EP2155388A2 - Filtre a particules texture pour applications catalytiques - Google Patents

Filtre a particules texture pour applications catalytiques

Info

Publication number
EP2155388A2
EP2155388A2 EP08805801A EP08805801A EP2155388A2 EP 2155388 A2 EP2155388 A2 EP 2155388A2 EP 08805801 A EP08805801 A EP 08805801A EP 08805801 A EP08805801 A EP 08805801A EP 2155388 A2 EP2155388 A2 EP 2155388A2
Authority
EP
European Patent Office
Prior art keywords
grains
irregularities
filter
filter according
inorganic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08805801A
Other languages
German (de)
English (en)
Inventor
Patricia Andy
Caroline Tardivat
Ahmed Marouf
Damien Mey
Catherine Jacquiod
Valérie GOLETTO
Alexandra Dekoninck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Centre de Recherche et dEtudes Europeen SAS
Original Assignee
Saint Gobain Centre de Recherche et dEtudes Europeen SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Centre de Recherche et dEtudes Europeen SAS filed Critical Saint Gobain Centre de Recherche et dEtudes Europeen SAS
Publication of EP2155388A2 publication Critical patent/EP2155388A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • B01J27/224Silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0219Coating the coating containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0242Coating followed by impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63424Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0038Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by superficial sintering or bonding of particulate matter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/408Noble metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/441Alkoxides, e.g. methoxide, tert-butoxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249967Inorganic matrix in void-containing component

Definitions

  • the present invention relates to the field of porous filter materials. More particularly, the invention relates to typically honeycomb structures that can be used for the filtration of solid particles contained in the exhaust gases of a diesel engine or gasoline and additionally incorporating a catalytic component that makes it possible, for example, jointly elimination of NO x type pollutants, carbon monoxide CO or unburned HC hydrocarbons.
  • the filters according to the invention have a matrix of an inorganic material, preferably ceramic, chosen for its ability to form a structure with porous walls and for acceptable thermomechanical resistance for application as a particulate filter in an automobile exhaust system.
  • a material is typically based on silicon carbide, in particular recrystallized silicon carbide.
  • oxide, carbide or nitride materials, such as cordierite-based matrices, for example, are also included within the scope of the present invention, even if the SiC-based materials are preferred, because of their high refractoriness and their strong chemical inertness.
  • the increase in porosity and in particular the average pore size is generally sought for catalytic filtration gas treatment applications. Such an increase makes it possible to limit the pressure drop caused by the positioning of a particulate filter as previously described in an automobile exhaust line. Pressure loss means the difference in gas pressure existing between the inlet and the filter output.
  • this increase in porosity finds its limits with the associated decrease in thermomechanical strength properties of the filter, especially when it is subjected to successive phases of accumulation of soot particles and regeneration, that is to say say soot removal by their combustion within the filter.
  • the filter can be raised to average inlet temperatures of the order of 600 to 700 ° C., while local temperatures of more than 1000 ° C. can be reached. These hot spots are all defects that are likely over the life of the filter to alter its performance, or even disable it.
  • very high porosity levels for example greater than 60%, it has been found in particular on silicon carbide filters a sharp decrease in thermomechanical resistance properties.
  • the greater thickness of the catalyst layer substantially increases the local problems of hot spots already mentioned, especially during the regeneration phases because of the low ability of current catalyst compositions to transfer the heat of combustion of soot to the inorganic matrix.
  • the greater thickness of the catalyst deposit can lead to a lower catalytic efficiency as mentioned in US2007 / 0049492, paragraph [005], which can result from a bad distribution of the active sites, that is to say - say sites sites of the catalyzed reaction, making them less accessible to the gases to be treated.
  • This has a significant impact on the initiation temperature of the catalytic reaction and consequently on the activation time of the catalyzed filter, that is to say on the time required for the cold filter to reach a temperature permitting effective treatment of pollutants.
  • the adhesion of the impregnating solution on the porous substrate must be as uniform and homogeneous as possible but also allow to fix a large amount of catalyst solution. This problem is even more critical on matrices in the form of grains bonded to each other and whose surface is relatively smooth and / or convex, including SiC-based matrices.
  • the catalytic coating deposited in the porosity of the walls of the filter must be sufficiently stable over time, that is to say that the catalytic activity must remain acceptable throughout the life of the filter, within the meaning of current and future anti-pollution standards.
  • the solution adopted is to impregnate a larger quantity of catalytic solution and therefore of noble metals, in order to compensate for the loss of catalytic activity in the filter. time as described in JP 2006/341201.
  • This solution leads not only to increase the pressure drop, as mentioned above, but also the cost of the process, due to the necessarily greater use of noble metals. The problem therefore still remains to limit the aging of the catalyst to ensure the stability of its performance.
  • the object of the present invention is to provide an improved solution to all of the previously discussed problems.
  • one of the objects of the present invention is to provide a porous filter suitable for application as a particulate filter in an automobile exhaust line, which is subjected to successive stages of accumulation and combustion of soot, and having a catalytic component whose effectiveness is enhanced.
  • the catalytic filters according to the invention can have a catalytic charge substantially greater than current filters.
  • the catalytic filters according to the invention may have a better homogeneity, that is to say a more uniform distribution of the catalytic charge in the porous matrix.
  • Such an increase and / or the better homogeneity of the catalytic charge notably makes it possible to appreciably improve the treatment efficiency of the polluting gases without a joint increase in the pressure drop generated by the filter.
  • the invention thus makes it possible in particular to obtain porous structures having thermomechanical properties that are acceptable for the application and a catalytic efficiency that is substantially increased throughout the lifetime of the filter.
  • Another object of the present invention is to obtain catalyzed filters having a better resistance to aging, as previously described.
  • the invention relates to a catalytic filter for the treatment of solid particles and gaseous pollutants resulting from the combustion gases of an internal combustion engine, comprising a porous matrix consisting of an inorganic material, in the form of grains connected to each other so as to form between them cavities such that the open porosity is between 30 and 60% and the median pore diameter of between 5 and 40 ⁇ m, said filter being characterized in that: the grains and possibly the grain boundaries of the inorganic material are covered on at least a part of their surface of a texturizing material, said texturing consisting of irregularities whose dimensions are between 10 nm and 5 microns, a catalytic coating at least partially covers the texturizing material and optionally, at least partially, the grains of the material inorganic.
  • said irregularities being for example in the form of beads, crystallites, polycrystalline clusters, or rods or acicular structures, cavities or craters, said irregularities having an average diameter of between about 10 nm and about 5 microns and a mean height h or a mean depth p of between about 10 nm and about 5 microns.
  • mean diameter d it is understood in the sense of the present description the mean diameter of the irregularities, these being individually defined from the plane tangent to the surface of the grain or grain joint on which they are located.
  • average height h it is understood in the sense of the present description the average distance between the top of the relief formed by the texturing and the plane mentioned above.
  • average depth p it is understood in the sense of the present description the average distance between on the one hand the deepest point formed by the impression, for example the trough or the crater of the texturing and on the other hand the plane cited previously.
  • the average diameter of the irregularities is between 100 nm and 2.5 microns.
  • the height h or the average depth p of the irregularities is between 100 nm and 2.5 microns.
  • the texturizing material covers at least 10% of the total surface of the grains and possibly grain boundaries of the inorganic material constituting the porous matrix.
  • the texturizing material covers at least 15% of the total surface of the grains and possibly grain boundaries of the inorganic material constituting the porous matrix.
  • the average equivalent diameter d and / or the height h or the average depth p of the irregularities are smaller than the average grain size of the inorganic material constituting the matrix by a factor of between 1/2 and 1/1000.
  • the average equivalent diameter d and / or the height h or the average depth p of the irregularities are smaller than the average grain size of the inorganic material constituting the matrix by a factor of between 1/5 and 1/100.
  • the texturizing material is of the same nature as the inorganic material constituting the matrix.
  • the irregularities are constituted by crystallites or by a mass of crystallites of a material cooked or sintered on the surface of the grains of the porous matrix.
  • the irregularities consist essentially of alumina or silica beads.
  • the irregularities may also be in the form of craters dug in a material such as silica or alumina, said material being baked or sintered on the surface of the grains of the porous matrix.
  • the material constituting the matrix consists of or comprises silicon carbide.
  • the invention also relates to the intermediate structure for obtaining a catalytic filter for the treatment of solid particles and gaseous pollutants according to one of the preceding claims and comprising a porous matrix consisting of an inorganic material, under the form of grains connected to each other so as to form between them cavities such that the open porosity is between 30 and 60% and the median pore diameter of between 5 and 40 microns, said grains of the inorganic material being covered on at least part of their surface of a texturizing material according to one of the preceding claims.
  • the invention further relates to a method for obtaining a filter as previously described and comprising the following steps: shaping and baking a honeycomb structure consisting of a porous matrix of an inorganic material in the form of grains connected to each other so as to form between them cavities such that the open porosity is between 30 and 60% and the median pore diameter is between 5 and 40 microns,
  • a texturizing material for example in the form of beads, crystallites, polycrystalline clusters, hollows or craters ,
  • the deposition of the texturizing material can be obtained by applying a slip of said covering material to the surface of the grains, followed by a heat treatment of baking or sintering, by the application of a sol-gel solution comprising a filler in the form of beads or inorganic particles, followed by a heat treatment for firing or sintering or by the application of a sol-gel solution comprising a filler in the form of beads or organic particles, followed by a heat treatment for baking or sintering.
  • the preceding sol-gel solution is, for example, a silica sol.
  • a suspension such as for example a slip consisting of a powder and a mixture of powders, preferably in a liquid such as water, or a sol-gel loaded with mineral particles, or an organic or organo-mineral sol-gel, which, after a heat treatment, leads to a material of crystalline and / or glassy inorganic nature, preferably ceramic, and of a thermal stability at least equal to that of the alumina which is the main constituent washcoat.
  • the deposition is followed by one or more heat treatment (s) of the substrate, preferably under air but possibly under a controlled atmosphere, for example under argon or under nitrogen, if this is necessary in particular to avoid deterioration or oxidation. substrate or deposit for example.
  • the formulation may contain additions from the following list: one or several dispersants (for example an acrylic resin or an amine derivative), a binder of organic nature (for example an acrylic resin or a cellulose derivative) or even of a mineral nature (clay), a wetting or film-forming agent (for example a polyvinyl alcohol PVA), one or more porogens (for example polymers, latex, polymethylmethacrylate).
  • dispersants for example an acrylic resin or an amine derivative
  • a binder of organic nature for example an acrylic resin or a cellulose derivative
  • a wetting or film-forming agent for example a polyvinyl alcohol PVA
  • one or more porogens for example polymers, latex, polymethylmethacrylate.
  • Texturing methods may also be employed according to the invention such as heat treatment under gas (for example O 2 , N 2 in the case of an SiC-based substrate).
  • Plasma etching processes or chemically can also provide, depending on the conditions of implementation and depending on the nature of the substrate, texturations according to the invention.
  • a catalytic coating is defined as a coating comprising or consisting of a material known to catalyze the reaction of the transformation of gaseous pollutants, that is to say mainly carbon monoxide (CO) and unburnt hydrocarbons and oxides of nitrogen (NO x ) to less harmful gases such as nitrogen gas (N 2 ) or carbon dioxide carbon (CO2) and / or to facilitate the combustion of soot stored on the filter.
  • CO carbon monoxide
  • NO x unburnt hydrocarbons and oxides of nitrogen
  • N 2 nitrogen gas
  • CO2 carbon dioxide carbon
  • This coating in a well-known manner, most often comprises an inorganic support material of high specific surface area (typically of the order of 10 to 100 m 2 / g) ensuring the dispersion and the stabilization of an active phase, such as metals, generally noble, acting as a center of catalysis proper oxidation or reduction reactions.
  • the support material is typically based on oxides, more particularly on alumina or silica, or other oxides, for example based on ceria, zirconia or titanium oxide, or even mixed mixtures of these different oxides.
  • the size of the support material particles constituting the catalytic coating on which the catalytic metal particles are arranged is of the order of a few nanometers to a few tens or exceptionally a few hundred nanometers.
  • the catalytic coating is typically obtained by impregnating a solution comprising the catalyst, in the form of the support material or its precursors and an active phase or a precursor of the active phase.
  • the precursors used are in the form of salts or organic or inorganic compounds, dissolved or suspended in an aqueous or organic solution.
  • the impregnation is followed by a heat treatment aimed at obtaining the final deposition of a solid and catalytically active phase in the porosity of the filter.
  • a filter according to the invention and as previously described can typically be used in an exhaust line of a diesel engine or gasoline.
  • an SiC-based catalytic filter is typically synthesized.
  • the median pore diameter d 5 o denotes the diameter of the particles such that respectively 50% of the total population of grain is smaller than this diameter.
  • a porogen of the polyethylene type in a proportion equal to 5% by weight of the total weight of the SiC grains and a methylcellulose type shaping additive in a proportion equal to 10% by weight of the total weight of the SiC grains.
  • the quantity of water required is then added and kneaded to obtain a homogeneous paste whose plasticity allows the extrusion through a die of a honeycomb structure so as to produce monolithic blocks characterized by a wave arrangement of the internal channels such as those described in relation with FIG. 3 of the application WO 05/016491 are obtained.
  • the undulation of the walls is characterized by an asymmetry rate, as defined in WO 05/016491, equal to 7%.
  • the green microwave monoliths are then dried for a time sufficient to bring the water content not chemically bound to less than 1% by weight.
  • each face of the monolith is alternately plugged according to well-known techniques, for example described in application WO2004 / 065088.
  • the monolith is then baked under Argon according to a rise in temperature of 20 ° C / hour until a maximum temperature of 2200 0 C is reached which is maintained for 6 hours.
  • FIG. 1 shows a SEM (scanning electron microscope) photograph of the filtering walls of the filter thus obtained, constituted by a matrix of SiC grains of smooth surface and interconnected by grain boundaries, the porosity of the material being provided by the cavities formed between the grains.
  • the raw structure obtained according to Example 1 was then subjected to a first texturing treatment, the material used for texturing being introduced into the porosity of the filter in the form of a slip. More specifically, an SiC-based slurry was used in the form of a slurry.
  • the suspension comprises, as a weight percentage, 96% of water, 0.1% of nonionic type dispersant, 1.0% of a PVA type binder (polyvinyl alcohol) and 2.8% of an SiC powder. with a median diameter of 0.5 ⁇ m and a purity greater than 98% by weight.
  • the slurry or suspension is prepared according to the following steps:
  • the PVA used as a binder, is firstly dissolved in water heated to 80 ° C. In a stirred tank containing the PVA dissolved in water, the dispersant and then the SiC powder are introduced. to obtain a homogeneous suspension.
  • the slip is deposited in the filter by simple immersion, the excess of the suspension being removed by suction under vacuum, under a residual pressure of 10 mbar.
  • the filter thus obtained is subjected to a drying step in
  • FIG. 2 shows a SEM photograph of the filtering walls of the texture filter thus obtained, showing the irregularities at the surface of the SiC grains constituting the porous matrix, which, according to this example, are in the form of crystallites and SiC crystallite clusters.
  • the parameter d measured corresponds to the mean diameter, in the sense previously described, of the crystallites present on the surface of the SiC grains.
  • the parameter h corresponds to the average height h of said crystallites.
  • the raw structure obtained according to Example 1 was subjected to another texturizing treatment, the material used for the texturing being introduced into the porosity of the filter in the form of a silica sol comprising an inorganic filler.
  • a silica sol loaded with alumina particles was used.
  • the soil comprises, as a percentage by weight, 45.6% of water, 34.7% of an aqueous solution containing 10.5% by weight of alumina particles marketed by Nissan under the reference Chemical Aluminasol 200®, 1 , 7% of TEOS
  • the soil loaded with inorganic particles is prepared according to the following steps:
  • TEOS is hydrolyzed in propanol-2 in the presence of the hydrochloric acid solution to form the sol.
  • the filler is added through the aqueous solution containing the alumina particles, the third step consisting of dilution in water.
  • the charged sol-gel is then allowed to stand for 18 hours before the next step.
  • the solution is then deposited in the monolith by simple immersion, the excess being removed by suction under vacuum, under a residual pressure of 10 mbar.
  • the monolith thus obtained is then dried at 150 ° C. for 1 h and then subjected to a heat treatment of 250 ° C. under air for one hour.
  • the texture monolith thus obtained shows irregularities on the surface of the SiC grains constituting the porous matrix, which, according to this example, are in the form of rods fixed on the surface of the SiC grains and / or at the grain boundaries.
  • Example 2 the raw structure obtained according to Example 1 was subjected to another texturizing treatment, the material used for the texturing being introduced into the porosity of the filter in the form of a silica sol comprising an inorganic filler according to the same principles as those described in Example 2. Unlike Example 3, this time we used a silica sol loaded with silica microspheres.
  • the sol comprises, as a weight percentage, 45% of a colloidal aqueous solution of silica beads with a diameter of between 300 and 400 nm, in the form, the mass concentration of beads being approximately 40%, sold under the reference MP4540.
  • Nyacol ® 3.3% TEOS (tetraethoxysilane),
  • the soil loaded with inorganic particles is prepared according to the following steps:
  • TEOS is hydrolyzed in propanol-
  • the filler is added via the aqueous colloidal solution containing the silica beads, the third step consisting of a dilution in propanol-2.
  • the charged sol-gel is then allowed to stand for 18 hours before the next step.
  • the solution is then deposited in the monolith by simple immersion, the excess being removed by suction under vacuum, under a residual pressure of 10 mbar.
  • the monolith thus obtained is then dried at 150 ° C. for 1 h and then subjected to a heat treatment of 250 ° C. under air for one hour.
  • FIG. 3 shows a SEM photograph of the filtering walls of the texture monolith thus obtained, showing the irregularities at the surface of the SiC grains constituting the porous matrix, which, according to this example, are in the form of silica beads encapsulated in an envelope obtained by the sintering the silica sol and establishing the junction and bond with the grains of SiC constituting the matrix.
  • the texturing according to this embodiment is formed of spherical balls contiguous or isolated, characterized by their mean diameter which corresponds, in the sense of the preceding definitions, to the values h and d according to the invention.
  • Example 2 the crude structure obtained according to Example 1 was subjected to another texturing treatment, the material used for the texturing being introduced into the porosity of the monolith in the form of a silica sol comprising an organic filler.
  • the soil comprises, as a weight percentage, 4% of polymethyl methacrylate beads with a diameter of approximately 2 ⁇ m, sold by the company SEPPIC under the reference Micropearl M-201®, 16.3% of TEOS (tetraethoxysilane), 72.3. % of ethanol and 7.4% of an aqueous solution containing 4.4% by weight of HCl.
  • the soil loaded with inorganic particles is prepared according to the following steps:
  • the organic filler consisting of polymethylmethacrylate beads is first mixed with ethanol.
  • the TEOS is then added gradually, with stirring.
  • the aqueous solution containing the HCl is then gradually added and with vigorous stirring, in order to allow gradual and homogeneous hydrolysis of the TEOS and the obtaining of the gel.
  • the sol-gel is then deposited in the monolith by simple immersion, the excess being removed by suction under vacuum, under a residual pressure of 10 mbar.
  • the monolith thus obtained is then dried at 110 ° C. for 16 hours and then subjected to a heat treatment of 550 ° C. under air for five hours.
  • FIG. 4 shows a SEM photograph of the filtering walls of the texture monolith thus obtained, showing the irregularities at the surface of the SiC grains constituting the porous matrix.
  • the irregularities are, according to this example, this time in the form of cavities or craters present in the texturizing material consisting of SiO 2 silica, obtained by sintering the silica sol, after heat treatment and organic removal.
  • the parameter d measured corresponds to the average diameter, in the sense previously described, of the craters dug by the elimination of the organic spheres within the SiO 2 texturing layer on the surface of the SiC grains.
  • the average depth p of said craters is equal to 2 ⁇ m.
  • Example 2 the crude structure obtained according to Example 1 was subjected to another texturizing treatment, the material used for texturing being introduced into the porosity of the monolith in the form of a silica sol. comprising an organic charge different from that of Example 5.
  • the sol comprises, in weight percentage, 2% of 120 nm diameter Latex beads, 16.3% TEOS (tetraethoxysilane) and 81.7% of an aqueous solution containing 0.38% by weight of HCl.
  • the soil loaded with inorganic particles is prepared by first mixing the latex beads with the aqueous HCl solution and then gradually adding the
  • the sol-gel is then deposited in the monolith by simple immersion, the excess being removed by suction under vacuum, under a residual pressure of 10 mbar.
  • the monolith thus obtained is then dried at 110 ° C. for
  • FIG. 5 shows a SEM photograph of the filtering walls of the texture monolith thus obtained, showing the irregularities covering the surface of the SiC grains constituting the porous matrix.
  • the irregularities are, according to this example, this time in the form of cavities or craters present within the texturizing material constituted by a SiO 2 silica coating, obtained by sintering the silica sol. , after the heat treatment and the elimination of the organic ones.
  • the parameter d measured corresponds to the average diameter, in the sense previously described, of the craters dug by the elimination of the organic spheres within the SiO 2 texturing layer on the surface of the SiC grains.
  • the parameter p corresponds to the average depth p of said craters.
  • the weight gain due to the deposition of the texturizing material was measured on each monolith after heat treatment and relative to the weight of the reference monolith.
  • FIGS. 1 to 5 correspond to characteristic views of the internal structure, in particular open porosity, transversely fractured channel walls, within the monolith.
  • the monolith is immersed in a bath of an aqueous solution containing the appropriate proportions of a platinum precursor in the form H 2 PtCl 6, and a precursor of cerium oxide CeO 2 (in the form of cerium nitrate) and a precursor of zirconium oxide ZrO 2 (in the form of zirconyl nitrate) according to the principles described in the publication EP 1 338 322 A1.
  • the monolith is impregnated with the solution according to an embodiment similar to that described in US Pat. No. 5,866,210.
  • the monolith is then dried at about 150 0 C and then heated to a temperature of about 500 0 C.
  • the pressure drop of the monoliths obtained after the catalytic impregnation previously described was measured according to the techniques of the art, for an air flow rate of 30 m 3 / h in a stream of air ambient.
  • pressure loss is meant within the meaning of the present invention the differential pressure existing between the upstream and downstream of the monolith.
  • This test aims to measure the catalyst initiation temperature, often referred to in the art as the “light off” temperature of the catalyst.
  • This temperature is defined under constant pressure and gas flow conditions, such as the temperature for which a catalyst converts 50% by volume of the polluting gases.
  • the CO and HC conversion temperature has here been determined according to an experimental protocol identical to that described in application EP 1759763, in particular in its paragraphs 33 and 34. According to the measurement, the lower the conversion temperature, the more the catalytic system is powerful.
  • the test was carried out on samples of about 25 cm 3 cut into a monolith.
  • a non-microtextured fired monolith and a textured monolith according to each example of the invention are previously impregnated with catalyst as described in paragraph D and then placed in an oven at 800 ° C. under a humid air atmosphere for a period of 5 hours such that the molar concentration of water is kept constant at 3%.
  • the monoliths of Examples 23 and 5 show a catalytic coating load level substantially greater than that of the reference (example 1), for equivalent porosity characteristics. It is noted that the loss of charge caused by the monoliths according to the invention is also very little affected by the significant increase in the catalytic charge present in the textured filters according to the invention. The measured pressure drop values thus remain quite acceptable for the filtering application. All the monoliths of the invention show a catalytic activity more efficient than the reference.
  • Examples 4 and 6 show a much higher catalytic efficiency despite a load significantly lower than the reference (Example 1), which could be interpreted as the result of a better distribution of the catalyst or easier access to sites assets for the gases to be purified.
  • Example 2 shows a high load in wash coat and a high catalytic efficiency despite a low percentage of microtextured surface, which shows a very significant effect of microtexturation, even if it is present only on a minimal part of the grain surface.
  • the products according to the invention retain all their mechanical strength properties, while maintaining their filtration efficiency, unlike the solutions known to date for increasing the catalyst load present in the porosity of the filtering structures, in particular by by increasing the porosity quantities (open porosity, pore diameter).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

Filtre catalytique comprenant une matrice poreuse constituée d'un matériau inorganique, sous la forme de grains reliés les uns aux autres de façon à ménager entre eux des cavités telles que la porosité ouverte soit comprise entre 30 et 60% et le diamètre médian de pore compris entre 5 et 40 μm, ledit filtre se caractérisant en ce que les grains et éventuellement les joints de grains du matériau inorganique sont recouverts sur au moins une partie de leur surface d'un matériau de texturation, ladite texturation consistant en des irrégularités dont les dimensions sont comprises entre 10 nm et 5 microns et en ce qu'un revêtement catalytique recouvre au moins partiellement le matériau de texturation et éventuellement, au moins partiellement, les grains du matériau inorganique.

Description

FILTRE A PARTICULES TEXTURE POURAPPLICATIONS CATALYTIQUES
La présente invention se rapporte au domaine des matériaux poreux filtrants. Plus particulièrement, l'invention se rapporte à des structures typiquement en nid d'abeille utilisables pour la filtration de particules solides contenues dans des gaz d'échappement d'un moteur diesel ou essence et incorporant additionnellement une composante catalytique permettant par exemple conjointement l'élimination des gaz polluants du type NOx, monoxyde de carbone CO ou hydrocarbures imbrûlés HC.
Les filtres selon l'invention présentent une matrice d'un matériau inorganique, de préférence céramique, choisie pour son aptitude à constituer une structure à parois poreuses et pour une résistance thermomécanique acceptable pour une application comme filtre à particules dans une ligne d'échappement automobile. Un tel matériau est typiquement à base de carbure de silicium, en particulier de carbure de silicium recristallisé. D'autres matériaux oxydes, carbures ou nitrures, comme les matrices à base de cordiérite par exemple, sont également compris dans le cadre de la présente invention, même si les matériaux à base de SiC sont préférés, en raison de leur réfractarité élevée et de leur forte inertie chimique.
L'augmentation de la porosité et en particulier de la taille moyenne des pores est en général recherchée pour les applications de traitement de filtration catalytique des gaz. Une telle augmentation permet en effet de limiter la perte de charge occasionnée par le positionnement d'un filtre à particules tel que précédemment décrit dans une ligne d'échappement automobile. Par perte de charge, on entend la différence de pression des gaz existant entre l'entrée et la sortie du filtre. Cependant, cette augmentation de la porosité trouve ses limites avec la diminution associée des propriétés de résistance thermomécanique du filtre, notamment lorsque celui-ci est soumis à des phases successives d'accumulation des particules de suies et de régénération, c'est-à-dire d'élimination des suies par leur combustion au sein du filtre. Lors de ces phases de régénération, le filtre peut être porté à des températures d'entrée moyennes de l'ordre de 600 à 7000C, alors que des températures locales de plus de 10000C peuvent être atteintes. Ces points chauds constituent autant de défauts qui sont susceptibles sur la durée de vie du filtre d'en altérer ses performances, voire de le désactiver. A des taux de porosité très élevés par exemple supérieurs à 60%, il a été notamment constaté sur des filtres en carbure de silicium une forte diminution des propriétés de résistance thermomécanique .
Cet antagonisme entre la perte de charge occasionnée par un filtre et sa résistance thermomécanique devient d'autant plus sensible si on cherche à associer à la fonction de filtration des particules une composante supplémentaire d'élimination ou de traitement des phases gazeuses polluantes contenues dans les gaz d'échappement, du type NOx, CO ou HC. Si des catalyseurs efficaces de traitement de ces polluants sont aujourd'hui très bien connus, leur intégration dans des filtres à particules pose clairement le problème d'une part de leur efficacité lorsqu' ils sont présents dans la porosité de la matrice inorganique constituant le filtre et d'autre part de leur contribution additionnelle à la perte de charge associée au filtre intégré dans une ligne d'échappement. Dans un but d'amélioration de l'efficacité du traitement catalytique des polluants gazeux, la solution actuellement la plus étudiée consiste en l'augmentation de la quantité de solution catalytique déposée par volume de filtre typiquement par imprégnation. Pour maintenir alors la perte de charge à des valeurs acceptables pour une application dans une ligne d'échappement automobile, une évolution de ces structures vers les porosités les plus fortes est alors nécessaire. Comme expliqué précédemment, une telle évolution trouve très rapidement ses limites car elle entraîne inévitablement une chute trop importante des propriétés thermomécaniques du filtre pour une telle application.
En outre, d'autres problèmes se posent du fait de cette augmentation de la charge en catalyseur. L'épaisseur plus importante de la couche de catalyseur augmente sensiblement les problèmes locaux de points chauds déjà évoqués, notamment pendant les phases de régénération du fait de la faible aptitude des compositions catalytiques actuelles à transférer la chaleur de combustion des suies à la matrice inorganique.
Enfin, l'épaisseur plus importante du dépôt de catalyseur peut conduire à une efficacité catalytique plus faible comme cela est mentionné dans US2007/0049492, alinéa [005], qui peut résulter d'une mauvaise répartition des sites actifs, c'est-à- dire des sites siège de la réaction catalysée, en les rendant moins accessibles aux gaz à traiter. Ceci a un impact important sur la température d' amorçage de la réaction catalytique et par voie de conséquence sur le temps d' activation du filtre catalysé, c'est-à-dire sur le temps nécessaire pour que le filtre froid atteigne une température permettant un traitement efficace des polluants.
De plus, cette tendance vers un chargement plus important des filtres en catalyseur conduit à des suspensions de dépôt de plus en plus concentrées, ce qui pose des problèmes de productivité, le dépôt se faisant alors en plusieurs cycles d'imprégnation. Des problèmes de faisabilité se posent également, du fait de la viscosité élevée de ces suspensions. En effet, au delà d'une certaine viscosité dépendant de la nature chimique de la solution de catalyseur utilisée pour l'imprégnation, il ne devient plus possible, avec les moyens habituels de production, d' imprégner efficacement le substrat poreux .
En plus des difficultés précédemment évoquées, liées notamment à l'augmentation de la perte de charge, l'intégration d'une composante catalytique dans un filtre à particules pose également les problèmes suivants :
- l'adhésion de la solution d'imprégnation sur le substrat poreux doit être la plus uniforme et homogène possible mais également permettre de fixer une quantité importante de solution catalytique. Ce problème est d'autant plus critique sur des matrices se présentant sous la forme de grains liés les uns aux autres et dont la surface est relativement lisse et/ou convexe, notamment les matrices à base de SiC.
- pour palier au problème de vieillissement du catalyseur, notamment au sens décrit dans la demande EP 1 669 580 Al, le revêtement catalytique déposé dans la porosité des parois du filtre doit être suffisamment stable dans le temps, c'est-à- dire que l'activité catalytique doit demeurer acceptable durant toute la durée de vie du filtre, au sens des normes anti-pollution actuelles et à venir.
A l'heure actuelle, pour garantir des performances catalytiques acceptables pendant toute la durée du filtre, la solution adoptée est d' imprégner une quantité plus importante de solution catalytique et donc de métaux nobles, afin de compenser la perte d' activité catalytique dans le temps comme cela est décrit dans la demande JP 2006/341201. Cette solution conduit non seulement à augmenter la perte de charge, comme évoqué précédemment, mais aussi le coût du procédé, en raison de l'utilisation nécessairement plus importante de métaux nobles. Le problème se pose donc encore à l'heure actuelle de limiter le vieillissement du catalyseur pour garantir la stabilité de ses performances. Le but de la présente invention est de fournir une solution améliorée à l'ensemble des problèmes précédemment exposés. Plus particulièrement, un des objets de la présente invention est de fournir un filtre poreux convenant pour une application en tant que filtre à particules dans une ligne d'échappement automobile, lequel est soumis à des phases successives d'accumulation et de combustion des suies, et présentant une composante catalytique dont l'efficacité est renforcée. Plus particulièrement, à porosité égale, les filtres catalytiques selon l'invention peuvent présenter une charge catalytique sensiblement supérieure aux filtres actuels. Selon un autre mode possible, les filtres catalytiques selon l'invention peuvent présenter une meilleure homogénéité, c'est-à-dire une répartition plus uniforme de la charge catalytique dans la matrice poreuse.
Une telle augmentation et/ou la meilleure homogénéité de la charge catalytique permet notamment d'améliorer sensiblement l'efficacité de traitement des gaz polluants sans augmentation conjointe de la perte de charge engendrée par le filtre. L'invention permet ainsi notamment l'obtention de structures poreuses présentant des propriétés thermomécaniques acceptables pour l'application et une efficacité catalytique renforcée sensiblement pendant toute la durée de vie du filtre.
Un autre but de la présente invention est l'obtention de filtres catalysés présentant une meilleure résistance au vieillissement, au sens précédemment décrit.
Plus précisément, l'invention se rapporte à un filtre catalytique pour le traitement des particules solides et des polluants gazeux issus des gaz de combustion d'un moteur à combustion interne, comprenant une matrice poreuse constituée d'un matériau inorganique, sous la forme de grains reliés les uns aux autres de façon à ménager entre eux des cavités telles que la porosité ouverte soit comprise entre 30 et 60% et le diamètre médian de pore compris entre 5 et 40 μm, ledit filtre se caractérisant en ce que : les grains et éventuellement les joints de grains du matériau inorganique sont recouverts sur au moins une partie de leur surface d'un matériau de texturation, ladite texturation consistant en des irrégularités dont les dimensions sont comprises entre 10 nm et 5 microns, un revêtement catalytique recouvre au moins partiellement le matériau de texturation et éventuellement, au moins partiellement, les grains du matériau inorganique.
Par exemple, lesdites irrégularités se présentant par exemple sous la forme de billes, de cristallites, d'amas polycristallins, voire de bâtonnets ou de structures aciculaires, de creux ou de cratères, lesdites irrégularités présentant un diamètre moyen d compris entre environ 10 nm et environ 5 microns et une hauteur moyenne h ou une profondeur moyenne p comprise entre environ 10 nm et environ 5 microns.
Par diamètre moyen d, il est entendu au sens de la présente description le diamètre moyen des irrégularités, celles-ci étant individuellement définies à partir du plan tangent à la surface du grain ou du joint de grain sur laquelle elles sont situées.
Par hauteur moyenne h, il est entendu au sens de la présente description la distance moyenne entre le sommet du relief formé par la texturation et le plan cité précédemment.
Par profondeur moyenne p, il est entendu au sens de la présente description la distance moyenne entre d'une part le point le plus profond formé par l'empreinte, par exemple le creux ou le cratère de la texturation et d' autre part le plan cité précédemment.
Selon un mode possible, le diamètre moyen d des irrégularités est compris entre 100 nm et 2,5 microns. Par exemple, la hauteur h ou la profondeur moyenne p des irrégularités est compris entre 100 nm et 2,5 microns.
Selon un mode préféré, le matériau de texturation recouvre au moins 10% de la surface totale des grains et éventuellement des joints de grains du matériau inorganique constituant la matrice poreuse. De préférence, le matériau de texturation recouvre au moins 15% de la surface totale des grains et éventuellement des joints de grains du matériau inorganique constituant la matrice poreuse.
Typiquement, le diamètre équivalent moyen d et/ou la hauteur h ou la profondeur moyenne p des irrégularités sont inférieurs à la taille moyenne des grains du matériau inorganique constituant la matrice d'un facteur compris entre 1/2 et 1/1000.
Par exemple, le diamètre équivalent moyen d et/ou la hauteur h ou la profondeur moyenne p des irrégularités sont inférieurs à la taille moyenne des grains du matériau inorganique constituant la matrice d'un facteur compris entre 1/5 et 1/100.
Selon un mode possible, le matériau de texturation est de même nature que le matériau inorganique constituant la matrice .
Selon une première réalisation, les irrégularités sont constituées par des cristallites ou par un amas de cristallites d'un matériau cuit ou fritte à la surface des grains de la matrice poreuse.
Selon une autre réalisation, les irrégularités sont constituées essentiellement par des billes d'alumine ou de silice .
Alternativement, les irrégularités peuvent également se présenter sous la forme de cratères creusés dans un matériau tel que la silice ou l'alumine, ledit matériau étant cuit ou fritte à la surface des grains de la matrice poreuse. Selon un mode préféré, le matériau constituant la matrice est constitué par ou comprend du Carbure de Silicium.
L' invention se rapporte également à la structure intermédiaire pour l'obtention d'un filtre catalytique pour le traitement des particules solides et des polluants gazeux selon l'une des revendications précédentes et comprenant une matrice poreuse constituée d'un matériau inorganique, sous la forme de grains reliés les uns aux autres de façon à ménager entre eux des cavités telles que la porosité ouverte soit comprise entre 30 et 60% et le diamètre médian de pore compris entre 5 et 40 μm, lesdits grains du matériau inorganique étant recouverts sur au moins une partie de leur surface d'un matériau de texturation selon l'une des revendications précédentes .
L'invention concerne en outre un procédé d'obtention d'un filtre tel que précédemment décrit et comprenant les étapes suivantes : mise en forme et cuisson d'une structure en nid d'abeille constituée d'une matrice poreuse d'un matériau inorganique, sous la forme de grains reliés les uns aux autres de façon à ménager entre eux des cavités telles que la porosité ouverte soit comprise entre 30 et 60% et le diamètre médian de pore soit compris entre 5 et 40 μm,
- dépôt à la surface d' au moins une partie des grains de la structure en nid d'abeille d'un matériau de texturation se présentant par exemple sous la forme de billes, de cristallites, d'amas polycristallins, de creux ou de cratères,
- imprégnation de la structure en nid d'abeille texturée par une solution comprenant un catalyseur ou un précurseur d'un catalyseur.
Selon le procédé, le dépôt du matériau de texturation peut être obtenu par l'application d'une barbotine dudit matériau de recouvrement à la surface des grains, suivie d'un traitement thermique de cuisson ou de frittage, par l'application d'une solution sol-gel comprenant une charge sous la forme de billes ou de particules inorganiques, suivie d'un traitement thermique de cuisson ou de frittage ou encore par l'application d'une solution sol-gel comprenant une charge sous la forme de billes ou de particules organiques, suivie d'un traitement thermique de cuisson ou de frittage.
La solution sol-gel précédente est par exemple un sol de silice .
Plus précisément, le procédé de texturation selon de l'invention est obtenu soit :
1°) par dépôt d'une suspension, comme par exemple une barbotine constituée d'une poudre et d'un mélange de poudres de préférence dans un liquide tel que l'eau, ou un sol-gel chargé en particules minérales, ou d'un sol-gel organique ou organo-minéral, conduisant après un traitement thermique à un matériau de nature inorganique cristallisé et/ou vitreux, de préférence en céramique et de stabilité thermique au moins égale à celle de l'alumine qui est le principal constituant du washcoat. Le dépôt est suivi d'un ou plusieurs traitement (s) thermique (s) du substrat, de préférence sous air mais éventuellement sous atmosphère contrôlée, par exemple sous argon ou sous azote, si cela est nécessaire notamment pour éviter une détérioration ou une oxydation du substrat ou du dépôt par exemple. Il peut aussi être envisagé de faire cette texturation sur le substrat cru ou partiellement cuit dès lors que la tenue mécanique et l'intégrité du substrat sont suffisantes pour réaliser l'opération de texturation et dès lors que les conditions de cuisson permettent d'obtenir les caractéristiques de texturation citées précédemment. Dans le cas des suspensions, en plus de la ou des poudres de nature inorganique (de préférence céramique) ou leurs précurseurs par exemple un composé organométallique (par exemple un alcoxyde de silicium tel que le TEOS et du liquide) , la formulation peut contenir des ajouts pris parmi la liste suivante: un ou plusieurs dispersants (par exemple une résine acrylique ou un dérivé d'aminés), un liant de nature organique (par exemple une résine acrylique ou un dérivé de cellulose) voire de nature minérale (argile) , un agent mouillant ou filmogène (par exemple un alcool de polyvinyle PVA) , un ou plusieurs porogènes (par exemple des polymères, le latex, le polyméthacrylate de méthyle) . Certains de ces composants pouvant cumuler plusieurs de ces fonctions. Tout comme la forme et la granulométrie des poudres ou des précurseurs et la nature du liquide de suspension, la nature et la quantité de ces ajouts vont impacter sur la taille des micro-texturations et leur localisation sur le substrat. La texturation préférée doit être réalisée sur la surface des grains mais aussi en partie sur les joints de grains.
2°) à partir d'une poudre ou d'un mélange de poudres par l'intermédiaire d'un gaz vecteur. Un dépôt direct à partir d'espèces liquides ou gazeuses par exemple par PVD (« physical vapour déposition » selon le terme anglais) ou CVD (« chemical vapour déposition » selon le terme anglais) est aussi possible .
D' autres méthodes de texturation peuvent également être employées selon l'invention telles que le traitement thermique sous gaz (par exemple O2, N2 dans le cas d'un substrat à base de SiC) . Les procédés de gravure par voie plasma ou par voie chimique peuvent permettre également d'obtenir, selon les conditions de mise en œuvre et en fonction de la nature du substrat, des texturations selon l'invention.
Au sens de la présente invention, on définit comme revêtement catalytique un revêtement comprenant ou constitué par un matériau connu pour catalyser la réaction de la transformation des polluants gazeux, c'est à dire principalement le monoxyde de carbone (CO) et les hydrocarbures imbrûlés et les oxydes d'azote (NOx), en des gaz moins nocifs tels que l'azote gazeux (N2) ou le dioxyde de carbone (CO2) et/ou pour faciliter la combustion des suies stockées sur le filtre.
Ce revêtement, de manière bien connue, comprend le plus souvent un matériau support inorganique de forte surface spécifique (typiquement de l'ordre de 10 à 100 m2 /g) assurant la dispersion et la stabilisation d'une phase active, telle que des métaux, en général nobles, jouant le rôle de centre de catalyse proprement dit des réactions d'oxydation ou de réduction. Le matériau support est typiquement à base d'oxydes, plus particulièrement d'alumine ou de silice, ou d'autres oxydes par exemple à base de cérine, de zircone ou d'oxyde de titane, voire des mélanges mixtes de ces différents oxydes. La taille des particules de matériau support constituant le revêtement catalytique sur lequel sont disposées les particules de métal catalytique est de l'ordre de quelques nanomètres à quelques dizaines ou exceptionnellement quelques centaines de nanomètres.
Le revêtement catalytique est typiquement obtenu par imprégnation d'une solution comprenant le catalyseur, sous la forme du matériau support ou ses précurseurs et d'une phase active ou d'un précurseur de la phase active. En général les précurseurs utilisés se présentent sous forme de sels ou de composés organiques ou minéraux, dissous ou en suspension dans une solution aqueuse ou organique. L'imprégnation est suivie d'un traitement thermique visant à obtenir le dépôt final d'une phase solide et catalytiquement active dans la porosité du filtre.
De tels procédés, ainsi que les dispositifs pour leur mise en œuvre, sont par exemple décrits dans les demandes de brevets ou brevets US 2003/044520, WO 2004/091786, US 6,149,973, US 6,627,257, US 6,478,874, US 5,866,210, US 4,609,563, US 4,550,034, US 6,599,570, US 4,208,454 ou encore US 5,422,138. Quelle que soit la méthode utilisée, le coût des catalyseurs déposés, qui contiennent le plus souvent comme phase active des métaux précieux du groupe du Platine (Pt, Pd, Rh) sur un support oxyde, représente une part non négligeable du coût global du procédé d'imprégnation. Par mesure d'économie, il est donc important que le catalyseur soit déposé de la manière la plus uniforme possible, de manière à être facilement accessible par les réactifs gazeux.
Un filtre selon l'invention et tel que précédemment décrit peut typiquement être utilisé dans une ligne d'échappement d'un moteur diesel ou essence.
L' invention et ses avantages seront mieux compris à la lecture des exemples de réalisation qui suivent, non limitatifs de la présente invention et fournis à titre exclusivement illustratif.
Exemple 1 (comparatif)
Dans cet exemple, on synthétise de la manière habituellement utilisée un filtre catalytique à base de SiC.
Plus précisément on mélange dans un premier temps 70% poids d'une poudre de SiC dont les grains présentent un diamètre médian d5o de 10 microns, avec une deuxième poudre de SiC dont les grains présentent un diamètre médian d5o de 0,5 micron, dans un premier mode comparable au mélange de poudre décrit dans EP 1 142 619. Au sens de la présente description, on désigne par diamètre médian de pore d5o le diamètre des particules tel que respectivement 50% de la population totale des grains présente une taille inférieure à ce diamètre. A ce mélange est ajouté un porogène du type polyéthylène dans une proportion égale à 5% poids du poids total des grains de SiC et un additif de mise en forme du type methylcellulose dans une proportion égale à 10% poids du poids total des grains de SiC, tel que reporté dans le tableau 2.
On ajoute ensuite la quantité d'eau nécessaire et on malaxe jusqu'à obtenir une pâte homogène et dont la plasticité permet l'extrusion à travers une filière d'une structure en nid d'abeille de manière à réaliser des blocs monolithes se caractérisant par une disposition en vague des canaux internes tels que ceux décrits en relation avec la figure 3 de la demande WO 05/016491 sont obtenus. Selon une coupe transversale, l'ondulation des parois est caractérisée par un taux d'asymétrie, tel que défini dans WO 05/016491, égal à 7%.
Les caractéristiques dimensionnelles de la structure après extrusion sont données dans le tableau 1 :
Tableau 1
On sèche ensuite les monolithes crus obtenus par micro-onde pendant un temps suffisant pour amener la teneur en eau non liée chimiquement à moins de 1 % en masse.
On bouche alternativement les canaux de chaque face du monolithe selon des techniques bien connues, par exemple décrites dans la demande WO2004/065088.
Le monolithe est ensuite cuit sous Argon selon une montée en température de 20°C/heure jusqu'à atteindre une température maximale de 22000C qui est maintenue pendant 6 heures.
On obtient ainsi une structure filtrante brute en SiC. La figure 1 montre une photographie MEB (Microscope électronique à balayage) des parois filtrantes du filtre ainsi obtenu, constituées par une matrice de grains de SiC de surface lisse et reliés entre eux par des joints de grains, la porosité du matériau étant assurée par les cavités ménagées entre les grains .
Exemple 2 (selon l'invention):
Dans cet exemple, la structure brute obtenue selon l'exemple 1 a ensuite été soumise à un premier traitement de texturation, le matériau servant à la texturation étant introduit dans la porosité du filtre sous la forme d'une barbotine. Plus précisément, on a utilisé une suspension à base de SiC, sous la forme d'une barbotine.
La suspension comprend, en pourcentage poids, 96% d'eau, 0,1% de dispersant du type non ionique, 1,0% d'un liant de type PVA (polyvinylalcool) et 2,8% d'une poudre de SiC de diamètre médian 0,5μm dont la pureté est supérieure à 98% poids.
La barbotine ou suspension est préparée selon les étapes suivantes :
Le PVA, utilisé comme liant, est dans un premier temps dissous dans l'eau chauffée à 800C. Dans une cuve, maintenue sous agitation et contenant le PVA dissous dans l'eau, est introduit le dispersant puis la poudre de SiC jusqu'à obtenir une suspension homogène.
La barbotine est déposée dans le filtre par simple immersion, l'excès de la suspension étant éliminé par aspiration sous vide, sous une pression résiduelle de 10 mbars .
Le filtre ainsi obtenu est soumis à une étape de séchage à
120°C pendant 16 heures puis à un traitement thermique de frittage à 17000C sous argon pendant 3h.
La figure 2 montre une photographie MEB des parois filtrantes du filtre texture ainsi obtenu, montrant les irrégularités à la surface des grains de SiC constituant la matrice poreuse, se présentant selon cet exemple sous la forme de crystallites et d'amas de crystallites de SiC. Selon ce mode de réalisation, le paramètre d mesuré correspond au diamètre moyen, au sens précédemment décrit, des crystallites présents à la surface des grains de SiC. Le paramètre h correspond à la hauteur moyenne h desdits cristallites .
Exemple 3 (selon l'invention) :
Dans cet exemple, la structure brute obtenue selon l'exemple 1 a été soumise à un autre traitement de texturation, le matériau servant à la texturation étant introduit dans la porosité du filtre sous la forme d'un sol de silice comprenant une charge inorganique.
Plus précisément, on a utilisé un sol de silice chargé de particules d'alumine.
Le sol comprend, en pourcentage poids, 45,6% d'eau, 34,7% d'une solution aqueuse contenant 10,5% poids de particules d'alumine commercialisées par la société Nissan sous la référence Chemical Aluminasol 200®, 1,7% de TEOS
(tétraéthoxysilane) , 17,0% de propanol-2 et 1,0% d'une solution d'acide chlorhydrique à 37%.
Le sol chargé en particules inorganiques est préparé selon les étapes suivantes :
Dans une première étape on hydrolyse le TEOS dans le propanol- 2 en présence de la solution d'acide chlorhydrique pour former le sol. Dans une deuxième étape, la charge est ajoutée par l'intermédiaire de la solution aqueuse contenant les particules d'alumine, la troisième étape consistant en une dilution dans de l'eau. Le sol-gel chargé est ensuite laissé au repos pendant 18h avant l'étape suivante. Après maturation, la solution est ensuite déposée dans le monolithe par simple immersion, l'excès étant éliminé par aspiration sous vide, sous une pression résiduelle de 10 mbars . Le monolithe ainsi obtenu est ensuite séché à 1500C pendant Ih puis soumis à un traitement thermique de 2500C sous air pendant une heure .
Le monolithe texture ainsi obtenu, montre des irrégularités à la surface des grains de SiC constituant la matrice poreuse, se présentant selon cet exemple sous la forme de bâtonnets fixés à la surface des grains se SiC et/ou aux joints de grains. Au sens précédemment décrit, les irrégularités présentent, à la surface des grains, une hauteur moyenne h = 2μm et un diamètre moyen d = lμm.
Exemple 4 (selon l'invention):
Dans cet exemple, la structure brute obtenue selon l'exemple 1 a été soumise à un autre traitement de texturation, le matériau servant à la texturation étant introduit dans la porosité du filtre sous la forme d'un sol de silice comprenant une charge inorganique selon les mêmes principes que ceux décrits dans l'exemple 2. A la différence de l'exemple 3, on a cette fois utilisé un sol de silice chargé de microbilles de silice .
Le sol comprend, en pourcentage poids, 45% d'une solution aqueuse colloïdale de billes de silice de diamètre compris entre 300 et 400 nm, sous la forme, la concentration massique de billes étant d'environ 40%, commercialisée sous la référence MP4540 Nyacol ®, 3,3% de TEOS (tétraéthoxysilane) ,
32,4% de propanol-2 utilisé pour la préparation du sol, 17,3% de propanol-2 utilisé comme diluant et 2,0% d'une solution d'acide chlorhydrique à 37%.
Le sol chargé en particules inorganiques est préparé selon les étapes suivantes :
Dans une première étape on hydrolyse le TEOS dans le propanol-
2 en présence de la solution d'acide chlorhydrique pour former le sol. Dans une deuxième étape, la charge est ajoutée par l'intermédiaire de la solution aqueuse colloïdale contenant les billes de silice, la troisième étape consistant en une dilution dans le propanol-2. Le sol-gel chargé est ensuite laissé au repos pendant 18h avant l'étape suivante. Après maturation, la solution est ensuite déposée dans le monolithe par simple immersion, l'excès étant éliminé par aspiration sous vide, sous une pression résiduelle de 10 mbars . Le monolithe ainsi obtenu est ensuite séché à 1500C pendant Ih puis soumis à un traitement thermique de 2500C sous air pendant une heure .
La figure 3 montre une photographie MEB des parois filtrantes du monolithe texture ainsi obtenu, montrant les irrégularités à la surface des grains de SiC constituant la matrice poreuse, se présentant selon cet exemple sous la forme de billes de silice encapsulées dans une enveloppe obtenue par le frittage du sol de silice et établissant la jonction et la liaison avec les grains de SiC constituant la matrice.
La texturation selon ce mode de réalisation est formée de billes sphériques accolées ou isolées, caractérisées par leur diamètre moyen qui correspond, au sens des définitions précédentes, aux valeurs h et d selon l'invention.
Exemple 5 (selon l'invention):
Dans cet exemple, la structure brute obtenue selon l'exemple 1 a été soumise à un autre traitement de texturation, le matériau servant à la texturation étant introduit dans la porosité du monolithe sous la forme d'un sol de silice comprenant une charge organique.
Le sol comprend, en pourcentage poids, 4% de billes de polymétacrylate de méthyle de diamètre d'environ 2μm, commercialisées par la société SEPPIC sous la référence Micropearl M-201®, 16,3% de TEOS (tétraéthoxysilane) , 72,3% d'éthanol et 7,4% d'une solution aqueuse contenant 4,4% poids d'HCl. Le sol chargé en particules inorganiques est préparé selon les étapes suivantes :
La charge organique constituée de billes de polymétacrylate de méthyle est d'abord mélangée à l'éthanol. Le TEOS est ensuite ajouté progressivement, sous agitation. La solution aqueuse contenant le HCl est ensuite ajoutée progressivement et sous forte agitation, afin de permettre une hydrolyse progressive et homogène du TEOS et l'obtention du gel.
Le sol-gel est ensuite déposé dans le monolithe par simple immersion, l'excès étant éliminé par aspiration sous vide, sous une pression résiduelle de 10 mbars .
Le monolithe ainsi obtenu est ensuite séché à 1100C pendant 16h puis soumis à un traitement thermique de 5500C sous air pendant cinq heures.
La figure 4 montre une photographie MEB des parois filtrantes du monolithe texture ainsi obtenu, montrant les irrégularités à la surface des grains de SiC constituant la matrice poreuse. Comme on peut le voir sur la figure 4, les irrégularités se présentent selon cet exemple cette fois sous la forme de creux ou de cratères présents au sein du matériau de texturation constitué de silice SiÛ2, obtenu par le frittage du sol de silice, après le traitement thermique et l'élimination des organiques .
Selon ce mode de réalisation, le paramètre d mesuré correspond au diamètre moyen, au sens précédemment décrit, des cratères creusés par l'élimination des sphères organiques au sein de la couche de texturation SiÛ2 sur la surface des grains de SiC. La profondeur moyenne p desdits cratères est égale à 2μm.
Exemple 6 (selon l'invention) :
Dans cet exemple, la structure brute obtenue selon l'exemple 1 a été soumise à un autre traitement de texturation, le matériau servant à la texturation étant introduit dans la porosité du monolithe sous la forme d'un sol de silice comprenant une charge organique différente de celle de l'exemple 5.
Le sol comprend, en pourcentage poids, 2% de billes de Latex de diamètre 120 nm, 16,3% de TEOS (tétraéthoxysilane) et 81,7% d'une solution aqueuse contenant 0,38% poids d'HCl .
Le sol chargé en particules inorganiques est préparé en mélangeant dans un premier temps les billes de latex avec la solution aqueuse d'HCl, puis en ajoutant progressivement le
TEOS sous forte agitation afin d'obtenir une hydrolyse homogène du silicate et l'obtention d'un gel.
Le sol-gel est ensuite déposé dans le monolithe par simple immersion, l'excès étant éliminé par aspiration sous vide, sous une pression résiduelle de 10 mbars .
Le monolithe ainsi obtenu est ensuite séché à 1100C pendant
16h puis soumis à un traitement thermique de 5500C sous air pendant cinq heures.
La figure 5 montre une photographie MEB des parois filtrantes du monolithe texture ainsi obtenu, montrant les irrégularités recouvrant la surface des grains de SiC constituant la matrice poreuse. Comme on peut le voir sur la figure 5, les irrégularités se présentent selon cet exemple cette fois sous la forme de creux ou de cratères présents au sein du matériau de texturation constitué par un revêtement de silice SiÛ2, obtenu par le frittage du sol de silice, après le traitement thermique et l'élimination des organiques.
Selon ce mode de réalisation, le paramètre d mesuré correspond au diamètre moyen, au sens précédemment décrit, des cratères creusés par l'élimination des sphères organiques au sein de la couche de texturation SiÛ2 sur la surface des grains de SiC. Le paramètre p correspond à la profondeur moyenne p desdits cratères .
Les propriétés de ces monolithes microtexturés selon les exemples 2 à 6 selon l'invention ont été mesurées et comparées à celles du monolithe de référence non texture de l'exemple 1. Le séchage et les différents traitements thermiques mis en œuvre lors du procédé de texturation n'ayant pas d'effet sur la structure des monolithes de référence, il est possible de comparer directement les résultats des mesures effectués sur les monolithes selon l'invention et ceux du monolithe de référence. Ces propriétés ont été mesurées selon les protocoles expérimentaux qui suivent :
A- Prise de masse lors du dépôt texturant après traitement thermique .
La prise de masse liée au dépôt du matériau de texturation a été mesurée sur chaque monolithe après traitement thermique et rapportée au poids du monolithe de référence.
B- Mesure de la porosité du matériau constituant la matrice. La porosité ouverte du matériau constituant les parois des monolithes selon les exemples 1 à 6 a été déterminée selon les techniques classiques de porosimétrie à haute pression de mercure, avec un porosimètre de type micromeritics 9500.
C- Mesure des caractéristiques géométriques des irrégularités du revêtement de texturation:
Les paramètres d, h ou p tels que précédemment définis, caractérisant les irrégularités présentent à la surface des grains de SiC, ont été mesurés sur une série d'observations au microscope électronique à balayage, sur une série d'images représentatives du dépôt réalisé et en différents points du monolithe .
Ces images, dont les figures 1 à 5 jointes sont extraites, correspondent à des vues caractéristiques de la structure interne, en particulier de la porosité ouverte, des parois de canaux fracturés dans le sens transversal, au sein du monolithe . D'autres observations MEB, effectuées sur une série de photographies en différents points du monolithe, permettent également de mesurer la surface recouverte par le matériau de texturation, rapportée à la surface totale des grains et joints de grains du matériau inorganique constituant la matrice poreuse.
D- Mesure de la quantité de revêtement catalytique (washcoat) après imprégnation:
Les monolithes selon l'invention (exemples 2 à 6) et le monolithe de référence (exemple 1) ont été soumis à un traitement d'imprégnation d'une solution catalytique représentative des solutions actuellement utilisées, selon le protocole expérimental suivant :
Le monolithe est plongé dans un bain d'une solution aqueuse contenant les proportions appropriées d'un précurseur du Platine sous la forme H2PtCl6, et d'un précurseur de l'oxyde de cérium CeO2 (sous la forme nitrate de cérium) et d'un précurseur de l'oxyde de zirconium ZrO2 (sous la forme nitrate de zirconyle) selon les principes décrits dans la publication EP 1 338 322 Al. Le monolithe est imprégné par la solution selon un mode de mise en œuvre similaire à celui décrit dans le brevet US 5,866,210. Le monolithe est ensuite séché à environ 1500C puis chauffé à une température d'environ 5000C.
E- Mesure de la perte de charge :
La perte de charge des monolithes obtenus après l'imprégnation catalytique précédemment décrite (voir point D précédent) , a été mesurée selon les techniques de l'art, pour un débit d'air de 30 m3/h dans un courant d'air ambiant. Par perte de charge, on entend au sens de la présente invention la pression différentielle existant entre l'amont et l'aval du monolithe.
F- Test d'efficacité catalytique dit de « light off » Ce test vise à mesurer la température d'amorçage du catalyseur, souvent appelé dans le métier selon le terme anglais température de « light off » du catalyseur. Cette température est définie, dans des conditions de pression et de débit gazeux constants, comme la température pour laquelle un catalyseur convertit 50 % en volume des gaz polluants. La température de conversion en CO et HC a ici été déterminée selon un protocole expérimental identique à celui décrit dans la demande EP 1759763, notamment dans ses alinéas 33 et 34. Selon la mesure, plus la température de conversion est faible, plus le système catalytique est performant.
Le test a été réalisé sur des échantillons d'environ 25 cm3 taillé dans un monolithe.
G- Test d'efficacité catalytique dit de « light off », après vieillissement
Un monolithe cuit non microtexturé et un monolithe texture selon chaque exemple de l'invention sont préalablement imprégnés de catalyseur comme décrit au paragraphe D puis placés dans un four à 8000C sous atmosphère d'air humide pendant une durée de 5 heures telle que la concentration molaire d'eau soit maintenue constante à 3%.
On mesure sur chaque échantillon de monolithe ainsi vieilli le taux de conversion du CO à 4200C ainsi que la température de light-off des HC, selon le même protocole expérimental que celui décrit dans le point F précédent. On calcule l'augmentation de température de light off des HC par différence entre la température de light off des HC sur échantillon vieilli et celle mesurée sur échantillon non vieilli. Selon ces tests, plus la température de light off sur échantillon vieilli ou l'augmentation de la température de light-off due au vieillissement sont faibles, plus la résistance au vieillissement du système catalytique est forte. Plus le taux de conversion après vieillissement est élevé, plus le système catalytique est performant. Les principaux résultats obtenus pour les différents mesures A à F qui précédent ont été regroupés dans le tableau 2 :
Tableau 2
Les monolithes des exemples 2 3 et 5 montrent un niveau de charge en revêtement catalytique sensiblement supérieur à celui de la référence (exemple 1), pour des caractéristiques de porosité équivalentes. On remarque que la perte de charge occasionnée par les monolithes selon l'invention est également très peu affectée par l'augmentation significative de la charge catalytique présente dans les filtres textures selon l'invention. Les valeurs de perte de charge mesurées restent ainsi tout à fait acceptables pour l'application filtrante. Tous les monolithes de l'invention montrent une activité catalytique plus performante que la référence.
Ceux des exemples 4 et 6 montrent une efficacité catalytique très supérieure malgré une charge sensiblement plus faible que la référence (exemple 1), ce qui pourrait être interprété comme le résultat d'une meilleure répartition du catalyseur ou encore d'un accès facilité aux sites actifs pour les gaz à épurer .
Le monolithe de l'exemple 2 montre une forte charge en wash coat et une efficacité catalytique élevée malgré un pourcentage de surface microtexturée faible, ce qui montre un effet très sensible de la microtexturation, même si celle-ci n'est présente que sur une partie minime de la surface des grains .
Tous les produits de l'invention montrent après vieillissement une performance catalytique plus élevée que la référence. En particulier les exemples 4 et 6 montrent les meilleures résistances au vieillissement malgré les charges en wash-coat les plus faibles. L'exemple 2 montre une augmentation de température de light off des HC la plus faible.
En outre, les produits selon l'invention conservent toutes leurs propriétés de résistance mécanique, tout en maintenant leur efficacité de filtration, à la différence des solutions connues à ce jour pour augmenter la charge de catalyseur présent dans la porosité des structures filtrantes, notamment par le biais de l'augmentation des grandeurs de porosité (porosité ouverte, diamètre des pores) .

Claims

REVENDICATIONS
Filtre catalytique pour le traitement des particules solides et des polluants gazeux issus des gaz de combustion d'un moteur à combustion interne, comprenant une matrice poreuse constituée d'un matériau inorganique, sous la forme de grains reliés les uns aux autres de façon à ménager entre eux des cavités telles que la porosité ouverte soit comprise entre 30 et 60% et le diamètre médian de pore compris entre 5 et 40 μm, ledit filtre se caractérisant en ce que :
- les grains et éventuellement les joints de grains du matériau inorganique sont recouverts sur au moins une partie de leur surface d'un matériau de texturation, ladite texturation consistant en des irrégularités dont les dimensions sont comprises entre 10 nm et 5 microns, un revêtement catalytique recouvre au moins partiellement le matériau de texturation et éventuellement, au moins partiellement, les grains du matériau inorganique.
Filtre selon la revendication 1 dans lequel ladite texturation consistant en des irrégularités se présentant par exemple sous la forme de billes, de cristallites, d'amas polycristallins, voire de bâtonnets ou de structures aciculaires, de creux ou de cratères, lesdites irrégularités présentant un diamètre équivalent moyen d compris entre environ 10 nm et environ 5 microns et une hauteur ou une profondeur moyenne p comprise entre environ 10 nm et environ 5 microns.
3. Filtre selon la revendication 1 ou 2, dans lequel le diamètre moyen d des irrégularités est compris entre 100 nm et 2,5 microns.
4. Filtre selon l'une des revendications précédentes, dans lequel la hauteur h ou la profondeur moyenne p des irrégularités est compris entre 100 nm et 2,5 microns.
5. Filtre selon l'une des revendications précédentes, dans lequel le matériau de texturation recouvre au moins 10%, et de préférence au moins 15%, de la surface totale des grains et éventuellement des joints de grains du matériau inorganique constituant la matrice poreuse.
6. Filtre selon l'une des revendications précédentes, dans lequel le diamètre équivalent moyen d et/ou la hauteur h ou la profondeur moyenne p des irrégularités sont inférieurs à la taille moyenne des grains du matériau inorganique constituant la matrice d'un facteur compris entre 1/2 et 1/1000.
7. Filtre selon l'une des revendications précédentes, dans lequel le diamètre équivalent moyen d et/ou la hauteur h ou la profondeur moyenne p des irrégularités sont inférieurs à la taille moyenne des grains du matériau inorganique constituant la matrice d'un facteur compris entre 1/5 et 1/100.
8. Filtre selon l'une des revendications précédentes, dans lequel le matériau de texturation est de même nature que le matériau inorganique constituant la matrice.
9. Filtre selon l'une des revendications précédentes, dans lequel les irrégularités sont constituées par des cristallites ou par un amas de cristallites d'un matériau cuit ou fritte à la surface des grains de la matrice poreuse .
10. Filtre selon l'une des revendications précédentes, dans lequel les irrégularités sont constituées essentiellement par des billes d'alumine ou de silice.
11. Filtre selon l'une des revendications précédentes, dans lequel les irrégularités se présentent sous la forme de cratères creusés dans un matériau tel que la silice ou l'alumine, ledit matériau étant cuit ou fritte à la surface des grains de la matrice poreuse.
12. Filtre selon l'une des revendications précédentes, dans lequel le matériau constituant la matrice est constitué par ou comprend du Carbure de Silicium.
13. Structure intermédiaire pour l'obtention d'un filtre catalytique pour le traitement des particules solides et des polluants gazeux selon l'une des revendications précédentes, comprenant une matrice poreuse constituée d'un matériau inorganique, sous la forme de grains reliés les uns aux autres de façon à ménager entre eux des cavités telles que la porosité ouverte soit comprise entre 30 et 60% et le diamètre médian de pore compris entre 5 et 40 μm, lesdits grains du matériau inorganique étant recouverts sur au moins une partie de leur surface d'un matériau de texturation selon l'une des revendications précédentes .
14. Procédé d'obtention d'un filtre selon l'une des revendications 1 à 12 comprenant les étapes suivantes : mise en forme et cuisson d'une structure en nid d'abeille constituée d'une matrice poreuse d'un matériau inorganique, sous la forme de grains reliés les uns aux autres de façon à ménager entre eux des cavités telles que la porosité ouverte soit comprise entre 30 et 60% et le diamètre médian de pore soit compris entre 5 et 40 μm,
- dépôt à la surface d' au moins une partie des grains de la structure en nid d'abeille d'un matériau de texturation se présentant par exemple sous la forme de billes, de cristallites, d'amas polycristallins, de creux ou de cratères,
- imprégnation de la structure en nid d'abeille texturée par une solution comprenant un catalyseur ou un précurseur d'un catalyseur.
15. Procédé selon la revendication 14, dans lequel le dépôt du matériau de texturation est obtenu par l'application d'une barbotine dudit matériau de recouvrement à la surface des grains, suivie d'un traitement thermique de cuisson ou de frittage .
16. Procédé selon la revendication 14, dans lequel le dépôt du matériau de texturation est obtenu par l'application d'une solution sol-gel comprenant une charge sous la forme de billes ou de particules inorganiques, suivie d'un traitement thermique de cuisson ou de frittage.
17. Procédé selon la revendication 14, dans lequel le dépôt du matériau de texturation est obtenu par l'application d'une solution sol-gel comprenant une charge sous la forme de billes ou de particules organiques, suivie d'un traitement thermique de cuisson ou de frittage.
18. Procédé selon la revendication 16 ou 17, dans lequel la solution sol-gel est un sol de silice.
19. Utilisation d'un filtre selon l'une des revendications précédentes dans une ligne d'échappement d'un moteur diesel ou essence.
EP08805801A 2007-05-23 2008-05-19 Filtre a particules texture pour applications catalytiques Withdrawn EP2155388A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0755217A FR2916366B1 (fr) 2007-05-23 2007-05-23 Filtre a particules texture pour applications catalytiques
PCT/FR2008/050855 WO2008142353A2 (fr) 2007-05-23 2008-05-19 Filtre a particules texture pour applications catalytiques

Publications (1)

Publication Number Publication Date
EP2155388A2 true EP2155388A2 (fr) 2010-02-24

Family

ID=38624376

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08805801A Withdrawn EP2155388A2 (fr) 2007-05-23 2008-05-19 Filtre a particules texture pour applications catalytiques

Country Status (6)

Country Link
US (1) US20100158774A1 (fr)
EP (1) EP2155388A2 (fr)
JP (1) JP2010529343A (fr)
KR (1) KR20100017157A (fr)
FR (1) FR2916366B1 (fr)
WO (1) WO2008142353A2 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2921848B1 (fr) * 2007-10-08 2011-03-18 Saint Gobain Ct Recherches Structure de purification texturee incorporant un systeme de catalyse electrochimique
FR2933880B1 (fr) * 2008-07-17 2011-04-22 Saint Gobain Ct Recherches Filtre a particules texture pour applications catalytiques
FR2943928B1 (fr) * 2009-04-02 2012-04-27 Saint Gobain Ct Recherches Structure filtrante a base de sic a proprietes thermomecaniques ameliorees
FR2949690B1 (fr) * 2009-09-04 2011-10-21 Saint Gobain Ct Recherches Filtre a particules en sic incorporant du cerium
JP6253602B2 (ja) * 2015-02-12 2017-12-27 株式会社東芝 濾過用フィルター
JP6509622B2 (ja) * 2015-04-23 2019-05-08 株式会社東芝 処理システム及び処理方法
JP6514064B2 (ja) * 2015-07-31 2019-05-15 株式会社東芝 処理システム及び処理方法
MX365444B (es) 2015-08-14 2019-06-03 Orion Eng Carbons Gmbh Métodos y sistemas para remoción de materia particulada de una corriente de gas de escape de proceso.
CH713958A1 (de) * 2017-07-07 2019-01-15 Exentis Tech Ag System bestehend aus einem Träger mit Strömungskanälen und mindestens einer katalystisch wirksamen Substanz.
JP2021535067A (ja) 2018-08-31 2021-12-16 コーニング インコーポレイテッド 無機濾過堆積物を有するハニカム体の製造方法
JP2021536422A (ja) 2018-08-31 2021-12-27 コーニング インコーポレイテッド 無機濾過堆積物を有するハニカム体の製造方法
KR20210044883A (ko) * 2018-09-03 2021-04-23 코닝 인코포레이티드 다공성 재료를 갖는 허니컴 바디

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3397968A (en) * 1967-06-19 1968-08-20 Lockheed Aircraft Corp Porous materials
FR2604920B1 (fr) * 1986-10-10 1988-12-02 Ceraver Membrane de filtration ceramique et procede de fabrication
US5195319A (en) * 1988-04-08 1993-03-23 Per Stobbe Method of filtering particles from a flue gas, a flue gas filter means and a vehicle
JP2578176B2 (ja) * 1988-08-12 1997-02-05 日本碍子株式会社 多孔質セラミックハニカムフィルターおよびその製法
JPH08133857A (ja) * 1994-11-08 1996-05-28 Sumitomo Electric Ind Ltd セラミックス多孔体及びその製造方法
WO2000001463A1 (fr) * 1998-07-07 2000-01-13 Silentor Notox A/S Filtre de gaz d'echappement de moteurs diesel
EP1508358B1 (fr) * 1999-09-29 2009-04-15 Ibiden Co., Ltd. Filtre en nid d' abeilles et ensemble de filtres céramiques
JP4907756B2 (ja) * 2000-02-29 2012-04-04 イビデン株式会社 排ガス浄化用触媒およびその製造方法
JP4455708B2 (ja) * 2000-01-17 2010-04-21 日本碍子株式会社 ハニカム構造体及びその製造方法
JP4464568B2 (ja) * 2001-02-02 2010-05-19 日本碍子株式会社 ハニカム構造体及びその製造方法
KR100691789B1 (ko) * 2002-02-15 2007-03-12 아이씨티 코., 엘티디. 내연기관 배기가스정화용 촉매, 그 제조방법 및 내연기관배기가스의 정화방법
JP3874270B2 (ja) * 2002-09-13 2007-01-31 トヨタ自動車株式会社 排ガス浄化フィルタ触媒及びその製造方法
US6946013B2 (en) * 2002-10-28 2005-09-20 Geo2 Technologies, Inc. Ceramic exhaust filter
WO2004076027A1 (fr) * 2003-02-28 2004-09-10 Ibiden Co., Ltd. Structure ceramique en nids d'abeilles
DE10331049B4 (de) * 2003-07-09 2010-04-08 Saint-Gobain Industriekeramik Rödental GmbH Verfahren zur Herstellung eines porösen Keramikkörpers, danach hergestellter poröser Keramikkörper und dessen Verwendung
US7083842B2 (en) * 2003-07-28 2006-08-01 Ngk Insulators, Ltd. Honeycomb structure and process for production thereof
DE102004051376A1 (de) * 2004-09-13 2006-03-30 Matthias Mangold Herstellungsverfahren für ein Abgasreinigungsmittel und Abgasreinigungsmittel
DE602006009675D1 (de) * 2005-08-05 2009-11-19 Basf Catalysts Llc N dafür
EP1757351B1 (fr) * 2005-08-26 2016-04-13 Ibiden Co., Ltd. Structure en nid d'abeilles et sa fabrication
US7640732B2 (en) * 2005-11-16 2010-01-05 Geo2 Technologies, Inc. Method and apparatus for filtration of a two-stroke engine exhaust
US7922987B2 (en) * 2006-08-19 2011-04-12 Umicore Ag & Co. Kg Catalytically coated diesel particle filter, process for producing it and its use

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008142353A2 *

Also Published As

Publication number Publication date
US20100158774A1 (en) 2010-06-24
JP2010529343A (ja) 2010-08-26
FR2916366A1 (fr) 2008-11-28
FR2916366B1 (fr) 2009-11-27
WO2008142353A3 (fr) 2009-01-29
KR20100017157A (ko) 2010-02-16
WO2008142353A2 (fr) 2008-11-27

Similar Documents

Publication Publication Date Title
WO2008142353A2 (fr) Filtre a particules texture pour applications catalytiques
EP1917225B1 (fr) Support et filtre catalytique a base de carbure de silicium et a haute surface specifique
EP1945356B1 (fr) Methode d'obtention d'une structure de filtration homogene pour une application catalytique
EP2197567B1 (fr) Structure de purification texture incorporant un systeme de catalyse electrochimique
EP1954374B1 (fr) Structure a base de carbure de silicium de porosite de surface de paroi controlee pour filtration d'un gaz
EP1090211A1 (fr) Procede de traitement par combustion des particules carbonees dans un circuit d'echappement d'un moteur a combustion interne
EP2310338A2 (fr) GRAINS FONDUS D'OXYDES COMPRENANT AL, TI et MG ET PRODUITS CERAMIQUES COMPORTANT DE TELS GRAINS
WO2010119226A1 (fr) Substrat de catalyseur en nid d'abeilles et son procédé d'obtention
EP2091890B1 (fr) Procede d'obtention d'une structure poreuse a base de carbure de silicium et structure poreuse obtenue
EP2379207A1 (fr) Structure de purification incorporant un systeme de catalyse supporte par une zircone a l'etat reduit
EP2307123A1 (fr) Filtre a particules texture pour applications catalytiques
WO2009156638A1 (fr) Filtre ou support catalytique à base de carbure de silicium et de titanate d'aluminium
WO2010112778A2 (fr) Structure filtrante a base de sic a proprietes thermomecaniques ameliorees
WO2011027083A1 (fr) Filtre a particules en sic incorporant du cerium
CN111375405B (zh) 具有大孔铈锰氧化物骨架的整体催化剂及其制造方法
WO2006134303A2 (fr) Structure et filtre catalytique pour la filtration d'un gaz comprenant un ciment hydrophobe ou oleophobe
WO2014147350A1 (fr) Filtre a particules

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20091223

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17Q First examination report despatched

Effective date: 20100609

111L Licence recorded

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LT LU LV MC MT NL NO PL PT RO SE SI SK TR

Name of requester: SAINT-GOBAIN INDUSTRIEKERAMIK ROEDENTAL GMBH, DE

Effective date: 20110418

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20121201