EP2171020A2 - Synergistische mischung - Google Patents

Synergistische mischung

Info

Publication number
EP2171020A2
EP2171020A2 EP08786034A EP08786034A EP2171020A2 EP 2171020 A2 EP2171020 A2 EP 2171020A2 EP 08786034 A EP08786034 A EP 08786034A EP 08786034 A EP08786034 A EP 08786034A EP 2171020 A2 EP2171020 A2 EP 2171020A2
Authority
EP
European Patent Office
Prior art keywords
substituents
radicals
synergistic mixture
radical
mixture according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP08786034A
Other languages
English (en)
French (fr)
Inventor
Arno Lange
Dietmar Posselt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP08786034A priority Critical patent/EP2171020A2/de
Publication of EP2171020A2 publication Critical patent/EP2171020A2/de
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/38Heterocyclic nitrogen compounds
    • C10M133/48Heterocyclic nitrogen compounds the ring containing both nitrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/143Organic compounds mixtures of organic macromolecular compounds with organic non-macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/232Organic compounds containing nitrogen containing nitrogen in a heterocyclic ring
    • C10L1/233Organic compounds containing nitrogen containing nitrogen in a heterocyclic ring containing nitrogen and oxygen in the ring, e.g. oxazoles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/232Organic compounds containing nitrogen containing nitrogen in a heterocyclic ring
    • C10L1/233Organic compounds containing nitrogen containing nitrogen in a heterocyclic ring containing nitrogen and oxygen in the ring, e.g. oxazoles
    • C10L1/2335Organic compounds containing nitrogen containing nitrogen in a heterocyclic ring containing nitrogen and oxygen in the ring, e.g. oxazoles morpholino, and derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/24Organic compounds containing sulfur, selenium and/or tellurium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/04Use of additives to fuels or fires for particular purposes for minimising corrosion or incrustation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M135/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
    • C10M135/20Thiols; Sulfides; Polysulfides
    • C10M135/22Thiols; Sulfides; Polysulfides containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M135/24Thiols; Sulfides; Polysulfides containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/08Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic sulfur-, selenium- or tellurium-containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M163/00Lubricating compositions characterised by the additive being a mixture of a compound of unknown or incompletely defined constitution and a non-macromolecular compound, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M165/00Lubricating compositions characterised by the additive being a mixture of a macromolecular compound and a compound of unknown or incompletely defined constitution, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/16Hydrocarbons
    • C10L1/1616Hydrocarbons fractions, e.g. lubricants, solvents, naphta, bitumen, tars, terpentine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/182Organic compounds containing oxygen containing hydroxy groups; Salts thereof
    • C10L1/1822Organic compounds containing oxygen containing hydroxy groups; Salts thereof hydroxy group directly attached to (cyclo)aliphatic carbon atoms
    • C10L1/1824Organic compounds containing oxygen containing hydroxy groups; Salts thereof hydroxy group directly attached to (cyclo)aliphatic carbon atoms mono-hydroxy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/182Organic compounds containing oxygen containing hydroxy groups; Salts thereof
    • C10L1/183Organic compounds containing oxygen containing hydroxy groups; Salts thereof at least one hydroxy group bound to an aromatic carbon atom
    • C10L1/1832Organic compounds containing oxygen containing hydroxy groups; Salts thereof at least one hydroxy group bound to an aromatic carbon atom mono-hydroxy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/223Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond having at least one amino group bound to an aromatic carbon atom
    • C10L1/2235Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond having at least one amino group bound to an aromatic carbon atom hydroxy containing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/228Organic compounds containing nitrogen containing at least one carbon-to-nitrogen double bond, e.g. guanidines, hydrazones, semicarbazones, imines; containing at least one carbon-to-nitrogen triple bond, e.g. nitriles
    • C10L1/2283Organic compounds containing nitrogen containing at least one carbon-to-nitrogen double bond, e.g. guanidines, hydrazones, semicarbazones, imines; containing at least one carbon-to-nitrogen triple bond, e.g. nitriles containing one or more carbon to nitrogen double bonds, e.g. guanidine, hydrazone, semi-carbazone, azomethine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/232Organic compounds containing nitrogen containing nitrogen in a heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/236Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/238Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/24Organic compounds containing sulfur, selenium and/or tellurium
    • C10L1/2406Organic compounds containing sulfur, selenium and/or tellurium mercaptans; hydrocarbon sulfides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/24Organic compounds containing sulfur, selenium and/or tellurium
    • C10L1/2406Organic compounds containing sulfur, selenium and/or tellurium mercaptans; hydrocarbon sulfides
    • C10L1/2412Organic compounds containing sulfur, selenium and/or tellurium mercaptans; hydrocarbon sulfides sulfur bond to an aromatic radical
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/24Organic compounds containing sulfur, selenium and/or tellurium
    • C10L1/2406Organic compounds containing sulfur, selenium and/or tellurium mercaptans; hydrocarbon sulfides
    • C10L1/2418Organic compounds containing sulfur, selenium and/or tellurium mercaptans; hydrocarbon sulfides containing a carboxylic substituted; derivatives thereof, e.g. esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/24Organic compounds containing sulfur, selenium and/or tellurium
    • C10L1/2425Thiocarbonic acids and derivatives thereof, e.g. xanthates; Thiocarbamic acids or derivatives thereof, e.g. dithio-carbamates; Thiurams
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/24Organic compounds containing sulfur, selenium and/or tellurium
    • C10L1/2443Organic compounds containing sulfur, selenium and/or tellurium heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/24Organic compounds containing sulfur, selenium and/or tellurium
    • C10L1/2443Organic compounds containing sulfur, selenium and/or tellurium heterocyclic compounds
    • C10L1/245Organic compounds containing sulfur, selenium and/or tellurium heterocyclic compounds only sulfur as hetero atom
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/24Organic compounds containing sulfur, selenium and/or tellurium
    • C10L1/2443Organic compounds containing sulfur, selenium and/or tellurium heterocyclic compounds
    • C10L1/2456Organic compounds containing sulfur, selenium and/or tellurium heterocyclic compounds sulfur with oxygen and/or nitrogen in the ring, e.g. thiazoles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/24Organic compounds containing sulfur, selenium and/or tellurium
    • C10L1/2462Organic compounds containing sulfur, selenium and/or tellurium macromolecular compounds
    • C10L1/2475Organic compounds containing sulfur, selenium and/or tellurium macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon to carbon bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/26Organic compounds containing phosphorus
    • C10L1/2633Organic compounds containing phosphorus phosphorus bond to oxygen (no P. C. bond)
    • C10L1/265Organic compounds containing phosphorus phosphorus bond to oxygen (no P. C. bond) oxygen and/or sulfur bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/02Inorganic or organic compounds containing atoms other than C, H or O, e.g. organic compounds containing heteroatoms or metal organic complexes
    • C10L2200/0259Nitrogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/02Inorganic or organic compounds containing atoms other than C, H or O, e.g. organic compounds containing heteroatoms or metal organic complexes
    • C10L2200/0263Sulphur containing compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2230/00Function and purpose of a components of a fuel or the composition as a whole
    • C10L2230/08Inhibitors
    • C10L2230/081Anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2250/00Structural features of fuel components or fuel compositions, either in solid, liquid or gaseous state
    • C10L2250/04Additive or component is a polymer
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/04Specifically adapted fuels for turbines, planes, power generation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/24Mixing, stirring of fuel components
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2215/042Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/043Mannich bases
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/02Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
    • C10M2219/022Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of hydrocarbons, e.g. olefines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/083Dibenzyl sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/084Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/086Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing sulfur atoms bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/09Heterocyclic compounds containing no sulfur, selenium or tellurium compounds in the ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/102Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon only in the ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/104Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2221/00Organic macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2221/04Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2221/041Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds involving sulfurisation of macromolecular compounds, e.g. polyolefins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/10Inhibition of oxidation, e.g. anti-oxidants

Definitions

  • the present invention relates to a synergistic mixture of (A) at least one compound with a structural element of the formula (I)
  • the present invention relates to the use of this synergistic mixture as a stabilizer for stabilizing inanimate organic material against the action of light, oxygen and heat, especially in jet fuels and lubricant compositions. Furthermore, the present invention relates to inanimate organic material, a turbine fuel composition, an additive concentrate for turbine fuels, and a lubricant composition containing this synergistic mixture.
  • WO 05/073152 (1) describes 2-alkyl-polyisobutenylphenols and their Manich adducts as antioxidants for the stabilization of inanimate organic material against the action of light, oxygen and heat.
  • Materials to be stabilized include fuels such as gasoline, diesel and turbine fuels, as well as lubricant compositions.
  • these 2-alkyl-polyisobutenyl-phenols and their Mannich adducts improve thermal stability and reduce deposits in the turbine's fuel and combustion systems.
  • Tetrahydrobenzoxazines having a benzene nucleus or mixtures thereof with Mannich open adducts are known as additives for fuel and lubricant compositions.
  • WO 01/25293 (2) and WO 01/25294 (3) disclose open-chain Mannich adducts of polyisobutenyl-substituted phenols, formaldehyde and amines and tetrahydrobenzoxazines with longer-chain radicals such as polyisobutene nylresten, which sit as a substituent on the benzene nucleus, as a valve-cleaning and valve-cleaning gasoline gasoline detergents.
  • These tetrahydrobenzoxazines are obtained in accordance with the preparation processes mentioned in (2) and (3) as mixtures with the corresponding open-chain Mannich adducts of the underlying phenol and are also used in the gasoline fuels.
  • WO 07/12580 discloses the use of tetrahydrobenzoxazines as stabilizers, especially as antioxidants for protection against the action of light, oxygen and heat, for inanimate organic material, in particular for mineral oil products and fuels such as turbine fuels.
  • WO 07/099048 (5) discloses the use of polynuclear phenolic compounds having up to 20 benzene nuclei per molecule based on tetrahydrobenzoxazines as stabilizers, especially as antioxidants for protection against the action of light, oxygen and heat inanimate organic material, in particular for mineral oil products and fuels, such as turbine fuels.
  • the free valence of the oxygen atom in the structural element (I) is saturated by a hydrogen atom, so that a free phenolic structure is present.
  • the saturation of the free valence of the oxygen atom can also be effected, for example, by an optionally substituted hydrocarbyl radical or an alkylcarbonyl radical.
  • the saturation of the two free valences of the nitrogen atom in the structural element (I) is usually carried out by hydrogen and / or optionally substituted hydrocarbyl radicals.
  • the structural element (I) can be present as a benzanelated five-, six- or seven-membered heterocyclic ring, in which case the structural element (I) has, for example, the structure of a dihydrobenzisoxazole, a tetrahydrobenzoxazine or a tetrahydrobenz-1,4-oxazepine.
  • the synergistic mixture according to the invention may consist of only one component (A) and only one component (B) or of several components (A) and only one component (B) or of several components (A) and several components (B).
  • the synergistic mixture according to the invention can be used alone or in admixture with other compounds having stabilizer and / or antioxidant activity.
  • the mixture according to the invention acts synergistically in the sense of the present invention, because the desired effect of the mixture is unexpectedly stronger than the sum of the individual effects of the components (A) and (B).
  • the synergistic mixture according to the invention preferably comprises 10 to 99% by weight, in particular 50 to 95% by weight, especially 65 to 90% by weight of the composition.
  • the proportion of the synergistic mixture according to the invention in the total mixture of all compounds having stabilizer and / or antioxidant action is preferably at least 20% by weight, in particular at least 50 wt .-%, especially at least 70 wt .-%.
  • the compounds having at least one structural element of the formula (I) of components (A) are usually low molecular weight, oligomeric or polymeric organic compounds having a number average molecular weight M n of generally not more than 100,000, in particular not more than 50,000, especially not more than 25,000.
  • the synergistic mixture according to the invention comprises as component (A) at least one compound having at least one structural element of the formula (Ia) or (Ib)
  • benzene nucleus in which the benzene nucleus can still carry substituents at one or more of the free positions and the saturation of the free valences on the nitrogen atom takes place as described above.
  • the ortho (aminomethyl) phenol structural element (Ia) of component (A) is usually generated by a Mannich reaction of a phenol or phenol derivative with formaldehyde and ammonia, a primary amine or a secondary amine.
  • a Mannich reaction of a phenol or phenol derivative with formaldehyde and ammonia, a primary amine or a secondary amine is usually generated by a Mannich reaction of a phenol or phenol derivative with formaldehyde and ammonia, a primary amine or a secondary amine.
  • other preparation routes are also possible.
  • the tetrahydrobenzoxazine structural element (Ib) is usually formed by reaction of a phenol or phenol derivative with formaldehyde and ammonia, a primary amine or a secondary amine using at least the stoichiometrically necessary twice the molar amount of formaldehyde and under suitable reaction conditions.
  • a phenol or phenol derivative with formaldehyde and ammonia, a primary amine or a secondary amine using at least the stoichiometrically necessary twice the molar amount of formaldehyde and under suitable reaction conditions.
  • other preparation routes are also possible.
  • a synergistic mixture comprising as component (A) at least one compound having at least one structural element of the formula (I), (Ia) or (Ib) in which the nitrogen atom or the benzene nucleus at least one hydrocarbyl radical having at least 4, preferably with at least 13, with at least 16, with at least 20, with at least 21, with at least 23, with at least 25, with at least 26 or with at least 30 carbon atoms.
  • a Hydro carbylreste may for example be a polyisobutene.
  • the synergistic mixture according to the invention comprises as component (A) at least one Mannich reaction product of the general formula II
  • R 1 is the group NR 6 R 7 , wherein R 6 and R 7 are independently selected from hydrogen, C 1 - to C 20 -alkyl, C 3 - to C 8 -cycloalkyl, C 6 - to Cu -Aryl- and d- to C2o-alkoxy, which may be interrupted and / or substituted by heteroatoms selected from nitrogen and oxygen, and phenol radicals of the formula III
  • R 6 and R 7 may also together with the nitrogen atom to which they are attached form a five, six or seven membered ring having one or two heteroatoms selected from nitrogen and oxygen and / or having one or two or three C 1 to C 6 alkyl radicals may be substituted,
  • the substituent R 4 in formula II and III denotes a terminally bound polyisobutene radical having from 13 to 3,000, in particular from 20 to 2,000, especially from 23 to 1, 150 carbon atoms,
  • the substituents R 2 , R 3 and R 5 in formula II and III independently of one another represent hydrogen, C 1 - to C 20 -alkyl radicals, C 1 - to C 20 -alkoxy radicals, C 2 - to C 4 -ox interrupted by one or more oxygen atoms, sulfur atoms or groups NR 8 Alkyl radicals, hydroxyl groups, polyalkenyl radicals or groups of the formula -CH 2 NR 6 R 7 , where R 6 and R 7 have the abovementioned meaning and R 8 is hydrogen, C 1 to C 6 alkyl, C 3 to C 8 cycloalkyl or C 6 to C 4 aryl.
  • the said Mannich reaction products II are preferably prepared by reacting polyisobutene-substituted phenols obtainable by alkylation of phenols with highly reactive polyisobutenes, either (i) with formaldehyde or oligo- or polymers of formaldehyde in the presence of a secondary amine or (ii) reacting with an adduct of at least one amine on formaldehyde, another formaldehyde source or a formaldehyde equivalent.
  • those Mannich reaction products II are preferably prepared in which R 6 and R 7 are not simultaneously hydrogen.
  • Highly reactive polyisobutenes are to be understood here as meaning those which have a proportion of ⁇ - and ⁇ -containing vinylidene double bonds of at least 50 mol%, preferably of at least 60 mol%, in particular of at least 80 mol%, especially of at least 85 Mole%, based on the polyisobutene macromolecules.
  • These highly reactive polyisobutenes usually have a number average molecular weight of 300 to 15,000 and a polydispersity of less than 3.0.
  • phenols unsubstituted phenol or substituted phenols, in particular ortho-alkyl-substituted phenols, can be used as starting material. Preference is given to monophenols, but in principle also suitable phenols having 2 or 3 hydroxyl groups on the benzene nucleus.
  • substituents on the phenol nucleus in particular C 1 - to C 20 -alkyl radicals, in particular C 1 - to C 4 -alkyl radicals, C 1 - to C 20 -alkoxy radicals, in particular C 1 - to C 4 -alkoxy radicals, or further polyalkenyl radicals, in particular polyisobutene radicals of described above, occur.
  • Typical examples of such substituted phenols are 2-methylphenol, 2-ethylphenol and 2-tert-butylphenol.
  • the alkylation of phenols with these highly reactive polyisobutenes is preferably carried out in the presence of a conventional kyl istskatalysators Al at a temperature below about 50 0 C.
  • Suitable formaldehyde sources for the reaction to the Mannich reaction product according to route (i) or to the amine adduct according to route (ii) are formalin solution, formaldehyde oligomers such as trioxane and formaldehyde polymers such as paraformaldehyde. Formalin solution and paraformaldehyde are particularly easy to handle. Of course you can also use gaseous formaldehyde.
  • Suitable amines for the reaction to the Mannich reaction product according to route (i) normally have a secondary amino function, no primary amino function and optionally one or more tertiary amino functions, since larger amounts of undesired oligomerization products can occur in the reaction with primary amines.
  • amines having at least one primary amine function or at least one secondary amine function are normally suitable.
  • Preferred radicals for the substituents R 6 and R 7 on the nitrogen atom are, independently of one another, hydrogen, C 1 - to C 5 -alkyl, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert. Butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl or 2-ethylhexyl, C 1 to C 4 alkoxy such as methoxy or ethoxy and also cyclohexyl and phenyl.
  • the substituents R 6 and R 7 may together form a five-, six- or seven-membered saturated or partially unsaturated heterocyclic ring which, in addition to the nitrogen atom from the group NR 6 R 7 , may contain further nitrogen and / or oxygen atoms; typical examples of such rings are piperidine, piperazine and morpholine.
  • Mannich reaction products of the general formula II are according to the teaching of documents (2) and (3) the Mannich reaction products of 4-polyisobutylphenols having a number average molecular weight of the polyisobutyl rest of 500 to 2300 with (path i) formaldehyde and morpholine, di [3- (dimethylamino) -n-propyl] -amine, tetramethylmethylenediamine or dimethylamine or (route ii) with an adduct of formaldehyde and 3- (dimethylamino) -n-propylamine or tert-butylamine.
  • the inventive synergistic mixture comprises as component (A) at least one tetrahydrobenzoxazine of the general formula IV
  • substituent R 9 denotes a hydrocarbyl radical having 1 to 3000 carbon atoms which may be interrupted by one or more heteroatoms from the group O and S and / or by one or more groupings NR 14 ,
  • R 14 denotes a hydrogen atom or a C 1 to C 4 alkyl radical
  • R 10 , R 11 , R 12 and R 13 independently of one another represent hydrogen atoms, hydroxyl groups or hydrocarbyl radicals each having 1 to 3000 carbon atoms which are represented by one or more heteroatoms from the group O and S and / or by one or more groupings NR 14 may be interrupted, where R 14 has the abovementioned meaning,
  • substituents R 9 , R 10 , R 11 and R 13 have the abovementioned meanings and the substituent X denotes a hydrocarbon bridge member which consists of one or more isobutene units or contains one or more isobutene units, or
  • substituents R 9 , R 10 , R 11 and R 13 have the abovementioned meanings and the substituents R 17 and R 18 may be identical or different and denote hydrogen or a C 1 - to C 10 -alkyl radical,
  • R 15 and R 16 independently of one another are hydrocarbyl radicals each having 1 to 3000 carbon atoms, which may be interrupted by one or more heteroatoms from the group O and S and / or by one or more groupings NR 14 ,
  • R 9 , R 10 , R 11 , R 12 , R 13 , R 15 or R 16 has 4 to 3000 carbon atoms and the other substituents from the group R 9 , R 10 , R 11 , R 12 , R 13 , R 15 and R 16 when they are hydrocarbyl radicals, each having 1 to 20 carbon atoms.
  • the structural peculiarity of the tetrahydrobenzoxazines of the general formula IV is that they contain at least one longer-chain hydrocarbyl radical having 4 to 3000 carbon atoms as one of the substituents R 9 , R 10 , R 11 , R 12 , R 13 , R 15 or R 16 either on Benzene nucleus or on an oxazine ring.
  • this longer-chain hydrocarbyl radical having from 4 to 3000 carbon atoms is a polyisobutenyl radical.
  • Said long-chain hydrocarbyl group may indicate loading in a further preferred embodiment, a Ci6- to C 2 o alkyl or alkenyl group.
  • this relatively long sitting hydrocarbyl radical which is preferably a polyisobutenyl group or a Ci6- to C 2 o alkyl or alkenyl radical of an oxazine ring, that is, it occurs as a substituent R 9 or R 15 or R 16.
  • this relatively long hydrocarbyl radical which is preferably a polyisobutenyl group or a Ci6- to C 2 o alkyl or alkenyl radical, and the benzene nucleus as a substituent R 10 or R 12th
  • This longer-chain hydrocarbyl radical which is preferably a polyisobutenyl radical or a
  • Ci6- to C 2 o-alkyl or alkenyl radical preferably comprises 16 to 3000, especially 20 to 1000, especially 25 to 500, most preferably 30 to 250 carbon atoms.
  • these number average molecular weights M n of 200 to 40,000, preferably 500 to 15,000, in particular 700 to 7,000, especially 900 to 3000, most preferably 900 to 1 100 on.
  • Ci6- to C 2 o alkyl or alkenyl radicals may conveniently be the residues of corresponding gestreliten or unsaturated fatty alcohols having 16 to 20 carbon atoms are suitable.
  • n-hexadecyl (palmityl), n-octadecyl (stearyl), n-eicosyl, oleyl, linolyl and linolenyl are mentioned here, which according to their natural occurrence usually occur as technical mixtures with one another.
  • Said longer-chain hydrocarbyl radical having 4 to 3000 carbon atoms may also be present in the tetrahydrobenzoxazines IV more than once, for example twice or three times.
  • This longer-chain hydrocarbyl radical which is preferably a polyisobutyl radical and / or a C 16- to C 20 -alkyl or alkenyl radical, occurs, for example, as a substituent R 9 and R 12 or R 9 and R 15 in the case of double occurrence.
  • one or two polyisobutenyl radicals having a number average molecular weight M n of from 200 to 40,000 occur in the molecule as substituent R 9 and / or R 10 and / or R 12 and / or R 15 and / or R 16 .
  • the remaining substituents from the group R 9, R 10, R 11, R 12, R 13, R 15 and R 16, which are not n substituents having from 4 to 3000 carbon atoms or polyisobutenyl radicals having a number-average molecular weights M are 200-40000 , independently of one another denote hydrogen atoms, hydroxyl groups or, when they are hydrocarbyl radicals, usually shorter-chain hydrocarbyl radicals having 1 to 20, preferably 1 to 12, especially 1 to 8 carbon atoms, very particularly preferably linear or branched C 1 -C 4 -alkyl radicals.
  • Typical examples of the latter are methyl, ethyl, n-propyl, iso-propyl, n-butyl, 2-butyl, sec-butyl and tert-butyl.
  • Methyl radicals and tert-butyl radicals are very particularly preferred here.
  • Preferred tetrahydrobenzoxazines IV are also those in which the substituents R 10 and / or R 12 , when they are shorter-chain hydrocarbyl radicals, linear or branched C 1 to C 4 alkyl radicals, in particular methyl radicals and / or tert-butyl radicals designate.
  • substituents R 10 and / or R 12 when they are shorter-chain hydrocarbyl radicals, linear or branched C 1 to C 4 alkyl radicals, in particular methyl radicals and / or tert-butyl radicals designate.
  • substitution patterns are only suitable for tetrahydrobenzoxines I with a total of one or two tetrahydrooxazine ring systems.
  • the substituent X denotes a hydrocarbon bridge member which consists of one or more, preferably 4 to 800, in particular 10 to 300, especially 12 to 100 isobutene units or one or more, preferably 4 to 800 , in particular 10 to 300, especially 12 to 100 isobutene units. If X consists of isobutene units, the linkage usually takes place via the ⁇ - and the ⁇ -carbon atom.
  • X contains further hydrocarbon units
  • these are preferably initiator molecule units arranged in the center, such as aromatic ring systems, for example o-, m- or p-phenylene units, and / or hydrocarbon units with functional groups for linking, for example o-, m- or p-hydroxyphenyl groups, as bilateral chain termination.
  • aromatic ring systems for example o-, m- or p-phenylene units
  • hydrocarbon units with functional groups for linking for example o-, m- or p-hydroxyphenyl groups
  • the substituents R 17 and R 18 are preferably hydrogen and / or linear or branched C 1 -C 4 -alkyl radicals, in particular methyl radicals.
  • compounds I having a radical Z and compounds I having the corresponding radical Z ' can also be present as mixtures.
  • Hydrocarbyl radicals having from 1 to 3000 or from 4 to 3000 carbon atoms for the substituents R 9 , R 10 , R 11 , R 12 , R 13 , R 15 and R 16 are to be understood as meaning pure hydrocarbon radicals of any structure which, by definition, are also represented by a or more heteroatoms from the group O and S and / or may be interrupted by one or more groups NR 6 .
  • hydrocarbyl radicals are alkyl, alkenyl, cycloalkyl, aryl, alkylaryl, alkenylaryl or arylalkyl radicals.
  • hydrocarbyl radicals are also meant in which the groups NR 14 are formally inserted in a CH bond at the end, that is to say, for example, substituents R 9 , R 10 , R 11 , R 12 , R 13 , R 15 or R 16 with a Nhb end group.
  • Such hydrocarbyl radicals are derived, for example, from polyamines such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, etc., in which one of the terminal nitrogen atoms is the N atom in the oxazine ring.
  • tetrahydrobenzoxazines IV having a tetrahydrooxazine ring on the benzene nucleus which are typical in the context of the present invention are the following, where "PIB” is a polyisobutenyl radical derived from a highly reactive polyisobutene (M n 1000) and "PIB * " is a highly reactive polyisobutene (M n 870) derived polyisobutenyl bridge member:
  • the synergistic mixture according to the invention comprises as component (A) at least one polynuclear phenolic compounds having up to 20 benzene nuclei per molecule, which by reacting a tetrahydrobenzoxazine of the general formula XXVI
  • substituent R 19 denotes a hydrocarbyl radical having 1 to 3000 carbon atoms which may be interrupted by one or more heteroatoms from the group O and S and / or by one or more groupings NR 24 ,
  • R 24 denotes a hydrogen atom or a C 1 to C 4 alkyl radical
  • substituents R 25 , R 26 , R 27 and R 28 independently of one another represent hydrogen atoms, hydroxyl groups or hydrocarbyl radicals each having 1 to 3000 carbon atoms, which are represented by one or more heteroatoms from the group O and S and / or by one or more several groups NR 24 may be interrupted, wherein R 24 has the abovementioned meaning,
  • the substituent R 25 may also be a radical derived from a tetrahydrobenzoxazine of the general formula XXVI
  • the substituent R 33 is hydrogen or a radical derived from a tetrahydrobenzoxazine of the general formula XXVI
  • the substituents R 29 and R 30 may be identical or different and denote hydrogen or a C 1 to C 10 alkyl radical
  • R 19 , R 20 , R 21 , R 22 , R 23 , R 25 , R 26 , R 27 , R 28 , R 31 or R 32 has 13 to 3000 carbon atoms and the other substituents from the group R 19 , R 20 , R 21 , R 22 , R 23 , R 25 , R 26 , R 27 , R 28 , R 31 or R 32 , when they are hydrocarbyl radicals, each having 1 to 20 carbon atoms,
  • polynuclear phenolic compounds have at least one longer chain hydrocarbyl radical having 13 to 3000 carbon atoms as one of the substituents R 19 , R 20 , R 21 , R 22 , R 23 , R 25 , R 26 , R 27 , R 28 , R 31 or R 32 , which originate from the tetrahydrobenzoxazines used XXVI or phenols XXVII contain.
  • this long-chain hydrocarbyl radical having from 13 to 3000 carbon atoms is a polyisobutenyl radical.
  • Said longer-chain hydrocarbyl radical can be used in a further embodiment also a Ci ⁇ - to C2o-alkyl or alkenyl radical.
  • this relatively long-chain hydrocarbyl radical which is preferably a polyisobutenyl radical, is attached to an oxazine ring or to a benzene nucleus in ortho or preferably para-position to the phenolic hydroxyl group, ie it occurs as substituent R 19 or R 20 or R 22 or R 25 or R 27 or R 31 or R 32 .
  • This longer-chain hydrocarbyl radical which is preferably a polyisobutenyl radical, preferably comprises 21 to 3000 or preferably 21 to 1000, in particular 26 to 3000 or in particular 26 to 500, especially 30 to 3000 or especially 30 to 250 carbon atoms.
  • these number average molecular weights M n of 183 to 42,000, preferably 500 to 15,000, in particular 700 to 7,000, especially 900 to 3000, most preferably 900 to 1 100 on.
  • Suitable C 16- to C 20 -alkyl or -alkenyl radicals are expediently the radicals of corresponding saturated or unsaturated fatty alcohols having 16 to 20 carbon atoms.
  • n-hexadecyl (palmityl), n-octadecyl (stearyl), n-eicosyl, oleyl, linolyl and linolenyl are mentioned here, which according to their natural occurrence usually occur as technical mixtures with one another.
  • Said longer-chain hydrocarbyl radical having from 13 to 3000 carbon atoms may also be present in said polynuclear phenolic compounds several times, for example twice or three times.
  • one or two polyisobutenyl radicals having a respective number average molecular weight M n of from 183 to 42,000 in the molecule occur as substituent R 19 and / or R 20 and / or R 22 and / or R 25 and / or R 27 and /. or R 31 and / or R 32 .
  • Typical examples of the latter are methyl, ethyl, n-propyl, iso-propyl, n-butyl, 2-butyl, sec-butyl and tert-butyl.
  • Methyl radicals and tert-butyl radicals are very particularly preferred here.
  • Preferred phenolic compounds are also those in which the substituents R 20 and / or R 22 and / or R 25 and / or R 27 deriving from the tetrahydrobenzoxazines XXVI or phenols XXVII used, when they are short-chain hydrocarbyl radicals, are linear or branched d - Denote C4-alkyl radicals, in particular methylres- and / or tert-butyl radicals. Of course, such substitution patterns are only suitable for tetrahydrobenzoxazines XXVI with a total of one or two tetrahydrooxazine ring systems.
  • the substituents R 29 and R 30 are preferably hydrogen and / or linear or branched C 1 -C 4 -alkyl radicals, in particular methyl radicals.
  • compounds XXVI having a radical Z "and compounds XXVI having the corresponding radical Z '" can also be present as mixtures.
  • Hydrocarbyl radicals having 1 to 3000 or 13 to 3000 carbon atoms for the substituents R 19 , R 20 , R 21 , R 22 , R 23 , R 25 , R 26 , R 27 , R 28 , R 31 and R 32 are intended to be pure here Hydrocarbon radicals of any structure are understood that by definition can also be interrupted by one or more heteroatoms from the group O and S and / or by one or more groups NR 24 .
  • a typical hydrocarbyl radical interrupted by an NR 6 moiety is derived from 3- (dimethylamino) propylamine.
  • hydrocarbyl radicals are alkyl, alkenyl, cycloalkyl, aryl, alkylaryl, alkenylaryl or arylalkyl radicals.
  • radicals are also meant in which the groupings NR 24 are formally inserted in a CH bond at the end, that is to say, for example, substituents R 19 , R 20 , R 21 , R 22 , R 23 , R 25 , R 26 , R 27 , R 28 , R 31 or R 32 with an NH 2 end group.
  • Such hydrocarbyl radicals are derived, for example, from polyamines such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetra-ethylenepentamine, etc., in which one of the terminal nitrogen atoms is the N atom in the oxazine ring.
  • alkyl embraces straight-chain and branched alkyl groups for the abovementioned compounds.
  • alkyl groups are, in addition to the above-mentioned methyl, ethyl, n-propyl, iso-propyl, n-butyl, 2-butyl, sec-butyl and tert-butyl radicals, in particular also n-pentyl, 2-pentyl, 2-methylbutyl, 3-methylbutyl, 1, 2-dimethylpropyl, 1, 1-dimethylpropyl, 2,2-dimethylpropyl, 1-ethylpropyl, n-hexyl, 2-hexyl, 2- Methylpentyl, 3-methylpentyl, 4-methylpentyl, 1, 2-dimethylbutyl, 1, 3-dimethylbutyl, 2,3-dimethylbutyl, 1,1-dimethyl-butyl, 2,2-dimethylbutyl, 3,3-dimethyl
  • alkenyl radicals for the abovementioned compounds are vinyl, 1-propenyl, 2-propenyl, oleyl, linolyl and linolenyl.
  • Cylcoalkylreste for the aforementioned compounds are Cs to C7 cycloalkyl groups such as cyclopentyl, cyclohexyl and cycloheptyl, which may be substituted by alkyl groups, such as methyl radicals.
  • alkyl groups such as methyl radicals.
  • aryl includes mononuclear, binuclear, trinuclear and higher nuclear aromatic hydrocarbon radicals for the aforementioned compounds. In the case of a substitution by the abovementioned alkyl and / or alkenyl radicals into alkylaryl or alkenylaryl radicals, these aryl radicals may also carry 1, 2, 3, 4 or 5, preferably 1, 2 or 3 substituents.
  • Typical examples are phenyl, ToIyI, XyIyI, mesityl, naphthyl, fluorenyl, anthracenyl, phenanthrenyl, naphthacenyl and styrene.
  • a typical example of an arylalkyl radical is benzyl.
  • the longer-chain hydrocarbyl radical having from 4 to 3,000 or having from 13 to 3,000 carbon atoms is a polyisobutenyl radical
  • it can in principle be based on any conventional and commercially available polyisobutene which is introduced in a suitable manner into the synthesis of tetrahydrobenzoxazines IV or of said polynuclear phenolic compounds ,
  • Such a polyisobutene has a number average molecular weight M n of at least 183 or 200.
  • polyisobutenes having a number average molecular weight M n in the range from 200 to 40,000 or from 183 to 42,000, particularly preferably from 500 to 15,000, in particular from 700 to 7,000, in particular from 800 to 5000, especially from 900 to 3000 and very particularly preferably from 900 to 1 100.
  • polyisobutene also includes oligomeric isobutenes such as dimeric, trimeric, tetrameric, pentameric, hexameric and heptameric isobutene.
  • the polyisobutenyl radicals incorporated in the abovementioned compounds are derived from so-called "reactive" polyisobutene.
  • "Highly reactive" polyisobutenes differ from the "low-reactivity" polyisobutenes in the content of terminal double bonds.
  • highly reactive polyisobutenes contain at least 50 mol% terminal double bonds, based on the total number of polyisobutene macromolecules.
  • the substantially homopolymeric polyisobutenyl radicals have uniform polymer skeletons.
  • these are understood to mean those polyisobutene systems which contain at least 85% by weight, preferably at least 90% by weight and more preferably at least 95% by weight, of isobutene units of the repeat unit [-CH 2 C ( CH3) 2-] are constructed.
  • a further preferred feature of the polyisobutenes which may underlie the tetrahydrobenzoxazines IV or the multinuclear phenolic compounds is that they contain at least 15% by weight, in particular at least 50% by weight, especially at least 80% by weight .-% with a tert-butyl group [-CH 2 C (CH 3) 3] are terminated.
  • the tetrahydrobenzoxazines XXVI or phenols XXVII preferably polyisobutenes used as the starting material for the tetrahydrobenzoxazines IV or the polynuclear phenolic compounds mentioned preferably have a polydispersity index (PDI) of from 1:05 to 10, preferably from 1 , 05 to 3.0, especially from 1.05 to 2.0.
  • the average polydispersity index PDI for the polyisobutenyl radicals in the said polynuclear phenolic compounds is at most 5 times, preferably at most 3 times, in particular at most 2 times, especially at most 1, 5 times, the average polydispersity index PDI for the polyisobutenyl radicals in the underlying tetrahydrobenzoxazines XXVI and / or phenols XXVII.
  • polyisobutene which is preferably used as the basis for the abovementioned compounds also includes all polymers obtainable by cationic polymerization, which preferably contain at least 60% by weight of isobutene, more preferably at least 80% by weight, especially at least 90% Wt .-% and in particular at least 95 wt .-% of isobutene in copolymerized form.
  • the polyisobutenes may contain further butene isomers, such as 1- or 2-butene, as well as various olefinically unsaturated monomers which are copolymerizable with isobutene under cationic polymerization conditions in copolymerized form.
  • C4 cuts from the isobutene are accordingly suitable -Dehydrogenation, C4 Slices from Steam Crackers, FCC Crackers (FCC: Fluid Catalyzed Cracking) provided that they are substantially free of 1,3-butadiene contained therein.
  • Particularly suitable C4 hydrocarbon streams generally contain less than 500 ppm, preferably less than 200 ppm of butadiene.
  • vinylaromatics such as styrene and .alpha.-methylstyrene, C.sub.1-C.sub.4-alkylstyrenes such as 2-, 3- and 4-methylstyrene, and 4-tert-butylstyrene, isoolefins having 5 to 10 carbon atoms such as 2 Methylbutene-1, 2-methylpentene-1, 2-methylhexene-1, 2-ethylpentene-1, 2-ethylhexene-1 and 2-propylheptene-1 into consideration.
  • Typical polyisobutenes which can serve as a basis for the abovementioned compounds are, for example, the Glissopal® grades from BASF Aktiengesellschaft, eg. Glissopal 550, Glissopal 1000 and Glissopal 2300, as well as the Oppanol® brands of BASF Aktiengesellschaft, eg Oppanol B10, B12 and B15.
  • polyisobutenyl radicals those which are derived from oligomers or polymers of C 2 - to C 12 -olefins and have on average from 13 to 3000 carbon atoms can also be used as relatively long-chain hydrocarbyl radicals for the tetrahydrobenzoxazine IV or said polynuclear phenolic compounds.
  • Such mostly polydisperse hydrocarbyl radicals with a polymeric distribution are, for example, those derived from ethylene, propylene, butene, styrene, methylstyrene, hexene-1, octene-1, decene-1 or dodecene-1. They can be homo- or copolymer residues.
  • Their number average molecular weight M n is at least 183, their polydispersity index PDI usually 1, 05 to 10. In the case of low molecular weight radicals with M n from 183 to about 500, they can also be monodisperse.
  • said polynuclear phenolic compounds have an average molecular weight M n of from 41 to 25,000.
  • the molecular weight M n of 411 represents the smallest representatives of the polynuclear phenolic compounds in the context of the present invention, namely bis (ortho or para-hydroxybenzyl) tridecylamine.
  • Particularly preferred ranges for M n are 523 to 25,000 or 523 to 17,000, especially 593 to 25,000 or 593 to 10,000, especially 649 to 25,000 or 649 to 5000.
  • polynuclear phenolic compounds typical of the present invention are the following, where "PIB” denotes a polyisobutenyl radical derived from a highly reactive polyisobutene (M n 1000):
  • the sulfur-containing organic compounds with antioxidant activity of the components (B) are usually low molecular weight or oligomeric organic compounds having a number average molecular weight M n of usually a maximum of 2500, in particular a maximum of 1200, especially a maximum of 750.
  • the synergistic mixture according to the invention comprises as component (B) at least one organic compound having at least one grouping - (S) x -, in particular having one or two groups - (S) x -, in which x is an integer from 1 to 20, preferably from 1 to 10, in particular from 1 to 5, especially for the number 1 or 2, stands.
  • the groupings - (S) x - are preferably bonded either on both sides to carbon atoms of organic radicals and / or to a carbon atom of an organic radical and a hydrogen atom.
  • These organic compounds are usually mercaptans, sulfides, disulfides or polysulfides; they may be aliphatic or aromatic or heterocyclic ring systems.
  • Typical representatives of sulfur-containing organic compounds with antioxidant activity as component (B) are the following:
  • thioglycols such as monothioethylene glycol
  • Longer-chain dialkyl sulfides in particular di-C 4 - to C 30 -alkyl sulfides, especially di-C 1 - to C 18 -alkyl disulfides such as di-n-octyl sulfide, di-n-decyl sulfide, di-n-dodecyl sulfide,
  • dialkyl disulphides in particular di-C 4 - to C 30 -alkyl disulphides, especially di-C 1 - to cis-alkyl disulphides such as di-n-octyl disulphide, di-n-decyl disulphide, di-n-dodecyl disulphide, di-n- tetradecyl disulfide, di-n-hexadecyl disulfide and di-n-octadecyl disulfide
  • Di- (C 4 -C 30 -alkyl) -3,3'-thiopropionates in particular di- (C 1 -C 18 -alkyl) -3,3'-thiopropionates, such as di-n-octyl-3,3'- thiopropionate, di-n-decyl-3,3'-thiopropionate, di-n-dodecyl-3,3'-thiopropionate, di-n-tetradecyl-3,3'-thiopropionate, di-n-hexadecyl-3,3 '-thiopropionate and di-n-octadecyl-3,3'-thiopropionate
  • Tetrakis [methylene-2- (C 4 -C 30 -alkylthio) propionate] -methanes in particular tetrakis [methylene-2- (C 8 -C 18 -alkylthio) propionate] -methanes such as tetrakis [methylene-2] (laurylthio) propionate] methane
  • C 4 to C 30 -alkyl thiopropylamides especially C 1 to ds-alkylthiopropylamides such as stearylthiopropylamide
  • hydroxyl-containing diaryl sulfides in particular hydroxyl-containing diphenyl sulfides, such as 4,4'-thio-bis (2-tert-butyl-5-methylphenol), 4,4'-thio-bis (6-tert-butyl-5-methylphenol) and 4,4'-thio-bis (2-tert-butyl-6-methylphenol)
  • Zinc salts of dialkyldithiocarbamic acids such as the zinc salt of dimethyldithiocarbamic acid
  • Zinc dialkyldithiophosphates such as zinc di (4-methylpentyl) -2-dithiophosphonate
  • Reaction products of terpenes ( ⁇ -pinene), resin oils or low molecular weight polybutenes with sulfur or thiophenol for example the reaction products of polyisobutenes with elemental sulfur to polyisobutyl-substituted sulfur-containing five-membered heterocycles or with thiophenol to phenyl-polyisobutylsulfide
  • the synergistic mixture according to the invention is suitable as a stabilizer for stabilizing inanimate organic material against the action of light, oxygen and heat.
  • This is to be understood in particular as their mode of action as an antioxidant system in the conventional sense.
  • antioxidant systems in the conventional sense are intended to prevent the storage of inanimate organic material - such as a fuel or a mineral oil product - in the presence of ubiquitous oxygen under the influence of light and / or heat reactive oxidation products, in particular reactive peroxides, form, once, with decomposition (autoxidation) of the material to unwanted by-products and / or impurities - in the case of fuels, for example, harmful resinous or sticky or harmful hard or paint-like precipitates ("gum" - education) - lead to another Damage to surrounding materials such as packaging, components or devices - in the case of fuels such as damage or embrittlement of seals or similar components in the engine - can cause.
  • the syngergistic mixture according to the invention is incorporated into the material to be stabilized during or after its preparation and distributed as homogeneously as possible.
  • concentration of the synergistic mixture according to the invention in the organic material to be stabilized is generally from 0.0001 to 5% by weight, preferably from 0.001 to 5% by weight, in particular from 0.01 to 2% by weight, in particular 0, 05 to 1 wt .-% or in particular 0.01 to 0.05 wt .-%, each based on the organic material.
  • inanimate organic material are meant, for example, cosmetic preparations such as ointments and lotions, pharmaceutical formulations such as pills and suppositories, photographic recording materials, in particular photographic emulsions, paints and plastics.
  • cosmetic preparations such as ointments and lotions
  • pharmaceutical formulations such as pills and suppositories
  • photographic recording materials in particular photographic emulsions, paints and plastics.
  • petroleum products and fuels e.g. Diesel fuel, gasoline, turbine fuel, engine oils, lubricating oils, gear oils and greases.
  • plastics which can be stabilized by the synergistic mixture according to the invention mention may be made, for example: Polymers of monoolefins or diolefins, such as low or high density polyethylene, polypropylene, linear polybutene-1, polyisoprene, polybutadiene and copolymers of monoolefins or diolefins or mixtures of said polymers;
  • Polystyrene and copolymers of styrene or ⁇ -methylstyrene with dienes and / or acrylic derivatives e.g. Styrene-butadiene, styrene-acrylate (SAN), styrene-ethyl methacrylate, styrene-butadiene-ethyl acrylate, styrene-acrylonitrile-methacrylate, acrylonitrile-butadiene-styrene (ABS) or methyl methacrylate-butadiene-styrene (MBS); halogen-containing polymers, e.g. Polyvinyl chloride, polyvinyl fluoride, polyvinylidene fluoride and their copolymers;
  • Polymers derived from ⁇ , ß-unsaturated acids and their derivatives such as polyacrylates, polymethacrylates, polyacrylamides and polyacrylonitriles;
  • Polymers which are derived from unsaturated alcohols and amines or from their acyl derivatives or acetals, e.g. Polyvinyl alcohol and polyvinyl acetate;
  • Polyurethanes in particular thermoplastic polyurethanes, polyamides, polyureas, polyphenylene ethers, polyesters, polycarbonates, polysulfones, polyethersulfones and polyether ketones.
  • the paints that can be stabilized with the synergistic mixture according to the invention include, inter alia, lacquers such as alkyd resin lacquers, dispersion lacquers, epoxy resin lacquers, polyurethane lacquers, acrylic resin lacquers and cellulose nitrate lacquers, or lacquers such as wood preserving lacquers.
  • lacquers such as alkyd resin lacquers, dispersion lacquers, epoxy resin lacquers, polyurethane lacquers, acrylic resin lacquers and cellulose nitrate lacquers, or lacquers such as wood preserving lacquers.
  • Another object of the present invention is inanimate organic material containing at least one synergistic mixture according to the invention.
  • a preferred subject of the present invention is a fuel composition which contains a fuel and at least one synergistic mixture according to the invention.
  • the synergistic mixture according to the invention is particularly advantageously suitable as a stabilizer in turbine fuels (jet fuels).
  • This also means their mode of action as an antioxidant system in the conventional sense.
  • it serves via its mode of action as a stabilizer for improving the thermal stability of turbine fuels.
  • it also prevents, in particular via its mode of action as a stabilizer, ie in its capacity as a dispersant, deposits in the fuel system and / or combustion system of turbines.
  • Turbine fuels are mainly used to operate aircraft turbines.
  • Another object of the present invention is a turbine fuel composition containing a jet fuel and at least one synergistic mixture according to the invention.
  • the turbine fuel composition of the invention contains a major amount of liquid turbine fuel, such as turbine fuel common in civil or military aviation. These include, for example, fuels named Jet Fuel A, Jet Fuel A-1, Jet Fuel B, Jet Fuel JP-4, JP-5, JP-7, JP-8 and JP-8 + 100. Jet A and Jet A-1 are commercially available turbine fuel specifications based on kerosene. The associated standards are
  • Jet B is a further cut fuel based on naphtha and kerosene fractions.
  • JP-4 is equivalent to Jet B.
  • JP-5, JP-7, JP-8 and JP-8 + 100 are military turbine fuels, such as those used by the Navy and Air Force. In part, these standards refer to formulations which already contain other additives, such as corrosion inhibitors, anti-icing agents, static dissipators, etc.
  • the synergistic mixture according to the invention can be added to the turbine fuel or the turbine fuel composition in combination with other additives known per se.
  • Suitable additives which may be included in the turbine fuel composition of the present invention include, but are not limited to, detergents, corrosion inhibitors, sulfur-free antioxidants such as hindered tert-butylphenols, N-butylphenylenediamines or N, N'-diphenylamine and derivatives thereof, metal deactivators such as N, N '.
  • Preferred additives in the context of the present invention are the following specific classes of compounds (C), (D) and (E):
  • Preferred additives (C) are derived from succinic anhydride compounds with long-chain hydrocarbon radicals having usually 15 to 700, especially 30 to 200 carbon atoms. These compounds may have further functional groups which are preferably selected from hydroxy, amino, amido and / or imido groups. Preferred additives are the corresponding derivatives of polyalkenyl succinic anhydride, which z. Example, by reaction of polyalkenes with maleic anhydride by thermal means or via the chlorinated hydrocarbons are available.
  • the number-average molecular weight of the long-chain hydrocarbon radicals is preferably in a range from about 200 to 10,000, particularly preferably 400 to 5000, in particular 600 to 3000 and especially 650 to 2000.
  • these long-chain hydrocarbon radicals are derived from conventional and in particular from the aforementioned reactive Polyisobutenes from.
  • additives (C) are the derivatives of polyalkenylsuccinic anhydrides with ammonia, monoamines, polyamines, monoalcohols and polyols.
  • Polyamines preferred for derivatization include ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, propylenediamine, etc.
  • Suitable alcohols include monohydric alcohols, such as ethanol, allyl alcohol, dodecanol and benzyl alcohol, polyhydric alcohols, such as ethylene glycol, diethylene glycol, propylene glycol, 1, 2-butanediol, neopentyl glycol, glycerol, trimethylolpropane, erythritol, pentaerythritol, mannitol and sorbitol.
  • Succinic anhydride derivatives (C) suitable as additives are described, for example, in US Pat. Nos. 3,522,179, 4,234,435, 4,849,572, 4,904,401, 5,569,644 and 6,165,235.
  • Preferred additives (D) are polyalkenyl thiophosphonate esters.
  • the polyalkenyl radical of these esters preferably has a number average molecular weight in the range from about 300 to 5000, particularly preferably 400 to 2000 and in particular 500 to 1500.
  • the polyalkenyl radical is preferably derived from polyolefins, as described above for the component (C) as a long-chain hydrocarbon radical. These are in particular polyalkenyl radicals which are derived from conventional or reactive polyisobutenes.
  • Suitable processes for the preparation of suitable polyalkenyl thiophosphonate esters by reacting a polyolefin with a thiophosphorylating agent are e.g. For example, in US 5,725 61 1 described.
  • Preferred additives (E) are further Mannich adducts which differ from the Mannich reaction products of the general formula II which are to be used in the context of the present invention.
  • Such adducts are obtained in principle by Mannich reaction of aromatic hydroxyl compounds, in particular phenol and phenol derivatives, with aldehydes and mono- or polyamines.
  • it is the reaction products of polyisobutene-substituted phenols with formaldehyde and mono- or polyamines such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine or dimethylaminopropylamine.
  • the turbine fuel composition according to the invention contains the synergistic composition according to the invention in an amount of usually 0.0001 to 1 wt .-%, preferably 0.001 to 0.5 wt .-%, in particular 0.01 to 0.2 wt .-%, especially 0 , 01 to 0.1 wt .-%, most preferably 0.01 to 0.05 wt .-%, each based on the total amount of the turbine fuel composition.
  • the additives (C) to (E) and, if appropriate, further of the abovementioned additives can usually each be used in amounts of from 0.0001 to 1% by weight, preferably from 0.001 to 0.6% by weight and in particular from 0.0015 to 0 , 4 wt .-%, based on the total amount of the turbine fuel composition can be used.
  • Another object of the present invention is an additive concentrate for turbine fuels (jet fuels), which contains at least one synergistic mixture according to the invention and optionally at least one diluent and optionally at least one further additive, which is preferably selected from those described above.
  • the inventive additive concentrate as well as the turbine fuel composition according to the invention, contains one or more additives from the group (C), (D) and (E), in particular also mixtures thereof, such as (C) + (D), And (C) + (D) + (E).
  • Suitable diluents are, for example, fractions obtained in petroleum processing, such as kerosene, naphtha or mineral base oils. Also suitable are aromatic and aliphatic hydrocarbons such as Solvent Naphtha heavy, Solvesso ® or Shellsol ®, as well as mixtures of these solvents and diluents.
  • the synergistic mixture according to the invention is preferably in the additive concentrate according to the invention in an amount of 0.1 to 100 wt .-%, particularly preferably from 1 to 80 wt .-% and in particular from 10 to 70 wt .-%, based on the total weight of the concentrate , in front.
  • the synergistic mixture according to the invention is furthermore advantageously suitable as a stabilizer in gasoline fuels and in middle distillate fuels, in particular in diesel fuel and heating oil.
  • This also means their mode of action as an antioxidant system in the conventional sense.
  • they serve via their mode of action as a stabilizer for improving the thermal stability of petrol and middle distillate fuels.
  • they also prevent their action as a stabilizer, i. in their capacity as dispersant, deposits in the fuel system and / or combustion system of gasoline or diesel engines.
  • gasoline fuels are all commercially available gasoline fuel compositions into consideration.
  • a typical representative here is the market-standard basic fuel of Eurosuper according to EN 228.
  • gasoline compositions of the specification according to WO 00/47698 are also possible fields of use for the present invention.
  • Diesel fuels are usually petroleum raffinates, which generally have a boiling range of 100 to 400 ° C. These are mostly distillates with a 95% point up to 360 0 C or even beyond. However, these may also be so-called “ultra low sulfur diesel” or "city diesel", characterized by a 95% point of, for example, a maximum of 345 ° C and a maximum sulfur content of 0.005 wt .-% or by a 95% point of at - For example, 285 ° C and a maximum sulfur content of 0.001 wt .-%.
  • diesel fuels whose main constituents are longer-chained paraffins, are those produced by coal gasification or gas liquefaction (for example by Fischer-Tropsch synthesis) ["gas to liquid” (GTL) fuels] or biomass ["biomass to liquid” (BTL) fuels] are available. Also suitable are mixtures of the abovementioned diesel fuels with regenerative fuels such as biodiesel.
  • regenerative fuels such as biodiesel.
  • Diesel fuels can also contain water, for example in an amount of up to 20% by weight, for example in the form of diesel-water microemulsions or as so-called "white diesel".
  • fuel oils are low-sulfur or high-sulfur petroleum refines or stearic or lignite distillates, which usually have a boiling range of from 150 to 400 ° C.
  • Heating oils may be standard heating oil in accordance with DIN 51603-1, which has a sulfur content of 0.005 to 0.2% by weight, or are low-sulfur heating oils with a sulfur content of 0 to 0.005% by weight. %.
  • heating oil is especially called heating oil for domestic oil firing systems or fuel oil EL.
  • the synergistic mixture according to the invention can be either the respective base fuel, in particular the gasoline or diesel fuel, alone or in the form of fuel additive packages, e.g. the so-called diesel performance packages are added.
  • fuel additive packages are fuel additive concentrates and usually contain, in addition to solvents, a number of other components as coadditive, for example carrier oils, cold flow improvers, corrosion inhibitors, demulsifiers, dehazers, defoamers, cetane number improvers, combustion improvers, further antioxidants or stabilizers, antistatics, Metallocenes, metal deactivators, solubilizers, markers and / or dyes.
  • the additized gasoline or diesel fuel comprises in addition to the synergistic mixture according to the invention as further fuel additives in particular at least one detergent, hereinafter referred to as component (F).
  • Detergents or detergent additives (F) are commonly referred to as fuel deposit inhibitors.
  • the detergents are preferably amphiphilic substances which have at least one hydrophobic hydrocarbon radical having a number-average molecular weight (M n ) of from 85 to 20,000, in particular from 300 to 5,000, in particular from 500 to 2,500, and at least one polar group is selected under Fa) mono- or polyamino groups having up to 6 nitrogen atoms, at least one nitrogen atom having basic properties;
  • the hydrophobic hydrocarbon radical in the above detergent additives which provides sufficient solubility in the fuel oil composition has a number average molecular weight (M n ) of from 85 to 20,000, especially from 300 to 5,000, especially from 500 to 2,500
  • ammonia mono amines or polyamines, such as dimethylaminopropylamine, ethylenediamine, diethylenetriamine, triethylenetetramine or tetraethylenepentamine, are used.
  • Corresponding additives based on polypropene are described in particular in WO-A-94/24231.
  • these reaction products are mixtures of pure nitropolyisobutenes (for example ⁇ , ⁇ -dinitropolyisobutene) and mixed hydroxynitropolyisobutenes (for example ⁇ -nitro- ⁇ -hydroxy-polyisobutene).
  • Carboxyl groups or their alkali metal or alkaline earth metal salts (Fd) -containing additives are preferably copolymers of C 2 -C 4 olefins with maleic anhydride having a total molecular weight of 500 to 20,000, their carboxyl groups wholly or partially to the alkali metal or alkaline earth metal salts and a remaining group of the carboxyl groups reacted with alcohols or amines.
  • Such additives are known in particular from EP-A-307 815.
  • Such additives are mainly used to prevent valve seat wear and, as described in WO-A-87/01126, can be advantageously used in combination with conventional fuel detergents such as poly (iso) butenamines or polyetheramines.
  • Sulphonic acid groups or their alkali metal or alkaline earth metal salts (Fe) -containing additives are preferably alkali metal or alkaline earth metal salts of a sulfosuccinic acid alkyl ester, as described in particular in EP-A-639 632.
  • Such additives are primarily used to prevent valve seat wear and can be used to advantage in combination with conventional fuel detergents such as poly (iso) butenamines or polyetheramines.
  • Polyoxy-C2-C4-alkylene (Ff) containing additives are preferably polyether or polyetheramines, which by reaction of C2-C6o-alkanols, C6-C3o-alkanediols, mono- or di-C2-C3o-alkylamines, Ci-C3o -Alkylcyclohexanolen or Ci-C3o-alkylphenols with 1 to 30 mol of ethylene oxide and / or propylene oxide and / or butylene oxide per hydroxyl group or amino group and, in the case of polyether amines, by subsequent reductive amination with ammonia, monoamines or polyamines are available.
  • Such products are described in particular in EP-A-310 875, EP-A-356 725, EP-A-700 985 and US-A-4 877 416.
  • polyethers such products also meet carrier oil properties. Typical examples of these are tridecanol or Isotridecanolbutoxylate, Isononylphenolbutoxyl- late and Polyisobutenolbutoxylate and propoxylates and the corresponding reaction products with ammonia.
  • Carboxylic ester groups (Fg) containing additives are preferably esters of mono-, di- or tricarboxylic acids with long-chain alkanols or polyols, in particular those having a minimum viscosity of 2 mm 2 / s at 100 0 C, as described in particular in DE-A-38 38 918 are described.
  • mono-, di- or tricarboxylic acids it is possible to use aliphatic or aromatic acids, especially suitable ester alcohols or polyols are long-chain representatives having, for example, 6 to 24 C atoms.
  • esters are adipates, phthalates, isophthalates, terephthalates and trimellitates of iso-octanol, iso-nonanol, iso-decanol and of isotridecanol. Such products also meet carrier oil properties.
  • derivatives with aliphatic polyamines such as ethylenediamine, diethylenetriamine, triethylenetetramine or tetraethylenepentamine.
  • the groups having hydroxyl and / or amino and / or amido and / or imido groups are, for example, carboxylic acid groups, acid amides of monoamines, acid amides of diamines or polyamines which, in addition to the amide function, still have free amine groups, succinic acid derivatives with a Acid and an amide function, carboximides with monoamines NEN, carboxylic acid imides with di- or polyamines, which in addition to the imide function still have free amine groups, or diimides, which are formed by the reaction of di- or polyamines with two succinic acid derivatives.
  • Such fuel additives are more particularly described in US-A-4,849,572.
  • the detergent additives from the group (Fh) are preferably the reaction products of alkyl- or alkenyl-substituted succinic anhydrides, in particular of polyisobutenylsuccinic anhydrides, with amines and / or alcohols. These are thus derived from alkyl, alkenyl or polyisobutenyl succinic anhydride derivatives with amino and / or amido and / or imido and / or hydroxyl groups. It goes without saying that these reaction products are obtainable not only when substituted succinic anhydride is used, but also when substituted succinic acid or suitable acid derivatives such as succinic acid halides or esters are used.
  • the additized fuel comprises at least one detergent based on a polyisobutyl-substituted succinimide.
  • a polyisobutyl-substituted succinimide is the imides with aliphatic polyamines.
  • Particularly preferred polyamines are ethylenediamine, diethylenetriamine, triethylenetetramine, pentaethylenehexamine and above all tetraethylenepentamine.
  • the polyisobutenyl radical has a number average molecular weight M n of preferably 500 to 5000, particularly preferably 500 to 2000 and in particular about 1000.
  • Mannich reaction of substituted phenols with aldehydes and mono- or polyamines generated moieties containing (Fi) additives are preferably reaction products of polyisobutene-substituted phenols with formaldehyde and mono- or polyamines such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine or dimethylaminopropylamine.
  • Such "polyisobutene-Mannich bases" are described in particular in EP-A-831 141.
  • said detergent additives (F) are used together with the synergistic mixture according to the invention in combination with at least one carrier oil.
  • Suitable mineral carrier oils are fractions obtained in petroleum processing, such as bright stock or base oils with viscosities such as from class SN 500-2000; but also aromatic hydrocarbons, paraffinic hydrocarbons and alkoxyalkanols. Is also useful a as "hydrocrack oil" well-known te and in the refining of mineral oil fraction which is obtained (vacuum distillate cut having a boiling range of about 360-500 0 C, obtainable from at high pressure catalytically hydrogenated and isomerized and also deparaffinized natural mineral oil). Also suitable are mixtures of the abovementioned mineral carrier oils.
  • suitable synthetic carrier oils are selected from: polyolefins (polyalphaolefins or polyinteralalefins), (poly) esters, (poly) alkoxylates, polyethers, aliphatic polyetheramines, alkylphenol-initiated polyethers, alkylphenol-initiated polyetheramines and carboxylic acid esters of long-chain alkanols.
  • suitable polyethers or polyetheramines are preferably compounds containing polyoxy-C 2 -C 4 -alkylene groups, which are prepared by reacting C 2 -C 6 -alkanols, C 6 -C 50 -alkanediols, mono- or di-C 2 -C 30 -alkylamines, C 1 -C 30 -alkyl - Cyclohexanolen or Ci-C3o-Alkylphenolen with 1 to 30 mol of ethylene oxide and / or propylene oxide and / or butylene oxide per hydroxyl group or amino group and, in the case of polyether amines, by subsequent reductive amination with ammonia, mono amines or polyamines are available.
  • Such products are described in particular in EP-A 310 875, EP-A 356 725, EP-A 700 985 and US-A 4,877,416.
  • polyetheramines poly-C 2 -C 6 -alkylene oxide amines or functional derivatives thereof can be used. Typical examples of these are tridecanol or Isotridecanolbutoxylate, Isononylphenolbutoxylate and Polyisobutenolbutoxylate and propoxylates and the corresponding reaction products with ammonia.
  • carboxylic acid esters of long-chain alkanols are in particular esters of mono-, di- or tricarboxylic acids with long-chain alkanols or polyols, as described in particular in DE-A 38 38 918.
  • mono-, di- or tricarboxylic acids it is possible to use aliphatic or aromatic acids, especially suitable ester alcohols or polyols are long-chain representatives having, for example, 6 to 24 C atoms.
  • suitable representatives of the esters are adipates, phthalates, isophthalates, terephthalates and trimellitates of isooctanol, isononanol, isodecanol and Isotridecanols, such as.
  • suitable synthetic carrier oils are alcohol-started polyethers with about 5 to 35, such as. B. about 5 to 30, Cs-C ⁇ -alkylene oxide units, such as. B. selected from propylene oxide, n-butylene oxide and i-butylene oxide units, or mixtures thereof.
  • suitable starter alcohols are long-chain alkanols or long-chain alkyl-substituted phenols, where the long-chain alkyl radical is in particular a straight-chain or branched C ⁇ -ds-AlkvIrest.
  • Preferred examples are tridecanol and nonylphenol.
  • suitable synthetic carrier oils are alkoxylated alkylphenols, as described in DE-A 101 02 913.
  • Preferred carrier oils are synthetic carrier oils, with polyethers being particularly preferred.
  • the additive-added fuel is the detergent additive (F) or a mixture of various such detergent additives in a total amount of preferably 10 to 2000 ppm by weight, more preferably 20 to 1000 ppm by weight, more preferably 50 to 500 ppm by weight and in particular from 50 to 200 ppm by weight, eg from 70 to 150 ppm by weight, added.
  • F detergent additive
  • a mixture of various such detergent additives in a total amount of preferably 10 to 2000 ppm by weight, more preferably 20 to 1000 ppm by weight, more preferably 50 to 500 ppm by weight and in particular from 50 to 200 ppm by weight, eg from 70 to 150 ppm by weight, added.
  • a carrier oil is used, it is added to the additive fuel according to the invention in an amount of preferably from 1 to 1000 ppm by weight, more preferably from 10 to 500 ppm by weight and in particular from 20 to 100 ppm by weight.
  • suitable cold flow improvers are, for example, copolymers of ethylene with at least one further unsaturated monomer, e.g. Ethylene-vinyl acetate copolymers.
  • Corrosion inhibitors which are suitable as further coadditives are, for example, succinic esters, especially with polyols, fatty acid derivatives, e.g. Oleic acid esters, oligomerized fatty acids and substituted ethanolamines.
  • Demulsifiers suitable as further co-additives are, for example, the alkali and alkaline earth metal salts of alkyl-substituted phenol and naphthalenesulfonates and the alkali and alkaline earth metal salts of fatty acid, furthermore alcohol alkoxylates, e.g. Alcohol ethoxylates, phenol alkoxylates, e.g. tertiary butyl phenol ethoxylates or tertiary pentyl phenol ethoxylates, fatty acid, alkyl phenols, condensation products of ethylene oxide and propylene oxide, e.g. Ethylene oxide-propylene oxide block copolymers, polyethyleneimines and polysiloxanes.
  • alcohol alkoxylates e.g. Alcohol ethoxylates, phenol alkoxylates, e.g. tertiary butyl phenol ethoxylates or tertiary
  • Dehazers suitable as further coadditives are, for example, alkoxylated phenol-formaldehyde condensates.
  • Antifoams which are suitable as further coadditives are, for example, polyether-modified polysiloxanes.
  • Cetane number and combustion improvers suitable as further co-additives include, for example, alkyl nitrates, e.g. Cyclohexyl nitrate, and especially 2-ethylhexyl nitrate, and peroxides, e.g. Di-tert-butyl peroxide.
  • alkyl nitrates e.g. Cyclohexyl nitrate, and especially 2-ethylhexyl nitrate
  • peroxides e.g. Di-tert-butyl peroxide.
  • Sulfur-free antioxidants which are suitable as further coadditives are, for example, substituted phenols, for example 2,6-di-tert-butylphenol and 2,6-di-tert-butyl-3-methylphenol, and also phenylenediamines, for example N, N'-di-sec .-butyl-p-phenylenediamine.
  • Metal deactivators which are suitable as further coadditives are, for example, salicylic acid derivatives, for example N, N'-disalicylidene-1,2-propanediamine.
  • Suitable solvents are, in particular for fuel additive packages, for example nonpolar organic solvents, in particular aromatic and aliphatic hydrocarbons, e.g. Toluene, xylene, "white spirit” and the technical solvent mixtures of the names Shellsol® (manufacturer: Royal Dutch / Shell Group), Exxol® (manufacturer: ExxonMobil) and Solvent Naphtha.
  • nonpolar organic solvents in particular aromatic and aliphatic hydrocarbons, e.g. Toluene, xylene, "white spirit” and the technical solvent mixtures of the names Shellsol® (manufacturer: Royal Dutch / Shell Group), Exxol® (manufacturer: ExxonMobil) and Solvent Naphtha.
  • polar organic solvents especially alcohols such as 2-ethylhexanol, 2-propylheptanol, decanol and isotridecanol, into consideration.
  • the said co-additives and / or solvents are used in gasoline or diesel fuel, they are used in the amounts customary for this purpose.
  • the synergistic mixture according to the invention is furthermore particularly advantageously suitable as a stabilizer in lubricants.
  • lubricants or lubricant compositions are here motor oils, lubricating oils, gear, switching and automatic oils and related liquid compositions, which serve the lubrication of mechanically moving parts - usually as metal - be called.
  • Under stabilization is especially the improvement of the oxidation and aging stability of lubricant compositions, ie their mode of action in particular as "antioxidant system in the conventional sense" to understand.
  • the synergistic blend of the invention improves the shear stability of lubricant compositions, i. the synergistic mixture of the invention thicken the lubricant compositions more effectively.
  • the synergistic mixture of the invention also acts as a dispersant in lubricant compositions.
  • Another object of the present invention is a lubricant composition containing customary components and at least one synergistic mixture according to the invention.
  • the lubricant composition of the invention contains the inventive synergistic mixture in an amount of usually 0.001 to 20 wt .-%, preferably 0.01 to 10 wt .-%, in particular 0.05 to 8 wt .-% and especially 0.1 to 5 Wt .-%, based on the total amount of the lubricant composition.
  • the most economically important lubricant compositions are engine oils as well as gear, shift and automatic oils.
  • Motor oils usually consist of mineral base oils, which contain predominantly paraffinic constituents and are prepared by complex work-up and purification processes in the refinery, with a proportion of about 2 to 10% by weight of additives (based on the active substance contents).
  • the mineral base oils may be partially or completely replaced by synthetic components such as organic esters, synthetic hydrocarbons such as olefin oligomers, poly- ⁇ -olefins or polyolefins or hydrocracking oils.
  • Engine oils must have sufficiently high viscosities even at high temperatures to ensure a perfect lubrication effect and a good seal between cylinder and piston.
  • motor oils must be of their flow properties also designed so that at low temperatures, the engine can be started easily.
  • Engine oils must be resistant to oxidation and must not produce any decomposition products in liquid or solid form and deposits even under severe working conditions.
  • Engine oils disperse solids (dispersant behavior), prevent deposits (detergent behavior), neutralize acidic reaction products and form a wear protection film on the metal surfaces in the engine.
  • Engine oils are usually characterized by viscosity class classes (SAE classes).
  • Gear, shift and automatic oils are similar in composition to their basic components and additives as engine oils.
  • the transmission of power in the gear system of transmissions takes place to a large extent by the fluid pressure in the transmission oil between the teeth.
  • the gear oil must therefore be such that it can withstand high pressures in the long term without decomposing.
  • wear, compressive strength, friction, shear stability, traction and run-in behavior are the decisive factors here.
  • engine oils and gear oils, gear oils and automatic oils usually also contain at least one, but usually some or all, of the additives listed below in amounts customary for this purpose (which are in% by weight) on the total amount of lubricant composition, indicated in brackets):
  • sulfur-containing antioxidants which differ from the sulfur-containing antioxidants of component (B) to be used in accordance with the present invention, and / or sulfur-free antioxidants (0.1 to 5%):
  • Phosphorus compounds e.g. Triaryl and trialkyl phosphites, dialkyl 3,5-di-tert-butyl-4-hydroxybenzyl phosphonic acid or phosphonic acid piperazides
  • Sulfur-phosphorus compounds e.g. Zinc dialkyldithiophosphates (metal dodecyldithio-phosphates also act as corrosion inhibitors and high-pressure additives in lubricating oils) or reaction products of phosphorus pentasulfide with terpenes ( ⁇ -pinene, dipentene), polybutenes, olefins or unsaturated esters
  • Phenol derivatives for example sterically hindered mono-, bis- or trisphenols, sterically hindered polynuclear phenols, polyalkylphenols, 2,6-di-tert-butyl-4- methylphenol or methylene-4,4'-bis (2,6-di-tert-butylphenol) (phenolic derivatives are often used in combination with sulfur-based or amine-based antioxidants)
  • Amines e.g. Arylamines such as diphenylamine, phenyl- ⁇ -naphthylamine or 4,4'-tetra- methyldiaminodiphenylmethane
  • Metal deactivators in the strict sense e.g. N-salicylidene-ethylamine, N, N'-disalicylidene-ethylenediamine, N, N'-disalicylidene-1,2-propanediamine, triethylenediamine, ethylenediaminetetraacetic acid, phosphoric acid, citric acid, glycolic acid,
  • viscosity index improvers eg: polyisobutenes having a molecular weight of usually 10,000 to 45,000, polymethacrylates having a molecular weight of usually 5,000 to 100,000, homopolymers and copolymers of 1,3-dienes such as Butadiene or isoprene having a molecular weight of usually 80,000 to 100,000, 1, 3-diene-styrene copolymers having a molecular weight of usually 80,000 to 100,000, maleic anhydride-styrene polymers in esterified form having a molecular weight of usually 60,000 to 120,000, star-shaped polymers having block-like structure by units of conjugated dienes and aromatic monomers having a molecular weight of usually 200,000 to 500,000, polyalkylstyrenes having a molecular weight of usually 80,000 to 150,000, polyolefins of ethylene and propylene or styrene-cyclopentadiene-norbornene
  • pour point depressant (0.03 to 1%), e.g. bicyclic aromatics such as naphthalene having various long-chain alkyl radicals, polymethyl acrylates having 12 to 18 carbon atoms in the alcohol radical, a degree of branching of 10 to 30 mol% and an average molecular weight of 5,000 to 500,000, long-chain alkylphenols and phthalic acid dialkylaryl esters or copolymers different olefins
  • bicyclic aromatics such as naphthalene having various long-chain alkyl radicals, polymethyl acrylates having 12 to 18 carbon atoms in the alcohol radical, a degree of branching of 10 to 30 mol% and an average molecular weight of 5,000 to 500,000, long-chain alkylphenols and phthalic acid dialkylaryl esters or copolymers different olefins
  • detergents 0.2 to 4%
  • Chlorophenyl stearates sulfonation products of alkylaromatics such as dodecylbenzene, petroleum sulfonates, sodium, calcium, barium or magnesium sulfonates, neutral, basic and overbased sulfonates, phenates and carboxylates, salicylates, metal salts of alkylphenols and alkylphenol sulfides, phosphates.
  • alkylaromatics such as dodecylbenzene, petroleum sulfonates, sodium, calcium, barium or magnesium sulfonates, neutral, basic and overbased sulfonates, phenates and carboxylates, salicylates, metal salts of alkylphenols and alkylphenol sulfides, phosphates.
  • Ashless dispersants or dispersants 0.5 to 10%
  • Mannich condensates of alkylphenol, formaldehyde and polyalkylenepolyamines which differ from the Mannich reaction products of general formula II to be used in the context of the present invention, reaction products of polyisobutenylsuccinic anhydrides with Polyhydroxy compounds or polyamines, copolymers of alkyl methacrylates with diethylaminoethyl methacrylate, N-vinylpyrrolidone, N-vinylpryridine or 2-hydroxyethyl methacrylate or vinyl acetate fumarate copolymers
  • friction modifiers 0.05 to 1%
  • polar oil-soluble compounds which produce a thin layer on the friction surface by adsorption, e.g. Fatty alcohols, fatty amides, fatty acid salts, fatty acid alkyl esters or fatty acid glycerides
  • antifoam additives 0.0001 to 0.2%), e.g. liquid silicones such as polydimethylsiloxanes or poliethylene glycol ethers and sulfides
  • demulsifiers 0.1 to 1%
  • Dinonylnaphthalenesulfonates in the form of their alkali and alkaline earth metal salts
  • corrosion inhibitors also referred to as metal deactivators
  • metal deactivators e.g. tertiary amines and their salts, imino esters, amidoximes, diaminomethanes, derivatives of saturated or unsaturated fatty acids with alkanolamines, alkylamines, sarcosines, imidazolines, alkylbenzotriazoles, dimercaptothiadiazole derivatives, diaryl phosphates, thiophosphoric acid esters, neutral salts of primary n-Cs-ds
  • (k) emulsifiers (0.01 to 1%), e.g. long-chain unsaturated, naturally occurring carboxylic acid, naphthenic acids, synthetic carboxylic acid, sulfonamides, N-oleylsarcosine, alkanesulfamidoacetic acid, dodecylbenzenesulfonate, long-chain alkylated ammonium salts such as dimethyldodecylbenzylammonium chloride, imidazolinium salts, alkyl, alkylaryl, acyl, alkylamino and Acylaminopolyglykole or long-chain acylated mono- and diethanolamines
  • emulsifiers e.g. long-chain unsaturated, naturally occurring carboxylic acid, naphthenic acids, synthetic carboxylic acid, sulfonamides, N-oleylsarcosine, alkanesulfamidoacetic acid, dodecylbenz
  • Typical ready-to-use engine oil and gear, shift and automatic oil compositions in the context of the present invention are composed as follows, wherein the data for the additives relate to the active substance contents and the sum of all components always gives 100 wt .-%:
  • Methyl, M n of the polyisobutyl radical 1000), which is obtainable in an analogous manner by alkylating 2-tert-butylphenol with polyisobutene and subsequent reaction with formaldehyde and dimethylamine, the same results are obtained in the application examples below
  • Example 1 Checking the Thermal Stability of Turbine Fuel (Jet Fuel) by Determining the Resulting Particle Quantity
  • BHT 2,6-di-tert-butyl-4-methylphenol
  • B1 10% by weight of B1
  • BHT 2,6-di-tert-butyl-4-methylphenol
  • BHT 2,6-di-tert-butyl-4-methylphenol
  • B1 10% by weight of B1, 10% by weight of 2,6-di-tert-butyl-4-methylphenol ("BHT"), 5% by weight of N, N'-disalicylidene-1,2-diaminopropane, 30% by weight of Solvent Naphtha Heavy (solvent) and 15% by weight of 2-ethylhexanol (solvent)
  • B1 10% by weight of B1, 10% by weight of 2,6-di-tert-butyl-4-methylphenol ("BHT"), 5% by weight of N, N'-disalicylidene-1,2-diaminopropane, 30% by weight Solvent Naphtha Heavy (solvent) and 15% by weight 2-ethylhexanol (solvent)
  • B1 10% by weight of B1, 10% by weight of 2,6-di-tert-butyl-4-methylphenol ("BHT"), 5% by weight of N, N'-disalicylidene-1,2-diaminopropane, 30% by weight Solvent Naphtha Heavy (solvent) and 15% by weight 2-ethylhexanol (solvent)
  • Example 3 Checking the thermal stability of turbine fuel (jet fuel) by determining the breakpoint
  • a commercially available JP-8 turbine fuel according to MIL-DTL-83133E was used.
  • the fuel converted into an emulsion by vigorous stirring in a 1% by weight water receiver was passed over the coalescing filter at 22 ° C for water separation and the residual water content of the fuel phase was determined by Karl Fischer titration.
  • the less residual water in the fuel the better the water separation properties. Namely, additives used in the turbine fuel usually deteriorate the water separation properties, for example when using coalescing filters.
  • De-icing agents in customary amounts of commercial JP-8 turbine fuel according to MIL-DTL-83133E after emulsification and water removal had a residual water content of 564 ppm by weight ("comparative value") according to the test method described above.
  • Non-additized commercial JP-8 turbine fuel according to MIL-DTL-83133E which had been previously treated with alumina to remove the above-mentioned additives, had a residual water content of 83 ppm by weight after emulsification and water separation according to the test method described above ("blank value ”) on.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Lubricants (AREA)
  • Anti-Oxidant Or Stabilizer Compositions (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

Synergistische Mischung, umfassend 1 bis 99,9 Gew.-% Verbindungen mit Strukturelementen (I) in denen die freien Valenzen am Sauerstoff- und am Stickstoffatom zu einem fünf-, sechs- oder siebengliedrigen Ring zusammengeschlossen sein können und der Benzolkern noch an einer oder mehreren der freien Positionen Substituenten tragen kann, und 0,1 bis 99 Gew.-% schwefelhaltige organische Verbindungen mit Antioxidanz-Wirkung. Diese synergistische Mischung eignet sich als Stabilisator zur Stabilisierung von unbelebtem organischen Material, insbesondere von Mineralölprodukten und Kraftstoffen, gegen die Einwirkung von Licht, Sauerstoff und Wärme.

Description

Synergistische Mischung
Beschreibung
Die vorliegende Erfindung betrifft eine synergistische Mischung aus (A) mindestens einer Verbindung mit einem Strukturelement der Formel (I)
und (B) mindestens einer schwefelhaltigen organischen Verbindung mit Antioxidanz- Wirkung. Weiterhin betrifft die vorliegende Erfindung die Verwendung dieser synergistischen Mischung als Stabilisator zur Stabilisierung von unbelebtem organischen Material gegen die Einwirkung von Licht, Sauerstoff und Wärme, insbesondere in Turbinenkraftstoffen (jet fuels) und Schmierstoffzusammensetzungen. Weiterhin betrifft die vor- liegende Erfindung unbelebtes organisches Material, eine Turbinenkraftstoffzusam- mensetzung, ein Additivkonzentrat für Turbinenkraftstoffe und eine Schmierstoffzusammensetzung, welche diese synergistische Mischung enthalten.
Die mechanischen, chemischen und/oder ästhetischen Eigenschaften von unbelebtem organischen Material, z. B. von Kunststoffen und Lacken, aber auch von Mineralölprodukten und Kraftstoffen, werden bekanntermaßen durch die Einwirkung von Licht, Sauerstoff und Wärme verschlechtert. Diese Verschlechterung zeigt sich üblicherweise als Vergilbung, Verfärbung, Rissbildung oder Versprödung des Materials. Es sind schon Stabilisatoren oder Stabilisatorzusammensetzungen bekannt, mit denen ein ver- besserter Schutz gegen eine solche Beeinträchtigung von organischem Material durch Licht, Sauerstoff und Wärme erzielt werden kann.
So werden in der WO 05/073152 (1 ) 2-Alkyl-polyisobutenylphenole und deren Man- nich-Addukte als Antioxidantien zur Stabilisierung von unbelebtem organischen Materi- al gegen die Einwirkung von Licht, Sauerstoff und Wärme beschrieben. Als zu stabilisierende Materialien werden auch Kraftstoffe wie Ottokraftstoffe, Dieselkraftstoffe und Turbinenkraftstoffe sowie Schmierstoffzusammensetzungen genannt. In Turbinenkraftstoffen bewirken diese 2-Alkyl-polyisobutenyl-phenole und deren Mannich-Addukte eine Verbesserung der Thermostabilität sowie eine Verringerung der Ablagerungen im Kraftstoffkreislauf und Verbrennungssystem der Turbinen.
Tetrahydrobenzoxazine mit einem Benzolkern oder deren Gemische mit offenkettigen Mannich-Addukten sind als Zusatzstoffe für Kraftstoff- und Schmierstoffzusammensetzungen bekannt. So offenbaren die WO 01/25293 (2) und die WO 01/25294 (3) offen- kettige Mannich Addukte aus Polyisobutenyl-substituierten Phenolen, Formaldehyld und Aminen sowie Tetrahydrobenzoxazine mit längerkettigen Resten wie Polyisobute- nylresten, welche als Substituenten am Benzolkern sitzen, als ventilreinigende und ventilreinhaltende Ottokraftstoffdetergentien. Diese Tetrahydrobenzoxazine werden gemäß den in (2) und (3) genannten Herstellverfahren als Gemische mit den entsprechenden offenkettigen Mannich-Addukten des zugrundeliegenden Phenols erhalten und auch so in den Ottokraftstoffen eingesetzt.
Die WO 07/12580 (4) offenbart die Verwendung von Tetrahydrobenzoxazinen als Stabilisatoren, speziell als Antioxidantien zum Schutz gegen die Einwirkung von Licht, Sauerstoff und Wärme, für unbelebtes organisches Material, insbesondere für Mineral- ölprodukte und Kraftstoffe wie Turbinenkraftstoffe.
Ebenso offenbart die WO 07/099048 (5) die Verwendung von mehrkernigen phenolischen Verbindungen mit bis zu 20 Benzolkernen pro Molekül, welche auf Tetrahydrobenzoxazinen basieren, als Stabilisatoren, speziell als Antioxidantien zum Schutz ge- gen die Einwirkung von Licht, Sauerstoff und Wärme, für unbelebtes organisches Material, insbesondere für Mineralölprodukte und Kraftstoffe wie Turbinenkraftstoffe.
Es besteht - insbesondere für den Mineralölprodukte- und Kraftstoff-Bereich - ein Bedarf an Mitteln mit verbesserter Schutzwirkung gegen die Beeinträchtigung der Materi- aleigenschaften durch Licht, Sauerstoff und Wärme. Vor allem für Turbinenkraftstoffe (jet fuels), die einer extremen thermischen Belastung beim und vor dem Verbrennungsvorgang in Turbinen, beispielsweise in Flugzeugturbinen, ausgesetzt sind, werden neue verbesserte Stabilisierungsmittel gesucht. Zirkulierender Turbinenkraftstoff ist Bestandteil des Kühlsystems in Turbinenflugzeugen und kann dabei Temperaturen bis zu 2200C annehmen; unmittelbar vor der eigentlichen Verbrennung in der Flugzeugturbine erreicht der Turbinenkraftstoff Temperaturen von bis zu 595°C. Die neuen verbesserten Stabilisierungsmittel sollen in den Turbinen gleichzeitig über ihre Wirkungsweise als Antioxidantien und/oder Dispergatoren auch Ablagerungen im Kraftstoffkreislauf und im Verbrennungssystem verringern. Weiterhin werden neue verbesserte Stabilisa- toren für Schmierstoffzusammensetzungen gesucht, welche insbesondere einen verbesserten Schutz gegen das Oxidations- und Alterungsverhalten und/oder eine verbesserte Scherstabilität bieten.
Es bestand daher die Aufgabe, Stabilisierungsmittel mit einer verbesserten Stabilisie- rungswirkung von unbelebtem organischen Material, insbesondere von Mineralölprodukten und Kraftstoffen, vor allem von Turbinenkraftstoff und von Schmierstoffzusammensetzungen, gegen die Einwirkung von Licht, Sauerstoff und Wärme bereitzustellen.
Demgemäß wurde eine synergistische Mischung gefunden, welche (A) 1 bis 99,9 Gew.-% mindestens einer Verbindung mit mindestens einem Strukturelement der Formel (I)
in dem die freien Valenzen am Sauerstoff- und am Stickstoffatom zu einem fünf-, sechs- oder siebengliedrigen Ring, nötigenfalls über ein Hydrocarbylen-Brücken- glied, zusammengeschlossen sein können und der Benzolkern noch an einer oder mehreren der freien Positionen Substituenten tragen kann, und
(B) 0,1 bis 99 Gew.-% mindestens einer schwefelhaltigen organischen Verbindung mit Antioxidanz-Wirkung,
umfasst, wobei die Summe beider Komponenten (A) und (B) 100 Gew.-% ergibt.
Vorzugsweise ist die freie Valenz des Sauerstoffatoms im Strukturelement (I) durch ein Wasserstoffatom abgesättigt, so dass eine freie phenolische Struktur vorliegt. Die Ab- sättigung der freien Valenz des Sauerstoffatomes kann beispielsweise jedoch auch durch einen gegebenenfalls substituierten Hydrocarbylrest oder eine Alkylcarbonylrest erfolgen. Die Absättigung der beiden freien Valenzen des Stickstoffatoms im Struktur- element (I) erfolgt üblicherweise durch Wasserstoff und/oder gegebenenfalls substituierte Hydrocarbylreste.
Das Strukturelement (I) kann als benzanellierter fünf-, sechs- oder siebengliedriger heterocyclischer Ring vorliegen, in diesem Fall hat das Strukturelement (I) beispiels- weise die Struktur eines Dihydrobenzisoxazols, eines Tetrahydrobenzoxazins oder eines Tetra hydrobenz-1 ,4-oxazepins.
Die erfindungsgemäße synergistische Mischung kann aus nur einer Komponente (A) und nur einer Komponente (B) oder aus mehreren Komponenten (A) und nur einer Komponente (B) oder aus mehreren Komponenten (A) und mehreren Komponenten (B) bestehen. Die erfindungsgemäße synergistische Mischung kann alleine oder im Gemisch mit weiteren Verbindungen mit Stabilisator- und/oder Antioxidanz-Wirkung eingesetzt werden.
Die erfindungsgemäße Mischung wirkt im Sinne der vorliegenden Erfindung synergistisch, weil die gewünschte Wirkung der Mischung unerwartet stärker ist als die Summe der Einzelwirkungen der Komponenten (A) und (B).
Die erfindungsgemäße synergistische Mischung umfasst vorzugsweise 10 bis 99 Gew.-%, insbesondere 50 bis 95 Gew.-%, vor allem 65 bis 90 Gew.-% der Kompo- nente (A) oder der Summe aller Komponenten (A) und 1 bis 90 Gew.-%, insbesondere 5 bis 50 Gew.-%, vor allem 10 bis 35 Gew.-% der Komponente (B) oder der Summe aller Komponenten (B). Wird die erfindungsgemäße synergistische Mischung mit weiteren Verbindungen mit Stabilisator- und/oder Antioxidanz-Wirkung eingesetzt, beträgt der Anteil der erfindungsgemäßen synergistischen Mischung in der Gesamtmischung aller Verbindungen mit Stabilisator- und/oder Antioxidanz-Wirkung vorzugsweise mindestens 20 Gew.-%, insbesondere mindestens 50 Gew.-%, vor allem mindestens 70 Gew.-%.
Die Verbindungen mit mindestens einem Strukturelement der Formel (I) der Komponenten (A) sind üblicherweise niedermolekulare, oligomere oder polymere organische Verbindungen mit einem zahlenmittleren Molekulargewicht Mn von in der Regel maximal 100.000, insbesondere maximal 50.000, vor allem maximal 25.000.
In einer bevorzugten Ausführungsform umfasst die erfindungsgemäße synergistische Mischung als Komponente (A) mindestens einer Verbindung mit mindestens einem Strukturelement der Formel (Ia) oder (Ib)
in dem der Benzolkern noch an einer oder mehreren der freien Positionen Substituen- ten tragen kann und die Absättigung der freien Valenzen am Stickstoffatom wie oben beschrieben erfolgt.
Das ortho-(Aminomethyl)phenol-Strukturelement (Ia) der Komponente (A) wird üblicherweise durch eine Mannich-Reaktion eines Phenols oder Phenol-Derivates mit Formaldehyd und Ammoniak, einem primären Amin oder einem sekundären Amin generiert. Andere Herstellwege sind jedoch auch möglich.
Das Tetrahydrobenzoxazin-Strukturelement (Ib) entsteht üblicherweise durch Reaktion eines Phenols oder Phenol-Derivates mit Formaldehyd und Ammoniak, einem primären Amin oder einem sekundären Amin bei Einsatz mindestens der stöchiometrisch notwendigen zweifach molaren Formaldehyd-Menge und unter geeigneten Umsetzungsbedingungen. Andere Herstellwege sind jedoch auch möglich.
Besonders bevorzugt ist eine synergistische Mischung, welche als Komponente (A) mindestens eine Verbindung mit mindestens einem Strukturelement der Formel (I), (Ia) oder (Ib) umfasst, in dem das Stickstoffatom oder der Benzolkern mindestens einen Hydrocarbylrest mit mindestens 4, vorzugsweise mit mindestens 13, mit mindestens 16, mit mindestens 20, mit mindestens 21 , mit mindestens 23, mit mindestens 25, mit mindestens 26 oder mit mindestens 30 Kohlenstoffatomen trägt. Ein derartiger Hydro- carbylreste kann beispielsweise ein Polyisobutenrest sein.
In einer besonders bevorzugten Ausführungsform umfasst die erfindungsgemäße Synergistische Mischung als Komponente (A) mindestens ein Mannich-Reaktionsprodukt der allgemeinen Formel Il
in der der Substituent R1 für die Gruppierung NR6R7 steht, worin R6 und R7 unabhängig voneinander ausgewählt sind unter Wasserstoff, d- bis C2o-Alkyl-, C3- bis Cs-Cyclo- alkyl-, Cβ- bis Cu-Aryl- und d- bis C2o-Alkoxyresten, die durch Heteroatome, ausgewählt unter Stickstoff und Sauerstoff, unterbrochen und/oder substituiert sein können, sowie unter Phenolresten der Formel III
mit der Maßgabe, dass R6 und R7 nicht gleichzeitig für Phenolreste der Formel III ste- hen,
wobei R6 und R7 auch gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, eine fünf-, sechs- oder siebengliedrigen Ring bilden können, der ein oder zwei Heteroatome, ausgewählt aus Stickstoff und Sauerstoff, aufweisen und/oder mit einem, zwei oder drei d- bis Cβ-Alkylresten substituiert sein kann,
wobei weiterhin der Substituent R4 in Formel Il und III einen terminal gebundenen Polyisobutenrest mit 13 bis 3000, insbesondere 20 bis 2000, vor allem 23 bis 1 150 Kohlenstoffatomen bedeutet,
wobei weiterhin die Substituenten R2, R3 und R5 in Formel Il und III unabhängig voneinander Wasserstoff, Cr bis C2o-Alkylreste, d- bis C2o-Alkoxyreste, durch ein oder mehrere Sauerstoffatome, Schwefelatome oder Gruppierungen NR8 unterbrochene C2- bis C4ooo-Alkylreste, Hydroxylgruppen, Polyalkenylreste oder Gruppierungen der Formel -CH2NR6R7 bezeichnen, wobei R6 und R7 die oben genannte Bedeutung haben und R8 für Wasserstoff, d- bis C6-Alkyl, C3- bis C8-Cycloalkyl oder C6- bis Ci4-Aryl steht.
Derartige Mannich-Reaktionsprodukte der allgemeinen Formel Il und deren Herstellung sind beispielsweise in den Schriften (1), (2) und (3) beschrieben, auf die hier ausdrücklich Bezug genommen wird.
Die genannten Mannich-Reaktionsprodukte Il werden vorzugsweise dadurch hergestellt, dass man Polyisobuten-substituierte Phenole, die durch Alkylierung von Pheno- len mit hochreaktiven Polyisobutenen erhältlich sind, entweder (i) mit Formaldehyd oder Oligo- oder Polymeren des Formaldehyds in Gegenwart eines sekundären Amins oder (ii) mit einem Addukt wenigstens eines Amins an Formaldehyd, eine sonstige Formaldehyd-Quelle oder ein Formaldehyd-Äquivalent umsetzt. Auf den genannten Wegen (i) und (ii) werden vorzugsweise solche Mannich-Reaktionsprodukte Il herge- stellt, bei denen R6 und R7 nicht gleichzeitig für Wasserstoff stehen.
Unter hochreaktiven Polyisobutenen sollen hier solche verstanden werden, die einen Anteil an α- und ß-ständigen Vinyliden-Doppelbindungen von wenigstens 50 Mol-%, vorzugsweise von wenigstens 60 Mol-%, insbesondere von wengistens 80 Mol-%, vor allem von wenigstens 85 Mol-%, bezogen auf die Polyisobuten-Makromoleküle, aufweisen. Diese hochreaktiven Polyisobutene haben normalerweise ein zahlenmittleres Molekulargewicht von 300 bis 15.000 sowie eine Polydispersität von kleiner 3,0.
Als Phenole können unsubstituiertes Phenol oder substituierte Phenole, insbesondere ortho-alkylsubstituierte Phenole, als Ausgangsmaterial eingesetzt werden. Bevorzugt werden Monophenole, prinzipielle eignen sich jedoch auch Phenole mit 2 oder 3 Hydroxylgruppen am Benzolkern. Als Substituenten am Phenolkern können insbesondere Cr bis C2o-Alkylreste, insbesondere d- bis C4-Al kylreste, d- bis C2o-Alkoxyreste, insbesondere d- bis C4-Al koxyreste, oder weitere Polyalkenylreste, insbesondere Po- lyisobuten-Reste der oben beschriebenen Art, auftreten. Typische Beispiele für derart substituierte Phenole sind 2-Methylphenol, 2-Ethylphenol und 2-tert.-Butylphenol.
Die Alkylierung der Phenole mit diesen hochreaktiven Polyisobutenen wird vorzugsweise bei einer Temperatur unterhalb von etwa 500C in Gegenwart eines üblichen Al- kylierungskatalysators vorgenommen.
Für die Umsetzung zum Mannich-Reaktionsprodukt gemäß Weg (i) oder zum Amin- Addukt gemäß Weg (ii) geeignete Formaldehyd-Quellen sind Formalin-Lösung, For- maldehyd-Oligomere wie Trioxan und Formaldehyd-Polymere wie Paraformaldehyd. Formalin-Lösung und Paraformaldehyd sind besonders leicht zu handhaben. Selbstverständlich kann man auch gasförmigen Formaldehyd einsetzen. Für die Umsetzung zum Mannich-Reaktionsprodukt gemäß Weg (i) geeignete Amine weisen normalerweise eine sekundäre Aminofunktion, keine primäre Aminofunktion und gegebenenfalls eine oder mehrere tertiäre Aminofunktionen auf, da bei der Umsetzung mit primären Aminen größere Mengen an unerwünschten Oligomerisierungspro- dukten auftreten können. Für die Bildung des Amin-Adduktes gemäß Weg (ii) eignen sich normalerweise Amine mit einer wenigstens einer primären Aminfunktion oder wenigstens einer sekundären Aminfunktion.
Bevorzugte Reste für die Substituenten R6 und R7 am Stickstoffatom sind unabhängig voneinander Wasserstoff, d- bis Cs-Alkyl wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Bu- tyl, sec.-Butyl, tert.-Butyl, n-Pentyl, n-Hexyl, n-Heptyl, n-Octyl oder 2-Ethylhexyl, d- bis C4-AIkOXy wie Methoxy oder Ethoxy sowie Cylcohexyl und Phenyl. Die Substituenten R6 und R7 können zusammen einen fünf-, sechs- oder siebengliedrigen gesättigten oder teilweise ungesättigten heterocyclischen Ring bilden, der neben dem Stick- stoffatom aus der Gruppierung NR6R7 weitere Stickstoff- und/oder Sauerstoffatome enthalten kann; typische Beispiele für solche Ringe sind Piperidin, Piperazin und Morpholin.
Typische Vertreter der Mannich-Reaktionsprodukte der allgemeinen Formel Il sind ge- maß der Lehre der Schrift (1 ) 2-Aminomethyl-4-polyisobutyl-6-alkylphenole mit den Bedeutungen für R6 = R7 von Wasserstoff, Methyl, ß-Hydroxyethyl, n-Butyl, 2-Ethyl- hexyl und Phenyl, mit einem zahlenmittleren Molekulargewicht des Polyisobutylrestes von 500 bis 2300 und mit den Bedeutungen für R2 von Methyl, iso-Propyl und tert.- Butyl (jeweils herstellbar durch Alkylierung des 2-Alkylphenols mit Polyisobuten und Folgeumsetzung mit Formaldehyd und Ammoniak bzw. dem entsprechenden Amin).
Weitere typische Vertreter der Mannich-Reaktionsprodukte der allgemeinen Formel Il sind gemäß der Lehre der Schriften (2) und (3) die Mannich-Reaktionsprodukte aus 4-Polyisobutylphenolen mit einem zahlenmittleren Molekulargewicht des Polyisobutyl- restes von 500 bis 2300 mit (Weg i) Formaldehyd und Morpholin, Di[3-(dimethylamino)- n-propyl]-amin, Tetramethylmethylendiamin oder Dimethylamin oder (Weg ii) mit einem Addukt aus Formaldehyd und 3-(Dimethylamino)-n-propylamin oder tert.-Butylamin.
In einer weiteren besonders bevorzugten Ausführungsform umfasst die erfindungsge- mäße synergistische Mischung als Komponente (A) mindestens ein Tetrahydroben- zoxazin der allgemeinen Formel IV
(IV) in der der Substituent R9 einen Hydrocarbylrest mit 1 bis 3000 Kohlenstoffatomen, welcher durch ein oder mehrere Heteroatome aus der Gruppe O und S und/oder durch eine oder mehrere Gruppierungen NR14 unterbrochen sein kann, bezeichnet,
wobei R14 ein Wasserstoffatom oder einen d- bis C4-Alkylrest bezeichnet, und
die Substituenten R10, R11, R12 und R13 unabhängig voneinander für Wasserstoffatome, Hydroxylgruppen oder Hydrocarbylreste mit jeweils 1 bis 3000 Kohlenstoffatomen stehen, welche durch ein oder mehrere Heteroatome aus der Gruppe O und S und/oder durch eine oder mehrere Gruppierungen NR14 unterbrochen sein können, wobei R14 die oben genannte Bedeutung hat,
wobei der Substituent R12 auch für einen Rest der Formel Y stehen kann
in dem die Substituenten R9, R10, R11 und R13 die vorgenannten Bedeutungen haben und der Substituent X ein Kohlenwasserstoff-Brückenglied bezeichnet, welches aus einem oder mehreren Isobuten-Einheiten besteht oder ein oder mehrere Isobuten- Einheiten enthält, oder
wobei der Substituent R12 auch für einen Rest der Formel Z oder Z' stehen kann
in denen die Substituenten R9, R10, R11 und R13 die vorgenannten Bedeutungen haben und die Substituenten R17 und R18 gleich oder verschieden sein können und Wasserstoff oder einen d- bis Cio-Alkylrest bezeichnen,
und in der die Substituenten R10 und R11 oder R11 und R12 oder R12 und R13 mit der an den Benzolkern angebundenen Teilstruktur -O-CH2-NR15-CH2- auch einen zweiten Tetrahydrooxazin-Ring oder die Substituenten R10 und R11 und R12 und R13 mit den an den Benzolkern angebundenen Teilstrukturen -0-CH2-N R15-CH2- und -0-CH2-NR16- CH2- auch einen zweiten und einen dritten Tetrahydrooxazin-Ring ausbilden können,
wobei R15 und R16 unabhängig voneinander Hydrocarbylreste mit jeweils 1 bis 3000 Kohlenstoffatomen bedeutet, welche durch ein oder mehrere Heteroatome aus der Gruppe O und S und/oder durch eine oder mehrere Gruppierungen NR14 unterbrochen sein können,
mit der Maßgabe, dass mindestens einer der Substituenten R9, R10, R11, R12, R13, R15 oder R16 4 bis 3000 Kohlenstoffatome aufweist und die übrigen Substituenten aus der Gruppe R9, R10, R11, R12, R13, R15 und R16, wenn sie für Hydrocarbylreste stehen, jeweils 1 bis 20 Kohlenstoffatome aufweisen.
Derartige Tetrahydrobenzoxazine der allgemeinen Formel IV und deren Herstellung sind beispielsweise in der Schrift (4) beschrieben, auf die hier ausdrücklich Bezug genommen wird.
Die strukturelle Besonderheit der Tetrahydrobenzoxazine der allgemeinen Formel IV ist, dass sie mindestens einen längerkettigen Hydrocarbylrest mit 4 bis 3000 Kohlen- Stoffatomen als einen der Substituenten R9, R10, R11, R12, R13, R15 oder R16 entweder am Benzolkern oder an einem Oxazinring enthalten. In einer bevorzugten Ausführungsform ist dieser längerkettige Hydrocarbylrest mit 4 bis 3000 Kohlenstoffatomen ein Polyisobutenylrest. Der genannte längerkettige Hydrocarbylrest kann in einer weiteren bevorzugten Ausführungsform auch einen Ci6- bis C2o-Alkyl- oder Alkenylrest be- deuten. Insbesondere sitzt dieser längerkettige Hydrocarbylrest, der vorzugsweise ein Polyisobutenylrest oder ein Ci6- bis C2o-Alkyl- oder Alkenylrest ist, an einem Oxazinring, d.h. er tritt als Substituent R9 oder R15 oder R16 auf. Vorzugsweise sitzt dieser längerkettige Hydrocarbylrest, der vorzugsweise ein Polyisobutenylrest oder ein Ci6- bis C2o-Alkyl- oder Alkenylrest ist, auch am Benzolkern als Substituent R10 oder R12. Dieser längerkettige Hydrocarbylrest, der vorzugsweise ein Polyisobutenylrest oder ein
Ci6- bis C2o-Alkyl- oder Alkenylrest ist, umfasst vorzugsweise 16 bis 3000, insbesondere 20 bis 1000, vor allem 25 bis 500, ganz besonders bevorzugt 30 bis 250 Kohlenstoffatome. Im Falle von Polyisobutenylresten weisen diese zahlenmittlere Molekulargewichte Mn von 200 bis 40.000, vorzugsweise 500 bis 15.000, insbesondere 700 bis 7000, vor allem 900 bis 3000, ganz besonders bevorzugt 900 bis 1 100 auf.
Als Ci6- bis C2o-Alkyl- oder Alkenylreste eignen sich zweckmäßigerweise die Reste von entsprechenden gestättigten oder ungesättigten Fettalkoholen mit 16 bis 20 Kohlenstoffatomen. Insbesondere sind hier n-Hexadecyl (Palmityl), n-Octadecyl (Stearyl), n-Eicosyl, Oleyl, Linolyl und Linolenyl zu nennen, welche gemäß ihrem natürlichen Vorkommen meist als technische Gemische untereinander auftreten. Der genannte längerkettige Hydrocarbylrest mit 4 bis 3000 Kohlenstoffatomen kann in den Tetrahydrobenzoxazinen IV auch mehrfach, beispielsweise zweifach oder dreifach, vertreten sein. Dieser längerkettige Hydrocarbylrest, der vorzugsweise ein Polyisobu- tenylrest und/oder ein Ci6- bis C2o-Alkyl- oder Alkenylrest ist, tritt bei zweifachem Auf- treten beispielsweise als Substituent R9 und R12 oder R9 und R15 auf.
In einer bevorzugten Ausführungsform treten ein oder zwei Polyisobutenyl-Reste mit einem zahlenmittleren Molekulargewicht Mn von 200 bis 40.000 im Molekül als Substituent R9 und/oder R10 und/oder R12 und/oder R15 und/oder R16 auf.
Die übrigen Substituenten aus der Gruppe R9, R10, R11, R12, R13, R15 und R16, die nicht für Substituenten mit 4 bis 3000 Kohlenstoffatomen oder für Polyisobutenylreste mit einem zahlenmittleren Molekulargewichte Mn von 200 bis 40.000 stehen, bezeichnen unabhängig voneinander Wasserstoffatome, Hydroxylgruppen oder, wenn sie für Hydrocarbylreste stehen, meist kürzerkettige Hydrocarbylreste mit 1 bis 20, vorzugsweise 1 bis 12, vor allem 1 bis 8 Kohlenstoffatomen, ganz besonders bevorzugt lineare oder verzweigte d- bis C4-Al kylreste. Typische Beispiele für die letzteren sind Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, 2-Butyl, sec.-Butyl und tert.-Butyl. Methylreste und tert.-Butylreste werden hierbei ganz besonders bevorzugt.
Bevorzugte Tetrahydrobenzoxazine IV sind auch solche, bei denen die Substituenten R10 und/oder R12, wenn sie für kürzerkettige Hydrocarbylreste stehen, lineare oder verzweigte Cr bis C4-Alkylreste, insbesondere Methylreste und/oder tert.-Butylreste, bezeichnen. Derartige Substitutionsmuster kommen natürlich nur für Tetrahydrobenzoxa- zine I mit insgesamt einem oder zwei Tetrahydrooxazin-Ringsystemen in Betracht.
Im Rest der Formel Y bezeichnet der Substituent X ein Kohlenwasserstoff-Brückenglied, welches aus einem oder mehreren, vorzugsweise 4 bis 800, insbesondere 10 bis 300, vor allem 12 bis 100 Isobuten-Einheiten besteht oder ein oder mehrere, vorzugs- weise 4 bis 800, insbesondere 10 bis 300, vor allem 12 bis 100 Isobuten-Einheiten enthält. Besteht X aus Isobuten-Einheiten, erfolgt die Verknüpfung in der Regel über die das α- und das ω-Kohlenstoffatom. Enthält X weitere Kohlenwasserstoff-Baueinheiten, sind dies vorzugsweise mittenständig angeordnete Initiatormolekül-Baueinheiten wie aromatische Ringsysteme, beispielsweise o-, m- oder p-Phenylen-Einheiten, und/oder Kohlenwasserstoff-Baueinheiten mit funktionellen Gruppen zur Verknüpfung, beispielsweise o-, m- oder p-Hydroxyphenyl-Gruppen, als beidseitiger Kettenabschluß. Derartige den Substituenten X zugrundeliegende telechele Polyisobuten-Systeme und ihre Herstellung werden beispielsweise in der US-A 4 429 099 beschrieben.
Im Rest der Formel Z bzw. Z' bezeichnen die Substituenten R17 und R18 vorzugsweise Wasserstoff und/oder lineare oder verzweigte d- bis C4-Al kylreste, insbesondere Methylreste. Die Verbindung IV mit einem Rest Z bzw. Z', bei dem R17 = R18 = Methyl ist, leitet sich von Bisphenol A [2,2-Bis-(4-hydroxyphenyl)propan] ab. Herstellungsbedingt können Verbindungen I mit einem Rest Z und Verbindungen I mit dem entsprechenden Rest Z' auch als Mischungen vorliegen.
Unter Hydrocarbylresten mit 1 bis 3000 bzw. 4 bis 3000 Kohlenstoffatomen für die Substituenten R9, R10, R11, R12, R13, R15 und R16 sollen hier reine Kohlenwasserstoffreste jeglicher Struktur verstanden werden, die definitionsgemäß auch noch durch ein oder mehrere Heteroatome aus der Gruppe O und S und/oder durch eine oder mehrere Gruppierungen NR6 unterbrochen sein können. Insbesondere sind Hydrocarbylreste Alkyl-, Alkenyl-, Cycloalkyl-, Aryl-, Alkylaryl-, Alkenylaryl- oder Arylalkyl-Reste.
Bei Unterbrechungen des Hydrocarbylrestes durch Gruppierungen NR14 sind auch solche Reste gemeint, bei denen am Ende die Gruppierungen NR14 formal in eine C-H-Bindung insertiert ist, also beispielsweise Substituenten R9, R10, R11, R12, R13, R15 oder R16 mit einer Nhb-Endgruppe. Derartige Hydrocarbylreste leiten sich z.B. von Po- lyaminen wie Ethylendiamin, Diethylentriamin, Triethylentetramin, Tetraethylenpenta- min, etc. ab, bei denen eines der endständigen Stickstoffatome das N-Atom im Oxazin- Ring darstellt.
Beispiele für im Sinne der vorliegenden Erfindung typische Tetrahydrobenzoxazine IV mit einem Tetrahydrooxazin-Ring am Benzolkern sind die folgenden, wobei "PIB" einen von einem hochreaktiven Polyisobuten (Mn 1000) abgeleiteten Polyisobutenylrest und "PIB*" ein von einem hochreaktiven Polyisobuten (Mn 870) abgeleitetes Polyisobuteny- len-Brückenglied bezeichnet:
(Va) R9 = Methyl, R10 = Methyl, R12 = PIB
(Vb) R9 = Methyl, R10 = H, R12 = PIB
(Vc) R9 = Methyl, R10 = tert.-Butyl, R12 = PIB
(Vd) R9 = Methyl, R10 = OH, R12 = PIB
(Ve) R9 = Methyl, R10 = R12 = tert.-Butyl
(Vf) R9 = PIB, R10 = tert.-Butyl, R12 = Methyl
(Vg) R9 = Methyl, R10 = tert.-Butyl, R12 = Methyl
(VIa) R10 = Methyl, R12 = Methyl (VIb) R10 = H, R12 = tert.-Butyl (VIc) R10 = Methyl, R12 = = tert.-Butyl
(VId) R10 = Methyl, R12 = : 0H
(VIe) R10 = OH, R12 = tert.-Butyl
(VIIa) R9 = n-Hexyl, R10 = R11 = R13 = Methyl
(VIIb) R9 = n-Hexadecyl, R10 = R11 = R13 = Methyl
(VIIc) R9 = n-Octadecyl, R10 = R11 = R13 = Methyl
(VIId) R9 = PIB, R10 = R11 = R13 = Methyl
(Villa) R9 = n-Hexadecyl (Villa) R9 = n-Octadecyl
(IXa) R9 = Methyl (IXb) R9 = n-Octadecyl
(XIa) R9 = n-Hexadecyl (XIb) R9 = n-Octadecyl (XIIa) R9 = Methyl (XIIb) R9 = n-Octadecyl
(XIVa) R9 = n-Hexadecyl (XIVb) R9 = n-Octadecyl
.Ra (XVa) R9 = Methyl (XVb) R9 = n-Octadecyl
(XVIIa) R9 = n-Hexadecyl (XVIIb) R1 = n-Octadecyl (XVIIIa) R9 = Methyl (XVIIIb) R9 = n-Octadecyl
(XXa) R9 = n-Hexadecyl (XXb) R9 = n-Octadecyl
(XXIa) R9 = Methyl (XXIb) R9 = n-Octadecyl
PIB
Ra (XXIIIa) R9 = Methyl (XXIIIb) R9 = Octadecyl (XXIVa) R9 = Methyl (XXIVb) R9 = n-Octadecyl
(XXVa) R9 = Methyl
Herstellungsbedingt können auch Mischungen jeweils aus den Verbindungen Villa + XVIIa, VIIIb + XVIIb, IXa + XVIIIa, IXb + XVIIIb, X + XIX, XIa + XXa, XIb + XXb, XIIa + XXIa, XIIb + XXIb oder XIII + XXII auftreten und in dieser Form erfindungsgemäß ver- wendet werden.
Vorzugsweise verwendet man auch Tetrahydrobenzoxazine IV, bei denen die Substi- tuenten R11 und R12 oder R12 und R13 mit einer über den Substituenten R12 sauerstoffangebundenen Teilstruktur -O-CH2-NR15-CH2- einen zweiten Tetrahydrooxazin-Ring ausbilden. Beispiele hierfür sind die oben aufgeführten Verbindungen VIII bis XXII.
Es können auch Mischungen aus Mannich-Reaktionsprodukten der allgemeinen Formel Il und Tetrahydrobenzoxazinen der allgemeinen Formel IV als Komponente (A) eingesetzt werden. Solche herstellungsbedingten Mischungen werden beispielsweise in den Schriften (2) und (3) beschrieben.
In einer weiteren besonders bevorzugten Ausführungsform umfasst die erfindungsgemäße synergistische Mischung als Komponente (A) mindestens eine mehrkernige phenolische Verbindungen mit bis zu 20 Benzolkernen pro Molekül, welche durch Um- Setzung eines Tetrahydrobenzoxazins der allgemeinen Formel XXVI
in der der Substituent R19 einen Hydrocarbylrest mit 1 bis 3000 Kohlenstoffatomen, welcher durch ein oder mehrere Heteroatome aus der Gruppe O und S und/oder durch eine oder mehrere Gruppierungen NR24 unterbrochen sein kann, bezeichnet,
wobei R24 ein Wasserstoffatom oder einen d- bis C4-Alkylrest bezeichnet, und
in der die Substituenten R20, R21, R22 und R23 unabhängig voneinander für Wasser- stoffatome, Hydroxylgruppen oder Hydrocarbylreste mit jeweils 1 bis 3000 Kohlenstoffatomen, stehen, welche durch ein oder mehrere Heteroatome aus der Gruppe O und S und/oder durch eine oder mehrere Gruppierungen NR24 unterbrochen sein können, wobei R24 die oben genannte Bedeutung hat,
mit einem oder mehreren der gleichen oder verschiedener Phenole der allgemeinen Formel XXVII
(XXVII)
in der die Substituenten R25, R26, R27 und R28 unabhängig voneinander für Wasserstoffatome, Hydroxylgruppen oder Hydrocarbylreste mit jeweils 1 bis 3000 Kohlenstoffatomen, stehen, welche durch ein oder mehrere Heteroatome aus der Gruppe O und S und/oder durch eine oder mehrere Gruppierungen NR24 unterbrochen sein können, wobei R24 die oben genannte Bedeutung hat,
und/oder mit einem oder mehreren der gleichen oder verschiedener Tetra hydrobenzo- xazine der allgemeinen Formel XXVI,
wobei der Substituent R22 auch für einen Rest der Formel Z" und der Substituent R27 auch für einen Rest der Formel Z'" stehen kann
in denen die Substituenten R19, R20, R21, R23, R25, R26 und R28 die vorgenannten Bedeutungen haben, der Substituent R25 auch ein aus einem Tetra hydrobenzoxazin der all- gemeinen Formel XXVI abgeleiteter Rest sein kann, der Sustituent R33 für Wasserstoff oder einen aus einem Tetrahydrobenzoxazin der allgemeinen Formel XXVI abgeleiteten Rest steht und die Substituenten R29 und R30 gleich oder verschieden sein können und Wasserstoff oder einen d- bis Cio-Alkylrest bezeichnen,
und in der die Substituenten R20 und R21 oder R21 und R22 oder R22 und R23 mit der an den Benzolkern angebundenen Teilstruktur -O-CH2-NR31-CH2- auch einen zweiten Tetrahydrooxazin-Ring oder die Substituenten R20 und R21 und R22 und R23 mit den an den Benzolkern angebundenen Teilstrukturen -O-CH2-NR31-CH2- und -0-CH2-NR32- CH2- auch einen zweiten und einen dritten Tetrahydrooxazin-Ring ausbilden können, wobei R31 und R32 unabhängig voneinander Hydrocarbylreste mit jeweils 1 bis 3000 Kohlenstoffatomen bedeutet, welche durch ein oder mehrere Heteroatome aus der Gruppe O und S und/oder durch eine oder mehrere Gruppierungen NR24 unterbrochen sein können, wobei R24 die oben genannte Bedeutung hat,
mit der Maßgabe, dass mindestens einer der Substituenten R19, R20, R21, R22, R23, R25, R26, R27, R28, R31 oder R32 13 bis 3000 Kohlenstoffatome aufweist und die übrigen Substituenten aus der Gruppe R19, R20, R21, R22, R23, R25, R26, R27, R28, R31 oder R32, wenn sie für Hydrocarbylreste stehen, jeweils 1 bis 20 Kohlenstoffatome aufweisen,
erhältlich ist.
Derartige mehrkernige phenolische Verbindungen mit bis zu 20 Benzolkernen pro Molekül und deren Herstellung sind beispielsweise in der Schrift (5) beschrieben, auf die hier ausdrücklich Bezug genommen wird.
Die strukturelle Besonderheit der genannten mehrkernigen phenolischen Verbindungen ist, dass sie mindestens einen längerkettigen Hydrocarbylrest mit 13 bis 3000 Kohlenstoffatomen als einen der Substituenten R19, R20, R21, R22, R23, R25, R26, R27, R28, R31 oder R32, welche aus den eingesetzten Tetrahydrobenzoxazinen XXVI oder den Phenolen XXVII stammen, enthalten. In einer bevorzugten Ausführungsform ist dieser län- gerkettige Hydrocarbylrest mit 13 bis 3000 Kohlenstoffatomen ein Polyisobutenylrest. Der genannte längerkettige Hydrocarbylrest kann in einer weiteren Ausführungsform auch einen Ciβ- bis C2o-Alkyl- oder -Alkenylrest bedeuten. Insbesondere sitzt dieser längerkettige Hydrocarbylrest, der vorzugsweise ein Polyisobutenylrest ist, an einem Oxazinring oder an einem Benzolkern in ortho- oder vorzugsweise in para-Stellung zur phenolischen Hydroxylgruppe, d.h. er tritt als Substituent R19 oder R20 oder R22 oder R25 oder R27 oder R31 oder R32 auf. Dieser längerkettige Hydrocarbylrest, der vorzugsweise ein Polyisobutenylrest ist, umfasst vorzugsweise 21 bis 3000 oder vorzugsweise 21 bis 1000, insbesondere 26 bis 3000 oder insbesondere 26 bis 500, vor allem 30 bis 3000 oder vor allem 30 bis 250 Kohlenstoffatome. Im Falle von Polyisobutenylresten weisen diese zahlenmittlere Molekulargewichte Mn von 183 bis 42.000, vorzugsweise 500 bis 15.000, insbesondere 700 bis 7000, vor allem 900 bis 3000, ganz besonders bevorzugt 900 bis 1 100 auf.
Als Ci6- bis C2o-Alkyl- oder -Alkenylreste eignen sich zweckmäßigerweise die Reste von entsprechenden gesättigten oder ungesättigten Fettalkoholen mit 16 bis 20 Koh- lenstoffatomen. Insbesondere sind hier n-Hexadecyl (Palmityl), n-Octadecyl (Stearyl), n-Eicosyl, Oleyl, Linolyl und Linolenyl zu nennen, welche gemäß ihrem natürlichen Vorkommen meist als technische Gemische untereinander auftreten.
Der genannte längerkettige Hydrocarbylrest mit 13 bis 3000 Kohlenstoffatomen kann in den genannten mehrkernigen phenolischen Verbindungen auch mehrfach, beispielsweise zweifach oder dreifach, vertreten sein. In einer bevorzugten Ausführungsform treten ein oder zwei Polyisobutenyl-Reste mit einem jeweiligen zahlenmittleren Molekulargewicht Mn von 183 bis 42.000 im Molekül als Substituent R19 und/oder R20 und/oder R22 und/oder R25 und/oder R27 und/oder R31 und/oder R32 auf.
Die übrigen Substituenten aus der Gruppe R19, R20, R21, R22, R23, R25, R26, R27, R28, R31 oder R32, die nicht für Substituenten mit 13 bis 3000 Kohlenstoffatomen bzw. für Polyi- sobutenylreste mit einem zahlenmittleren Molekulargewichte Mn von 183 bis 42.000 stehen, bezeichnen unabhängig voneinander Wasserstoffatome, Hydroxylgruppen o- der, wenn sie für Hydrocarbylreste stehen, meist kürzerkettige Hydrocarbylreste mit 1 bis 20, vorzugsweise 1 bis 12, vor allem 1 bis 8 Kohlenstoffatomen, ganz besonders bevorzugt lineare oder verzweigte d- bis C4-Al kylreste. Typische Beispiele für die letzteren sind Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, 2-Butyl, sec.-Butyl und tert- Butyl. Methylreste und tert.-Butylreste werden hierbei ganz besonders bevorzugt.
Bevorzugte phenolische Verbindungen sind auch solche, bei denen die aus den eingesetzten Tetrahydrobenzoxazinen XXVI bzw. Phenolen XXVII stammenden Substituenten R20 und/oder R22 und/oder R25 und/oder R27, wenn sie für kürzerkettige Hydrocarbylreste stehen, lineare oder verzweigte d- bis C4-Alkylreste, insbesondere Methylres- te und/oder tert.-Butylreste, bezeichnen. Derartige Substitutionsmuster kommen natürlich nur bei Tetrahydrobenzoxazine XXVI mit insgesamt einem oder zwei Tetrahydroo- xa-zin-Ringsystemen in Betracht. Im Rest der Formel Z" bzw. Z'" bezeichnen die Substituenten R29 und R30 vorzugsweise Wasserstoff und/oder lineare oder verzweigte d- bis C4-Al kylreste, insbesondere Methylreste. Die Verbindungen XXVI und XXVII mit einem Rest Z" bzw. Z'", bei dem R29 = R3o = Methyl ist, leiten sich von Bisphenol A [2,2-Bis-(4-hydroxyphenyl)propan] ab. Herstellungsbedingt können Verbindungen XXVI mit einem Rest Z" und Verbindungen XXVI mit dem entsprechenden Rest Z'" auch als Mischungen vorliegen.
Unter Hydrocarbylresten mit 1 bis 3000 bzw. 13 bis 3000 Kohlenstoffatomen für die Substituenten R19, R20, R21, R22, R23, R25, R26, R27, R28, R31 und R32 sollen hier reine Kohlenwasserstoffreste jeglicher Struktur verstanden werden, die definitionsgemäß auch noch durch ein oder mehrere Heteroatome aus der Gruppe O und S und/oder durch eine oder mehrere Gruppierungen NR24 unterbrochen sein können. Ein typischer durch eine NR6-Gruppierung unterbrochener Hydrocarbylrest leitet sich von 3-(Dime- thylamino)-propylamin ab. Insbesondere sind Hydrocarbylreste Alkyl-, Alkenyl-, Cyclo- alkyl-, Aryl-, Alkylaryl-, Alkenylaryl- oder Arylalkyl-Reste.
Bei Unterbrechungen des Hydrocarbylrestes durch Gruppierungen NR24 sind auch solche Reste gemeint, bei denen am Ende die Gruppierungen NR24 formal in eine C-H-Bindung insertiert ist, also beispielsweise Substituenten R19, R20, R21, R22, R23, R25, R26, R27, R28, R31 oder R32 mit einer NH2-Endgruppe. Derartige Hydrocarbylreste leiten sich z.B. von Polyaminen wie Ethylendiamin, Diethylentriamin, Triethylentetramin, Tet- ra-ethylenpentamin, etc. ab, bei denen eines der endständigen Stickstoffatome das N- Atom im Oxazin-Ring darstellt.
Der Ausdruck "Alkyl" umfasst für die vorgenannten Verbindungen geradkettige und verzweigte Alkylgruppen. Beispiele für Alkylgruppen sind neben den bereits oben genannten Methyl-, Ethyl-, n-Propyl-, iso-Propyl-, n-Butyl-, 2-Butyl-, sec.-Butyl- und tert.-Butyl- Resten, insbesondere auch n-Pentyl, 2-Pentyl, 2-Methylbutyl, 3-Methylbutyl, 1 ,2-Dime- thylpropyl, 1 ,1-Dimethylpropyl, 2,2-Dimethylpropyl, 1-Ethylpropyl, n-Hexyl, 2-Hexyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1 ,2-Dimethylbutyl, 1 ,3-Dimethylbutyl, 2,3-Dimethylbutyl, 1 ,1-Dimethyl-butyl, 2,2-Dimethylbutyl, 3,3-Dimethylbutyl, 1 ,1 ,2-Tri- methylpropyl, 1 ,2,2-Trimethyl-propyl, 1-Ethylbutyl, 2-Ethylbutyl, 1-Ethyl-2-methylpropyl, n-Heptyl, 2-Heptyl, 3-Heptyl, 2-Ethylpentyl, 1-Propylbutyl, n-Octyl, 2-Ethylhexyl, 2-Pro- pyl-heptyl, n-Nonyl, n-Decyl, n-Dodecyl, n-Tridecyl, iso-Tridecyl, n-Tetradecyl (Myristyl), n-Hexadecyl (Palmityl), n-Octadecyl (Stearyl), und n-Eicosyl.
Beispiele für Alkenylreste für die vorgenannten Verbindungen sind Vinyl, 1 -Propenyl, 2-Propenyl, Oleyl, Linolyl und Linolenyl.
Beispiele für Cylcoalkylreste für die vorgenannten Verbindungen sind Cs- bis C7-Cyclo- alkylgruppen wie Cyclopentyl, Cyclohexyl und Cycloheptyl, welche noch durch Alkylgruppen, beispielsweise Methylreste, substituiert sein können. Der Ausdruck "Aryl" umfasst für die vorgenannten Verbindungen einkernige, zweikernige, dreikernige und höherkernige aromatische Kohlenwasserstoffreste. Diese Arylreste können im Falle einer Substitution durch die beispielsweise vorgenannten Alkyl- und/oder Alkenylreste zu Alkylaryl- bzw. Alkenylarylresten noch 1 , 2, 3, 4 oder 5, vor- zugsweise 1 , 2 oder 3 Substituenten tragen. Typische Beispiele sind Phenyl, ToIyI, XyIyI, Mesityl, Naphthyl, Fluorenyl, Anthracenyl, Phenanthrenyl, Naphthacenyl und Sty- ryl. Ein typisches Beispiel für einen Arylalkylrest ist Benzyl.
Ist der längerkettige Hydrocarbylrest mit 4 bis 3000 bzw. mit 13 bis 3000 Kohlenstoff- atomen ein Polyisobutenylrest, kann er auf prinzipiell jedem gängigen und kommerziell erhältlichen Polyisobuten basieren, welches in geeigneter Weise in die Synthese der Tetrahydrobenzoxazine IV oder der genannten mehrkernigen phenolischen Verbindungen eingebracht wird. Ein solches Polyisobuten besitzt ein zahlenmittleres Molekulargewicht Mn von mindestens 183 oder 200. Bevorzugt sind Polyisobutene mit einem zahlenmittleren Molekulargewicht Mn im Bereich von 200 bis 40.000 oder von 183 bis 42.000, besonders bevorzugt von 500 bis 15.000, vor allem von 700 bis 7000, insbesondere von 800 bis 5000, speziell von 900 bis 3000 und ganz besonders bevorzugt von 900 bis 1 100. Unter den Begriff "Polyisobuten" fallen im Sinne der vorliegenden Erfindung auch oligomere Isobutene wie dimeres, trimeres, tetrameres, pentameres, hexameres und heptameres Isobuten.
Vorzugsweise leiten sich die in die vorgenannten Verbindungen eingebauten Polyiso- butenylreste von sogenanntem "reaktiven" Polyisobuten ab. "Hochreaktive" Polyisobutene unterscheiden sich von den "niedrigreaktiven" Polyisobutenen durch den Gehalt an terminal angeordneten Doppelbindungen. So enthalten hochreaktive Polyisobutene wenigstens 50 Mol-% terminal angeordnete Doppelbindungen, bezogen auf die Gesamtanzahl an Polyisobuten-Makromolekülen. Besonders bevorzugt sind Polyisobutene mit wenigstens 60 Mol-%, insbesondere mit wenigstens 80 Mol-%, vor allem mit wengistens 85 Mol-% terminal angeordnete Doppelbindungen, bezogen auf die Ge- samtanzahl an Polyisobuten-Makromolekülen. Bei den terminal angeordneten Doppelbindungen kann es sich sowohl um Vinyldoppelbindungen [-CH=C(CH3)2] (ß-Olefin) als auch um Vinyliden-Doppelbindungen [-CH-C(=CH2)-CH3] (α-Olefin) handeln. Außerdem weisen die im Wesentlichen homopolymere Polyisobutenylreste einheitliche Polymergerüste auf. Darunter werden im Rahmen der vorliegenden Erfindung solche Po- lyisobuten-Systeme verstanden, die zu wenigstens 85 Gew.-%, vorzugsweise zu wenigstens 90 Gew.-% und besonders bevorzugt zu wenigstens 95 Gew.-% aus Isobuteneinheiten der Wiederholungeinheit [-CH2C(CH3)2-] aufgebaut sind.
Ein weiteres bevorzugtes Merkmal der Polyisobutene, die den Tetrahydrobenzoxazi- nen IV oder den genannten mehrkernigen phenolischen Verbindungen zugrunde liegen können, ist, dass sie zu wenigstens 15 Gew.-%, insbesondere zu wenigstens 50 Gew.- %, vor allem zu wenigstens 80 Gew.-% mit einer tert.-Butylgruppe [-CH2C(CH3)3] terminiert sind. Weiterhin weisen die als Basis für die als Ausgangsmaterial für die Tetrahydrobenzo- xazine IV bzw. die genannten mehrkernigen phenolischen Verbindungen verwendeten Tetrahydrobenzoxazine XXVI bzw. Phenole XXVII vorzugsweise dienenden Polyisobu- tene vorzugsweise einen Polydispersitätsindex (PDI) von 1 ,05 bis 10, vorzugsweise von 1 ,05 bis 3,0, insbesondere von 1 ,05 bis 2,0 auf. Unter Polydispersität versteht man den Quotienten aus gewichtsmittlerem Molekulargewicht Mw und zahlenmittlerem Molekulargewicht Mn (PDI = Mw/Mn). In einer bevorzugten Ausführungsform beträgt der gemittelte Polydispersitätsindex PDI für die Polyisobutenyl-Reste im den genannten mehrkernigen phenolischen Verbindungen höchstens das 5-fache, vorzugsweise höchstens das 3-fache, insbesondere höchstens das 2-fache, vor allem höchstens das 1 ,5-fache, des gemittelten Polydispersitätsindex PDI für die Polyisobutenyl-Reste in den zugrundeliegenden Tetrahydrobenzoxazinen XXVI und/oder Phenolen XXVII.
Unter als Basis für die vorgenannten Verbindungen vorzugsweise dienenden Polyiso- butenen werden im Sinne der vorliegenden Erfindungen auch alle durch kationische Polymerisation erhältlichen Polymerisate verstanden, die vorzugsweise wenigstens 60 Gew.-% Isobuten, besonders bevorzugt wenigstens 80 Gew.-%, vor allem wenigstens 90 Gew.-% und insbesondere wenigstens 95 Gew.-% Isobuten einpolymerisiert enthalten. Daneben können die Polyisobutene weitere Buten-Isomere wie 1- oder 2-Buten sowie davon verschiedene olefinisch ungesättigte Monomere, die mit Isobuten unter kationischen Polymerisationsbedingungen copolymerisierbar sind, einpolymerisiert enthalten.
Als Isobuten-Einsatzstoffe für die Herstellung von Polyisobutenen, die als Basis für die Tetrahydrobenzoxazine IV und die genannten mehrkernigen phenolischen Verbindungen dienen können, eignen sich dementsprechend sowohl Isobuten selbst als auch isobutenhaltige C4-Kohlenwasserstoffströme, beispielsweise C4-Raffinate, C4-Schnitte aus der Isobuten-Dehydrierung, C4-Schnitte aus Steamcrackern, FCC-Crackern (FCC: Fluid Catalyzed Cracking), sofern sie weitgehend von darin enthaltenem 1 ,3-Butadien befreit sind. Besonders geeignete C4-Kohlenwasserstoffströme enthalten in der Regel weniger als 500 ppm, vorzugsweise weniger als 200 ppm Butadien. Bei Einsatz von C4-Schnitten als Einsatzmaterial übernehmen die von Isobuten verschiedenen Kohlenwasserstoffe die Rolle eines inerten Lösungsmittels.
Als mit Isobuten copolymerisierbare Monomere kommen Vinylaromaten wie Styrol und α-Methylstyrol, Ci-C4-Alkylstyrole wie 2-, 3- und 4-Methylstyrol, sowie 4-tert.-Butyl- styrol, Isoolefine mit 5 bis 10 C-Atomen wie 2-Methylbuten-1 , 2-Methylpenten-1 , 2-Methylhexen-1 , 2-Ethylpenten-1 , 2-Ethylhexen-1 und 2-Propylhepten-1 in Betracht.
Typische Polyisobutene, die als Basis für die vorgenannten Verbindungen dienen können, sind beispielsweise die Glissopal®-Marken der BASF Aktiengesellschaft, z. B. Glissopal 550, Glissopal 1000 und Glissopal 2300, sowie die Oppanol®-Marken der BASF Aktiengesellschaft, z.B. Oppanol B10, B12 und B15. Neben Polyisobutenylresten können als längerkettige Hydrocarbylreste für die Tetra- hydrobenzoxazin IV bzw. die genannten mehrkernigen phenolischen Verbindungen auch solche auftreten, die sich von Oligomeren oder Polymeren von C2- bis Ci2-Ole- finen ableiten und im Mittel 13 bis 3000 Kohlenstoffatome aufweisen. Derartige meist polydisperse Hydrocarbylreste mit polymerer Verteilung sind beispielsweise solche, die sich von Ethylen, Propylen, Buten, Styrol, Methylstyrol, Hexen-1 , Octen-1 , Decen-1 oder Dodecen-1 ableiten. Sie können Homo- oder Copolymer-Reste sein. Ihr zahlenmittleres Molekulargewicht Mn beträgt mindestens 183, ihr Polydispersitätsindex PDI üblicherweise 1 ,05 bis 10. Bei niedermolekularen Resten mit Mn von 183 bis ca. 500 können sie auch monodispers vorliegen.
In einer bevorzugten Ausführungsform weisen die genannten mehrkernigen phenolischen Verbindungen ein mittleres Molekulargewicht Mn von 41 1 bis 25.000 auf. So steht beispielsweise das Molekulargewicht Mn von 411 für die kleinsten Vertreter der mehrkernigen phenolischen Verbindungen im Rahmen der vorliegenden Erfindung, nämlich Bis-(ortho- oder para-hydroxybenzyl)-tridecylamin. Besonders bevorzugte Bereiche für Mn sind 523 bis 25.000 oder 523 bis 17.000, insbesondere 593 bis 25.000 oder 593 bis 10.000, vor allem 649 bis 25.000 oder 649 bis 5000.
Beispiele für im Sinne der vorliegenden Erfindung typische mehrkernige phenolische Verbindungen sind die folgenden, wobei "PIB" einen von einem hochreaktiven Polyiso- buten (Mn 1000) abgeleiteten Polyisobutenylrest bezeichnet:
(XXVIIIa) n = 0, R19 = PIB, R22 = H
(XXVIIIb) n = 0, R19 = Methyl, R22 = PIB
(XXVIIIc) n = 0, R19 = PIB, R22 = tert.-Butyl
(XXVIIId) n = 1 , R19 = PIB, R22 = H
(XXVIIIe) n = 1 , R19 = Methyl, R22 = PIB
(XXVIIIf) n = 1 , R19 = PIB, R22 = tert.-Butyl
(XXVIIIg) n = 2, R19 = PIB, R22 = H
(XXVIIIh) n = 2, R19 = Methyl, R22 = PIB
(XXVIIIi) n = 2, R19 = PIB, R22 = tert.-Butyl
(XXVIIIj) n = 3, R19 = PIB, R22 = H
(XXVIIk) n = 3, R19 = Methyl, R22 = PIB (XXVIIII) n = 3, R19 = PIB, R22 = tert.-Butyl
(XXVIIIm) n = 4, R19 = PIB, R22 = H
(XXVIIIn) n = 4, R19 = Methyl, R22 = PIB
(XXVIIIo) n = 4, R19 = PIB, R22 = tert.-Butyl
(XXVIIIp) n = 5, R19 = PIB, R22 = H
(XXVIIIq) n = 5, R19 = Methyl, R22 = PIB
(XXVIIIr) n = 5, R19 = PIB, R22 = tert.-Butyl
(XXVIIIs) n = 6, R19 = PIB, R22 = H
(XXVIIIt) n = 6, R19 = Methyl, R22 = PIB
(XXVIIIu) n = 6, R19 = PIB, R22 = tert.-Butyl
(XXVIIIv) n = 1 , R19 = Methyl,
1 Rest R22 = PIB, 2 Reste R22 = tert.Butyl
(XXVIIIw) n = 8, R19 = Methyl,
1 Rest R22 = PIB, 9 Reste R22 = tert.Butyl
(XXIXa) R19 = Methyl, R20 = H, R22 = tert.-Butyl, R27 = PIB (XXIXb) R19 = Methyl, R20 = R22 = tert.-Butyl, R27 = PIB (XXIXc) R19 = p|Bi R2o = R22 = tert.-Butyl, R27 = H (XXIXd) R19 = p|Bi R20 = R22 = R27 = H (XXIXe) R19 = piß, R20 = R22 = H, R27 = teit-Blltyl (XXIXf) R19 = piß, R2o = H, R22 = tert.-Butyl, R27 = PIB
(XXiXg) R19 = piß, R2o = R22 = tert.-Butyl, R27 = PIB
(XXIXh) R19 = PIB, R20 = R22 = H, R27 =
(XXXa) R19 = Methyl, R20 = R22 = H, R27 = PIB (XXXb) R19 = Methyl, R20 = R22 = tert.-Butyl, R27 = PIB (XXXc) R19 = Methyl, R20 = tert.-Butyl, R22 = Methyl, R27 = PIB (XXXd) R19 = R20 = Methyl, R22 = tert.-Butyl, R27 = PIB (XXXe) R19 = 3-(Dimethylamino)propyl, R20 = R22 = tert.-Butyl, R27 = PIB (XXXf) R19 = PIB, R20 = R22 = R27 = H
(xxxg) R19 = PIB, R20 = R22 = H, R27 = tert.-Butyl
(XXXh) R19 = PIB, R20 = R22 = tert.-Butyl, R27 = H (XXXi) R19 = PIB, R20 = H, R22 = R27 = tert.-Butyl (XXXj) R19 = PIB, R20 = R22 = R27 = tert.-Butyl (XXXk) R19 = PIB, R20 = R22 = H, R27 = PIB
(XXXm) R19 (XXXn) R19 = 3-(Dimethylamino)propyl, R20 = tert.-Butyl, R22 = Methyl, R27 = PIB
(XXXIa) R19 = Methyl, R20 = R22 = H, R27 = PIB (XXXIb) R19 = Methyl, R20 = R22 = tert.-Butyl, R27 = PIB (XXXIc) R19 = p|Bi R20 = R22 = R27 = H
(XXXIIa) R19 = Methyl, R20 = tert.-Butyl, 3 Reste R22 = tert.-Butyl, 1 Rest R22 = PIB (XXXIIb) R19 = Methyl, R20 = tert.-Butyl, 3 Reste R22 = Methyl, 1 Rest R22 = PIB (XXXIIc) R19 = Methyl, 3 Reste R20 = tert.-Butyl, 1 Rest R20 = H, 3 Reste R22 = tert.-Butyl, 1 Rest R22 (am Benzolkern mit R20 = H) = PIB
Die schwefelhaltigen organischen Verbindungen mit Antioxidanz-Wirkung der Komponenten (B) sind üblicherweise niedermolekulare oder oligomere organische Verbindungen mit einem zahlenmittleren Molekulargewicht Mn von in der Regel maximal 2500, insbesondere maximal 1200, vor allem maximal 750.
In einer bevorzugten Ausführungsform umfasst die erfindungsgemäße synergistische Mischung als Komponente (B) mindestens eine organische Verbindung mit mindestens einer Gruppierung -(S)x-, insbesondere mit einer oder mit zwei Gruppierungen -(S)x-, in der x für eine ganze Zahl von 1 bis 20, vorzugsweise von 1 bis 10, insbesondere von 1 bis 5, vor allem für die Zahl 1 oder 2, steht. Die Gruppierungen -(S)x- sind vorzugsweise entweder beidseitig an Kohlenstoffatome organischer Reste und/oder an ein Kohlenstoffatom eines organischen Restes und ein Wasserstoffatom gebunden. Bei diesen organischen Verbindungen handelt es sich meist um Mercaptane, Sulfide, Di- sulfide oder Polysulfide; sie können aliphatischer oder aromatischer Natur sein oder heterocyclische Ringsysteme darstellen. Bei mehreren Schwefelatomen im Molekül können auch gemischte Sulfid/Mercaptan-Strukturen auftreten, beispielsweise im 2- Mercapto-benzthiazol. Organische Schwefelverbindungen nur mit mit S-O- Einfachbindungen oder S=O-Doppelbindungen eignen sich üblicherweise nicht als Komponente (B) der erfindungsgemäßen synergistischen Mischung
Typische Vertreter für schwefelhaltige organische Verbindungen mit Antioxidanz- Wirkung als Komponente (B) sind die folgenden:
• 2-Mercaptobenzthiazol
2-Mercaptobenzimidazol • Mercaptotriazine wie 2,4,6-Trimercaptotriazin-(1 ,3,5)
• längerkettige Mercaptane, insbesondere C4- bis C3o-Alkanthiole, vor allem Cs- bis Cis-Alkanthiole wie n-Octylthiol, n-Decylthiol, n-Dodecylthiol, n-Tetradecylthiol, n- Hexadecylthiol und n-Octadecylthiol
• Thioglykole wie Monothioethylenglykol
• längerkettige Dialkylsulfide, insbesondere Di-C4- bis C3o-alkylsulfide, vor allem Di- Ce- bis Ci8-alkyldisulfide wie Di-n-octylsulfid, Di-n-decylsulfid, Di-n-dodecylsulfid,
Di-n-tetradecylsulfid, Di-n-hexadecylsulfid und Di-n-octadecylsulfid
• Bis(aralkyl)sulfide wie Dibenzylsulfid
• Bis(aralkyl)disulfide wie Dibenzyldisulfid
• längerkettige Dialkyldisulfide, insbesondere Di-C4- bis C3o-alkyldisulfide, vor allem Di-Cs- bis Cis-alkyldisulfide wie Di-n-octyldisulfid, Di-n-decyldisulfid, Di-n-dodecyl- disulfid, Di-n-tetradecyldisulfid, Di-n-hexadecyldisulfid und Di-n-octadecyldisulfid
• Di-(C4- bis C3o-alkyl)-3,3'-thiopropionate, insbesondere Di-(Cs- bis Ci8-alkyl)-3,3'- thiopropionate wie Di-n-octyl-3,3'-thiopropionat, Di-n-decyl-3,3'-thiopropionat, Di- n-dodecyl-3,3'-thiopropionat, Di-n-tetradecyl-3,3'-thiopropionat, Di-n-hexadecyl- 3,3'-thiopropionat und Di-n-octadecyl-3,3'-thiopropionat
• Tetrakis-[methylen-2-(C4- bis C3o-alkylthio)propionat]-methane, insbesondere Tetrakis-[methylen-2-(C8- bis Ci8-alkylthio)propionat]-methane wie Tetrakis- [methylen-2-(laurylthio)propionat]-methan
• C4- bis C3o-Alkylthiopropylamide, insbesondere Cs- bis ds-Alkylthiopropylamide wie Stearylthiopropylamid
• Thiodiethylen-bis[3-(3,5-di-tert.-butyl-4-hydroxyphenyl)propionat]
• 2,4-Bis(C4- bis C3o-alkylthiomethyl)-6-methylphenole, insbesondere 2,4-BiS(Cs- bis Cis-alkylthiomethyl)-6-methylphenole wie 2,4-Bis(octylthiomethyl)-6- methylphenol
• Hydroxylgruppenhaltige Diarylsulfide, insbesondere hydroxylgruppenhaltige Diphenylsulfide, wie 4,4'-Thio-bis(2-tert.-butyl-5-methylphenol), 4,4'-Thio-bis(6- tert.-butyl-5-methylphenol) und 4,4'-Thio-bis(2-tert.-butyl-6-methylphenol) • Zinksalze von Dialkyldithiocarbaminsäuren wie das Zinksalz der Dimethyldithio- carbaminsäure
• Zink-dialkyldithiophosphate wie Zink-di(4-methylpentyl)-2-dithiophosphonat
• Reaktionsprodukte vonTerpenen (α-Pinen), Harzölen oder niedermolekularen Polybutenen mit Schwefel oder Thiophenol, beispielsweise die Umsetzungsprodukte von Polyisobutenen mit elementarem Schwefel zu polyisobutyl- substituierten schwefelhaltigen Fünfring-Heterocyclen oder mit Thiophenol zu Phenyl-polyiso-butylsulfid
Die erfindungsgemäße synergistische Mischung eignet sich als Stabilisator zur Stabilisierung von unbelebtem organischen Material gegen die Einwirkung von Licht, Sauerstoff und Wärme. Hierunter ist insbesondere ihre Wirkungsweise als Antioxidanz-Sys- tem im herkömmlichen Sinne zu verstehen. Denn "Antioxidanz-Systeme im herkömmlichen Sinne" sollen verhindern, daß sich bei der Lagerung von unbelebtem organischen Material - beispielsweise eines Kraftstoffes oder eines Mineralölproduktes - in Anwesenheit von allgegenwärtigem Sauerstoff unter dem Einfluß von Licht und/oder Wärme reaktive Oxidationsprodukte, insbesondere reaktive Peroxide, bilden, die einmal, unter Zersetzung (Autoxidation) des Materials, zu unerwünschten Nebenprodukten und/oder Verunreinigungen - im Falle von Kraftstoffen beispielsweise zu schädlichen harzigen oder klebrigen oder zu schädlichen harten oder lackartigen Niederschlägen ("Gum"- Bildung) - führen, zum anderen Schädigungen von umgebenden Materialien wie Verpackungen, Bauteilen oder Vorrichtungen - im Falle von Kraftstoffen beispielsweise Schädigungen oder Versprödungen von Dichtungen oder ähnlichen Bauteilen im Motor - verursachen können. Dazu wird die erfindungsgemäße syngergistische Mischung in das zu stabilisierende Material während oder nach dessen Herstellung eingearbeitet und möglichst homogen verteilt. Die Konzentration der erfindungsgemäßen synergistischen Mischung in dem zu stabilisierenden organischen Material beträgt in der Regel 0,0001 bis 5 Gew.-%, vorzugsweise 0,001 bis 5 Gew.-%, vor allem 0,01 bis 2 Gew.-%, insbesondere 0,05 bis 1 Gew.-% oder insbesondere 0,01 bis 0,05 Gew.-%, jeweils bezogen auf das organische Material.
Unter unbelebtem organischen Material sind beispielsweise kosmetische Präparate wie Salben und Lotionen, Arzneimittelformulierungen wie Pillen und Zäpfchen, photographische Aufzeichnungsmaterialien, insbesondere photographische Emulsionen, Anstrichmittel und Kunststoffe zu verstehen. Dazu zählen weiterhin und insbesondere Mineralölprodukte und Kraftstoffe, z.B. Dieselkraftstoff, Ottokraftstoff, Turbinenkraftstoff, Motorenöle, Schmieröle, Getriebeöle und Schmierfette.
Als Kunststoffe, die durch die erfindungsgemäße synergistische Mischung stabilisiert werden können, seien beispielsweise genannt: Polymere von Mono- oder Diolefinen, wie Polyethylen niedriger oder hoher Dichte, Polypropylen, lineares Polybuten-1 , Polyisopren, Polybutadien sowie Copolymerisate von Mono- oder Diolefinen oder Mischungen der genannten Polymeren;
Polystyrol sowie Copolymere von Styrol oder a-Methylstyrol mit Dienen und/oder Acryl- derivaten, z.B. Styrol-Butadien, Styrol-Acry I n itri I (SAN), Styrol-Ethylmethacrylat, Styrol- Butadien-Ethylacrylat, Styrol-Acrylnitril-Methacrylat, Acrylnitril-Butadien-Styrol (ABS) oder Methylmethacrylat-Butadien-Styrol (MBS); halogenhaltige Polymere, z.B. Polyvinylchlorid, Polyvinylfluorid, Polyvinylidenfluorid sowie deren Copolymere;
Polymere, die sich von α,ß -ungesättigten Säuren und deren Derivaten ableiten, wie Polyacrylate, Polymethacrylate, Polyacrylamide und Polyacrylnitrile;
Polymere, die sich von ungesättigten Alkoholen und Aminen bzw. von deren Acylderi- vaten oder Acetalen ableiten, z.B. Polyvinylalkohol und Polyvinylacetat;
Polyurethane, insbesondere thermoplastische Polyurethane, Polyamide, Polyharnstof- fe, Polyphenylenether, Polyester, Polycarbonate, Polysulfone, Polyethersulfone und Polyetherketone.
Zu den Anstrichmitteln, die mit der erfindungsgemäßen synergistischen Mischung stabilisiert werden können, zählen unter anderem Lacke wie Alkydharzlacke, Dispersionslacke, Epoxydharzlacke, Polyurethanlacke, Acrylharzlacke und Cellulosenitratlacke, oder Lasuren wie Holzschutzlasuren.
Ein weiterer Gegenstand der vorliegenden Erfindung ist unbelebtes organisches Material, welches wenigstens eine erfindungsgemäße synergistische Mischung enthält.
Ein bevorzugter Gegenstand der vorliegenden Erfindung ist eine Kraftstoffzusammen- setzung, welche einen Kraftstoff und wenigstens eine erfindungsgemäße synergistische Mischung enthält.
Die erfindungsgemäße synergistische Mischung eignet sich in besonders vorteilhafter Weise als Stabilisator in Turbinenkraftstoffen (jet fuels). Hierunter ist auch ihre Wir- kungsweise als Antioxidanz-System im herkömmlichen Sinne zu verstehen. Insbesondere dient sie über ihre Wirkungsweise als Stabilisator zur Verbesserung der thermischen Stabilität von Turbinenkraftstoffen. Weiterhin verhindert sie insbesondere auch über ihre Wirkungsweise als Stabilisator, d.h. in ihrer Eigenschaft als Dispergator, Ablagerungen im Kraftstoffsystem und/oder Verbrennungssystem von Turbinen. Turbi- nenkraftstoffe werden vor allem zum Betreiben von Flugzeugturbinen eingesetzt. Ein weiterer Gegenstand der vorliegenden Erfindung ist eine Turbinenkraftstoffzusam- mensetzung, die einen Turbinenkraftstoff (jet fuel) und wenigstens eine erfindungsgemäße synergistische Mischung enthält.
Die erfindungsgemäße Turbinenkraftstoffzusammensetzung enthält eine Hauptmenge eines flüssigen Turbinenkraftstoffs, wobei es sich beispielsweise um einen in der zivilen oder militärischen Luftfahrt üblichen Turbinenkraftstoff handelt. Dazu zählen beispielsweise Kraftstoffe der Bezeichnung Jet Fuel A, Jet Fuel A-1 , Jet Fuel B, Jet Fuel JP-4, JP-5, JP-7, JP-8 und JP-8+100. Jet A und Jet A- 1 sind kommerziell erhältliche Turbinenkraftstoffspezifikationen auf Kerosinbasis. Die zugehörigen Normen sind
ASTM D 1655 sowie DEF STAN 91-91. Jet B ist ein weiter geschnittener Kraftstoff auf Basis von Naphtha- und Kerosinfraktionen. JP-4 ist äquivalent zu Jet B. JP-5, JP-7, JP- 8 und JP-8+100 sind militärische Turbinenkraftstoffe, wie sie beispielsweise von der Marine und Luftwaffe eingesetzt werden. Zum Teil bezeichnen diese Normen Formulie- rungen, die bereits weitere Additive, wie Korrosionsinhibitoren, Vereisungsinhibitoren, statische Dissipatoren, etc. enthalten.
Die erfindungsgemäße synergistische Mischung kann dem Turbinenkraftstoff oder der Turbinenkraftstoffzusammensetzung in Kombination mit weiteren an sich bekannten Zusatzstoffen zugegeben werden. Geeignete Zusatzstoffe, die in der erfindungsgemäßen Turbinenkraftstoffzusammensetzung enthalten sein können, umfassen üblicherweise Detergenzien, Korrosionsinhibitoren, schwefelfreie Antioxidantien wie sterisch gehinderte tert.-Butylphenole, N-Butylphenylendiamine oder N,N'-Diphenyl-amin und Derivate hiervon, Metalldesaktivatoren wie N,N'-Disalicyliden-1 ,2-diamino-propan, Lö- sungsvermittler, Antistatika wie Stadis 450, Bioeide, Anti-Icing-Mittel wie Diethylen- glykolmethylether oder Triethylenglykolmethylether, sowie Mischungen der genannten Zusatzstoffe.
Im Rahmen der vorliegenden Erfindung bevorzugte Zusatzstoffe sind die nachfolgend aufgeführten speziellen Verbindungsklassen (C), (D) und (E):
Bevorzugte Zusatzstoffe (C) sind von Bernsteinsäureanhydrid abgeleitete Verbindungen mit langkettigen Kohlenwasserstoffresten mit in der Regel 15 bis 700, vor allem 30 bis 200 Kohlenstoffatomen. Diese Verbindungen können weitere funktionelle Gruppen aufweisen, die vorzugsweise ausgewählt sind unter Hydroxy-, Amino-, Amido- und/oder Imidogruppen. Bevorzugte Additive sind die entsprechenden Derivate von Polyalkenylbernsteinsäureanhydrid, welche z. B. durch Umsetzung von Polyalkenen mit Maleinsäureanhydrid auf thermischem Weg oder über die chlorierten Kohlenwasserstoffe erhältlich sind. Das zahlenmittlere Molekulargewicht der langkettigen Kohlen- wasserstoffreste liegt vorzugsweise in einem Bereich von etwa 200 bis 10.000, besonders bevorzugt 400 bis 5000, insbesondere 600 bis 3000 und speziell 650 bis 2000. Vorzugsweise leiten sich diese langkettigen Kohlenwasserstoffreste von konventionellen und insbesondere von den zuvor genannten reaktiven Polyisobutenen ab. Von be- sonderem Interesse als Zusatzstoffe (C) sind die Derivate von Polyalkenylbernstein- säureanhydriden mit Ammoniak, Monoaminen, Polyaminen, Monoalkoholen und Polyo- len. Zur Derivatisierung bevorzugte Polyamine umfassen Ethylendiamin, Diethylentria- min, Triethylentetramin, Tetraethylenpentamin, Propylendiamin, etc. Geeignete Alkoho- Ie umfassen einwertige Alkohole, wie Ethanol, Allylalkohol, Dodecanol und Benzylalko- hol, mehrwertige Alkohole, wie Ethylenglykol, Diethylenglykol, Propylenglykol, 1 ,2-Bu- tandiol, Neopentylglykol, Glycerin, Trimethylolpropan, Erythrit, Pentaerythrit, Mannitol und Sorbitol. Als Zusatzstoffe geeignete Bernsteinsäureanhydrid-Derivate (C) sind beispielsweise in der US 3 522 179, US 4 234 435, US 4 849 572, US 4 904 401 , US 5 569 644 und US 6 165 235 beschrieben.
Bevorzugte Zusatzstoffe (D) sind Polyalkenylthiophosphonatester. Der Polyalkenylrest diese Ester weist vorzugsweise ein zahlenmittleres Molekulargewicht im Bereich von etwa 300 bis 5000, besonders bevorzugt 400 bis 2000 und insbesondere 500 bis 1500 auf. Der Polyalkenylrest leitet sich vorzugsweise von Polyolefinen ab, wie sie zuvor bei der Komponente (C) als langkettiger Kohlenwasserstoffrest beschrieben wurden. Dabei handelt es sich speziell um Polyalkenylreste, die sich von konventionellen oder reaktiven Polyisobutenen ableiten. Geeignete Verfahren zur Herstellung geeigneter Polyalkenylthiophosphonatester durch Umsetzung eines Polyolefins mit einem Thiophospho- rylierungsmittel sind z. B. in der US 5 725 61 1 beschrieben.
Bevorzugte Zusatzstoffe (E) sind weitere Mannich-Addukte, die sich von den im Sinne der vorliegenden Erfindung einzusetzenden Mannich-Reaktionsprodukten der allge- meinene Formel Il unterscheiden. Derartige Addukte werden prinzipiell durch Mannich- Umsetzung von aromatischen Hydroxylverbindungen, insbesondere Phenol und Phenolderivaten, mit Aldehyden und Mono- oder Polyaminen erhalten. Vorzugsweise handelt es sich um die Umsetzungsprodukte von Polyisobuten-substituierten Phenolen mit Formaldehyd und Mono- oder Polyaminen wie Ethylendiamin, Diethylentriamin, Triethylentetramin, Tetraethylenpentamin oder Dimethylaminopropylamin.
Die erfindungsgemäße Turbinenkraftstoffzusammensetzung enthält die erfindungsgemäße synergistischte Zusammensetzung in einer Menge von üblicherweise 0,0001 bis 1 Gew.-%, vorzugsweise 0,001 bis 0,5 Gew.-%, insbesondere 0,01 bis 0,2 Gew.-%, vor allem 0,01 bis 0,1 Gew.-%, ganz besonders bevorzugt 0,01 bis 0,05 Gew.-%, jeweils bezogen auf die Gesamtmenge der Turbinenkraftstoffzusammensetzung.
Die Zusatzstoffe (C) bis (E) sowie gegebenenfalls weitere der zuvor genannten Zusatzstoffe können üblicherweise jeweils in Mengen von jeweils 0,0001 bis 1 Gew.-%, vorzugsweise 0,001 bis 0,6 Gew.-% und insbesondere 0,0015 bis 0,4 Gew.-%, bezo- gen auf die Gesamtmenge der Turbinenkraftstoffzusammensetzung, eingesetzt werden. Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Additivkonzentrat für Turbinenkraftstoffe (jet fuels), welches wenigstens eine erfindungsgemäße synergistische Mischung sowie gegebenenfalls wenigstens ein Verdünnungsmittel sowie gegebenenfalls mindestens einen weiteren Zusatzstoff, der vorzugsweise unter den zuvor be- schriebenen ausgewählt ist, enthält. In einer bevorzugten Ausführungsform enthält das erfindungsgemäße Additivkonzentrat, wie dann auch die erfindungsgemäße Turbinen- kraftstoffzusammensetzung, einen oder mehrere Zusatzstoffe aus der Gruppe (C), (D) und (E), insbesondere auch Mischungen hieraus wie (C) + (D), (C) + (E), (D) + (E) und (C) + (D) + (E).
Geeignete Verdünnungsmittel sind beispielsweise bei der Erdölverarbeitung anfallende Fraktionen wie Kerosin, Naphtha oder mineralische Grundöle. Geeignet sind darüber hinaus aromatische und aliphatische Kohlenwasserstoffe wie Solvent Naphtha schwer, Solvesso® oder Shellsol® sowie Gemische dieser Lösungs- und Verdünnungsmittel.
Die erfindungsgemäße synergistische Mischung liegt im erfindungsgemäßen Additivkonzentrat vorzugsweise in einer Menge von 0,1 bis 100 Gew.-%, besonders bevorzugt von 1 bis 80 Gew.-% und insbesondere von 10 bis 70 Gew.-%, bezogen auf das Gesamtgewicht des Konzentrats, vor.
Die erfindungsgemäße synergistische Mischung eignet sich weiterhin in vorteilhafter Weise als Stabilisator in Ottokraftstoffen und in Mitteldestillat-Kraftstoffen, hier insbesondere in Dieselkraftstoff und Heizöl. Hierunter ist auch ihre Wirkungsweise als Antio- xidanz-System im herkömmlichen Sinne zu verstehen. Insbesondere dienen sie über ihre Wirkungsweise als Stabilisator zur Verbesserung der thermischen Stabilität von Ottokraftstoffen und Mitteldestillat-Kraftstoffen. Weiterhin verhindern sie insbesondere auch über ihre Wirkungsweise als Stabilisator, d.h. in ihrer Eigenschaft als Dispergator, Ablagerungen im Kraftstoff System und/oder Verbrennungssystem von Otto- bzw. Dieselmotoren.
Als Ottokraftstoffe kommen alle handelsüblichen Ottokraftstoffzusammensetzungen in Betracht. Als typischer Vertreter soll hier der marktübliche Eurosuper Grundkraftstoff gemäß EN 228 genannt werden. Weiterhin sind auch Ottokraftstoffzusammensetzungen der Spezifikation gemäß WO 00/47698 mögliche Einsatzgebiete für die vorliegen- de Erfindung.
Als Mitteldestillat-Kraftstoffe kommen alle handelsüblichen Dieselkraftstoff- und Heizölzusammensetzungen in Betracht. Bei Dieselkraftstoffen handelt es sich üblicherweise um Erdölraffinate, die in der Regel einen Siedebereich von 100 bis 4000C haben. Dies sind meist Destillate mit einem 95%-Punkt bis zu 3600C oder auch darüber hinaus. Dies können aber auch sogenannte "Ultra low sulfur diesel" oder "City diesel" sein, gekennzeichnet durch einen 95%-Punkt von beispielsweise maximal 345°C und einem Schwefelgehalt von maximal 0,005 Gew.-% oder durch einen 95%-Punkt von bei- spielsweise 285°C und einem Schwefelgehalt von maximal 0,001 Gew.-%. Neben den durch Raffination erhältlichen Dieselkraftstoffen, deren Hauptbestandteile längerkettige Paraffine darstellen, sind solche, die durch Kohlevergasung oder Gasverflüssigung (beispielsweise durch Fischer-Tropsch-Synthese) ["gas to liquid" (GTL) Kraftstoffe] oder aus Biomasse ["biomass to liquid" (BTL) Kraftstoffe] erhältlich sind, geeignet. Geeignet sind auch Mischungen der vorstehend genannten Dieselkraftstoffe mit regenerativen Kraftstoffen wie Biodiesel. Von besonderem Interesse sind gegenwärtig Dieselkraftstoffe mit niedrigem Schwefelgehalt, das heißt mit einem Schwefelgehalt von weniger als 0,05 Gew.-%, vorzugsweise von weniger als 0,02 Gew.-%, insbesondere von weniger als 0,005 Gew.-% und speziell von weniger als 0,001 Gew.-% Schwefel. Dieselkraftstoffe können auch Wasser, z.B. in einer Menge bis zu 20 Gew.-%, enthalten, beispielsweise in Form von Diesel-Wasser-Mikroemulsionen oder als sogenannter "White Diesel".
Bei Heizölen handelt es sich beispielsweise um schwefelarme oder schwefelreiche Erdölraffinate oder um Stein- oder Braunkohledestillate, die üblicherweise einen Siedebereich von 150 bis 4000C aufweisen. Bei Heizölen kann es sich um Standard- Heizöl gemäß DIN 51603-1 handeln, das einen Schwefelgehalt von 0,005 bis 0,2 Gew.-% besitzt, oder es handelt sich um schwefelarme Heizöle mit einem Schwe- felgehalt von 0 bis 0,005 Gew.-%. Als Beispiele für Heizöl sei insbesondere Heizöl für häusliche Ölfeuerungsanlagen oder Heizöl EL genannt.
Die erfindungsgemäße synergistische Mischung kann entweder dem jeweiligen Grundkraftstoff, insbesondere dem Otto- oder dem Dieselkraftstoff, allein oder in Form von Kraftstoffadditiv-Paketen, z.B. den sogenannten Diesel-Performance-Paketen, zugesetzt werden. Derartige Pakete stellen Kraftstoffadditiv-Konzentrate dar und enthalten in der Regel neben Lösungsmitteln noch eine Reihe weiterer Komponenten als Coaddi- tive, beispielsweise Trägeröle, Kaltfließverbesserer, Korrosionsinhibitoren, Demulgato- ren, Dehazer, Antischaummittel, Cetanzahlverbesserer, Verbrennungsverbesserer, weitere Antioxidantien oder Stabilisatoren, Antistatika, Metallocene, Metalldeaktivato- ren, Lösungsvermittler, Marker und/oder Farbstoffe.
In einer bevorzugten Ausführungsform umfasst der additivierte Otto- oder Dieselkraftstoff neben der erfindungsgemäßen synergistischen Mischung als weitere Kraftstoffad- ditive inbesondere mindestens ein Detergens, nachfolgend als Komponente (F) bezeichnet.
Als Detergentien oder Detergens-Additive (F) werden üblicherweise Ablagerungsinhibitoren für Kraftstoffe bezeichnet. Vorzugsweise handelt es sich bei den Detergentien um amphiphile Substanzen, die mindestens einen hydrophoben Kohlenwasserstoffrest mit einem zahlengemittelten Molekulargewicht (Mn) von 85 bis 20.000, insbesondere von 300 bis 5000, vor allem von 500 bis 2500, und mindestens eine polare Gruppierung besitzen, die ausgewählt ist unter Fa) Mono- oder Polyaminogruppen mit bis zu 6 Stickstoffatomen, wobei mindestens ein Stickstoffatom basische Eigenschaften hat;
(Fb) Nitrogruppen, gegebenenfalls in Kombination mit Hydroxylgruppen;
(Fc) Hydroxylgruppen in Kombination mit Mono- oder Polyaminogruppen, wobei mindestens ein Stickstoffatom basische Eigenschaften hat;
(Fd) Carboxylgruppen oder deren Alkalimetall- oder Erdalkalimetallsalzen;
(Fe) Sulfonsäuregruppen oder deren Alkalimetall- oder Erdalkalimetallsalzen;
(Ff) Polyoxy-C2-C4-alkylengruppierungen, die durch Hydroxylgruppen, Mono- oder Polyaminogruppen, wobei mindestens ein Stickstoffatom basische Eigenschaften hat, oder durch Carbamatgruppen terminiert sind;
(Fg) Carbonsäureestergruppen;
(Fh) aus Bernsteinsäureanhydrid abgeleiteten Gruppierungen mit Hydroxy- und/oder Amino- und/oder Amido- und/oder Imidogruppen; und/oder
(Fi) durch Mannich-Umsetzung von substituierten Phenolen mit Aldehyden und Mono- oder Polyaminen erzeugten Gruppierungen, welche sich von den im Sinne der vorliegenden Erfindung einzusetzenden Mannich-Reaktionsprodukten der allgemeinene Formel Il unterscheiden.
Der hydrophobe Kohlenwasserstoffrest in den obigen Detergens-Additiven, welcher für die ausreichende Löslichkeit in der Brennstoffölzusammensetzung sorgt, hat ein zah- lengemitteltes Molekulargewicht (Mn) von 85 bis 20.000, insbesondere von 300 bis 5000, vor allem von 500 bis 2500. Als typischer hydrophober Kohlenwasserstoffrest, insbesondere in Verbindung mit den polaren Gruppierungen (Fa), (Fc), (Fh) und (Fi), kommen längerkettige Alkyl- oder Alkenylgruppen, insbesondere der Polypropenyl-, Polybutenyl- und Polyisobutenylrest mit jeweils Mn = 300 bis 5000, insbesondere 500 bis 2500, vor allem 700 bis 2300, in Betracht.
Als Beispiele für obige Gruppen von Detergens-Additiven seien die folgenden genannt:
Mono- oder Polyaminogruppen (Fa) enthaltende Additive sind vorzugsweise Polyalken- mono- oder Polyalkenpolyamine auf Basis von Polypropen oder konventionellem (d.h. mit überwiegend mittenständigen Doppelbindungen) Polybuten oder Polyisobuten mit Mn = 300 bis 5000. Geht man bei der Herstellung der Additive von Polybuten oder Polyisobuten mit überwiegend mittenständigen Doppelbindungen (meist in der ß- und γ- Position) aus, bietet sich der Herstellweg durch Chlorierung und anschließende Ami- nierung oder durch Oxidation der Doppelbindung mit Luft oder Ozon zur Carbonyl- oder Carboxylverbindung und anschließende Aminierung unter reduktiven (hydrierenden) Bedingungen an. Zur Aminierung können hier Amine, wie z. B. Ammoniak, Mono- amine oder Polyamine, wie Dimethylaminopropylamin, Ethylendiamin, Diethylentriamin, Triethylentetramin oder Tetraethylenpentamin, eingesetzt werden. Entsprechende Additive auf Basis von Polypropen sind insbesondere in der WO-A-94/24231 beschrieben.
Weitere bevorzugte Monoaminogruppen (Fa) enthaltende Additive sind die Hydrie- rungsprodukte der Umsetzungsprodukte aus Polyisobutenen mit einem mittleren Polymerisationsgrad P = 5 bis 100 mit Stickoxiden oder Gemischen aus Stickoxiden und Sauerstoff, wie sie insbesondere in WO-A-97/03946 beschrieben sind.
Weitere bevorzugte Monoaminogruppen (Fa) enthaltende Additive sind die aus PoIy- isobutenepoxiden durch Umsetzung mit Aminen und nachfolgender Dehydratisierung und Reduktion der Aminoalkohole erhältlichen Verbindungen, wie sie insbesondere in DE-A-196 20 262 beschrieben sind.
Nitrogruppen (Fb), gegebenenfalls in Kombination mit Hydroxylgruppen, enthaltende Additive sind vorzugsweise Umsetzungsprodukte aus Polyisobutenen des mittleren Polymerisationsgrades P = 5 bis 100 oder 10 bis 100 mit Stickoxiden oder Gemischen aus Stickoxiden und Sauerstoff, wie sie insbesondere in WO-A-96/03367 und WO-A-96/03479 beschrieben sind. Diese Umsetzungsprodukte stellen in der Regel Mischungen aus reinen Nitropolyisobutenen (z. B. α,ß-Dinitropolyisobuten) und ge- mischten Hydroxynitropolyisobutenen (z. B. α-Nitro-ß-hydroxypolyisobuten) dar.
Hydroxylgruppen in Kombination mit Mono- oder Polyaminogruppen (Fc) enthaltende Additive sind insbesondere Umsetzungsprodukte von Polyisobutenepoxiden, erhältlich aus vorzugsweise überwiegend endständige Doppelbindungen aufweisendem Polyiso- buten mit Mn = 300 bis 5000, mit Ammoniak, Mono- oder Polyaminen, wie sie insbesondere in EP-A-476 485 beschrieben sind.
Carboxylgruppen oder deren Alkalimetall- oder Erdalkalimetallsalze (Fd) enthaltende Additive sind vorzugsweise Copolymere von C2-C4o-Olefinen mit Maleinsäureanhydrid mit einer Gesamt-Molmasse von 500 bis 20000, deren Carboxylgruppen ganz oder teilweise zu den Alkalimetall- oder Erdalkalimetallsalzen und ein verbleibender Rest der Carboxylgruppen mit Alkoholen oder Aminen umgesetzt sind. Solche Additive sind insbesondere aus der EP-A-307 815 bekannt. Derartige Additive dienen hauptsächlich zur Verhinderung von Ventilsitzverschleiß und können, wie in der WO-A-87/01126 be- schrieben, mit Vorteil in Kombination mit üblichen Kraftstoffdetergenzien wie Poly(iso)- butenaminen oder Polyetheraminen eingesetzt werden. Sulfonsäuregruppen oder deren Alkalimetall- oder Erdalkalimetallsalze (Fe) enthaltende Additive sind vorzugsweise Alkalimetall- oder Erdalkalimetallsalze eines Sulfo- bernsteinsäurealkylesters, wie er insbesondere in der EP-A-639 632 beschrieben ist. Derartige Additive dienen hauptsächlich zur Verhinderung von Ventilsitzverschleiß und können mit Vorteil in Kombination mit üblichen Kraftstoffdetergenzien wie Poly(iso)- butenaminen oder Polyetheraminen eingesetzt werden.
Polyoxy-C2-C4-alkylengruppierungen (Ff) enthaltende Additive sind vorzugsweise PoIy- ether oder Polyetheramine, welche durch Umsetzung von C2-C6o-Alkanolen, C6-C3o-Alkandiolen, Mono- oder Di-C2-C3o-alkylaminen, Ci-C3o-Alkylcyclohexanolen oder Ci-C3o-Alkylphenolen mit 1 bis 30 mol Ethylenoxid und/oder Propylenoxid und/oder Butylenoxid pro Hydroxylgruppe oder Aminogruppe und, im Falle der Polyetheramine, durch anschließende reduktive Aminierung mit Ammoniak, Monoaminen oder Polyaminen erhältlich sind. Derartige Produkte werden insbesondere in EP-A-310 875, EP-A-356 725, EP-A-700 985 und US-A-4 877 416 beschrieben. Im Falle von Polyethern erfüllen solche Produkte auch Trägeröleigenschaften. Typische Beispiele hierfür sind Tridecanol- oder Isotridecanolbutoxylate, Isononylphenolbutoxy- late sowie Polyisobutenolbutoxylate und -propoxylate sowie die entsprechenden Umsetzungsprodukte mit Ammoniak.
Carbonsäureestergruppen (Fg) enthaltende Additive sind vorzugsweise Ester aus Mono-, Di- oder Tricarbonsäuren mit langkettigen Alkanolen oder Polyolen, insbesondere solche mit einer Mindestviskosität von 2 mm2/s bei 1000C, wie sie insbesondere in DE-A-38 38 918 beschrieben sind. Als Mono-, Di- oder Tricarbonsäuren können aliphatische oder aromatische Säuren eingesetzt werden, als Esteralkohole bzw. -polyole eignen sich vor allem langkettige Vertreter mit beispielsweise 6 bis 24 C-Atomen. Typische Vertreter der Ester sind Adipate, Phthalate, iso-Phthalate, Terephthalate und Trimellitate des iso-Octanols, iso-Nonanols, iso-Decanols und des iso-Tridecanols. Derartige Produkte erfüllen auch Trägeröleigenschaften.
Aus Bernsteinsäureanhydrid abgeleitete Gruppierungen mit Hydroxy- und/oder Amino- und/oder Amido- und/oder Imidogruppen (Fh) enthaltende Additive sind vorzugsweise entsprechende Derivate von Alkyl- oder Alkenyl-substituiertem Bernsteinsäureanhydrid und insbesondere die entsprechenden Derivate von Polyisobutenylbernsteinsäurean- hydrid, welche durch Umsetzung von konventionellem oder hochreaktivem Polyisobu- ten mit Mn = 300 bis 5000 mit Maleinsäureanhydrid auf thermischem Weg oder über das chlorierte Polyisobuten erhältlich sind. Von besonderem Interesse sind hierbei Derivate mit aliphatischen Polyaminen wie Ethylendiamin, Diethylentriamin, Triethylen- tetramin oder Tetraethylenpentamin. Bei den Gruppierungen mit Hydroxy- und/oder Amino- und/oder Amido- und/oder Imidogruppen handelt es sich beispielsweise um Carbonsäuregruppen, Säureamide von Monoaminen, Säureamide von Di- oder Polyaminen, die neben der Amidfunktion noch freie Amingruppen aufweisen, Bernsteinsäurederivate mit einer Säure- und einer Amidfunktion, Carbonsäureimide mit Monoami- nen, Carbonsäureimide mit Di- oder Polyaminen, die neben der Imidfunktion noch freie Amingruppen aufweisen, oder Diimide, die durch die Umsetzung von Di- oder Polyaminen mit zwei Bernsteinsäurederivaten gebildet werden. Derartige Kraftstoffadditive sind insbesondere in US-A-4 849 572 beschrieben.
Bei den Detergens-Additiven aus der Gruppe (Fh) handelt es sich vorzugsweise um die Umsetzungsprodukte von Alkyl- oder Alkenyl-substituierten Bernsteinsäureanhydriden, insbesondere von Polyisobutenylbernsteinsäureanhydriden, mit Aminen und/oder Alkoholen. Es handelt sich hierbei somit um von Alkyl-, Alkenyl- oder Polyisobutenyl- Bernsteinsäureanhydrid abgeleitete Derivate mit Amino- und/oder Amido- und/oder Imido- und/oder Hydroxylgruppen. Es versteht sich von selbst, dass diese Umsetzungsprodukte nicht nur bei Einsatz von substituiertem Bernsteinsäureanhydrid, sondern auch bei Verwendung von substituierter Bernsteinsäure oder geeigneten Säurederivaten, wie Bernsteinsäurehalogenide oder -ester, erhältlich sind. Vorzugsweise umfasst der additivierte Kraftstoff mindestens ein Detergens auf Basis eines Polyisobu- tenyl-substituierten Bernsteinsäureimids. Speziell von Interesse sind die Imide mit a- liphatischen Polyaminen. Besonders bevorzugte Polyamine sind dabei Ethylendiamin, Diethylentriamin, Triethylentetramin, Pentaethylenhexamin und vor allem Tetraethylen- pentamin. Der Polyisobutenylrest besitzt ein zahlenmittleres Molekulargewicht Mn von vorzugsweise 500 bis 5000, besonders bevorzugt von 500 bis 2000 und insbesondere von etwa 1000.
Durch Mannich-Umsetzung von substituierten Phenolen mit Aldehyden und Mono- oder Polyaminen erzeugte Gruppierungen (Fi) enthaltende Additive sind vorzugsweise Umsetzungsprodukte von Polyisobuten-substituierten Phenolen mit Formaldehyd und Mono- oder Polyaminen wie Ethylendiamin, Diethylentriamin, Triethylentetramin, Tetra- ethylenpentamin oder Dimethylaminopropylamin. Die Polyisobutenyl-substituierten Phenole können aus konventionellem oder hochreaktivem Polyisobuten mit Mn = 300 bis 5000 stammen. Derartige "Polyisobuten-Mannichbasen" sind insbesondere in der EP-A-831 141 beschrieben.
Verzugsweise werden die genannten Detergens-Additive (F) zusammen mit der erfindungsgemäßen synergistischen Mischung in Kombination mit wenigstens einem Trä- geröl verwendet.
Geeignete mineralische Trägeröle sind bei der Erdölverarbeitung anfallende Fraktionen, wie Brightstock oder Grundöle mit Viskositäten wie beispielsweise aus der Klasse SN 500 - 2000; aber auch aromatische Kohlenwasserstoffe, paraffinische Kohlenwasserstoffe und Alkoxyalkanole. Brauchbar ist ebenfalls eine als "hydrocrack oil" bekann- te und bei der Raffination von Mineralöl anfallende Fraktion (Vakuumdestillatschnitt mit einem Siedebereich von etwa 360 bis 5000C, erhältlich aus unter Hochdruck kataly- tisch hydriertem und isomerisiertem sowie entparaffiniertem natürlichen Mineralöl). Ebenfalls geeignet sind Mischungen oben genannter mineralischer Trägeröle. Beispiele für geeignete synthetische Trägeröle sind ausgewählt unter: Polyolefinen (Polyalphaolefinen oder Polyinternalolefinen), (Poly)estern, (Poly)alkoxylaten, PoIy- ethern, aliphatischen Polyetheraminen, alkylphenolgestarteten Polyethern, alkylphe- nolgestarteten Polyetheraminen und Carbonsäureestern langkettiger Alkanole.
Beispiele für geeignete Polyolefine sind Olefinpolymerisate mit Mn = 400 bis 1800, vor allem auf Polybuten- oder Polyisobuten-Basis (hydriert oder nicht hydriert).
Beispiele für geeignete Polyether oder Polyetheramine sind vorzugsweise Polyoxy-C2- C4-alkylengruppierungen enthaltende Verbindungen, welche durch Umsetzung von C2- Cβo-Alkanolen, Cβ-Cso-Alkandiolen, Mono- oder Di-C2-C3o-alkylaminen, Ci-C3o-Alkyl- cyclohexanolen oder Ci-C3o-Alkylphenolen mit 1 bis 30 mol Ethylenoxid und/ oder Pro- pylenoxid und/oder Butylenoxid pro Hydroxylgruppe oder Aminogruppe und, im Falle der Polyetheramine, durch anschließende reduktive Aminierung mit Ammoniak, Mono- aminen oder Polyaminen erhältlich sind. Derartige Produkte werden insbesondere in EP-A 310 875, EP-A 356 725, EP-A 700 985 und US-A 4,877,416 beschrieben. Beispielsweise können als Polyetheramine Poly-C2-C6-Alkylenoxidamine oder funktionelle Derivate davon verwendet werden. Typische Beispiele hierfür sind Tridecanol- oder Isotridecanolbutoxylate, Isononylphenolbutoxylate sowie Polyisobutenolbutoxylate und -propoxylate sowie die entsprechenden Umsetzungsprodukte mit Ammoniak.
Beispiele für Carbonsäureester langkettiger Alkanole sind insbesondere Ester aus Mono-, Di- oder Tricarbonsäuren mit langkettigen Alkanolen oder Polyolen , wie sie insbesondere in der DE-A 38 38 918 beschrieben sind. Als Mono-, Di- oder Tricarbonsäuren können aliphatische oder aromatische Säuren eingesetzt werden, als Esteralkohole bzw. -polyole eignen sich vor allem langkettige Vertreter mit beispielsweise 6 bis 24 C-Atomen. Typische Vertreter der Ester sind Adipate, Phthalate, iso-Phthalate, Terephthalate und Trimellitate des Isooctanols, Isononanols, Isodecanols und des Isotridecanols, wie z. B. Di-(n- oder iso-tridecyl)phthalat.
Weitere geeignete Trägerölsysteme sind beispielsweise in DE-A 38 26 608, DE-A 41 42 241 , DE-A 43 09 074, EP-A 0 452 328 und EP-A 0 548 617 beschrieben.
Beispiele für besonders geeignete synthetische Trägeröle sind alkoholgestartete PoIy- ether mit etwa 5 bis 35, wie z. B. etwa 5 bis 30, Cs-Cβ-Alkylenoxideinheiten, wie z. B. ausgewählt unter Propylenoxid-, n-Butylenoxid- und i-Butylenoxid-Einheiten, oder Gemischen davon. Nichtlimitierende Beispiele für geeignete Starteralkohole sind langkettige Alkanole oder mit langkettigem Alkyl-substituierte Phenole, wobei der langkettige Alkylrest insbesondere für einen geradkettigen oder verzweigten Cβ-ds-AlkvIrest steht. Als bevorzugte Beispiele sind zu nennen Tridecanol und Nonylphenol.
Weitere geeignete synthetische Trägeröle sind alkoxylierte Alkylphenole, wie sie in der DE-A 101 02 913 beschrieben sind. Bevorzugte Trägeröle sind synthetische Trägeröle, wobei Polyether besonders bevorzugt sind.
Dem additivierten Kraftstoff wird das Detergens-Additiv (F) oder ein Gemisch verschie- dener solcher Detergens-Additive in einer Gesamtmenge von vorzugsweise 10 bis 2000 Gew.-ppm, besonders bevorzugt von 20 bis 1000 Gew.-ppm, stärker bevorzugt von 50 bis 500 Gew.-ppm und insbesondere von 50 bis 200 Gew.-ppm, z.B. von 70 bis 150 Gew.-ppm, zugesetzt.
Wenn ein Trägeröl mitverwendet wird, so wird dieses dem erfindungsgemäßen additivierten Kraftstoff in einer Menge von vorzugsweise 1 bis 1000 Gew.-ppm, besonders bevorzugt von 10 bis 500 Gew.-ppm und insbesondere von 20 bis 100 Gew.-ppm, zugesetzt.
Als weitere Coadditive geeignete Kaltfließverbesserer sind beispielsweise Copolymere von Ethylen mit wenigstens einem weiteren ungesättigten Monomer, z.B. Ethylen- Vinylacetat-Copolymere.
Als weitere Coadditive geeignete Korrosionsinhibitoren sind beispielsweise Bernstein- säureester, vor allem mit Polyolen, Fettsäurederivate, z.B. Ölsäureester, oligomerisier- te Fettsäuren und substituierte Ethanolamine.
Als weitere Coadditive geeignete Demulgatoren sind beispielsweise die Alkali- und Erdalkalimetallsalze von alkylsubstituierten Phenol- und Naphthalinsulfonaten und die Alkali- und Erdalkalimetallsalze von Fettsäure, weiterhin Alkoholalkoxylate, z.B. Alko- holethoxylate, Phenolalkoxylate, z.B. tert.-Butylphenolethoxylate oder tert.-Pentyl- phenolethoxylate, Fettsäure, Alkylphenole, Kondensationsprodukte von Ethylenoxid und Propylenoxid, z.B. Ethylenoxid-Propylenoxid-Blockcopolymere, Polyethylenimine und Polysiloxane.
Als weitere Coadditive geeignete Dehazer sind beispielsweise alkoxylierte Phenol- Formaldehyd-Kondensate.
Als weitere Coadditive geeignete Antischaummittel sind beispielsweise Polyether- modifizierte Polysiloxane.
Als weitere Coadditive geeignete Cetanzahl- und Verbrennungsverbesserer sind beispielsweise Alkylnitrate, z.B. Cyclohexylnitrat und insbesondere 2-Ethylhexylnitrat, und Peroxide, z.B. Di-tert.-butylperoxid.
Als weitere Coadditive geeignete schwefelfreie Antioxidantien sind beispielsweise substituierte Phenole, z.B. 2,6-Di-tert.-butylphenol und 2,6-Di-tert.-butyl-3-methylphenol, sowie Phenylendiamine, z.B. N,N'-Di-sec.-butyl-p-phenylendiamin. Als weitere Coadditive geeignete Metalldeakivatoren sind beispielsweise Salicylsäure- Derivate, z.B. N,N'-Disalicyliden-1 ,2-propandiamin.
Als Lösungsmittel eignen sich, insbesondere für Kraftstoffadditiv-Pakete, beispiels- weise unpolare organische Lösungsmittel, insbesondere aromatische und aliphatische Kohlenwasserstoffe, z.B. Toluol, XyIoIe, "white spirit" sowie die technischen Lösungsmittelgemische der Bezeichnungen Shellsol® (Hersteller: Royal Dutch / Shell Group), Exxol® (Hersteller: ExxonMobil) und Solvent Naphtha. Weiterhin kommen hier, insbesondere in Abmischung mit den genannten unpolaren organischen Lösungsmitteln, polare organische Lösungsmittel, vor allem Alkohole wie 2-Ethylhexanol, 2-Propyl- heptanol, Decanol und Isotridecanol, in Betracht.
Wenn die genannten Coadditive und/oder Lösungsmittel in Otto- oder Dieselkraftstoff mitverwendet werden, werden sie in den hierfür übliche Mengen eingesetzt.
Die erfindungsgemäße synergistische Mischung eignet sich weiterhin in besonders vorteilhafter Weise als Stabilisator in Schmierstoffen. Als Schmierstoffe oder Schmierstoffzusammensetzungen sollen hier Motorenöle, Schmieröle, Getriebe-, Schalt- und Automatiköle und verwandte flüssige Zusammensetzungen, die der Schmierung von mechanisch bewegten Teilen - zumeist als Metall - dienen, bezeichnet werden. Unter Stabilisierung ist hier vor allem die Verbesserung der Oxidations- und Alterungsstabilität von Schmierstoffzusammensetzungen, also deren Wirkungsweise insbesondere als "Antioxidanz-System im herkömmlichen Sinne" zu verstehen. Zusätzlich oder alternativ wird durch die erfindungsgemäße synergistische Mischung die Scherstabiliät von Schmierstoffzusammensetzungen verbessert, d.h. die erfindungsgemäße synergistische Mischung verdickt die Schmierstoffzusammensetzungen effektiver. In einigen Fällen wirkt die erfindungsgemäße synergistische Mischung auch als Dispergator in Schmierstoffzusammensetzungen.
Ein weiterer Gegenstand der vorliegenden Erfindung ist eine Schmierstoffstoffzusammensetzung, die hierfür übliche Komponenten und wenigstens eine erfindungsgemäße synergistische Mischung enthält. Die erfindungsgemäße Schmierstoffzusammensetzung enthält die erfindungsgemäße synergistische Mischung in einer Menge von üblicherweise 0,001 bis 20 Gew.-%, vorzugsweise 0,01 bis 10 Gew.-%, insbesondere 0,05 bis 8 Gew.-% und vor allem 0,1 bis 5 Gew.-%, bezogen auf die Gesamtmenge der Schmierstoffzusammensetzung.
Die wirtschaftlich bedeutsamsten Schmierstoffzusammensetzungen sind Motorenöle sowie Getriebe-, Schalt- und Automatiköle. Motorenöle bestehen üblicherweise aus mineralischen Grundölen, welche überwiegend paraffinische Bestandteile enthalten und durch aufwendige Aufarbeitungs- und Reinigungsprozesse in der Raffinerie hergestellt werden, mit einem Anteil an ca. 2 bis 10 Gew.-% an Additiven (bezogen auf die Wirksubstanz-Gehalte). Für spezielle Anwendungen, beispielsweise Hochtemperatur- Einsätze, können die mineralischen Grundöle teilweise oder vollständig durch synthetische Komponenten wie organische Ester, synthetische Kohlenwasserstoffe wie Olefi- noligomere, Poly-α-Olefine oder Polyolefine oder Hydrocrack-Öle ersetzt sein. Motorenöle müssen auch bei hohen Temperaturen ausreichend hohe Viskositäten aufwei- sen, um einen einwandfreien Schmiereffekt und eine gute Abdichtung zwischen Zylinder und Kolben zu gewährleisten. Weiterhin müssen Motorenöle von ihren Fließeigenschaften auch so beschaffen sein, dass bei niedrigen Temperaturen der Motor problemlos gestartet werden kann. Motorenöle müssen oxidationsstabil sein und dürfen auch unter schweren Arbeitsbedingungen nur wenig Zersetzungsprodukte in flüssiger oder fester Form sowie Ablagerungen erzeugen. Motorenöle dispergieren Feststoffe (Dispersant-Verhalten), verhindern Ablagerungen (Detergent-Verhalten), neutralisieren saure Reaktionsprodukte und bilden einen Verschleißschutzfilm auf den Metalloberflächen im Motor aus. Motorenöle werden üblicherweise nach Viskositätsklassen-Klassen (SAE-Klassen) charakterisiert.
Getriebe-, Schalt- und Automatiköle sind bezüglich ihrer Grundkomponenten und Additive ähnlich wie Motorenöle zusammengesetzt. Die Kraftübertragung im Zahnradsystem von Getrieben erfolgt zu einem hohen Anteil durch den Flüssigkeitsdruck im Getriebeöl zwischen den Zähnen. Das Getriebeöl muß demzufolge so beschaffen sein, dass es auf Dauer hohe Drücke aushält, ohne sich zu zersetzen. Neben den Viskositätseigenschaften sind hier Verschleiß, Druckfestigkeit, Reibung, Scherstabilität, Traktion und Einlaufverhalten die entscheidenden Größen.
Motorenöle und Getriebe-, Schalt- und Automatiköle enthalten neben der erfindungs- gemäßen synergistischen Mischung in der Regel noch mindestens eines, meist jedoch einige oder alle der nachfolgend aufgeführten Additive in den hierfür in der Regel üblichen Mengen (welche in Gew.-%, bezogen auf die Gesamtmenge der Schmierstoffzusammensetzung, in Klammern angegeben sind):
(a) schwefelhaltige Antioxidantien, die sich von den im Sinne der vorliegenden Erfindung einzusetzenden schwefelhaltigen Antioxidantien der Komponente (B) unterscheiden, und/oder schwefelfreie Antioxidantien (0,1 bis 5 %):
Phosphorverbindungen, z.B. Triaryl- und Trialkylphosphite, 3,5-di-tert.-butyl-4- hydroxy-benzyl-phosphonsäure-dialkylester oder Phosphonsäure-piperazide
Schwefel-Phosphor-Verbindungen, z.B. Zink-dialkyldithiophosphate (Metalldial- kyldithio-phosphate wirken in Schmierölen auch als Korrosionsinhibitoren und Hochdruckadditive) oder Reaktionsprodukte von Phosphorpentasulfid mit Terpe- nen (α-Pinen, Dipenten), Polybutenen, Olefinen oder ungesättigten Estern
Phenol-Derivate, z.B. sterisch gehinderte Mono-, Bis- oder Trisphenole, sterisch gehinderte mehrkernige Phenole, Polyalkylphenole, 2,6-Di-tert.-butyl-4- methylphenol oder Methylen-4,4'-bis(2,6-di-tert.-butylphenol) (Phenol-Derivate werden oft in Kombination mit Antioxidantien auf Schwefelbasis oder Aminbasis eingesetzt)
Amine, z.B. Arylamine wie Diphenylamin, Phenyl-α-naphthylamin oder 4,4'-Tetra- methyldiamino-diphenylmethan
Metalldeaktivatoren im engeren Sinne, z.B. N-Salicyliden-ethylamin, N, N'- Disalicyliden-ethylendiamin, N,N'-Disalicyliden-1 ,2-propandiamin, Triethylendia- min, Ethylendiamintetraessigsäure, Phosphorsäure, Zitronensäure, Glykolsäure,
Lecithin, Thiadiazol, Imidazol oder Pyrazol-Derivate
(b) Viskositätsindex-Verbesserer (0,05 bis 10 %), z.B: Polyisobutene mit einem Molekulargewicht von üblicherweise 10.000 bis 45.000, Polymethacrylate mit einem Molekulargewicht von Üblicherweisel 5.000 bis 100.000, Homo- und Copolymeri- sate von 1 ,3-Dienen wie Butadien oder Isopren mit einem Molekulargewicht von üblicherweise 80.000 bis 100.000, 1 ,3-Dien-Styrol-Copolymerisate mit einem Molekulargewicht von üblicherweise 80.000 bis 100.000, Maleinsäureanydrid-Styrol- Polymere in veresterter Form mit einem Molekulargewicht von üblicherweise 60.000 bis 120.000, sternförmige Polymere mit blockförmigem Aufbau durch Einheiten aus konjugierten Dienen und aromatischen Monomeren mit einem Molekulargewicht von üblicherweise 200.000 bis 500.000, Polyalkylstyrole mit einem Molekulargewicht von üblicherweise 80.000 bis 150.000, Polyolefine aus Ethylen und Propylen oder Styrol-Cyclopentadien-Norbornen-Terpolymere mit einem Mo- lekulargewicht von üblicherweise 60.000 bis 140.000
(c) Pour Point Erniedriger (Kaltfließverbesserer) (0,03 bis 1 %), z.B. bicyclische A- romaten wie Naphthalin mit verschiedenen langkettigen Alkylresten, Polymethy- acrylate mit 12 bis 18 Kohlenstoffatomen im Alkoholrest, einem Verzweigungs- grad zwischen 10 bis 30 mol-% und einem durchschnittlichen Molekulargewicht von 5.000 bis 500.000, langkettige Alkylphenole und Phthalsäure-dialkylarylester oder Copolymere verschiedener Olefine
(d) Detergentien (HD Additive) (0,2 bis 4 %), z.B. Calcium-, Blei-, Zink- und Mangan- Naphthenate, Calcium-Dichlorostearate, Calcium-Phenylstearate, Calcium-
Chlorophenylstearate, Sulfonierungsprodukte von Alkylaromaten wie Dodecyl- benzol, Petroleum-sulfonate, Natrium-, Calcium-, Barium- oder Magnesium- Sulfonate, neutrale, basische und überbasische Sulfonate, Phenate und Carbo- xylate, Salicylate, Metallsalze von Alkylphenolen und Alkylphenolsulfiden, Phos- phate, Thiophosphate oder Alkenylphosphonsäure-Derivate (e) Aschefreie Dispersantien oder Dispergatoren (0,5 bis 10 %), z.B. Mannich- Kondensate aus Alkylphenol, Formaldehyd und Polyalkylenpolyaminen, welche sich von den im Sinne der vorliegenden Erfindung einzusetzenden Mannich- Reaktionsprodukten der allgemeinene Formel Il unterscheiden, Umsetzungsprodukte von Polyisobutenylsuccinanhydriden mit Polyhydroxy-Verbindungen oder Polyaminen, Copolymerisate von Alkylmethacrylaten mit Diethylaminoethyl- methacrylat, N-Vinylpyrrolidon, N-Vinylpryridin oder 2-Hydroxy-ethyl-methacrylat oder Vinylacetat-Fumarat-Copolymerisate
(f) Hochdruckadditive (Extreme Pressure Additive) (0,2 bis 2,5 %), z.B. chlorierte Paraffine mit 40 bis 70 Gew.-% Chlorgehalt, chlorierte Fettsäure (insbesondere mit Trichlormethyl-Endgruppen), Dialkylhydrogenphosphite, Triarylphosphite, A- rylphosphate wie Trikresylphosphat, Dialkylphosphate, Trialkylphosphate wie Tri- butylphosphat, Trialkylphosphine, Diphosphorsäureester, Nitroaromaten, Ami- nophenol-Derivate der Naphthensäure, Carbaminsäureester, Dithiocarbaminsäu- re-Derivate, substituierte 1 ,2,3-Triazole, Mischungen aus Benzotriazol und Alkyl- bernsteinsäureanhydrid oder Alkylmaleinsäureanhydrid, 1 ,2,4-Thiadiazol-Poly- mere, Morpholinobenzothiadiazol-disulfid, chlorierte Alkylsulfide, sulfurisierte Ole- fine, sulfurisierte Chlornaphthaline, chlorierte Alkylthiocarbonate, organische Sulfide und Polysulfide wie Bis(4-chlorbenzyl)-disulfid und Tetrachlordiphenylsulfid, Trichloracrolein-Mercaptale oder insbesondere Zink-dialkyldithiophosphate (ZDDP)
(g) Reibungsverminderer (Friction Modifier) (0,05 bis 1 %), insbesondere polare öllösliche Verbindungen, die eine dünne Schicht auf der Reibungsfläche durch Adsorption erzeugen, z.B. Fettalkohole, Fettamide, Fettsäuresalze, Fettsäurealky- lester oder Fettsäureglyceride
(h) Antischaum-Additive (0,0001 bis 0,2 %), z.B. flüssige Silicone wie Polydimethylsi- loxane oder Polhethylenglykolether und -sulfide
(i) Demulgatoren (0,1 bis 1 %), z.B. Dinonylnaphthalinsulfonate in Form ihrer Alkali- und Erdalkalimetallsalze
(j) Korrosionsinhibitoren (auch als Metalldeaktivatoren bezeichnet) (0,01 bis 2 %), z.B. tertiäre Amine und ihre Salze, Iminoester, Amidoxime, Diaminomethane, Derivate von gesättigten oder ungesättigten Fettsäuren mit Alkanolaminen, Alkyla- mine, Sarcosine, Imidazoline, Alkylbenzotriazole, Dimercaptothiadiazol-Derviate, Diarylphosphate, Thiophosphorsäureester, Neutralsalze von primären n-Cs-ds-
Alkylaminen oder Cycloalkylaminen mit Dialkylphosphaten mit verzweigten C5-Ci2-Alkylgruppen, neutrale oder basische Erdalkalimetallsulfonate, Zinknaphthenate, Mono- und Dialkylarylsulfonate, Bariumdinonylnaphthalinsulfo- nate, Lanolin (Wollfett), Schwermetallsalze der Naphthensäure, Dicarbonsäure, ungesättigte Fettsäuren, Hydroxyfettsäuren, Fettsäureester, Pentaerythritol- und Sorbitan-Monooleate, O-Stearoylalkanolamine, Polyisobutenyl-bernsteinsäure- Derivate oder Zink-dialkyldithiophosphate und Zinkdialkyldithiocarba-mate
(k) Emulgatoren (0,01 bis 1 %), z.B. langkettige ungesättigte, natürlich vorkomm- mende Carbonsäure, Naphthensäuren, synthetische Carbonsäure, Sulfonamide, N-Oleylsarcosin, Alkansulfamidoessigsäure, Dodecylbenzolsulfonat, langkettige alkylierte Ammoniumsalze wie Dimethyldodecylbenzylammonium-chlorid, Imida- zolinium-Salze, Alkyl-, Alkylaryl-, Acyl-, Alkylamino- und Acylaminopolyglykole oder langkettige acylierte Mono- und Diethanolamine
(I) Farbstoffe und Fluoreszenzadditive (0,001 bis 0,2 %)
(m) Konservierungsmittel (0,001 bis 0,5 %)
(n) Geruchsverbesserer (0,001 bis 0,2 %)
Typische gebrauchsfertige Motorenöl- und Getriebe-, Schalt- und Automatiköl- Zusammensetzungen im Rahmen der vorliegenden Erfindung sind folgendermaßen zusammengesetzt, wobei sich die Angaben für die Additive auf die Wirksubstanz- Gehalte beziehen und die Summe aller Komponenten immer 100 Gew.-% ergibt:
• 80 bis 99,3 Gew.-%, insbesondere 90 bis 98 Gew.-% Motorenöl- bzw. Getriebe-, Schalt- und Automatiköl-Grundlage (mineralische Grundöle und/oder synthetische Komponenten) einschließlich der Anteile an Lösungs- und Verdünnungsmittel für die Additive
• 0,1 bis 8 Gew.-% der erfindungsgemäßen synergistischen Mischung
• 0,2 bis 4 Gew.-%, insbesondere 1 ,3 bis 2,5 Gew.-% Detergentien der Gruppe (d)
• 0,5 bis 10 Gew.-%, insbesondere 1 ,3 bis 6,5 Gew.-% Dispersantien der Gruppe (e)
• 0,1 bis 5 Gew.-% , insbesondere 0,4 bis 2,0 Gew.-% Antioxidantien der Gruppe (a) und/oder Hochdruckadditive der Gruppe (f) und/oder Reibungsverminderer der Gruppe (g)
• 0,05 bis 10 Gew.-%, insbesondere 0,2 bis 1 ,0 Gew.-% Viskositätsindex- Verbesse-rer der Gruppe (b)
• 0 bis 2 Gew.-% der sonstigen Additive der Gruppen (c) und (h) bis (n) Die Erfindung wir anhand der folgenden, nicht einschränkenden Beispiele näher erläutert.
Herstellungsbeispiele
Folgende Verbindungen wurde als Komponente (A) in der erfindungsgemäßen synergistischen Mischung eingesetzt:
(A1 ) 2-Aminomethyl-4-polyisobutyl-6-tert.-butylphenol gemäß allgemeiner Formel Il (R2 = tert.-Butyl, R6 = R7 = Wasserstoff, Mn des Polyisobutylrestes = 1000), hergestellt gemäß der Lehre der Schrift (1 ) durch Alkylierung von 2-tert.-Butylphenol mit Polyisobuten und Folgeumsetzung mit Formaldehyd und Ammoniak; setzt man statt des 2-Aminomethyl-4-polyisobutyl-6-tert.-butylphenols das 2-(N1N-Di- methylaminomethyl)-4-polyisobutyl-6-tert.-butylphenol (R2 = tert.-Butyl, R6 = R7 =
Methyl, Mn des Polyisobutylrestes = 1000) ein, welches in analoger Weise durch Alkylierung von 2-tert.-Butylphenol mit Polyisobuten und Folgeumsetzung mit Formaldehyd und Dimethylamin erhältlich ist, erzielt man in den nachfolgend aufgeführten Anwendungsbeispielen die gleichen Ergebnisse
(A2) polyisobutyl-substituiertes Tetrahydrobenzoxazin der Formel Vb, hergestellt gemäß der Lehre der Schrift (4)
(A3) mehrkernige phenolische Verbindung mit 3 Benzolkernen der Formel XXXc, her- gestellt gemäß dem nachfolgend aufgeführten Herstellungsbeispiel
Herstellungsbeispiel für A3
In einem 500 ml-Vierhalskolben wurden 120 g 4-Polyisobutenylphenol, hergestellt aus Polyisobuten mit einem zahlenmittleren Molekulargewicht Mn von 1000 und einem Gehalt an endständigen Vinyliden-Doppelbindungen von 80 Mol-% (Glissopal® 1000 der BASF Aktiengesellschaft), bei Raumtemperatur in 100 ml Toluol vorgelegt und 48 g des Tetrahydrobenzoxazins der allgemeinen Formel Vg wurden innerhalb von 15 Minuten zugegeben. Der Kolbeninhalt wurde bis zum Rückfluß erwärmt und 2 Stunden un- ter Rückfluß gerührt. Nach Abkühlen auf Raumtemperatur wurde mit Methanol gewaschen und die Toluolphase wurde im Vakuum (5 mbar) bei 1500C eingeengt. Man erhielt 113 g eines klaren, hellen, zähen Öls.
1H-NMR (400 MHz, 16 Scans, CDCI3): δ = 3,8-3,5 ppm (Benzyl-Protonen), δ = 2,6-2,0 ppm (Methylamin-Protonen), δ = 6,9- 7,2 ppm (Aromaten-Protonen) Folgende schwefelhaltige organische Verbindungen wurde als Komponente (B) in der erfindungsgemäßen synergistischen Mischung eingesetzt:
(B1 ) 4,4'-Thio-bis(2-tert.-butyl-6-methylphenol), im Handel erhältliches Produkt; setzt man statt 4,4'-Thio-bis(2-tert.-butyl-6-methylphenol) das ebenfalls im Handel erhältliche strukturisomere 4,4'-Thio-bis(2-tert.-butyl-5-methylphenol) ein, erhält man in den nachfolgend aufgeführten Anwendungsbeispielen die gleichen Ergebnisse
(B2) Phenyl-polyisobutylsulfid, hergestellt durch das unten angegebene Herstellungsbeispiel für B2
(B3) Umsetzungsprodukt von Polyisobuten mit elementarem Schwefel zu polyisobutyl- substituierten schwefelhaltigen Fünfring-Heterocyclen, hergestellt durch das un- ten angegebene Herstellungsbeispiel für B3
Herstellungsbeispiel für B2
In einem 2 Liter-Vierlhalskolben wurden 90 g Thiophenol unter Argon-Schutzgasatmo- Sphäre vorgelegt. 7 g Bortrifluorid-Phenolat wurden bei Raumtemperatur rasch zugesetzt. Eine Lösung von 800 g Polyisobuten mit einem zahlenmittleren Molekulargewicht Mn von 1000 und einem Gehalt an endständigen Vinyliden-Doppelbindungen von 80 Mol-% (Glissopal® 1000 der BASF Aktiengesellschaft) in 400 ml Hexan wurde innerhalb von 24 Stunden bei 200C unter Kühlung zugetropft. Nach Zulaufende wurde noch 3 Stunden bei Raumtemperatur nachgerührt. Zur Aufarbeitung wurden 250 ml Methanol zugegeben, die Hexan-Phase wurde mit weiterem Hexan verdünnt und noch zweimal mit jeweils 500 ml Methanol gewaschen. Nach Abdestillation des Hexans im Vakuum (5 mbar) bei 1200C erhielt man 846 g Phenyl-polyisobutylsulfid in Form eines hellen Öles.
1H-NMR (400 MHz, 16 Scans, CDCI3): δ = 7,51 ppm, 2H, Aromaten-Protonen; δ = 7,32 ppm, 2H, Aromaten-Protonen; δ =
1 ,78 ppm, 2H, Polyisobutyl-Protonen; weitere Polyisobutyl-Protonen
Herstellungsbeispiel für B3
700 g Polyisobuten mit einem zahlenmittleren Molekulargewicht Mn von 1000 und einem Gehalt an endständigen Vinyliden-Doppelbindungen von 80 Mol-% (Glissopal® 1000 der BASF Aktiengesellschaft) wurden zusammen mit 120 g Schwefelpulver in einem 2 Liter-Laborautoklaven bei 1000C dreimal mit Stickstoff gespült. Danach wurde mit Hilfe eines Metallbades 1 Stunde auf 220°C und anschließend 1 Stunde auf 240°C erhitzt. Über ein Nadelventil wurde der Innendruck bei 5 bar gehalten. Bei der Umsetzung entstandener und über das Nadelventil entwichener Schwefelwasserstoff wurde in einem Waschturm mit Chlorlauge absorbiert und zersetzt. Zur Aufarbeitung wurde mit 1000 ml Heptan verdünnt, der Feststoff abfiltriert und die Lösung am Rotationsverdampfer bei 1400C und 5 mbar eingeengt. Man erhielt 750 g Produkt in Form eines braunen Öles, das nach 1H-NMR-Analyse als Hauptkomponenten die beiden nachgenannten polyisobutyl-substituierten schwefelhaltigen Fünfring-Heterocyclen enthielt B3/I und B3/II:
(PIB** bezeichnet den um eine Polyisobuten-Einheit verkürzten Rest aus dem einge- setzten Glissopal® 1000)
1H-NMR (400 MHz, 16 Scans, CDCI3): B3/I: δ = 8,21 ppm, 1 H; δ = 2,77 ppm, 2H B3/II: δ = 2,44 ppm, 3H; δ = 2,00 ppm, 2H; δ = 1 ,58 ppm, 6H
Aus den Komponenten A1 bis A3 wurden jeweils durch Vermischen mit den Komponenten B1 bis B3 erfindungsgemäße synergistische Mischungen hergestellt, von denen ein Teil in den nachfolgenden Anwendungsbeispielen eingesetzt wurde.
Anwendungsbeispiele
Beispiel 1 : Überprüfung der thermischen Stabilität von Turbinenkraftstoff (jet fuel) durch Bestimmung der entstehenden Partikelmenge
Es wurde jeweils ein handelsüblicher Turbinenkraftstoff der Spezifikation Jet A gemäß ASTM D 1655 eingesetzt. Die Additivierung erfolgte jeweils mit den unten angegebenen Mengen der nachfolgend genannten Mischungen oder Formulierungen M1 bis M7, welche die oben spezifizierten Komponenten A1 bis A3 und/oder B1 oder B2 enthielten.
M1 (zum Vergleich) 40 Gew.-% A3,
10 Gew.-% 2,6-Di-tert.-butyl-4-methylphenol ("BHT")
(schwefelfreies Antioxidans), 4 Gew.-% handelsüblicher Metalldeaktivator und 46 Gew.-% Solvent Naphtha Heavy (Lösungsmittel)
M2 (erfindungsgemäß) 40 Gew.-% A3,
8 Gew.-% B1 , 10 Gew.-% 2,6-Di-tert.-butyl-4-methylphenol ("BHT") (schwefelfreies Antioxidans), 4 Gew.-% handelsüblicher Metalldeaktivator und 38 Gew.-% Solvent Naphtha Heavy (Lösungsmittel)
M3 (zum Vergleich) 100 Gew.-% A1
M4 (zum Vergleich) 100 Gew.-% B2
M5 (erfindungsgemäß) 50 Gew.-% A1 und
50 Gew.-% B2
M6 (erfindungsgemäß) 30 Gew.-% A2,
10 Gew.-% B1 , 10 Gew.-% 2,6-Di-tert.-butyl-4-methylphenol ("BHT")
(schwefelfreies Antioxidans),
5 Gew.-% handelsüblicher Metalldeaktivator, 30 Gew.-% Solvent Naphtha Heavy (Lösungsmittel) und 15 Gew.-% 2-Ethylhexanol (Lösungsmittel)
M7 (zum Vergleich) 30 Gew.-% A2, 10 Gew.-% 2,6-Di-tert.-butyl-4-methylphenol ("BHT")
(schwefelfreies Antioxidans),
5 Gew.-% handelsüblicher Metalldeaktivator, 30 Gew.-% Solvent Naphtha Heavy (Lösungsmittel) und 25 Gew.-% 2-Ethylhexanol (Lösungsmittel)
In einem Dreihals-Glaskolben, der mit Rührer, Rückflusskühler und Thermometer versehen war, wurden zunächst bei Raumtemperatur 5 I Luft innerhalb 1 h durch 150 ml des zu untersuchenden Kraftstoffs geleitet. Anschließend wurde der Kraftstoff mit einem Ölbad auf 1600C erhitzt und weitere 5 h bei dieser Temperatur gerührt. Nach Abkühlen auf Raumtemperatur wurde die gesamte Kraftstoffmenge über einen 0,45 μm Membranfilter filtriert. Anschließend wurde der Filterrückstand nach 45 min Trocknen im Trockenschrank bei 115 0C und anschließender 2-stündiger Trocknung unter Vakuum im Exsiccator gravimetrisch bestimmt.
Die nachfolgende Tabelle 1 zeigt die Ergebnisse der gravimetrischen Bestimmungen:
Tabelle 1 :
Probe Kraftstoff Dosierung Er1 gebnh
Blindwert Nr. 1 0 1 1 ,0 mg
M1 Nr. 1 250 mg/l 2 ,2 mg
M2 Nr. 1 250 mg/l 1 ,4 mg Blindwert Nr. 2 0 15,7 mg
M3 Nr. 2 200 mg/l 13,2 mg
M4 Nr. 2 200 mg/l 16,3 mg M5 Nr. 2 200 mg/l 9,7 mg
Blindwert Nr. 3 0 13,2 mg
M6 Nr. 3 150 mg/l 3,0 mg
M7 Nr. 3 150 mg/l 3,4 mg M6 Nr. 3 30 mg/l 7,8 mg
M7 Nr. 3 30 mg/l 8,3 mg
In allen Fällen liefern die erfindungsgemäßen Mischungen oder Formulierungen deutlich bessere Ergebnisse, d.h. geringere Filterrückstandsmengen, als die entsprechen- den Vergleichsproben. Durch den Einsatz der erfindungsgemäßen synergistischen
Mischung konnte somit die durch thermische Belastung des Turbinenkraftstoffs entstehende Partikelmenge deutlich reduziert werden.
Der Synergismus zwischen den Komponenten (A) und (B) lässt sich beispielsweise am Ergebnis der Proben M3, M4 und M5 klar erkennen: B2 in M4 zeigt keinerlei Antioxi- dans-Wirkung (die Partikelmenge wird gegenüber dem Blindwert sogar erhöht); wird das an sich unwirksame B2 mit dem schon in M3 mäßig wirksamen A1 gemischt, tritt nochmals ein unerwartet hoher Sprung in der Wirksamkeit auf.
Beispiel 2: Überprüfung der Wasserabtrennungseigenschaften von Turbinenkraftstoff durch Trübungsmessung der Kraftstoffphase
Es wurde ein handelsüblicher Turbinenkraftstoff (jet fuel) der Spezifikation Jet A-1 nach DEF STAN 91-91 eingesetzt. Die Überprüfung der Neigung von Turbinenkraftstoffen bezüglich ihrer Wasserabtrennungseigenschaften erfolgte nach ASTM D 3948
("MSEP"-Test). Charakteristisch für diese Messungen ist die Verwendung eines Stan- dard-Koaleszierfilters mit abschließender Trübungsmessung der Kraftstoffphase. Bei der Messung wurden die nachfolgend genannten Mischungen M8 bis M10, welche die oben spezifizierten Komponenten A1 bis A3 und B1 in Kombination mit dem schwefel- freien Antioxidans 2,6-Di-tert.-butyl-4-methylphenol ("BHT") und dem Metalldeaktivator N,N'-Disalicyliden-1 ,2-diaminopropan enthielten, geprüft. Die Dosierung der verwendeten Mischung betrug jeweils 500 mg/l. Es wurden in der nachfolgenden Tabelle 2 genannten Benotungen für das Trübungsverhalten ermittelt [relative Bewertungsskala von 0 (schlechteste Note) bis 100 (beste Note)].
M8 (erfindungsgemäß) 30 Gew.-% A1 ,
10 Gew.-% B1 , 10 Gew.-% 2,6-Di-tert.-butyl-4-methylphenol ("BHT"), 5 Gew.-% N,N'-Disalicyliden-1 ,2-diaminopropan, 30 Gew.-% Solvent Naphtha Heavy (Lösungsmittel) und 15 Gew.-% 2-Ethylhexanol (Lösungsmittel)
M9 (erfindungsgemäß) 30 Gew.-% A2,
10 Gew.-% B1 , 10 Gew.-% 2,6-Di-tert.-butyl-4-methylphenol ("BHT"), 5 Gew.-% N,N'-Disalicyliden-1 ,2-diaminopropan, 30 Gew.-% Solvent Naphtha Heavy (Lösungsmittel) und 15 Gew.-% 2-Ethylhexanol (Lösungsmittel)
M10 (erfindungsgemäß) 30 Gew.-% A3,
10 Gew.-% B1 , 10 Gew.-% 2,6-Di-tert.-butyl-4-methylphenol ("BHT"), 5 Gew.-% N,N'-Disalicyliden-1 ,2-diaminopropan, 30 Gew.-% Solvent Naphtha Heavy (Lösungsmittel) und 15 Gew.-% 2-Ethylhexanol (Lösungsmittel)
Tabelle 2:
Probe Note
Blindwert 100
M8 83
M9 100
M10 97
Mit den Mischungen M9 und M10 treten keine oder praktisch keine und mit der Mischung M8 geringfügige - aber keine nachteiligen - Verschlechterungen in den Wasserabtrennungseigenschaften von Turbinenkraftstoffen gegenüber nicht-additiviertem Turbinenkraftstoff auf.
Beispiel 3: Überprüfung der thermischen Stabilität von Turbinenkraftstoff (jet fuel) durch Bestimmung des Breakpoint
Es wurde ein handelsüblicher JP-8-Turbinenkraftstoff gemäß MIL-DTL-83133E eingesetzt. Die Überprüfung der Thermostabilität erfolgte nach der JFTOT-Breakpoint- Methode nach ASTM D 3241. Bei dem nicht mit der erfindungsgemäßen synergistischen Mischung additivierten Turbinenkraftstoff wurde ein Wert von 2900C ermittelt. Mit dem mit 250 mg/l der Probe M10 additivierten gleichen Kraftstoff wurde ein Breakpoint von 3400C und bei dem mit 1000 mg/l der Probe M10 additivierten gleichen Kraftstoff wurde ein Breakpoint von 3500C gemessen. Beispiel 4: Überprüfung der Wasserabtrennungseigenschaften von Turbinenkraftstoff durch Bestimmung des Restwassergehaltes im Kraftstoff
Es wurde ein handelsüblicher JP-8-Turbinenkraftstoff gemäß MIL-DTL-83133E einge- setzt. Für die Bestimmung des Restwassergehaltes im Kraftstoff nach der Wasserabtrennung diente ein 5 Liter-Gefäß mit einem eingebauten Koaleszierfilterelement. Der durch intensives Rühren in einer Vorlage mit 1 Gew.-% Wasser zu einer Emulsion umgewandelte Kraftstoff wurde zur Wasserabtrennung bei 22°C über den Koaleszierfilter geleitet und der Restwassergehalt der Kraftstoff-Phase wurde mittels Karl-Fischer- Titration ermittelt. Je weniger Restwasser im Kraftstoff, desto besser sind die Wasserabtrennungseigenschaften. Im Turbinenkraftstoff eingesetzte Additive verschlechtern üblicherweise nämlich die Wasserabtrennungseigenschaften, beispielsweise bei Verwendung von Koaleszierfiltern.
Mit üblichen Antistatika, Korrosionsinhibitoren bzw. Verschleißschutzadditiven und
Enteisungsmitteln in den üblichen Mengen additivierter handelsüblicher JP-8-Turbinen- kraftstoff gemäß MIL-DTL-83133E wies nach Emulgierung und Wasserabtrennung nach der oben beschriebenen Testmethode einen Restwassergehalt von 564 Gew.- ppm ("Vergleichswert") auf. Nicht additivierter handelsüblicher JP-8-Turbinenkraftstoff gemäß MIL-DTL-83133E, welcher zur Entfernung der oben genannte Additive zuvor mit Tonerde behandelt worden war, wies nach Emulgierung und Wasserabtrennung nach der oben beschriebenen Testmethode einen Restwassergehalt von 83 Gew.-ppm ("Blindwert") auf. Der gleiche mit üblichen Antistatika, Korrosionsinhibitoren bzw. Verschleißschutzadditiven und Enteisungsmitteln in den üblichen Mengen additivierte Tur- binenkraftstoff wurde vor Durchführung von Emulgierung und Wasserabtrennung zusätzlich mit 250 mg/l der Probe M10 versetzt und wies am Schluß einen Restwassergehalt von 91 Gew.-ppm anstatt von 564 Gew.-ppm auf. Der erfindungsgemäß erzielte Wert von 91 Gew.-ppm liegt damit in der Größenordung des "Blindwertes" von 83 Gew.-ppm.
Während normalerweise die Anwesenheit von Additiven in Turbinenkraftstoffen eine deutliche Verschlechterung der Wasserabtrennungseigenschaften, d.h. eine Erhöhung des Restwassergehaltes, bewirkt, treten bei Einsatz der erfindungsgemäßen synergistischen Mischung Restwassergehalte in der Größenordnung von nicht additiviertem Turbinenkraftstoff auf. Die Zugabe der erfindungsgemäßen synergistischen Mischung beseitigt sogar den negativen Einfluß bereits vorhandener Additive auf die Wasserabtrennungseigenschaften.

Claims

Patentansprüche
1. Synergistische Mischung, umfassend
(A) 1 bis 99,9 Gew.-% mindestens einer Verbindung mit mindestens einem Strukturelement der Formel (I)
in dem die freien Valenzen am Sauerstoff- und am Stickstoffatom zu einem fünf-, sechs- oder siebengliedrigen Ring, nötigenfalls über ein Hydrocarbylen- Brückenglied, zusammengeschlossen sein können und der Benzolkern noch an einer oder mehreren der freien Positionen Substituenten tragen kann, und
(B) 0,1 bis 99 Gew.-% mindestens einer schwefelhaltigen organischen Verbindung mit Antioxidanz-Wirkung,
wobei die Summe beider Komponenten (A) und (B) 100 Gew.-% ergibt.
2. Synergistische Mischung nach Anspruchi , umfassend als Komponente (A) mindestens einer Verbindung mit mindestens einem Strukturelement der Formel (Ia) oder (Ib)
in dem der Benzolkern noch an einer oder mehreren der freien Positionen Substituenten tragen kann.
3. Synergistische Mischung nach Anspruch 1 oder 2, umfassend als Komponente
(A) mindestens eine Verbindung mit mindestens einem Strukturelement der For- mel (I), (Ia) oder (Ib), in dem das Stickstoffatom oder der Benzolkern mindestens einen Hydrocarbylrest mit mindestens 4 Kohlenstoffatomen trägt.
4. Synergistische Mischung nach den Ansprüchen 1 bis 3, umfassend als Komponente (A) mindestens ein Mannich-Reaktionsprodukt der allgemeinen Formel Il
in der der Substituent R1 für die Gruppierung NR6R7 steht, worin R6 und R7 unabhängig voneinander ausgewählt sind unter Wasserstoff, d- bis C2o-Alkyl-, C3- bis Cs-Cycloalkyl-, Cβ- bis Cu-Aryl- und d- bis C2o-Alkoxyresten, die durch Hetero- atome, ausgewählt unter Stickstoff und Sauerstoff, unterbrochen und/oder substi- tuiert sein können, sowie unter Phenolresten der Formel III
mit der Maßgabe, dass R6 und R7 nicht gleichzeitig für Phenolreste der Formel III stehen,
wobei R6 und R7 auch gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, eine fünf-, sechs- oder siebengliedrigen Ring bilden können, der ein oder zwei Heteroatome, ausgewählt aus Stickstoff und Sauerstoff, aufweisen und/oder mit einem, zwei oder drei d- bis Cβ-Alkylresten substituiert sein kann,
wobei weiterhin der Substituent R4 in Formel Il und III einen terminal gebundenen Polyisobutenrest mit 13 bis 3000 Kohlenstoffatomen bedeutet,
wobei weiterhin die Substituenten R2, R3 und R5 in Formel Il und III unabhängig voneinander Wasserstoff, d- bis C2o-Alkylreste, d- bis C2o-Alkoxyreste, durch ein oder mehrere Sauerstoffatome, Schwefelatome oder Gruppierungen NR8 unterbrochene C2- bis C4ooo-Alkylreste, Hydroxylgruppen, Polyalkenylreste oder Gruppierungen der Formel -CHbNR6R7 bezeichnen, wobei R6 und R7 die oben genannte Bedeutung haben und R8 für Wasserstoff, d- bis Cβ-Alkyl, C3- bis Cs-
Cycloalkyl oder Cβ- bis Cu-Aryl steht. Synergistische Mischung nach den Ansprüchen 1 bis 3, umfassend als Komponente (A) mindestens ein Tetra hydrobenzoxazin der allgemeinen Formel IV
in der der Substituent R9 einen Hydrocarbylrest mit 1 bis 3000 Kohlenstoffatomen, welcher durch ein oder mehrere Heteroatome aus der Gruppe O und S und/oder durch eine oder mehrere Gruppierungen NR14 unterbrochen sein kann, bezeichnet,
wobei R14 ein Wasserstoffatom oder einen d- bis C4-Alkylrest bezeichnet, und
die Substituenten R10, R11, R12 und R13 unabhängig voneinander für Wasserstoffatome, Hydroxylgruppen oder Hydrocarbylreste mit jeweils 1 bis 3000 Kohlenstoffatomen stehen, welche durch ein oder mehrere Heteroatome aus der Gruppe O und S und/oder durch eine oder mehrere Gruppierungen NR14 unterbrochen sein können, wobei R14 die oben genannte Bedeutung hat,
wobei der Substituent R12 auch für einen Rest der Formel Y stehen kann
in dem die Substituenten R9, R10, R11 und R13 die vorgenannten Bedeutungen haben und der Substituent X ein Kohlenwasserstoff-Brückenglied bezeichnet, welches aus einem oder mehreren Isobuten-Einheiten besteht oder ein oder mehrere Isobuten-Einheiten enthält, oder
wobei der Substituent R12 auch für einen Rest der Formel Z oder Z' stehen kann
in denen die Substituenten R9, R10, R11 und R13 die vorgenannten Bedeutungen haben und die Substituenten R17 und R18 gleich oder verschieden sein können und Wasserstoff oder einen d- bis Cio-Alkylrest bezeichnen,
und in der die Substituenten R10 und R11 oder R11 und R12 oder R12 und R13 mit der an den Benzolkern angebundenen Teilstruktur -O-CH2-NR15-CH2- auch einen zweiten Tetrahydrooxazin-Ring oder die Substituenten R10 und R11 und R12 und
R13 mit den an den Benzolkern angebundenen Teilstrukturen -O-CH2-NR15-CH2- und
-O-CH2-NR16-CH2- auch einen zweiten und einen dritten Tetrahydrooxazin-Ring ausbilden können,
wobei R15 und R16 unabhängig voneinander Hydrocarbylreste mit jeweils 1 bis 3000 Kohlenstoffatomen bedeutet, welche durch ein oder mehrere Heteroatome aus der Gruppe O und S und/oder durch eine oder mehrere Gruppierungen NR14 unterbrochen sein können,
mit der Maßgabe, dass mindestens einer der Substituenten R9, R10, R11, R12, R13, R15 oder R16 4 bis 3000 Kohlenstoffatome aufweist und die übrigen Substituenten aus der Gruppe R9, R10, R11, R12, R13, R15 und R16, wenn sie für Hydrocarbylreste stehen, jeweils 1 bis 20 Kohlenstoffatome aufweisen.
Synergistische Mischung nach den Ansprüchen 1 bis 3, umfassend als Komponente (A) mindestens eine mehrkernige phenolische Verbindung mit bis zu 20 Benzolkernen pro Molekül, welche durch Umsetzung eines Tetrahydrobenzoxa- zins der allgemeinen Formel XXVI
in der der Substituent R19 einen Hydrocarbylrest mit 1 bis 3000 Kohlenstoffatomen, welcher durch ein oder mehrere Heteroatome aus der Gruppe O und S und/oder durch eine oder mehrere Gruppierungen NR24 unterbrochen sein kann, bezeichnet,
wobei R24 ein Wasserstoffatom oder einen d- bis C4-Alkylrest bezeichnet, und
in der die Substituenten R20, R21, R22 und R23 unabhängig voneinander für Wasserstoffatome, Hydroxylgruppen oder Hydrocarbylreste mit jeweils 1 bis 3000 Kohlenstoffatomen, stehen, welche durch ein oder mehrere Heteroatome aus der Gruppe O und S und/oder durch eine oder mehrere Gruppierungen NR24 unterbrochen sein können, wobei R24 die oben genannte Bedeutung hat,
mit einem oder mehreren der gleichen oder verschiedener Phenole der allgemeinen Formel XXVII
(XXVII)
in der die Substituenten R25, R26, R27 und R28 unabhängig voneinander für Wasserstoffatome, Hydroxylgruppen oder Hydrocarbylreste mit jeweils 1 bis 3000 Kohlenstoffatomen, stehen, welche durch ein oder mehrere Heteroatome aus der Gruppe O und S und/oder durch eine oder mehrere Gruppierungen NR24 unterbrochen sein können, wobei R24 die oben genannte Bedeutung hat,
und/oder mit einem oder mehreren der gleichen oder verschiedener Tetrahydro- benzoxazine der allgemeinen Formel XXVI,
wobei der Substituent R22 auch für einen Rest der Formel Z" und der Substituent R27 auch für einen Rest der Formel Z'" stehen kann
in denen die Substituenten R19, R20, R21, R23, R25, R26 und R28 die vorgenannten Be-deutungen haben, der Substituent R25 auch ein aus einem Tetrahydrobenzo- xazin der allgemeinen Formel XXVI abgeleiteter Rest sein kann, der Substituent R33 für Wasserstoff oder einen aus einem Tetra hydrobenzoxazin der allgemeinen Formel XXVI abgeleiteten Rest steht und die Substituenten R29 und R30 gleich oder verschieden sein können und Wasserstoff oder einen d- bis Cio-Alkylrest bezeichnen,
und in der die Substituenten R20 und R21 oder R21 und R22 oder R22 und R23 mit der an den Benzolkern angebundenen Teilstruktur -O-CH2-NR31-CH2- auch einen zweiten Tetrahydrooxazin-Ring oder die Substituenten R20 und R21 und R22 und R23 mit den an den Benzolkern angebundenen Teilstrukturen -O-CH2-NR31-CH2- und -O-CH2-NR32-CH2- auch einen zweiten und einen dritten Tetrahydrooxazin-
Ring ausbilden können, wobei R31 und R32 unabhängig voneinander Hydrocarbyl- reste mit jeweils 1 bis 3000 Kohlenstoffatomen bedeutet, welche durch ein oder mehrere Heteroatome aus der Gruppe O und S und/oder durch eine oder mehrere Gruppierungen NR24 unterbrochen sein können, wobei R24 die oben genannte Bedeutung hat,
mit der Maßgabe, dass mindestens einer der Substituenten R19, R20, R21, R22, R23, R25, R26, R27, R28, R31 oder R32 13 bis 3000 Kohlenstoffatome aufweist und die übrigen Substituenten aus der Gruppe R19, R20, R21, R22, R23, R25, R26, R27, R28, R31 oder R32, wenn sie für Hydrocarbylreste stehen, jeweils 1 bis 20 Kohlenstoffatome aufweisen,
erhältlich ist.
7. Synergistische Mischung nach den Ansprüchen 1 bis 6, enthaltend als Komponente (B) mindestens eine organische Verbindung mit mindestens einer Gruppierung -(S)x-, in der x für eine ganze Zahl von 1 bis 20 steht.
8. Verwendung der synergistischen Mischung gemäß den Ansprüchen 1 bis 7 als Stabilisator zur Stabilisierung von unbelebtem organischen Material gegen die
Einwirkung von Licht, Sauerstoff und Wärme.
9. Verwendung der synergistischen Mischung gemäß den Ansprüchen 1 bis 7 als Stabilisator in Mineralölprodukten und Kraftstoffen.
10. Verwendung der synergistischen Mischung gemäß den Ansprüchen 1 bis 7 als Stabilisatoren in Turbinenkraftstoffen (jet fuels).
1 1. Verwendung der synergistischen Mischung nach Anspruch 10 als Stabilisator zur Verbesserung der thermischen Stabilität von Turbinenkraftstoffen.
12. Verwendung der synergistischen Mischung nach Anspruch 10 als Stabilisator in Turbinenkraftstoffen zur Verringerung von Ablagerungen im Kraftstoffsystem und/oder Verbrennungssystem von Turbinen.
13. Unbelebtes organisches Material, enthaltend wenigstens eine synergistische Mischung gemäß den Ansprüchen 1 bis 7.
14. Kraftstoffzusammensetzung, enthaltend einen Kraftstoff und wenigstens eine synergistische Mischung gemäß den Ansprüchen 1 bis 7.
15. Turbinenkraftstoffzusammensetzung, enthaltend einen Turbinenkraftstoff
(jet fuel) und wenigstens eine synergistische Mischung gemäß den Ansprüchen 1 bis 7.
16. Additivkonzentrat für Turbinenkraftstoffe (jet fuels), enthaltend wenigstens eine synergistische Mischung gemäß den Ansprüchen 1 bis 7, sowie gegebenenfalls wenigstens ein Verdünnungsmittel und gegebenenfalls wenigstens einen Zusatzstoff.
17. Verwendung einer synergistischen Mischung gemäß den Ansprüchen 1 bis 7 als Stabilisator zur Verbesserung der Oxidations- und Alterungsstabilität und/oder zur Verbesserung der Scherstabilität von Schmierstoffzusammensetzungen.
18. Schmierstoffzusammensetzung, enthaltend die hierfür üblichen Komponenten und wenigstens eine synergistische Mischung gemäß den Ansprüchen 1 bis 7.
EP08786034A 2007-07-16 2008-07-10 Synergistische mischung Ceased EP2171020A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08786034A EP2171020A2 (de) 2007-07-16 2008-07-10 Synergistische mischung

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP07112530 2007-07-16
PCT/EP2008/058978 WO2009010441A2 (de) 2007-07-16 2008-07-10 Synergistische mischung
EP08786034A EP2171020A2 (de) 2007-07-16 2008-07-10 Synergistische mischung

Publications (1)

Publication Number Publication Date
EP2171020A2 true EP2171020A2 (de) 2010-04-07

Family

ID=40260129

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08786034A Ceased EP2171020A2 (de) 2007-07-16 2008-07-10 Synergistische mischung

Country Status (12)

Country Link
US (4) US9315759B2 (de)
EP (1) EP2171020A2 (de)
JP (1) JP5393668B2 (de)
KR (1) KR101561309B1 (de)
CN (1) CN101743294B (de)
AR (1) AR067546A1 (de)
BR (1) BRPI0814692A2 (de)
CA (1) CA2690333C (de)
MY (1) MY150221A (de)
RU (1) RU2480514C2 (de)
SG (1) SG183026A1 (de)
WO (1) WO2009010441A2 (de)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9714471B2 (en) * 2009-04-22 2017-07-25 Arteco Nv Hot test fluid containing vapor phase inhibition
CA2773679C (en) 2009-10-14 2018-07-10 Palox Limited Protection of liquid fuels
GB201001923D0 (en) 2010-02-05 2010-03-24 Palox Offshore S A L Protection of liquid fuels
FR2977895B1 (fr) * 2011-07-12 2015-04-10 Total Raffinage Marketing Compositions d'additifs ameliorant la stabilite et les performances moteur des gazoles non routiers
FR2979633B1 (fr) * 2011-09-02 2014-11-21 Total Raffinage Marketing Composition d'additifs pour combustible liquide de type burning kerosene et ses utilisations
FR2980824B1 (fr) * 2011-09-30 2016-05-27 Peugeot Citroen Automobiles Sa Procede de traitement curatif de l'encrassement interne d'un injecteur de carburant dans un moteur a combustion interne
FR2984918B1 (fr) * 2011-12-21 2014-08-01 Total Raffinage Marketing Compositions d’additifs ameliorant la resistance au lacquering de carburants de type diesel ou biodiesel de qualite superieure
DE102012215145A1 (de) * 2012-08-27 2014-05-15 Evonik Industries Ag Verwendung von blockcopolymeren Polyalkylenoxiden als Reibminderer in synthetischen Schmierstoffen
GB201222425D0 (en) * 2012-12-13 2013-01-23 Fuel Additive Science Technologies Ltd Fuel additive composition
JP6114989B2 (ja) 2013-02-08 2017-04-19 パナソニックIpマネジメント株式会社 熱硬化性樹脂組成物の硬化方法、熱硬化性樹脂組成物、これを用いたプリプレグ、金属張積層板、樹脂シート、プリント配線板及び封止材
MX362567B (es) * 2013-10-31 2019-01-25 Shell Int Research Gasolina de aviacion sin plomo, de octanaje elevado.
EP2891698B1 (de) * 2014-01-03 2019-12-04 Arkema France Anwendung einer Alkoholkomponente zur Verbesserung der elektrischen Leitfähigkeit einer Flugkraftstoffzusammensetzung
CN106544068B (zh) * 2015-09-23 2019-03-29 亚申科技研发中心(上海)有限公司 柴油燃料组合物
CN106701168A (zh) * 2016-12-01 2017-05-24 成都凯莱力斯发动机有限公司 发动机用脂肪
GB201713023D0 (en) * 2017-08-14 2017-09-27 Bp Oil Int Ltd Methods for blending fuels
GB201713019D0 (en) * 2017-08-14 2017-09-27 Bp Oil Int Ltd Methods for controlling deposits
CA3217514A1 (en) 2021-04-22 2022-10-27 Basf Se Polyisobutene derivatives as an additive in rubbers
CN113856635B (zh) * 2021-10-25 2022-12-20 中国科学院长春应用化学研究所 一种宏尺寸连续mof膜材料、其制备方法及应用

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US429099A (en) * 1890-05-27 Steam cooking apparatus
DE1271877B (de) * 1963-04-23 1968-07-04 Lubrizol Corp Schmieroel
US4234435A (en) * 1979-02-23 1980-11-18 The Lubrizol Corporation Novel carboxylic acid acylating agents, derivatives thereof, concentrate and lubricant compositions containing the same, and processes for their preparation
US4402840A (en) * 1981-07-01 1983-09-06 Chevron Research Company Antioxidant combinations of molybdenum complexes and organic sulfur compounds for lubricating oils
US4690687A (en) 1985-08-16 1987-09-01 The Lubrizol Corporation Fuel products comprising a lead scavenger
EP0224442B1 (de) * 1985-11-13 1990-05-16 Ciba-Geigy Ag Substituierte Phenole als Stabilisatoren
ES2032318T3 (es) 1987-09-15 1993-02-01 Basf Aktiengesellschaft Carburantes para motores otto.
DE3732908A1 (de) 1987-09-30 1989-04-13 Basf Ag Polyetheramine enthaltende kraftstoffe fuer ottomotoren
US4877416A (en) 1987-11-18 1989-10-31 Chevron Research Company Synergistic fuel compositions
US4849572A (en) * 1987-12-22 1989-07-18 Exxon Chemical Patents Inc. Process for preparing polybutenes having enhanced reactivity using boron trifluoride catalysts (PT-647)
US4904401A (en) * 1988-06-13 1990-02-27 The Lubrizol Corporation Lubricating oil compositions
DE3826608A1 (de) 1988-08-05 1990-02-08 Basf Ag Polyetheramine oder polyetheraminderivate enthaltende kraftstoffe fuer ottomotoren
DE3838918A1 (de) 1988-11-17 1990-05-23 Basf Ag Kraftstoffe fuer verbrennungsmaschinen
US4946610A (en) * 1989-08-03 1990-08-07 Ethyl Petroleum Additives, Inc. Sulfur-bridged phenolic antioxidants
DE4030164A1 (de) 1990-09-24 1992-03-26 Basf Ag Kraftstoffe fuer verbrennungsmotoren und schmierstoffe enthaltende hochmolekulare aminoalkohole
DE4142241A1 (de) 1991-12-20 1993-06-24 Basf Ag Kraftstoffe fuer ottomotoren
DE4309074A1 (de) 1993-03-20 1994-09-22 Basf Ag Als Kraftstoffadditiv geeignete Mischungen
DE4313088A1 (de) 1993-04-22 1994-10-27 Basf Ag Poly-1-n-alkenamine und diese enthaltende Kraft- und Schmierstoffzusammensetzungen
AU670684B2 (en) * 1993-05-26 1996-07-25 Lubrizol Corporation, The Two-stroke cycle lubricant and method of using same
AT400149B (de) 1993-08-17 1995-10-25 Oemv Ag Additiv für unverbleite ottokraftstoffe sowie dieses enthaltender kraftstoff
US5596130A (en) * 1994-04-19 1997-01-21 Betz Laboratories, Inc. Methods and compositions for reducing fouling deposit formation in jet engines
US5621154A (en) * 1994-04-19 1997-04-15 Betzdearborn Inc. Methods for reducing fouling deposit formation in jet engines
DE4425835A1 (de) 1994-07-21 1996-01-25 Basf Ag Verwendung von Umsetzungsprodukten aus Polyolefinen und Stickoxiden oder Gemischen aus Stickoxiden und Sauerstoff als Additive für Kraftstoffe
DE4425834A1 (de) 1994-07-21 1996-01-25 Basf Ag Umsetzungsprodukte aus Polyisobutenen und Stickoxiden oder Gemischen aus Stickoxiden und Sauerstoff und ihre Verwendung als Kraft- und Schmierstoffadditive
DE4432038A1 (de) 1994-09-09 1996-03-14 Basf Ag Polyetheramine enthaltende Kraftstoffe für Ottomotoren
US5514289A (en) * 1995-04-13 1996-05-07 Mobil Oil Corporation Dihydrobenzothiophenes as antioxidant and antiwear additives
US5569644A (en) * 1995-05-18 1996-10-29 The Lubrizol Corporation Additive combinations for lubricants and functional fluids
DE19525938A1 (de) 1995-07-17 1997-01-23 Basf Ag Verfahren zur Herstellung von organischen Stickstoffverbindungen, spezielle organische Stickstoffverbindungen und Mischungen aus solchen Verbindungen sowie deren Verwendung als Kraft- und Schmierstoffadditive
DE19620262A1 (de) 1996-05-20 1997-11-27 Basf Ag Verfahren zur Herstellung von Polyalkenaminen
US6096695A (en) * 1996-06-03 2000-08-01 Ethyl Corporation Sulfurized phenolic antioxidant composition, method of preparing same, and petroleum products containing same
JP4334623B2 (ja) * 1996-06-12 2009-09-30 出光興産株式会社 自動変速機用潤滑油組成物
GB9618546D0 (en) 1996-09-05 1996-10-16 Bp Chemicals Additives Dispersants/detergents for hydrocarbons fuels
US5782936A (en) * 1997-04-23 1998-07-21 Suburban Propane, L.P. Additive compositions for LPG fuel
US6165235A (en) * 1997-08-26 2000-12-26 The Lubrizol Corporation Low chlorine content compositions for use in lubricants and fuels
US6448208B1 (en) * 1998-02-25 2002-09-10 Ciba Specialty Chemicals Corporation Liquid polyfunctional additives
DE19905211A1 (de) 1999-02-09 2000-08-10 Basf Ag Kraftstoffzusammensetzung
US6329327B1 (en) * 1999-09-30 2001-12-11 Asahi Denka Kogyo, K.K. Lubricant and lubricating composition
DE19948114A1 (de) * 1999-10-06 2001-04-12 Basf Ag Verfahren zur Herstellung Polyisobutenphenol-haltiger Mannichaddukte
DE19948111A1 (de) 1999-10-06 2001-04-12 Basf Ag Verfahren zur Herstellung Polyisobutenphenol-haltiger Mannichaddukte
DE10102913A1 (de) 2001-01-23 2002-07-25 Basf Ag Alkoxylierte Alkyphenole und deren Verwendung in Kraft- und Schmierstoffen
WO2002077130A2 (en) 2001-03-26 2002-10-03 The Associated Octel Company Limited Composition
AU2002341150A1 (en) 2001-11-02 2003-05-12 Octel America, Inc. Method
EP1513914A2 (de) * 2002-06-14 2005-03-16 The Lubrizol Corporation Düsentreibstoffzusatzkonzentratzusammensetzung und treibstoffzusammentzung und dazugehörige verfahren
US6884855B2 (en) * 2003-01-30 2005-04-26 Chevron Oronite Company Llc Sulfurized polyisobutylene based wear and oxidation inhibitors
DE102004005108A1 (de) 2004-02-02 2005-10-27 Basf Ag Verfahren zur Herstellung von Polyisobutenylphenolen
US7494960B2 (en) * 2004-02-03 2009-02-24 Crompton Corporation Lubricant compositions comprising an antioxidant blend
US7879773B2 (en) * 2005-05-04 2011-02-01 Chevron U.S.A., Inc. Lubricating composition having improved storage stability
DE102005035527A1 (de) * 2005-07-26 2007-02-08 Basf Ag Verwendung von Tetrahydrobenzoxazinen als Stabilisatoren
CA2641399C (en) * 2006-02-27 2015-11-24 Basf Se Use of polynuclear phenolic compounds as stabilisers
DE102006019879A1 (de) * 2006-04-28 2007-10-31 Schaeffler Kg Spann- und Schwingungsdämpfungsvorrichtung für einen Umschlingungstrieb und Verfahren zum Betreiben einer solchen Vorrichtung
BRPI0621909A2 (pt) * 2006-07-11 2011-12-27 Innospec Fuel Specialties Llc composiÇÕes estabilizadoras para misturas de petràleo e combustÍveis renovÁveis

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20160090541A1 (en) 2016-03-31
US20140024568A1 (en) 2014-01-23
WO2009010441A2 (de) 2009-01-22
US9315759B2 (en) 2016-04-19
US9670430B2 (en) 2017-06-06
US20100210492A1 (en) 2010-08-19
AU2008277716A1 (en) 2009-01-22
SG183026A1 (en) 2012-08-30
AR067546A1 (es) 2009-10-14
JP2010533752A (ja) 2010-10-28
CA2690333A1 (en) 2009-01-22
WO2009010441A3 (de) 2009-10-08
CN101743294A (zh) 2010-06-16
RU2480514C2 (ru) 2013-04-27
CN101743294B (zh) 2015-11-25
RU2010105082A (ru) 2011-08-27
KR101561309B1 (ko) 2015-10-16
KR20100033536A (ko) 2010-03-30
JP5393668B2 (ja) 2014-01-22
US9562202B2 (en) 2017-02-07
US20130130956A1 (en) 2013-05-23
CA2690333C (en) 2017-07-04
MY150221A (en) 2013-12-31
BRPI0814692A2 (pt) 2015-01-20

Similar Documents

Publication Publication Date Title
EP2171020A2 (de) Synergistische mischung
EP1991643B1 (de) Verwendung von mehrkernigen phenolischen verbindungen als stabilisatoren
EP1910319B1 (de) Verwendung von tetrahydrobenzoxazinen als antioxidantien
EP2132284B1 (de) Zur antistatikausrüstung und verbesserung der elektrischen leitfähigkeit von unbelebtem organischen material geeignete additivformulierung
EP1613694B1 (de) Polyalkenamine mit verbesserten anwendungseigenschaften
WO2000050543A1 (de) Polyalkenalkohol-polyalkoxylate und deren verwendung in kraft- und schmierstoffen
DE19822251A1 (de) Flüssige multifunktionelle Additive

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20100408

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160613

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

APBK Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNE

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APBV Interlocutory revision of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNIRAPE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20210708