katalytisch aktive Zusammensetzung, die für die selektive Methanisierung von Kohlenmonoxid hervorragend geeignet ist. In Abhängigkeit von den jeweiligen Reaktionsbedingungen wird dabei die gewünschte deutliche Abreicherung des CO im Gasgemisch erreicht.
Vorteilhafterweise kann damit die selektive Methanisierung des CO in einem Tempera- turbereich von vorzugsweise 100 bis 3000C erfolgen.
Die katalytisch aktive Zusammensetzung eignet sich damit insbesondere für den Einsatz bei der Wasserstofferzeugung für Brennstoffzellenanwendungen.
Weitere Ausführungsformen der vorliegenden Erfindung sind den Ansprüchen, der Beschreibung und den Beispielen zu entnehmen. Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale des erfindungsgemäßen Gegenstandes nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen verwendbar sind, ohne den Rahmen der Erfindung zu verlas- sen.
Die Erfindung wird anhand der nachfolgenden Ausführungsbeispiele näher erläutert, ohne jedoch hierdurch eine entsprechende Eingrenzung vorzunehmen.
Beispiele
Zur Auswertung der Ergebnisse der Beispiele wurden die Größen Selektivität und Umsatz herangezogen. Die Selektivität ist der Quotient von umgesetzter Menge CO und der Menge an entstandenem Methan (in Vol.-%). Die Angabe „v.e." steht dafür, dass CO2 vollständig erhalten bleibt. Der Umsatz bezieht sich auf CO.
Beispiel 1
Präparation eines Katalysators auf C-Basis mit 5 Gew.-% Ru und 1 Gew.-% Fe, 3 mm
Stränge
4,4 g Ruthenium(l I l)chlorid-hydrat wurden in 15,0 ml VE-Wasser und 2,4 g Eisen(lll)- chlorid-hydrat in 10,0 ml VE-Wasser gelöst. Die Lösungen wurden zusammengegeben und mit VE-Wasser auf 90 % der Wasseraufnahme des Aktivkohleträgers, die in diesem Fall 0,95 cπrVg betrug, verdünnt (Gesamtvolumen 41 ,0 ml).
Aktivkohlestränge mit einem Durchmesser von 3 mm und einer Länge von ungefähr 2 bis 5 mm wurden vorgelegt und tropfenweise mit der hergestellten Lösung getränkt. Träger und Tränklösung wurden während des gesamten Tränkvorganges gut durchmischt.
Anschließend wurde der Katalysator in einem Drehrohrofen bei 90°C mit 150 l/h Stickstoff für sechs Stunden getrocknet. Direkt im Anschluss an den Trocknungsvorgang wurde der Katalysator im Drehrohrofen mit einem Strom von 15 l/h Wasserstoff und 60 l/h Stickstoff reduziert. Dabei wurde der Ofen innerhalb von zwei Stunden auf 500°C aufgeheizt und dann für drei Stunden bei 5000C gehalten. Danach wurde der Katalysator unter Stickstoff auf Raumtemperatur abgekühlt. Es wurde innerhalb von zwei Stun- den nach und nach immer mehr Luft und weniger Stickstoff zugefahren, wodurch der Katalysator passiviert wurde. Die Temperatur des Katalysators lag dabei nicht mehr als 15°C über Raumtemperatur. Für den unter 2 a) beschriebenen Aktivitätstest wurde der Katalysator zu 1-2 mm Splitt zerkleinert.
Beispiele 2 a) und b)
Selektive Methanisierung
2 a) Für den Versuch wurde ein elektrisch beheizter Rohrreaktor mit einem Volumen von 50 ml und einem Durchmesser von 14 mm verwendet.
Zuunterst wurden 4 ml Steatit-Kugeln mit einem Durchmesser von 1 ,8 bis 2,2 mm eingebaut, auf die anschließend die Katalysatormischung gegeben wurde. Die Katalysatormischung bestand aus 10 g Katalysator (als 1 bis 2 mm Splitt), was im Falle des Katalysators gemäß Beispiel 1 einem Volumen von ca. 21 ml entspricht, der mit ca. 10 ml Steatit-Kugeln mit einem Durchmesser von
1 ,8 bis 2,2 mm gut durchmischt wurde. Als Vorschüttung dienten 14 ml Steatit- Kugeln mit einem Durchmesser von 1 ,8 bis 2,2 mm, die das Restvolumen des Reaktors füllten.
Der Katalysator wurde zunächst mit 90 l/h Stickstoff und 10 l/h Wasserstoff bei
230°C eine Stunde lang reduziert. Die für den Versuch gewählte Gaszusammensetzung ist typisch für den Ausgang der Tieftemperatur-Stiftstufe nach der Reformierung von Methan: 33 Vol.-% H2; 28 Vol.-% N2; 25 Vol.-% H2O; 13 Vol.-% CO2; 0,5 Vol.-% CO; 0,5 Vol.-% CH4. Es wurde eine Belastung von 5 l gKat"1 h"1 gewählt.
Nachdem alle Gase eingestellt und der Reaktor (nach der Reduktion bei 2300C) auf 1500C abgekühlt war, wurde der Versuch gestartet. Alle drei Stunden wurde die Temperatur innerhalb von 10 Minuten um 25°C erhöht, die Maximaltempera- tur betrug 3000C.
2 b) Der unter 2 a) beschriebene Versuch wurde wiederholt, wobei aber ein herkömmlicher Katalysator auf Basis von AI2O3 mit 5 Gew.-% Ru und 1 Gew.-% Fe (als 1 bis 2 mm Splitt) zum Einsatz kam.
Es wurden folgende Ergebnisse erzielt: Selektivität (siehe auch Diagramm 1) Temperatur 0C 5 % Ru + 1 % Fe/C 5 % Ru + 1 % Fe/AI2O3
240 71 % 9 %
260 62 % 7 %
280 44 % 7 %
300 61 % 6 %
Umsatz (siehe auch Diagramm 2)
Temperatur 0C 5 % Ru + 1 % Fe/C 5 % Ru + 1 % Fe/AI2O3
240 95 % 97 %
260 97 % 98 %
280 89 % 99 %
300 90 % 99 %
Aus Diagramm 2 wird deutlich, dass der Umsatz beider Katalysatoren vergleichbar ist (wenn auch für den herkömmlichen Katalysator auf AI2O3-Basis leicht höher). Diagramm 1 zeigt jedoch, dass bei dem erfindungsgemäßen Katalysator eine deutlich hö- here Selektivität erreicht wird. Zudem ist klar zu erkennen, dass besonders bei niedriger Temperatur der erfindungsgemäße Katalysator sehr gute Selektivitäten bietet.
Beispiel 3 a)
70 g 3 mm Stränge Supersorbon SX 30 (Fa Lurgi) wurden vorgelegt und bei 80°C mit 150 ml HNO3 (konz.) für fünf Stunden aktiviert. Die aktivierte Kohle wurde anschließend gewaschen und bei 1200C getrocknet.
7,3 g Ruthenium(lll)chlorid wurden in Wasser gelöst und mit einer Lösung, 2,4 g Ei- sen(lll)chlorid enthaltend, gemischt, auf 41 ml Wasser verdünnt und langsam zu der aktivierten Kohle gegeben. Der Katalysator wurde bei 900C unter Stickstoff getrocknet, dann in einem Stickstoff-Wasserstoffstrom bei 500°C reduziert. Nach dem Abkühlen wurde das Material bei Raumtemperatur passiviert.
Beispiel 3 b)
Der Katalysator nach Beispiel 3 a) wurde zunächst im Reaktor mit einem Wasserstoff/Stickstoff-Gasgemisch aktiviert und dann bei einer Belastung von 2,5 l gκat "1 h"1 in einem Gasstrom mit 33 Vol.-% H2; 25 Vol.-% H2O; 28,25 Vol.% N2; 13 Vol.-% CO2; 0,25 VoL- % CO; 0,5 Vol.-% CH4 betrieben. Die Temperatur wurde zwischen 120 und 2200C in 10 K-Schritten variiert. Die Messergebnisse zu Selektivität, Umsatz und CO-Endkonzentration sind in der folgenden Tabelle widergegeben.
Figure imgf000010_0001
In diesem Beispiel wird das sehr breite Temperaturfenster, in dem der Katalysator betrieben werden kann, deutlich.
Beispiele 4
Der erfindungsgemäße Katalysator nach Beispiel 1 wurde bei der Belastung von 2,5 l gKat "1 h"1 und der folgenden Gaszusammensetzung (33 Vol.-% H2; 25 Vol.-% H2O; 28,25 Vol.% N2; 13 Vol.-% CO2; 0,25 Vol.-% CO; 0,5 Vol.-% CH4) über eine Laufzeit von 1.000 h bei einer Temperatur von konstant 175°C betrieben. Es wurde über die Laufzeit eine CO-Ko nzentration von <50 ppm realisiert. Über die Laufzeit blieb CO2 jeweils von der Reaktion unberührt. Die Konzentration von 50 ppm CO gilt als Grenzwert für den Betrieb von Brennstoffzellen auf Basis Polymerelektrolytmembranen.
Die Entwicklung der CO-Komzentration in Abhängigkeit von der Zeit ist aus Diagramm 3 ersichtlich.
Im Anschluss an den Versuch wurde die Temperatur der Reaktion variiert. Die Ergebnisse sind aus nachstehender Tabelle ersichtlich:
Figure imgf000010_0002
Das Beispiel unterstreicht die Langzeitstabilität des Katalysators. Beispiel 5
Der erfindungsgemäße Katalysator nach Beispiel 1 wurde in Serie zu einem kommer- ziell einsetzbaren Katalysator für die Tieftemperaturkonvertierung betrieben. Dabei erfuhr der Katalysator für die selektive Methanisierung eine Belastung von 2,5 l gκat "1 h"1.
Die Ein- und Ausgangswerte für beide Reaktionsstufen sind aus nachstehender Tabelle ersichtlich. Beispiel 5 a) zeigt die Werte bei dem Betrieb eines TTK-Katalysators bei 2100C, 5 b) die beim Betrieb eines TTK-Katalysators bei 2200C.
Figure imgf000011_0001
CO CO2 H2 N2 H2O CH4
Ausgang
Methani-
20 ppm 15,9 VoI. % 43,7 VoI % 40,3 VoI. % trocken 0, 14 VoI .% sierung
175°C
Ausgang
Methani-
44 ppm 15,8 VoI. % 43,7 VoI % 40,3 VoI. % trocken 0 ,2 Vol. % sierung
1900C
Ausgang
Methani-
46 ppm 15,8 VoI. % 43,4 VoI % 40,6 VoI. % trocken 0 ,3 Vol. % sierung
2000C
Ausgang
Methani-
16C ppm 15,4 VoI. % 42,4 VoI % 41 ,6 VoI. % trocken 0 ,6 Vol. % sierung
210°C
Beispiel 6
Der erfindungsgemäße Katalysator nach Beispiel 1 wurde einer Reihe von Atmosphärenwechseln unter Betriebsbedingungen unterzogen. Dabei wurde bei konstanter Reaktortemperatur von 175°C von einer Gaszusammensetzung 1 (2,5 l gκat "1 h"1, 33 Vol.-% H2; 25 Vol.-% H2O; 28,25 Vol.% N2; 13 Vol.-% CO2; 0,25 Vol.-% CO; 0,5 Vol.-% CH4) nach kurzer Spülung mit Stickstoff auf Luft umgestellt. Nach erneuter Stickstoffspülung wurde wieder auf die ursprüngliche Gaszusammensetzung 1 umgestellt.
Dieses Verfahren testet die Belastbarkeit des Katalysators bei typischen Anfahr- und Abschaltprozessen in einer PEM-Brennstoffzelle. In der nachstehenden Tabelle sind die Umsatz- und Selektivitätswerte sowie die resultierende CO-Konzentration nach den einzelnen Atmosphärenwechseln aufgetragen:
Figure imgf000012_0001
Figure imgf000013_0001
Aus dem Beispiel geht klar hervor, dass der Katalysator stabil trotz Atmosphärenwechsel die Grenzkonzentration an CO von unter 50 ppm deutlich unterbietet.

Claims

Patentansprüche
1. Katalytisch aktive Zusammensetzung für die selektive Methanisierung von Kohlen- monoxid, dadurch gekennzeichnet, dass sie als Aktivkomponente wenigstens ein Element, ausgewählt aus der Gruppe bestehend aus Ruthenium, Rhodium, Nickel und Cobalt, und ein Trägermaterial auf Kohlebasis enthält.
2. Katalytisch aktive Zusammensetzung gemäß Anspruch 1 , dadurch gekennzeichnet, dass die Aktivkomponente und/oder das Trägermaterial mit wenigstens einem EIe- ment, ausgewählt aus der Gruppe bestehend aus Eisen, Niob, Mangan, Molybdän und Zirkonium, dotiert sind.
3. Katalytisch aktive Zusammensetzung gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Aktivkomponente Ruthenium ist.
4. Katalytisch aktive Zusammensetzung gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass mit Eisen dotiert ist.
5. Katalytisch aktive Zusammensetzung gemäß einem der Ansprüche 1 bis 4, da- durch gekennzeichnet, dass die Gesamtbeladung des Trägermaterials mit der
Aktivkomponente 0,1 bis 20 Gew.-% beträgt.
6. Verwendung einer katalytisch aktiven Zusammensetzung gemäß einem der Ansprüche 1 bis 5 für die selektive Methanisierung von Kohlenmonoxid.
7. Verfahren zur selektiven Methanisierung von Kohlenmonoxid, dadurch gekennzeichnet, dass eine katalytisch aktive Zusammensetzung eingesetzt wird, die als Aktivkomponente wenigstens ein Element, ausgewählt aus der Gruppe bestehend aus Ruthenium, Rhodium, Nickel und Cobalt, und ein Trägermaterial auf Kohleba- sis enthält.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Methanisierung in einem Temperaturbereich von 100 bis 300 °C erfolgt.
9. Verwendung einer katalytisch aktiven Zusammensetzung gemäß einem der Ansprüche 1 bis 5 bei der Wasserstofferzeugung für Brennstoffzellenanwendungen.
3 Fig.
PCT/EP2006/050312 2005-01-24 2006-01-19 Katalytisch aktive zusammensetzung zur selektiven methanisierung von kohlenmonoxid und verfahren zu deren herstellung WO2006077236A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/814,581 US7560496B2 (en) 2005-01-24 2006-01-19 Catalytically active composition for the selective methanation of carbon monoxide and method for producing said composition
CA002595466A CA2595466A1 (en) 2005-01-24 2006-01-19 Catalytically active composition for the selective methanation of carbon monoxide and method for producing said composition
JP2007551673A JP2008528250A (ja) 2005-01-24 2006-01-19 一酸化炭素の選択メタン化用の触媒活性組成物及び、該組成物を製造する方法
EP06707761A EP1843844A1 (de) 2005-01-24 2006-01-19 Katalytisch aktive zusammensetzung zur selektiven methanisierung von kohlenmonoxid und verfahren zu deren herstellung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005003311.3 2005-01-24
DE102005003311A DE102005003311A1 (de) 2005-01-24 2005-01-24 Katalytisch aktive Zusammensetzung zur selektiven Methanisierung von Kohlenmonoxid und Verfahren zu deren Herstellung

Publications (1)

Publication Number Publication Date
WO2006077236A1 true WO2006077236A1 (de) 2006-07-27

Family

ID=36284299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/050312 WO2006077236A1 (de) 2005-01-24 2006-01-19 Katalytisch aktive zusammensetzung zur selektiven methanisierung von kohlenmonoxid und verfahren zu deren herstellung

Country Status (6)

Country Link
US (1) US7560496B2 (de)
EP (1) EP1843844A1 (de)
JP (1) JP2008528250A (de)
CA (1) CA2595466A1 (de)
DE (1) DE102005003311A1 (de)
WO (1) WO2006077236A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011121930A1 (de) * 2011-12-22 2013-06-27 Solarfuel Gmbh Methanisierungsreaktor
WO2017060243A1 (de) * 2015-10-05 2017-04-13 Basf Se Verfahren zur herstellung von ruthenium/eisen/kohlenstoffträger-katalysatoren

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5334870B2 (ja) * 2007-03-13 2013-11-06 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト 一酸化炭素のメタン化のための触媒としての金属ドープ酸化ニッケル
EP2336083A1 (de) 2009-12-17 2011-06-22 Topsøe Fuel Cell A/S Gasgenerator und Verfahren zur Umwandlung eines Brennstoffs in ein sauerstoffarmen Gases und/oder wasserstoffangereicherten Gases
JP5662044B2 (ja) * 2010-03-31 2015-01-28 大阪瓦斯株式会社 触媒の活性化の程度を判定する方法
DE102011085165A1 (de) 2011-10-25 2013-04-25 Wacker Chemie Ag Verfahren zur Herstellung von Vinylacetat
JP5889613B2 (ja) 2011-11-25 2016-03-22 国立大学法人群馬大学 金属担持用担体、金属担持触媒、メタネーション反応装置及びこれらに関する方法
EP3072589A1 (de) 2015-03-26 2016-09-28 Basf Se Katalysator und Verfahren zur selektiven Methanisierung von Kohlenmonoxid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1249648A (en) * 1967-10-03 1971-10-13 Chemetron Corp Dehydration and methanation catalyst and process
US4465787A (en) * 1981-08-04 1984-08-14 Basf Aktiengesellschaft Ruthenium-on-charcoal and ruthenium-on-carbon black hydrogenation catalysts, their preparation and their use for selective hydrogenation of unsaturated carbonyl compounds
US20030149310A1 (en) * 2001-12-07 2003-08-07 Till Gerlach Preparation of ruthenium/iron catalysts supported on carbon
US20040048114A1 (en) * 2002-09-06 2004-03-11 Engelhard Corporation Simplified article for carbon monoxide removal

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3615164A (en) * 1968-01-10 1971-10-26 Bernard S Baker Process for selective removal by methanation of carbon monoxide from a mixture of gases containing carbon dioxide
US3847963A (en) * 1973-02-01 1974-11-12 Ventron Corp Methanation processes
JPS5216501A (en) * 1975-07-30 1977-02-07 Tokyo Gas Co Ltd Process for manufacturing fuel gas of high calorific value
JPH0393602A (ja) * 1989-09-07 1991-04-18 Asahi Chem Ind Co Ltd 一酸化炭素の選択的除去方法
GB9609918D0 (en) 1996-05-11 1996-07-17 Johnson Matthey Plc Hydrogen purification
GB9620287D0 (en) 1996-09-28 1996-11-13 Johnson Matthey Plc Carbon monoxide removal
WO2000053696A1 (fr) 1997-09-09 2000-09-14 Osaka Gas Co., Ltd. Systeme et procede de suppression du monoxyde de carbone
JP4460126B2 (ja) 2000-08-31 2010-05-12 出光興産株式会社 水素含有ガス中の一酸化炭素の除去方法
EP1246286A1 (de) 2001-03-31 2002-10-02 OMG AG & Co. KG Kombinierte Kraft- Wärmeanlage mit Gaserzeugungssystem und Brennstoffzellen sowie Verfahren zu ihrem Betrieb
JP2004097859A (ja) 2002-09-04 2004-04-02 Tokyo Inst Of Technol 一酸化炭素を除去するための触媒及び方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1249648A (en) * 1967-10-03 1971-10-13 Chemetron Corp Dehydration and methanation catalyst and process
US4465787A (en) * 1981-08-04 1984-08-14 Basf Aktiengesellschaft Ruthenium-on-charcoal and ruthenium-on-carbon black hydrogenation catalysts, their preparation and their use for selective hydrogenation of unsaturated carbonyl compounds
US20030149310A1 (en) * 2001-12-07 2003-08-07 Till Gerlach Preparation of ruthenium/iron catalysts supported on carbon
US20040048114A1 (en) * 2002-09-06 2004-03-11 Engelhard Corporation Simplified article for carbon monoxide removal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011121930A1 (de) * 2011-12-22 2013-06-27 Solarfuel Gmbh Methanisierungsreaktor
WO2017060243A1 (de) * 2015-10-05 2017-04-13 Basf Se Verfahren zur herstellung von ruthenium/eisen/kohlenstoffträger-katalysatoren
US10562009B2 (en) 2015-10-05 2020-02-18 Basf Se Method for producing ruthenium/iron/carbon carrier catalysts

Also Published As

Publication number Publication date
JP2008528250A (ja) 2008-07-31
DE102005003311A1 (de) 2006-07-27
US7560496B2 (en) 2009-07-14
CA2595466A1 (en) 2006-07-27
EP1843844A1 (de) 2007-10-17
US20080139676A1 (en) 2008-06-12

Similar Documents

Publication Publication Date Title
WO2006077236A1 (de) Katalytisch aktive zusammensetzung zur selektiven methanisierung von kohlenmonoxid und verfahren zu deren herstellung
EP3472370B1 (de) Synthesegaserzeugung aus co2 und h2o in einer co-elektrolyse
EP2049249B1 (de) Katalysator für die tieftemperaturkonvertierung und verfahren zur tieftemperaturkonvertierung von kohlenmonoxid und wasser zu kohlendioxid und wasserstoff
EP3576871B1 (de) Mangandotierte nickel-katalysatoren zur methanisierung von kohlmonoxid and kohldioxid
DE10062578A1 (de) Methanolreformierungskatalysator
DE102017204322A1 (de) Verfahren zur chemischen Umsetzung von Zuckern oder Zuckeralkoholen zu Glykolen
DE60305308T2 (de) Katalysator zur entfernung von kohlenmonoxid in wasserstoffreichem gas gemäss der konvertierungsreaktion
WO2008101875A1 (de) Katalysator und verfahren zur selektiven methanisierung von kohlenmonoxid
DE102007037796A1 (de) Verfahren zur Entfernung von CO, H2 und/oder CH4 aus dem Anodenabgas einer Brennstoffzelle mit Mischoxidkatalysatoren umfassend Cu, Mn und gegebenenfalls mindestens ein Seltenerdmetall
DE10048160A1 (de) Dimethylether-Reformierkatalysator und Brennstoffzellenvorrichtung
WO2012025897A1 (de) Hochaktive konvertierungskatalysatoren
DE10143656B4 (de) Verfahren zur Erzeugung von Energie in einem Brennstoffzellen-Gesamtsystem mit Crackreaktor und Brennstoffzelle sowie Vorrichtung zur Durchführung des Verfahrens
DE102020000937A1 (de) Verfahren und Anlage zur Bereitstellung eines Industrieprodukts unter Verwendung von Sauerstoff
WO2021089183A1 (de) Verfahren und anlage zur herstellung von monoethylenglycol
DE102007056352B4 (de) Verfahren zur Herstellung von Elektrodenkatalysator-Materialgemischen für Brennstoffzellen
DE102012103189A1 (de) Brennstoffzellensystem und dessen Verwendung
AT522823B1 (de) Verfahren zur Herstellung von Kohlenstoffmonoxid
EP3227947B1 (de) Regeneration von festoxidbrennstoffzellen
EP0172503B1 (de) Verfahren zur Herstellung von zur Reduktion von Sauerstoff und sauerstoffhaltigen Verbindungen geeigneten Elektroden
EP4324786A1 (de) Verfahren und anlage zur bereitstellung von synthesegas und zur herstellung von methanol
DE102017209848A1 (de) Thermochemischer Kreisprozess zur Spaltung eines gasförmigen Oxids bei reduziertem relativem Partialdruck
DE112021004643T5 (de) Vorrichtung zur elektrolytischen Erzeugung von Wasserstoff
EP3816145A1 (de) Verfahren und anlage zur herstellung von methanol aus wasserstoffreichem synthesegas
DE19808939A1 (de) Verfahren zur Herstellung von Hydroxylammoniumsalzen
DE102019211379A1 (de) Verfahren zur Entfernung von Kohlenmonoxid und/oder gasförmigen Schwefelverbindungen aus Wasserstoffgas und/oder aliphatischen Kohlenwasserstoffen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006707761

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2595466

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2007551673

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11814581

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2006707761

Country of ref document: EP