EP2173637B1 - Behälter mit einem mit einer verformbaren membran ausgestatteten sockel - Google Patents
Behälter mit einem mit einer verformbaren membran ausgestatteten sockel Download PDFInfo
- Publication number
- EP2173637B1 EP2173637B1 EP08840006A EP08840006A EP2173637B1 EP 2173637 B1 EP2173637 B1 EP 2173637B1 EP 08840006 A EP08840006 A EP 08840006A EP 08840006 A EP08840006 A EP 08840006A EP 2173637 B1 EP2173637 B1 EP 2173637B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- container
- membrane
- ribs
- extending
- récipient
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D1/00—Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
- B65D1/02—Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
- B65D1/0223—Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by shape
- B65D1/0261—Bottom construction
- B65D1/0276—Bottom construction having a continuous contact surface, e.g. Champagne-type bottom
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D79/00—Kinds or details of packages, not otherwise provided for
- B65D79/005—Packages having deformable parts for indicating or neutralizing internal pressure-variations by other means than venting
- B65D79/008—Packages having deformable parts for indicating or neutralizing internal pressure-variations by other means than venting the deformable part being located in a rigid or semi-rigid container, e.g. in bottles or jars
- B65D79/0081—Packages having deformable parts for indicating or neutralizing internal pressure-variations by other means than venting the deformable part being located in a rigid or semi-rigid container, e.g. in bottles or jars in the bottom part thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D2501/00—Containers having bodies formed in one piece
- B65D2501/0009—Bottles or similar containers with necks or like restricted apertures designed for pouring contents
- B65D2501/0018—Ribs
- B65D2501/0036—Hollow circonferential ribs
Definitions
- the invention relates to the manufacture of containers, such as bottles or pots, obtained by blow molding or stretch blow molding from thermoplastic preforms.
- heat setting Frnch translation of the English expression "heat set”
- Heat-setting only solves a part of the container deformation problems related to hot filling. Indeed, while cooling, the liquid and the air which overhangs it in the clogged container undergo a decrease in volume which tends to retract the container.
- an object of the invention is to improve the mechanical and / or aesthetic properties of containers for use in hot filling.
- the bottom comprises ribs, preferably having a V-shaped cross-section and extending at least partly radially and projecting from the membrane towards the inside of the container.
- the bottom may comprise a bearing extending from the step, and a riser extending from the bearing and in which the ribs are anchored at an outer end.
- the ribs may extend radially or have two radial sections connected by a curved intermediate section.
- the bottom may further comprise a central rib, preferably having a V-section in section and dividing the membrane into two parts, namely a central portion surrounding the pin and a peripheral portion surrounding the central portion.
- the ribs protrude over the peripheral portion of the membrane; they can be anchored in the central rib, or tangent to it.
- the membrane may have, before filling, a concavity facing inwardly or on the contrary towards the outside of the container. Its radius of curvature is preferably between 50 mm and 150 mm. This radius of curvature is for example about 100 mm.
- the container may be heat set.
- a container 1 - in this case a wide-necked bottle, with a capacity of about 0.6 l - produced by stretch-blow molding from a thermoplastic preform such as PET (polyethylene terephthalate).
- PET polyethylene terephthalate
- This container 1 comprises, at an upper end, a threaded neck 2 , provided with a rim 3.
- the container 1 comprises in its upper part a shoulder 4 flaring in the direction opposite to the neck 2, this shoulder 4 being extended by a side wall or body 5, of generally cylindrical shape of revolution about a main axis X of the container 1.
- the body 5 comprises a succession of stiffeners 6 in the form of annular beads separated in pairs by annular grooves 7 .
- some grooves 7a located near the shoulder 4 (in this case the two grooves 7a closest to the shoulder 4 ) have a V-shaped profile to provide the container 1 of the radial stiffness while allowing axial retraction of the latter in this region, while the following grooves 7b , in the central part of the container 1 and in its lower part, have a flat bottom U-shaped profile to provide the container 1 a stiffness that is both axial and radial.
- the container 1 further comprises a bottom 8 which extends to a lower end of the container 1.
- the bottom 8 comprises an annular base 9 , through which the container 1 can rest stably on a flat surface (such as a table ) and which extends substantially perpendicular to the body 5 (or to the axis X of the container) in the extension thereof.
- the bottom 8 also comprises an annular step 10 , which extends from the base 9, in the extension thereof towards the inside of the container 1.
- the step 10 is preferably frustoconical; the angle at the top of this step is between 30 ° and 90 °.
- the bottom 8 further comprises an annular membrane 11 , which extends in the extension of the step 10 towards the axis of the container 1, substantially perpendicular to the body 5 (or the X axis ).
- the bottom 8 finally comprises, at its center and in the extension of the membrane 11, a central pin 12 which projects inwards towards the container 1.
- the membrane 11 has, at the junction with the step 10, a circular outer edge 13 , and at the junction with the pin 12, a circular inner edge 14 .
- the membrane 11 is, before hot filling of the container 1, concave concavity turned inwardly thereof.
- the inner edge 14 of the membrane 11 appears to be situated below the outer edge 13 - without, however, that the inner edge 14 exceeds the plane of the base 9.
- the membrane 11 is, before the hot filling of the container 1, convex, that is to say that its concavity is turned towards the outside of the container 1.
- the inner edge 14 of the membrane 11 appears located above the outer edge 13 .
- the membrane 11 is preferably in the form of a spherical cap, of symmetry of revolution about the main axis X of the container and whose radius of curvature is between 50 mm and 150 mm.
- spherical cap here refers to a curved surface, for which the radius of curvature is substantially continuous, that is to say that the concavity does not change on the surface.
- the radius of curvature of the membrane 11 is preferably between 60 and 80 mm, for example about 70 mm.
- the radius of curvature of the membrane 11 is preferably between 80 mm and 120 mm, for example about 100 mm.
- the pin 12 has a side wall 15 of generally conical shape, surmounted by a substantially plane circular outline top 16 , at the center of which is a pellet 17 of amorphous material not stretched, corresponding to the injection point of the preform from which the container is made.
- the side wall 15 of the central pin 12 is not smooth but has a broken profile and comprises, substantially at mid-height, a recess 18, the wall 15 thereby presenting, near the apex 16, a narrowed area 19 .
- the sidewall 15 is concave with its concavity facing away from the main axis X of the container 1.
- central pin 12 has the advantage, compared to a smooth wall conical profile, of increasing the stretching of the material in the vicinity of the center of the bottom 8.
- the amorphous portion of the bottom 8 is shown on the top 16 of the pin 12, while the surrounding parts (i.e. the 15 sidewall of the pin 12, the membrane 11, the step 10 and the base 9) are compared crystalline, which minimizes uncontrolled deformation of the bottom 8 of the container 1 during hot filling.
- the body 5 substantially retains its original shape given the presence of the stiffeners 6, which, by increasing the radial stiffness of the container 1, limit the ovalization.
- Bottom 8 essentially crystalline (with the exception of vertex 16 of pion 12), does not undergo, unlike the essentially amorphous bottom of a conventional container, deformation under the effect of the sole temperature of the filling liquid.
- the bottom 8 initially deforms by deflection of the membrane 11, articulated around its outer edge 13 , accompanied by a lowering of the pin 12. This deflection can eventually lead to a configuration - temporary - where the inner edge 14 of the membrane 11 exceeds the plane of the base 9. This intermediate configuration is shown in dashed line on the figure 3 .
- the bottom 8 rises, from its intermediate configuration described above, to a final configuration where the membrane 11 bends in the opposite direction around its outer edge 13 , the pin 12 going back to beyond its initial position (that is to say before any filling).
- the membrane 11 may, in the case of the first embodiment described above, see its inverted curvature with respect to its initial configuration, that is to say that its concavity is turned outwards. of the container 1, as illustrated in dashed line on the figure 3 .
- annular stiffeners 6 in the form of beads on the body 5 and a deformable membrane 11 in the bottom 8 causes the deformations to be located on the bottom 8, firstly during the hot filling, then during the subsequent cooling of the liquid.
- the crystallinity of the bottom 8 can be mechanically increased by a so-called boxing process within a mold provided with a sliding mold bottom parallel to the axis.
- X of the container 1. the mold bottom is first placed in a low position below its final position, which allows, at first, to stretch the bottom 8 of the container 1 beyond its final position. Then the mold bottom is reassembled to give the bottom 8 its final shape by stretching the material to the maximum.
- a description of such a process can be found in the document FR 2 508 004 .
- the bottom 8 comprises a substantially plane annular base 9 , bordered in the direction of the axis of the container 1 by a frustoconical step 10 whose apex angle is, as previously indicated, between 30 ° and 90 °.
- the step 10 is extended, in the direction of the axis of the container 1, by a bearing 20 which, at rest (that is to say in the absence of stress exerted on the container 1 - in practice prior to the filling) is frustoconical at a very open angle. More specifically, as shown on the right side of the figure 9 , the angle ⁇ that forms a generatrix of the bearing 20 with a horizontal plane perpendicular to the axis of the container 1 is between 3 ° and 10 °, and preferably between 5 ° and 7 °. According to a preferred embodiment, this angle is about 6 °.
- the bearing 20 is extended, in the direction of the axis of the container 1, by a frustoconical riser 21 conical inverted with respect to the step 10, the riser 21 extending outwardly of the container 1 from the bearing 20.
- the apex angle of the riser 21 is between 80 ° and 120 °, and preferably between 90 ° and 110 °. According to a preferred embodiment, this angle is about 100 °.
- the junction between the riser 21 and the membrane 11 is offset, relative to the base 9, towards the interior of the container 1.
- the membrane 11, which connects the riser 21 to the central pin 12 is, as in the embodiments described above, in the form of a spherical cap.
- the concavity of the membrane is, at rest, facing the outside of the container 1.
- the membrane is shaped so that at rest, in vertical normal position of the container 1, the base of the pin 12 being situated comparatively higher than the junction between the membrane 11 and the riser 21.
- the bottom 8 is further provided with ribs 22 which protrude from the membrane 11 towards the inside of the container 1 and extend radially from the base of the pin 12 to the riser 21.
- the ribs 22 are preferably uniformly distributed around the axis of the container 1. In order to ensure proper operation of the bottom 8 (see below), it preferably has more than three ribs 22.
- the ribs 22 are for example seven in number, as illustrated on Figures 6 to 9 .
- Each rib 22 has a top view in the shape of a spearhead and comprises two flanks 23, substantially planar, joined by a ridge 24 which extends in a radial plane and whose profile is slightly curved downwards (in the normal position container 1), as can be seen on the left side of the figure 9 .
- each rib 22 having in cross-section (cf. figure 10 ) a concavity V-shaped profile facing outwardly of the container 1, the vertex angle between the flanks 23 is, at rest, between 80 ° and 100 °, and preferably about 90 °.
- each rib 22 is anchored in the riser 21 and extends over the entire height thereof, the ridge 24 joining the riser 21 at its junction with the bearing 20.
- the bottom 8 thus structured can be provided on a container 1 whose body 5 is ribbed, as shown in FIG. figure 1 , or smooth, as shown on Figures 27 to 30 which are distinguished from each other by different curves of the body 5.
- the body 5 in order to confer a structural rigidity of the body 5 sufficient to transfer to the bottom 8 most of the deformations resulting from the stresses to which the container 1 is subjected. during hot filling, the body 5 has a thickness to that of common containers, including containers usually referred to as heat resistant (HR). In practice, it will be ensured that the thickness of the body is greater than 4/10 mm, a thickness between 4/10 mm and 9/10 mm which can be considered satisfactory.
- HR heat resistant
- the body 5 substantially retains its original shape either in view of the presence of stiffeners or because of its thickness.
- the bottom 8 deforms initially by reversing the angle ⁇ of the bearing 20, conjointly with the deflection of the riser 21 and the diaphragm 11 , with a possible inversion of the concavity thereof, accompanied by a lowering of the pin 12 without the base thereof 12 does not exceed the plane of the base 9 (see the corresponding configuration shown in dashed line on the figure 9 ).
- the ribs 22 flatten out, their angle at the apex opening as the membrane 11 flexes (see the configuration shown in dashed line on the figure 9 ).
- the bottom 8 rises to a position greater than that of its initial position before the upturn due to hot filling, while the ribs 22 tend to close again by contributing locking the membrane 11 in its final position.
- the portions 25 and 26 central device will present themselves in the form of a spherical cap, their concavity facing in the same direction, so that the overall shape of the membrane 11 is more precisely a spherical cap comprising fold formed by the rib 27.
- the rib 27, whose profile is in the circular case has, on the central portion 25 side, a tapered inner flank 28 and, opposite the side of the peripheral portion 26, a frustoconical outer flank 29.
- the angular aperture of the V-shaped section of the rib 27 is preferably between 90 ° and 130 °, and preferably between 100 ° and 120 °. According to a preferred embodiment illustrated in the figures, the angle at the apex of the section is about 110 °.
- the V-shaped profile of the central rib 27 is not symmetrical, the internal flank 28 having a smaller vertical extension than the outer flank 29 .
- the central portion 25 of the membrane 11 is located in vertical normal position of the container 1 and at rest, slightly higher than the peripheral portion 26.
- the bottom 8 is provided with ribs 22 which protrude from the peripheral portion 26 of the membrane 11 towards the inside of the container 1 and extend radially from the central rib 27 to the riser 21.
- the ribs 22 are preferably uniformly distributed around the axis of the container 1 and are for example (as is visible on the Figures 11 to 13 ) six in number.
- each rib 22 has a top view of a spear shape.
- the crest 24, which joins the flanks 23, extends from the base of the central rib 27 to the top of the riser 21, at its junction with the bearing 20.
- the body 5 substantially retains its original shape either in view of the presence of stiffeners or because of its thickness.
- the bottom 8 initially deforms by joint bending of the bearing 20, the riser 21 and the peripheral portion 26 of the membrane 11, accompanied by joint lowering of the central portion 25 of the membrane and of the pin 12.
- the central part 25 can adopt, in normal vertical position of the container 1, a lower position than that of the peripheral portion 26 of the membrane 11 through the deformation - up to the flipping - of the central rib 27 .
- the deformation capacity of the membrane 11 is thus increased.
- the ribs 22 are flattened, their apex angle opening as flexes the peripheral portion 26 of membrane 11.
- the bottom 8 rises, from its temporary configuration described above, to a final configuration where the membrane 11 substantially returns to its original shape while the ribs 22 tend to closing up by contributing to the locking of the peripheral portion 26 of the membrane 11 in its final position.
- central rib 27 tends to close contributing to locking of the central portion 25 in an elevated position relative to the peripheral portion 26.
- This fifth embodiment is closely derived from the fourth which has just been described, which it is distinguished by shape, triangular with rounded vertices instead of being circular, the central rib 27 separating the central portion 25 of membrane 11 of its peripheral portion 26.
- the radial ribs 22 are anchored, inwards, at the junctions between the straight sections 30 and the curved sections 31 of the central rib 27 .
- the bottom 8 deforms substantially in the same manner as previously described for the fourth embodiment.
- the inventors have observed a better rigidity of the bottom 8 in its final configuration (after cooling of the liquid), to which contributes the triangular shape of the central rib 27 .
- the curvature of the curved sections 31 in plan view, cf. figure 17 ), comparatively weaker than the curvature of the circular profile presented in the fourth embodiment, tends to increase the structural rigidity of the rib 27.
- the membrane 11 is always in the form of a spherical cap on which are provided, projecting inwardly of the container 1, ribs 22, which however, have a different profile.
- the body 5 substantially retains its original shape either in view of the presence of stiffeners or because of its thickness.
- the membrane 11 is deformed under the combined effect of the hydrostatic pressure and the temperature of the filling liquid. Given its structure, as just described, the membrane 11 deforms non-isotropically. More specifically, the main zone 34 , carrying the pin 12 and subjected to a high hydrostatic pressure, collapses simultaneously with flexing downwards (in the manner described for the third embodiment and shown in dot-dashed lines). the figure 9 ), the sections of the bearing 20 and the riser 21 in which is anchored the main zone 34 . Once the deformation areas 34 main performed, areas 35 devices rotate around the radial section of the ribs 22 to provide further movement. In this temporary deformed configuration, the ribs 22 deform, their apex angle opening as the main zone 34 of the membrane 11 collapses .
- the main zone 34 rises to a position greater than that of its initial position before the hot filling.
- the ribs 22 tending to close by contributing to the locking of the main zone 34 of the membrane 11.
- the bottom 8 differs from the bottom 8 described in the sixth embodiment by the presence of a central rib 27 with a rounded triangular profile, as described in the fifth embodiment.
- the central portion 25 of the membrane 11 sags below the peripheral portion 26.
- the rib 27 initially facilitates the collapse of the central portion 25 during filling, then contributes in reinforcing ribs 22, 25 to lock the central part in its final position after the cooled liquid.
- the final position of the bottom 8 is substantially the same as the initial position. Indeed, in the final position, the membrane 11 always forms a spherical cap, the concavity being substantially the same as the initial position.
- a bottom 8 according to any one of the embodiments which have just been described can be provided on a container 1 whose body 5 is ribbed as illustrated in FIG. figure 1 , or on a container 1 whose body 5 is substantially smooth, that is to say that it does not have ribs ( Figures 27 to 29 ), but thickened, the ribbing or thickening of the body 5 having a structural stiffening function that avoids ovalization during a hot filling.
- a smooth body 5 with the bottom 8 as described according to one of the seven embodiments, the deformations generated by the hot filling of the walls of the container 1 are concentrated essentially on the bottom 8.
- This combination allows advantageously avoid the manufacture of a ribbed body 5. Indeed, for example in the case of the container fabrication by blow molding a preform into a mold, the manufacture of a mold for a ribbed body 5 is more expensive than that for a smooth body 5.
- a smooth body 5 has a better aesthetics than 5 ribbed body.
- the shape of the bottom 8, and more particularly the spherical shape of the membrane 11, allows better control of the deformation of the bottom 8, both during hot filling and during cooling.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Ceramic Engineering (AREA)
- Containers Having Bodies Formed In One Piece (AREA)
- Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
- Details Of Rigid Or Semi-Rigid Containers (AREA)
- Closures For Containers (AREA)
Claims (16)
- Behälter (1) aus Kunststoff, dadurch gekennzeichnet, dass er Folgendes umfasst:- einen versteiften Körper (5),- einen Boden (8), der sich zu einem unteren Ende des Behälters (1) erstreckt und Folgendes umfasst:- einen ringförmigen Sockel (9), der sich im Wesentlichen senkrecht zum Körper (5) in der Verlängerung dieses erstreckt;- eine ringförmige Stufe (10), die sich von dem Sockel (9) in Richtung des Inneren des Behälters (1) erstreckt,- einen Baustein (12), der sich hervorstehend von der Mitte des Bodens (8) in Richtung des Inneren des Behälters (1) erstreckt,- eine verformbare ringförmige Membran (11), dadurch gekennzeichnet, dass die verformbare ringförmige Membran (11) in der Form einer kugelförmigen Kappe ist, die sich im Wesentlichen senkrecht zum Körper (5) zwischen der Stufe (10) und dem Baustein (12) erstreckt.
- Behälter (1) nach Anspruch 1, dadurch gekennzeichnet, dass der Boden (8) Rippen (22) umfasst, die sich zumindest zum Teil radial erstrecken und auf der Membran (11) in Richtung des Inneren des Behälters (1) hervorstehen.
- Behälter (1) nach Anspruch 2, dadurch gekennzeichnet, dass die Rippen (22) im Querschnitt ein V-Profil aufweisen.
- Behälter (1) nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass der Boden (8) einen Absatz (20), der sich von der Stufe (10) erstreckt, und eine Stoßstufe (21) umfasst, die sich von dem Absatz (20) erstreckt, und dass die Rippen (22) an einem äußeren Ende in der Stoßstufe (21) verankert sind.
- Behälter (1) nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass die Rippen (22) sich radial erstrecken.
- Behälter (1) nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass die Rippen (22) zwei radiale Abschnitte (32) aufweisen, die durch einen gekrümmten Zwischenabschnitt (31) verbunden sind.
- Behälter (1) nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, dass der Boden (8) eine mittlere Rippe (27) umfasst, die die Membran (11) in zwei Teile unterteilt, und zwar einen mittleren Teil (25), der den Baustein (12) umgibt, und einen Umfangsteil (26), der den mittleren Teil (25) umgibt.
- Behälter (1) nach Anspruch 7, dadurch gekennzeichnet, dass die mittlere Rippe (27) im Querschnitt ein V-Profil aufweist.
- Behälter (1) nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass die Rippen (22) sich hervorstehend auf dem Umfangsteil (26) der Membran (11) erstrecken.
- Behälter (1) nach Anspruch 9, dadurch gekennzeichnet, dass die Rippen (22) in der mittleren Rippe (27) verankert sind oder an dieser anliegen.
- Behälter (1) nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Membran (11) vor jeder Befüllung eine Vertiefung aufweist, die in Richtung des Inneren des Behälters (1) gedreht ist.
- Behälter (1) nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Membran (11) vor jeder Befüllung eine Vertiefung aufweist, die in Richtung der Außenseite des Behälters (1) gedreht ist.
- Behälter (1) nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Membran (11) einen Krümmungsradius aufweiset, der zwischen 50 mm und 150 mm liegt.
- Behälter nach Anspruch 13, dadurch gekennzeichnet, dass die Membran (11) einen Krümmungsradius von ungefähr 100 mm aufweist.
- Behälter (1) nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass er thermofixiert ist.
- Behälter (1) nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass der Körper (5) glatt ist.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0705554A FR2919579B1 (fr) | 2007-07-30 | 2007-07-30 | Recipient comprenant un fond muni d'une membrane deformable. |
PCT/FR2008/001131 WO2009050346A1 (fr) | 2007-07-30 | 2008-07-29 | Reci pi ent comprenant un fond muni d'une membrane deformable |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2173637A1 EP2173637A1 (de) | 2010-04-14 |
EP2173637B1 true EP2173637B1 (de) | 2011-09-21 |
Family
ID=39131857
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08840006A Not-in-force EP2173637B1 (de) | 2007-07-30 | 2008-07-29 | Behälter mit einem mit einer verformbaren membran ausgestatteten sockel |
Country Status (9)
Country | Link |
---|---|
US (1) | US8950611B2 (de) |
EP (1) | EP2173637B1 (de) |
JP (1) | JP2010535137A (de) |
CN (1) | CN101801809B (de) |
AT (1) | ATE525308T1 (de) |
ES (1) | ES2372722T3 (de) |
FR (1) | FR2919579B1 (de) |
MX (1) | MX2010001169A (de) |
WO (1) | WO2009050346A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11123914B2 (en) | 2014-11-27 | 2021-09-21 | Sidel Participations | Method for manufacturing a container including boxing timed with blowing |
Families Citing this family (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2009228133B2 (en) * | 2008-03-27 | 2013-06-06 | Plastipak Packaging, Inc. | Container base having volume absorption panel |
RU2553029C2 (ru) | 2008-12-31 | 2015-06-10 | Плэстипэк Пэкэджинг, Инк. | Пригодная для горячего заполнения пластиковая емкость с гибким основанием |
FR2961181B1 (fr) * | 2010-06-11 | 2012-07-27 | Sidel Participations | Recipient comprenant un fond voute a assise carree |
JP5408501B2 (ja) * | 2010-08-31 | 2014-02-05 | 株式会社吉野工業所 | 合成樹脂製壜体 |
AT510506B1 (de) * | 2010-09-22 | 2013-01-15 | Red Bull Gmbh | Bodenkonstruktion für eine kunststoffflasche |
JP5501184B2 (ja) * | 2010-09-30 | 2014-05-21 | 株式会社吉野工業所 | ボトル |
JP5568439B2 (ja) * | 2010-10-26 | 2014-08-06 | 株式会社吉野工業所 | ボトル |
US9242762B2 (en) | 2010-10-26 | 2016-01-26 | Yoshino Kogyosho Co., Ltd. | Bottle |
JP5489953B2 (ja) * | 2010-10-27 | 2014-05-14 | 株式会社吉野工業所 | ボトル |
JP5568440B2 (ja) * | 2010-10-27 | 2014-08-06 | 株式会社吉野工業所 | ボトル |
JP5645603B2 (ja) * | 2010-10-27 | 2014-12-24 | 株式会社吉野工業所 | ボトル |
US20130206719A1 (en) * | 2010-10-27 | 2013-08-15 | Yoshino Kogyosho Co., Ltd. | Bottle |
JP2012091827A (ja) * | 2010-10-27 | 2012-05-17 | Yoshino Kogyosho Co Ltd | ボトル |
JP5886521B2 (ja) * | 2010-11-26 | 2016-03-16 | 株式会社吉野工業所 | ボトル |
FR2969987B1 (fr) * | 2010-12-29 | 2013-02-01 | Sidel Participations | Recipient a fond a assise interne ondulee |
FR2975332B1 (fr) | 2011-05-19 | 2013-06-07 | Sidel Participations | Procede de fabrication de recipients, comprenant une operation anticipee de boxage |
US9994378B2 (en) * | 2011-08-15 | 2018-06-12 | Graham Packaging Company, L.P. | Plastic containers, base configurations for plastic containers, and systems, methods, and base molds thereof |
US9150320B2 (en) | 2011-08-15 | 2015-10-06 | Graham Packaging Company, L.P. | Plastic containers having base configurations with up-stand walls having a plurality of rings, and systems, methods, and base molds thereof |
JP2013144560A (ja) * | 2012-01-16 | 2013-07-25 | Toyo Seikan Group Holdings Ltd | 合成樹脂製容器 |
FR2991302B1 (fr) * | 2012-05-31 | 2014-07-04 | Sidel Participations | Recipient ayant un fond muni d'une voute a decrochement |
FR2998207B1 (fr) * | 2012-11-20 | 2015-01-16 | Sidel Participations | Procede d'etirage soufflage d'un recipient, comprenant une mesure du deplacement de la tige d'etirage au cours d'une operation de boxage |
US10513364B2 (en) | 2013-01-15 | 2019-12-24 | Graham Packaging Company, L.P. | Variable displacement container base |
JP6337381B2 (ja) * | 2013-01-15 | 2018-06-06 | グレイアム パッケイジング カンパニー リミテッド パートナーシップ | 可変押しのけ量容器底部 |
USD760590S1 (en) | 2013-01-25 | 2016-07-05 | S.C. Johnson & Son, Inc. | Bottle |
EP2764967B1 (de) * | 2013-02-06 | 2015-10-14 | Sidel Participations | Form zum Blasformen eines Heißfüllungsbehälters mit erhöhten Streckungsverhältnissen |
JP6153741B2 (ja) * | 2013-02-28 | 2017-06-28 | 株式会社吉野工業所 | 合成樹脂製ボトル |
USD743262S1 (en) * | 2013-04-04 | 2015-11-17 | Plastipak Packaging, Inc. | Container body portion |
USD743263S1 (en) * | 2013-04-04 | 2015-11-17 | Plastipak Packaging, Inc. | Container body portion |
CN104097822B (zh) * | 2013-04-10 | 2018-05-01 | 克朗斯机械(太仓)有限公司 | 具有柔性基座段的塑料瓶 |
EP3107810B1 (de) * | 2014-02-20 | 2019-06-26 | Amcor Rigid Plastics USA, LLC | Vakuumbasis für behälter |
USD739176S1 (en) * | 2014-04-25 | 2015-09-22 | Doskocil Manufacturing Company, Inc. | Food bowl portion with support |
WO2015166619A1 (ja) * | 2014-04-30 | 2015-11-05 | 株式会社吉野工業所 | 合成樹脂製ボトル |
USD749423S1 (en) * | 2014-05-30 | 2016-02-16 | The Coca-Cola Company | Bottle |
EP2957515B1 (de) * | 2014-06-18 | 2017-05-24 | Sidel Participations | Behälter mit einer umkehrbaren Membran und Mittelteil von größerer Stärke |
JP6691655B2 (ja) * | 2015-01-29 | 2020-05-13 | 東洋製罐株式会社 | 合成樹脂製容器 |
WO2016121890A1 (ja) * | 2015-01-29 | 2016-08-04 | 東洋製罐株式会社 | 合成樹脂製容器 |
JP2016182971A (ja) * | 2015-03-26 | 2016-10-20 | 東洋製罐株式会社 | 底部に減圧吸収性能を有するポリエステル容器及びその製造方法 |
JP2016199294A (ja) * | 2015-04-10 | 2016-12-01 | 東洋製罐株式会社 | 合成樹脂製容器 |
JP2017001705A (ja) * | 2015-06-10 | 2017-01-05 | 東洋製罐株式会社 | 合成樹脂製容器 |
FR3042149B1 (fr) * | 2015-10-08 | 2017-11-03 | Sidel Participations | Procede de formation d’un emballage a partir d’un recipient, comprenant une phase de controle thermique |
CN105416744B (zh) * | 2015-12-02 | 2018-04-03 | 广东星联精密机械有限公司 | 一种利用底部结构反转增加塑胶瓶内压力的底型结构 |
JP6714999B2 (ja) * | 2015-12-11 | 2020-07-01 | 三笠産業株式会社 | 容器 |
EP3257768B1 (de) * | 2016-06-17 | 2019-02-27 | Sidel Participations | Behälter mit einer konvexen umkehrbaren membran |
DE102016119890A1 (de) * | 2016-10-19 | 2018-04-19 | Krones Aktiengesellschaft | Verfahren und Vorrichtung zum Herstellen von Getränkebehältnissen mit Rückkühlung und Gaszufuhr |
CN110740941B (zh) | 2017-06-12 | 2021-12-07 | 雀巢产品有限公司 | 具有双凹入的拱起部的容器底部基座 |
CA3070970C (en) | 2017-08-25 | 2024-02-06 | Graham Packaging Company, L.P. | Variable displacement base and container and method of using the same |
FR3070894B1 (fr) * | 2017-09-08 | 2020-09-11 | Sidel Participations | Moule pour recipient, comprenant un fond de moule muni d'un puits central, et une tige d'etirage a extremite hemispherique |
US10981768B2 (en) * | 2017-12-08 | 2021-04-20 | S.C. Johnson & Son, Inc. | Pressurized dispensing system including a plastic bottle and process of minimizing the formation of stress cracks in a plastic bottle |
FR3076818B1 (fr) * | 2018-01-18 | 2019-12-13 | Sidel Participations | Recipient comprenant un fond voute presentant des bossages de rigidification repartis en bandes annulaires imbriquees |
CN112004751B (zh) * | 2018-03-05 | 2022-10-28 | 日精Asb机械株式会社 | 容器 |
FR3079442B1 (fr) | 2018-03-28 | 2020-03-13 | Sidel Participations | Procede de fabrication de recipients, par boxage ajustable en fonction de la courbe de soufflage |
US11912459B2 (en) | 2018-07-23 | 2024-02-27 | Co2Pac Limited | Variable displacement container base |
WO2020149832A1 (en) * | 2019-01-15 | 2020-07-23 | Amcor Rigid Packaging Usa, Llc | Vertical displacement container base |
US11001431B2 (en) * | 2019-03-29 | 2021-05-11 | Ring Container Technologies, Llc | Container system and method of manufacture |
US11597604B1 (en) * | 2022-03-02 | 2023-03-07 | Jakob Simon | Conveyor safely guard modules |
US11970324B2 (en) | 2022-06-06 | 2024-04-30 | Envases USA, Inc. | Base of a plastic container |
JP2024005556A (ja) * | 2022-06-30 | 2024-01-17 | 株式会社吉野工業所 | ボトル |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3456913A (en) * | 1967-02-21 | 1969-07-22 | Michael Lutz | Mold for making a container having an integrally molded two-piece hinge |
US3935955A (en) * | 1975-02-13 | 1976-02-03 | Continental Can Company, Inc. | Container bottom structure |
FR2379443A1 (fr) * | 1977-02-04 | 1978-09-01 | Solvay | Corps creux en matiere thermoplastique |
JPS6119053Y2 (de) * | 1980-08-19 | 1986-06-09 | ||
US4465199A (en) | 1981-06-22 | 1984-08-14 | Katashi Aoki | Pressure resisting plastic bottle |
JPS5855005U (ja) * | 1981-10-09 | 1983-04-14 | 井上エムテ−ピ−株式会社 | プラスチツク容器 |
JPH0199949A (ja) * | 1987-10-09 | 1989-04-18 | Toyo Seikan Kaisha Ltd | 耐圧プラスチック容器 |
JPH0197012U (de) * | 1987-12-18 | 1989-06-28 | ||
JPH0764348B2 (ja) * | 1991-03-22 | 1995-07-12 | 日精エー・エス・ビー機械株式会社 | 合成樹脂製容器の底壁構造 |
EP0534012A1 (de) * | 1991-09-27 | 1993-03-31 | The Procter & Gamble Company | Behälter aus thermoplastischem Material zur Aufnahme von Flüssigkeiten |
JP2581837Y2 (ja) * | 1992-09-29 | 1998-09-24 | 山村硝子株式会社 | ポリエステル樹脂製瓶の底部構造 |
FR2717443B1 (fr) * | 1994-03-16 | 1996-04-19 | Evian Eaux Min | Bouteille moulée en matière plastique. |
US6595380B2 (en) * | 2000-07-24 | 2003-07-22 | Schmalbach-Lubeca Ag | Container base structure responsive to vacuum related forces |
US8127955B2 (en) * | 2000-08-31 | 2012-03-06 | John Denner | Container structure for removal of vacuum pressure |
NZ521694A (en) * | 2002-09-30 | 2005-05-27 | Co2 Pac Ltd | Container structure for removal of vacuum pressure |
US7543713B2 (en) * | 2001-04-19 | 2009-06-09 | Graham Packaging Company L.P. | Multi-functional base for a plastic, wide-mouth, blow-molded container |
FR2822804B1 (fr) * | 2001-04-03 | 2004-06-04 | Sidel Sa | Recipient, notamment bouteille, en matiere thermoplastique dont le fond comporte une empreinte en croix |
JP4684495B2 (ja) * | 2001-08-30 | 2011-05-18 | 東洋アルミエコープロダクツ株式会社 | 包装容器 |
JP4080212B2 (ja) * | 2002-01-31 | 2008-04-23 | 株式会社吉野工業所 | 合成樹脂製の薄肉ボトル容器 |
US6585123B1 (en) * | 2002-05-22 | 2003-07-01 | Plastipak Packaging, Inc. | Bottle base |
US6983858B2 (en) * | 2003-01-30 | 2006-01-10 | Plastipak Packaging, Inc. | Hot fillable container with flexible base portion |
US6896147B2 (en) | 2003-02-14 | 2005-05-24 | Graham Packaging Company, L.P. | Base structure for a container |
US8276774B2 (en) * | 2003-05-23 | 2012-10-02 | Amcor Limited | Container base structure responsive to vacuum related forces |
US7451886B2 (en) * | 2003-05-23 | 2008-11-18 | Amcor Limited | Container base structure responsive to vacuum related forces |
US6942116B2 (en) * | 2003-05-23 | 2005-09-13 | Amcor Limited | Container base structure responsive to vacuum related forces |
US7140505B2 (en) * | 2004-12-27 | 2006-11-28 | Graham Packaging Company, L.P. | Base design for pasteurization |
USD546700S1 (en) * | 2005-05-26 | 2007-07-17 | Sidel Participations | Bottle of oil |
FR2888563B1 (fr) | 2005-07-12 | 2007-10-05 | Sidel Sas | Recipient, notamment bouteille, en matiere thermoplastique |
US7799264B2 (en) * | 2006-03-15 | 2010-09-21 | Graham Packaging Company, L.P. | Container and method for blowmolding a base in a partial vacuum pressure reduction setup |
-
2007
- 2007-07-30 FR FR0705554A patent/FR2919579B1/fr not_active Expired - Fee Related
-
2008
- 2008-07-29 MX MX2010001169A patent/MX2010001169A/es active IP Right Grant
- 2008-07-29 CN CN200880106422XA patent/CN101801809B/zh not_active Expired - Fee Related
- 2008-07-29 US US12/671,349 patent/US8950611B2/en active Active
- 2008-07-29 WO PCT/FR2008/001131 patent/WO2009050346A1/fr active Application Filing
- 2008-07-29 AT AT08840006T patent/ATE525308T1/de not_active IP Right Cessation
- 2008-07-29 ES ES08840006T patent/ES2372722T3/es active Active
- 2008-07-29 EP EP08840006A patent/EP2173637B1/de not_active Not-in-force
- 2008-07-29 JP JP2010518709A patent/JP2010535137A/ja active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11123914B2 (en) | 2014-11-27 | 2021-09-21 | Sidel Participations | Method for manufacturing a container including boxing timed with blowing |
Also Published As
Publication number | Publication date |
---|---|
JP2010535137A (ja) | 2010-11-18 |
FR2919579B1 (fr) | 2011-06-17 |
CN101801809B (zh) | 2013-05-01 |
ATE525308T1 (de) | 2011-10-15 |
ES2372722T3 (es) | 2012-01-25 |
MX2010001169A (es) | 2010-05-20 |
US8950611B2 (en) | 2015-02-10 |
CN101801809A (zh) | 2010-08-11 |
EP2173637A1 (de) | 2010-04-14 |
WO2009050346A1 (fr) | 2009-04-23 |
FR2919579A1 (fr) | 2009-02-06 |
US20100219152A1 (en) | 2010-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2173637B1 (de) | Behälter mit einem mit einer verformbaren membran ausgestatteten sockel | |
EP2925616B1 (de) | Behälter mit einem gewölbten boden mit einer doppelstufe | |
EP2349678B1 (de) | Form zum blasen von behältern mit verstärktem boden, verwendung dieser form und behälter | |
EP2049405B1 (de) | Mittels blasformen oder streckblasformen einer thermoplastischen hohlgefäss-vorform mit derartigem boden hergestellter boden eines hohlgefässes | |
EP2051910B1 (de) | Durch blasung oder streckblasung einer vorform eines thermoplastischen materials gewonnener hohlkörperboden und hohlkörper mit einem solchen boden | |
EP2643225B1 (de) | Kombinierter petaloidboden eines behälters | |
EP2512935B1 (de) | Behälter mit verformbaren seitenteilen | |
EP2855289B1 (de) | Behälter mit einem boden mit einem abgestuften bogen | |
EP2580132B1 (de) | Behälter mit einem gewölbten rippenboden | |
EP2125533B1 (de) | Kunststoffflasche mit champagnerboden und herstellungsverfahren dafür | |
EP2560887B1 (de) | Verstärkter blütenförmiger boden für einen behälter | |
EP2989015B1 (de) | Behälter mit verformbarem unterteil mit doppeltem bogen | |
FR2949756A1 (fr) | Recipient a facettes rainurees. | |
EP2580133A1 (de) | Behälter mit einem gewölbten boden mit rechteckiger aufnahmefläche | |
FR3076818A1 (fr) | Recipient comprenant un fond voute presentant des bossages de rigidification repartis en bandes annulaires imbriquees | |
EP2084070B1 (de) | Boden für einen durch blasen oder streckblasen eines vorformlings erhaltenen hohlkörper | |
FR3074482B1 (fr) | Recipient a fond petaloide | |
WO2023143739A1 (fr) | Recipient ayant un fond de type petaloide renforce et fond de moule pour la fabrication d'un tel recipient | |
WO2024141540A1 (fr) | Recipient a fond petaloide ameliore et fond de moule pour la fabrication d'un tel recipient | |
WO2024141556A1 (fr) | Recipient a fond petaloide ameliore et fond de moule pour la fabrication d'un tel recipient |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20100125 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
17Q | First examination report despatched |
Effective date: 20100521 |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: BUREL, DIDIER Inventor name: DERRIEN, MIKAEL Inventor name: ANDRIEUX, DAVID Inventor name: BOUKOBZA, MICHEL |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602008010048 Country of ref document: DE Effective date: 20111201 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20110921 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2372722 Country of ref document: ES Kind code of ref document: T3 Effective date: 20120125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110921 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111221 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110921 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110921 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110921 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20110921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110921 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110921 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111222 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110921 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110921 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 525308 Country of ref document: AT Kind code of ref document: T Effective date: 20110921 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110921 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120121 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110921 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110921 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110921 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110921 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120123 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110921 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110921 |
|
26N | No opposition filed |
Effective date: 20120622 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602008010048 Country of ref document: DE Effective date: 20120622 |
|
BERE | Be: lapsed |
Owner name: SIDEL PARTICIPATIONS Effective date: 20120731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120731 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120731 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080729 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20160623 Year of fee payment: 9 Ref country code: GB Payment date: 20160627 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20170729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170729 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20181030 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170730 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20190624 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20190621 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20190620 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602008010048 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200729 |