EP2155388A2 - Texturierter partikelfilter zur verwendung in katalysatoren - Google Patents

Texturierter partikelfilter zur verwendung in katalysatoren

Info

Publication number
EP2155388A2
EP2155388A2 EP08805801A EP08805801A EP2155388A2 EP 2155388 A2 EP2155388 A2 EP 2155388A2 EP 08805801 A EP08805801 A EP 08805801A EP 08805801 A EP08805801 A EP 08805801A EP 2155388 A2 EP2155388 A2 EP 2155388A2
Authority
EP
European Patent Office
Prior art keywords
grains
irregularities
filter
filter according
inorganic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08805801A
Other languages
English (en)
French (fr)
Inventor
Patricia Andy
Caroline Tardivat
Ahmed Marouf
Damien Mey
Catherine Jacquiod
Valérie GOLETTO
Alexandra Dekoninck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Centre de Recherche et dEtudes Europeen SAS
Original Assignee
Saint Gobain Centre de Recherche et dEtudes Europeen SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Centre de Recherche et dEtudes Europeen SAS filed Critical Saint Gobain Centre de Recherche et dEtudes Europeen SAS
Publication of EP2155388A2 publication Critical patent/EP2155388A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • B01J27/224Silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0219Coating the coating containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0242Coating followed by impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63424Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0038Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by superficial sintering or bonding of particulate matter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/408Noble metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/441Alkoxides, e.g. methoxide, tert-butoxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249967Inorganic matrix in void-containing component

Definitions

  • the present invention relates to the field of porous filter materials. More particularly, the invention relates to typically honeycomb structures that can be used for the filtration of solid particles contained in the exhaust gases of a diesel engine or gasoline and additionally incorporating a catalytic component that makes it possible, for example, jointly elimination of NO x type pollutants, carbon monoxide CO or unburned HC hydrocarbons.
  • the filters according to the invention have a matrix of an inorganic material, preferably ceramic, chosen for its ability to form a structure with porous walls and for acceptable thermomechanical resistance for application as a particulate filter in an automobile exhaust system.
  • a material is typically based on silicon carbide, in particular recrystallized silicon carbide.
  • oxide, carbide or nitride materials, such as cordierite-based matrices, for example, are also included within the scope of the present invention, even if the SiC-based materials are preferred, because of their high refractoriness and their strong chemical inertness.
  • the increase in porosity and in particular the average pore size is generally sought for catalytic filtration gas treatment applications. Such an increase makes it possible to limit the pressure drop caused by the positioning of a particulate filter as previously described in an automobile exhaust line. Pressure loss means the difference in gas pressure existing between the inlet and the filter output.
  • this increase in porosity finds its limits with the associated decrease in thermomechanical strength properties of the filter, especially when it is subjected to successive phases of accumulation of soot particles and regeneration, that is to say say soot removal by their combustion within the filter.
  • the filter can be raised to average inlet temperatures of the order of 600 to 700 ° C., while local temperatures of more than 1000 ° C. can be reached. These hot spots are all defects that are likely over the life of the filter to alter its performance, or even disable it.
  • very high porosity levels for example greater than 60%, it has been found in particular on silicon carbide filters a sharp decrease in thermomechanical resistance properties.
  • the greater thickness of the catalyst layer substantially increases the local problems of hot spots already mentioned, especially during the regeneration phases because of the low ability of current catalyst compositions to transfer the heat of combustion of soot to the inorganic matrix.
  • the greater thickness of the catalyst deposit can lead to a lower catalytic efficiency as mentioned in US2007 / 0049492, paragraph [005], which can result from a bad distribution of the active sites, that is to say - say sites sites of the catalyzed reaction, making them less accessible to the gases to be treated.
  • This has a significant impact on the initiation temperature of the catalytic reaction and consequently on the activation time of the catalyzed filter, that is to say on the time required for the cold filter to reach a temperature permitting effective treatment of pollutants.
  • the adhesion of the impregnating solution on the porous substrate must be as uniform and homogeneous as possible but also allow to fix a large amount of catalyst solution. This problem is even more critical on matrices in the form of grains bonded to each other and whose surface is relatively smooth and / or convex, including SiC-based matrices.
  • the catalytic coating deposited in the porosity of the walls of the filter must be sufficiently stable over time, that is to say that the catalytic activity must remain acceptable throughout the life of the filter, within the meaning of current and future anti-pollution standards.
  • the solution adopted is to impregnate a larger quantity of catalytic solution and therefore of noble metals, in order to compensate for the loss of catalytic activity in the filter. time as described in JP 2006/341201.
  • This solution leads not only to increase the pressure drop, as mentioned above, but also the cost of the process, due to the necessarily greater use of noble metals. The problem therefore still remains to limit the aging of the catalyst to ensure the stability of its performance.
  • the object of the present invention is to provide an improved solution to all of the previously discussed problems.
  • one of the objects of the present invention is to provide a porous filter suitable for application as a particulate filter in an automobile exhaust line, which is subjected to successive stages of accumulation and combustion of soot, and having a catalytic component whose effectiveness is enhanced.
  • the catalytic filters according to the invention can have a catalytic charge substantially greater than current filters.
  • the catalytic filters according to the invention may have a better homogeneity, that is to say a more uniform distribution of the catalytic charge in the porous matrix.
  • Such an increase and / or the better homogeneity of the catalytic charge notably makes it possible to appreciably improve the treatment efficiency of the polluting gases without a joint increase in the pressure drop generated by the filter.
  • the invention thus makes it possible in particular to obtain porous structures having thermomechanical properties that are acceptable for the application and a catalytic efficiency that is substantially increased throughout the lifetime of the filter.
  • Another object of the present invention is to obtain catalyzed filters having a better resistance to aging, as previously described.
  • the invention relates to a catalytic filter for the treatment of solid particles and gaseous pollutants resulting from the combustion gases of an internal combustion engine, comprising a porous matrix consisting of an inorganic material, in the form of grains connected to each other so as to form between them cavities such that the open porosity is between 30 and 60% and the median pore diameter of between 5 and 40 ⁇ m, said filter being characterized in that: the grains and possibly the grain boundaries of the inorganic material are covered on at least a part of their surface of a texturizing material, said texturing consisting of irregularities whose dimensions are between 10 nm and 5 microns, a catalytic coating at least partially covers the texturizing material and optionally, at least partially, the grains of the material inorganic.
  • said irregularities being for example in the form of beads, crystallites, polycrystalline clusters, or rods or acicular structures, cavities or craters, said irregularities having an average diameter of between about 10 nm and about 5 microns and a mean height h or a mean depth p of between about 10 nm and about 5 microns.
  • mean diameter d it is understood in the sense of the present description the mean diameter of the irregularities, these being individually defined from the plane tangent to the surface of the grain or grain joint on which they are located.
  • average height h it is understood in the sense of the present description the average distance between the top of the relief formed by the texturing and the plane mentioned above.
  • average depth p it is understood in the sense of the present description the average distance between on the one hand the deepest point formed by the impression, for example the trough or the crater of the texturing and on the other hand the plane cited previously.
  • the average diameter of the irregularities is between 100 nm and 2.5 microns.
  • the height h or the average depth p of the irregularities is between 100 nm and 2.5 microns.
  • the texturizing material covers at least 10% of the total surface of the grains and possibly grain boundaries of the inorganic material constituting the porous matrix.
  • the texturizing material covers at least 15% of the total surface of the grains and possibly grain boundaries of the inorganic material constituting the porous matrix.
  • the average equivalent diameter d and / or the height h or the average depth p of the irregularities are smaller than the average grain size of the inorganic material constituting the matrix by a factor of between 1/2 and 1/1000.
  • the average equivalent diameter d and / or the height h or the average depth p of the irregularities are smaller than the average grain size of the inorganic material constituting the matrix by a factor of between 1/5 and 1/100.
  • the texturizing material is of the same nature as the inorganic material constituting the matrix.
  • the irregularities are constituted by crystallites or by a mass of crystallites of a material cooked or sintered on the surface of the grains of the porous matrix.
  • the irregularities consist essentially of alumina or silica beads.
  • the irregularities may also be in the form of craters dug in a material such as silica or alumina, said material being baked or sintered on the surface of the grains of the porous matrix.
  • the material constituting the matrix consists of or comprises silicon carbide.
  • the invention also relates to the intermediate structure for obtaining a catalytic filter for the treatment of solid particles and gaseous pollutants according to one of the preceding claims and comprising a porous matrix consisting of an inorganic material, under the form of grains connected to each other so as to form between them cavities such that the open porosity is between 30 and 60% and the median pore diameter of between 5 and 40 microns, said grains of the inorganic material being covered on at least part of their surface of a texturizing material according to one of the preceding claims.
  • the invention further relates to a method for obtaining a filter as previously described and comprising the following steps: shaping and baking a honeycomb structure consisting of a porous matrix of an inorganic material in the form of grains connected to each other so as to form between them cavities such that the open porosity is between 30 and 60% and the median pore diameter is between 5 and 40 microns,
  • a texturizing material for example in the form of beads, crystallites, polycrystalline clusters, hollows or craters ,
  • the deposition of the texturizing material can be obtained by applying a slip of said covering material to the surface of the grains, followed by a heat treatment of baking or sintering, by the application of a sol-gel solution comprising a filler in the form of beads or inorganic particles, followed by a heat treatment for firing or sintering or by the application of a sol-gel solution comprising a filler in the form of beads or organic particles, followed by a heat treatment for baking or sintering.
  • the preceding sol-gel solution is, for example, a silica sol.
  • a suspension such as for example a slip consisting of a powder and a mixture of powders, preferably in a liquid such as water, or a sol-gel loaded with mineral particles, or an organic or organo-mineral sol-gel, which, after a heat treatment, leads to a material of crystalline and / or glassy inorganic nature, preferably ceramic, and of a thermal stability at least equal to that of the alumina which is the main constituent washcoat.
  • the deposition is followed by one or more heat treatment (s) of the substrate, preferably under air but possibly under a controlled atmosphere, for example under argon or under nitrogen, if this is necessary in particular to avoid deterioration or oxidation. substrate or deposit for example.
  • the formulation may contain additions from the following list: one or several dispersants (for example an acrylic resin or an amine derivative), a binder of organic nature (for example an acrylic resin or a cellulose derivative) or even of a mineral nature (clay), a wetting or film-forming agent (for example a polyvinyl alcohol PVA), one or more porogens (for example polymers, latex, polymethylmethacrylate).
  • dispersants for example an acrylic resin or an amine derivative
  • a binder of organic nature for example an acrylic resin or a cellulose derivative
  • a wetting or film-forming agent for example a polyvinyl alcohol PVA
  • one or more porogens for example polymers, latex, polymethylmethacrylate.
  • Texturing methods may also be employed according to the invention such as heat treatment under gas (for example O 2 , N 2 in the case of an SiC-based substrate).
  • Plasma etching processes or chemically can also provide, depending on the conditions of implementation and depending on the nature of the substrate, texturations according to the invention.
  • a catalytic coating is defined as a coating comprising or consisting of a material known to catalyze the reaction of the transformation of gaseous pollutants, that is to say mainly carbon monoxide (CO) and unburnt hydrocarbons and oxides of nitrogen (NO x ) to less harmful gases such as nitrogen gas (N 2 ) or carbon dioxide carbon (CO2) and / or to facilitate the combustion of soot stored on the filter.
  • CO carbon monoxide
  • NO x unburnt hydrocarbons and oxides of nitrogen
  • N 2 nitrogen gas
  • CO2 carbon dioxide carbon
  • This coating in a well-known manner, most often comprises an inorganic support material of high specific surface area (typically of the order of 10 to 100 m 2 / g) ensuring the dispersion and the stabilization of an active phase, such as metals, generally noble, acting as a center of catalysis proper oxidation or reduction reactions.
  • the support material is typically based on oxides, more particularly on alumina or silica, or other oxides, for example based on ceria, zirconia or titanium oxide, or even mixed mixtures of these different oxides.
  • the size of the support material particles constituting the catalytic coating on which the catalytic metal particles are arranged is of the order of a few nanometers to a few tens or exceptionally a few hundred nanometers.
  • the catalytic coating is typically obtained by impregnating a solution comprising the catalyst, in the form of the support material or its precursors and an active phase or a precursor of the active phase.
  • the precursors used are in the form of salts or organic or inorganic compounds, dissolved or suspended in an aqueous or organic solution.
  • the impregnation is followed by a heat treatment aimed at obtaining the final deposition of a solid and catalytically active phase in the porosity of the filter.
  • a filter according to the invention and as previously described can typically be used in an exhaust line of a diesel engine or gasoline.
  • an SiC-based catalytic filter is typically synthesized.
  • the median pore diameter d 5 o denotes the diameter of the particles such that respectively 50% of the total population of grain is smaller than this diameter.
  • a porogen of the polyethylene type in a proportion equal to 5% by weight of the total weight of the SiC grains and a methylcellulose type shaping additive in a proportion equal to 10% by weight of the total weight of the SiC grains.
  • the quantity of water required is then added and kneaded to obtain a homogeneous paste whose plasticity allows the extrusion through a die of a honeycomb structure so as to produce monolithic blocks characterized by a wave arrangement of the internal channels such as those described in relation with FIG. 3 of the application WO 05/016491 are obtained.
  • the undulation of the walls is characterized by an asymmetry rate, as defined in WO 05/016491, equal to 7%.
  • the green microwave monoliths are then dried for a time sufficient to bring the water content not chemically bound to less than 1% by weight.
  • each face of the monolith is alternately plugged according to well-known techniques, for example described in application WO2004 / 065088.
  • the monolith is then baked under Argon according to a rise in temperature of 20 ° C / hour until a maximum temperature of 2200 0 C is reached which is maintained for 6 hours.
  • FIG. 1 shows a SEM (scanning electron microscope) photograph of the filtering walls of the filter thus obtained, constituted by a matrix of SiC grains of smooth surface and interconnected by grain boundaries, the porosity of the material being provided by the cavities formed between the grains.
  • the raw structure obtained according to Example 1 was then subjected to a first texturing treatment, the material used for texturing being introduced into the porosity of the filter in the form of a slip. More specifically, an SiC-based slurry was used in the form of a slurry.
  • the suspension comprises, as a weight percentage, 96% of water, 0.1% of nonionic type dispersant, 1.0% of a PVA type binder (polyvinyl alcohol) and 2.8% of an SiC powder. with a median diameter of 0.5 ⁇ m and a purity greater than 98% by weight.
  • the slurry or suspension is prepared according to the following steps:
  • the PVA used as a binder, is firstly dissolved in water heated to 80 ° C. In a stirred tank containing the PVA dissolved in water, the dispersant and then the SiC powder are introduced. to obtain a homogeneous suspension.
  • the slip is deposited in the filter by simple immersion, the excess of the suspension being removed by suction under vacuum, under a residual pressure of 10 mbar.
  • the filter thus obtained is subjected to a drying step in
  • FIG. 2 shows a SEM photograph of the filtering walls of the texture filter thus obtained, showing the irregularities at the surface of the SiC grains constituting the porous matrix, which, according to this example, are in the form of crystallites and SiC crystallite clusters.
  • the parameter d measured corresponds to the mean diameter, in the sense previously described, of the crystallites present on the surface of the SiC grains.
  • the parameter h corresponds to the average height h of said crystallites.
  • the raw structure obtained according to Example 1 was subjected to another texturizing treatment, the material used for the texturing being introduced into the porosity of the filter in the form of a silica sol comprising an inorganic filler.
  • a silica sol loaded with alumina particles was used.
  • the soil comprises, as a percentage by weight, 45.6% of water, 34.7% of an aqueous solution containing 10.5% by weight of alumina particles marketed by Nissan under the reference Chemical Aluminasol 200®, 1 , 7% of TEOS
  • the soil loaded with inorganic particles is prepared according to the following steps:
  • TEOS is hydrolyzed in propanol-2 in the presence of the hydrochloric acid solution to form the sol.
  • the filler is added through the aqueous solution containing the alumina particles, the third step consisting of dilution in water.
  • the charged sol-gel is then allowed to stand for 18 hours before the next step.
  • the solution is then deposited in the monolith by simple immersion, the excess being removed by suction under vacuum, under a residual pressure of 10 mbar.
  • the monolith thus obtained is then dried at 150 ° C. for 1 h and then subjected to a heat treatment of 250 ° C. under air for one hour.
  • the texture monolith thus obtained shows irregularities on the surface of the SiC grains constituting the porous matrix, which, according to this example, are in the form of rods fixed on the surface of the SiC grains and / or at the grain boundaries.
  • Example 2 the raw structure obtained according to Example 1 was subjected to another texturizing treatment, the material used for the texturing being introduced into the porosity of the filter in the form of a silica sol comprising an inorganic filler according to the same principles as those described in Example 2. Unlike Example 3, this time we used a silica sol loaded with silica microspheres.
  • the sol comprises, as a weight percentage, 45% of a colloidal aqueous solution of silica beads with a diameter of between 300 and 400 nm, in the form, the mass concentration of beads being approximately 40%, sold under the reference MP4540.
  • Nyacol ® 3.3% TEOS (tetraethoxysilane),
  • the soil loaded with inorganic particles is prepared according to the following steps:
  • TEOS is hydrolyzed in propanol-
  • the filler is added via the aqueous colloidal solution containing the silica beads, the third step consisting of a dilution in propanol-2.
  • the charged sol-gel is then allowed to stand for 18 hours before the next step.
  • the solution is then deposited in the monolith by simple immersion, the excess being removed by suction under vacuum, under a residual pressure of 10 mbar.
  • the monolith thus obtained is then dried at 150 ° C. for 1 h and then subjected to a heat treatment of 250 ° C. under air for one hour.
  • FIG. 3 shows a SEM photograph of the filtering walls of the texture monolith thus obtained, showing the irregularities at the surface of the SiC grains constituting the porous matrix, which, according to this example, are in the form of silica beads encapsulated in an envelope obtained by the sintering the silica sol and establishing the junction and bond with the grains of SiC constituting the matrix.
  • the texturing according to this embodiment is formed of spherical balls contiguous or isolated, characterized by their mean diameter which corresponds, in the sense of the preceding definitions, to the values h and d according to the invention.
  • Example 2 the crude structure obtained according to Example 1 was subjected to another texturing treatment, the material used for the texturing being introduced into the porosity of the monolith in the form of a silica sol comprising an organic filler.
  • the soil comprises, as a weight percentage, 4% of polymethyl methacrylate beads with a diameter of approximately 2 ⁇ m, sold by the company SEPPIC under the reference Micropearl M-201®, 16.3% of TEOS (tetraethoxysilane), 72.3. % of ethanol and 7.4% of an aqueous solution containing 4.4% by weight of HCl.
  • the soil loaded with inorganic particles is prepared according to the following steps:
  • the organic filler consisting of polymethylmethacrylate beads is first mixed with ethanol.
  • the TEOS is then added gradually, with stirring.
  • the aqueous solution containing the HCl is then gradually added and with vigorous stirring, in order to allow gradual and homogeneous hydrolysis of the TEOS and the obtaining of the gel.
  • the sol-gel is then deposited in the monolith by simple immersion, the excess being removed by suction under vacuum, under a residual pressure of 10 mbar.
  • the monolith thus obtained is then dried at 110 ° C. for 16 hours and then subjected to a heat treatment of 550 ° C. under air for five hours.
  • FIG. 4 shows a SEM photograph of the filtering walls of the texture monolith thus obtained, showing the irregularities at the surface of the SiC grains constituting the porous matrix.
  • the irregularities are, according to this example, this time in the form of cavities or craters present in the texturizing material consisting of SiO 2 silica, obtained by sintering the silica sol, after heat treatment and organic removal.
  • the parameter d measured corresponds to the average diameter, in the sense previously described, of the craters dug by the elimination of the organic spheres within the SiO 2 texturing layer on the surface of the SiC grains.
  • the average depth p of said craters is equal to 2 ⁇ m.
  • Example 2 the crude structure obtained according to Example 1 was subjected to another texturizing treatment, the material used for texturing being introduced into the porosity of the monolith in the form of a silica sol. comprising an organic charge different from that of Example 5.
  • the sol comprises, in weight percentage, 2% of 120 nm diameter Latex beads, 16.3% TEOS (tetraethoxysilane) and 81.7% of an aqueous solution containing 0.38% by weight of HCl.
  • the soil loaded with inorganic particles is prepared by first mixing the latex beads with the aqueous HCl solution and then gradually adding the
  • the sol-gel is then deposited in the monolith by simple immersion, the excess being removed by suction under vacuum, under a residual pressure of 10 mbar.
  • the monolith thus obtained is then dried at 110 ° C. for
  • FIG. 5 shows a SEM photograph of the filtering walls of the texture monolith thus obtained, showing the irregularities covering the surface of the SiC grains constituting the porous matrix.
  • the irregularities are, according to this example, this time in the form of cavities or craters present within the texturizing material constituted by a SiO 2 silica coating, obtained by sintering the silica sol. , after the heat treatment and the elimination of the organic ones.
  • the parameter d measured corresponds to the average diameter, in the sense previously described, of the craters dug by the elimination of the organic spheres within the SiO 2 texturing layer on the surface of the SiC grains.
  • the parameter p corresponds to the average depth p of said craters.
  • the weight gain due to the deposition of the texturizing material was measured on each monolith after heat treatment and relative to the weight of the reference monolith.
  • FIGS. 1 to 5 correspond to characteristic views of the internal structure, in particular open porosity, transversely fractured channel walls, within the monolith.
  • the monolith is immersed in a bath of an aqueous solution containing the appropriate proportions of a platinum precursor in the form H 2 PtCl 6, and a precursor of cerium oxide CeO 2 (in the form of cerium nitrate) and a precursor of zirconium oxide ZrO 2 (in the form of zirconyl nitrate) according to the principles described in the publication EP 1 338 322 A1.
  • the monolith is impregnated with the solution according to an embodiment similar to that described in US Pat. No. 5,866,210.
  • the monolith is then dried at about 150 0 C and then heated to a temperature of about 500 0 C.
  • the pressure drop of the monoliths obtained after the catalytic impregnation previously described was measured according to the techniques of the art, for an air flow rate of 30 m 3 / h in a stream of air ambient.
  • pressure loss is meant within the meaning of the present invention the differential pressure existing between the upstream and downstream of the monolith.
  • This test aims to measure the catalyst initiation temperature, often referred to in the art as the “light off” temperature of the catalyst.
  • This temperature is defined under constant pressure and gas flow conditions, such as the temperature for which a catalyst converts 50% by volume of the polluting gases.
  • the CO and HC conversion temperature has here been determined according to an experimental protocol identical to that described in application EP 1759763, in particular in its paragraphs 33 and 34. According to the measurement, the lower the conversion temperature, the more the catalytic system is powerful.
  • the test was carried out on samples of about 25 cm 3 cut into a monolith.
  • a non-microtextured fired monolith and a textured monolith according to each example of the invention are previously impregnated with catalyst as described in paragraph D and then placed in an oven at 800 ° C. under a humid air atmosphere for a period of 5 hours such that the molar concentration of water is kept constant at 3%.
  • the monoliths of Examples 23 and 5 show a catalytic coating load level substantially greater than that of the reference (example 1), for equivalent porosity characteristics. It is noted that the loss of charge caused by the monoliths according to the invention is also very little affected by the significant increase in the catalytic charge present in the textured filters according to the invention. The measured pressure drop values thus remain quite acceptable for the filtering application. All the monoliths of the invention show a catalytic activity more efficient than the reference.
  • Examples 4 and 6 show a much higher catalytic efficiency despite a load significantly lower than the reference (Example 1), which could be interpreted as the result of a better distribution of the catalyst or easier access to sites assets for the gases to be purified.
  • Example 2 shows a high load in wash coat and a high catalytic efficiency despite a low percentage of microtextured surface, which shows a very significant effect of microtexturation, even if it is present only on a minimal part of the grain surface.
  • the products according to the invention retain all their mechanical strength properties, while maintaining their filtration efficiency, unlike the solutions known to date for increasing the catalyst load present in the porosity of the filtering structures, in particular by by increasing the porosity quantities (open porosity, pore diameter).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
EP08805801A 2007-05-23 2008-05-19 Texturierter partikelfilter zur verwendung in katalysatoren Withdrawn EP2155388A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0755217A FR2916366B1 (fr) 2007-05-23 2007-05-23 Filtre a particules texture pour applications catalytiques
PCT/FR2008/050855 WO2008142353A2 (fr) 2007-05-23 2008-05-19 Filtre a particules texture pour applications catalytiques

Publications (1)

Publication Number Publication Date
EP2155388A2 true EP2155388A2 (de) 2010-02-24

Family

ID=38624376

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08805801A Withdrawn EP2155388A2 (de) 2007-05-23 2008-05-19 Texturierter partikelfilter zur verwendung in katalysatoren

Country Status (6)

Country Link
US (1) US20100158774A1 (de)
EP (1) EP2155388A2 (de)
JP (1) JP2010529343A (de)
KR (1) KR20100017157A (de)
FR (1) FR2916366B1 (de)
WO (1) WO2008142353A2 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2921848B1 (fr) * 2007-10-08 2011-03-18 Saint Gobain Ct Recherches Structure de purification texturee incorporant un systeme de catalyse electrochimique
FR2933880B1 (fr) * 2008-07-17 2011-04-22 Saint Gobain Ct Recherches Filtre a particules texture pour applications catalytiques
FR2943928B1 (fr) * 2009-04-02 2012-04-27 Saint Gobain Ct Recherches Structure filtrante a base de sic a proprietes thermomecaniques ameliorees
FR2949690B1 (fr) * 2009-09-04 2011-10-21 Saint Gobain Ct Recherches Filtre a particules en sic incorporant du cerium
JP6253602B2 (ja) * 2015-02-12 2017-12-27 株式会社東芝 濾過用フィルター
JP6509622B2 (ja) * 2015-04-23 2019-05-08 株式会社東芝 処理システム及び処理方法
JP6514064B2 (ja) * 2015-07-31 2019-05-15 株式会社東芝 処理システム及び処理方法
CN108137943B (zh) 2015-08-14 2020-09-15 欧励隆工程炭公司 用于从工艺废气流中去除颗粒物质的方法和系统
CH713958A1 (de) * 2017-07-07 2019-01-15 Exentis Tech Ag System bestehend aus einem Träger mit Strömungskanälen und mindestens einer katalystisch wirksamen Substanz.
MX2021002538A (es) * 2018-09-03 2021-07-21 Corning Inc Cuerpo de panal con material poroso.

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3397968A (en) * 1967-06-19 1968-08-20 Lockheed Aircraft Corp Porous materials
FR2604920B1 (fr) * 1986-10-10 1988-12-02 Ceraver Membrane de filtration ceramique et procede de fabrication
US5195319A (en) * 1988-04-08 1993-03-23 Per Stobbe Method of filtering particles from a flue gas, a flue gas filter means and a vehicle
JP2578176B2 (ja) * 1988-08-12 1997-02-05 日本碍子株式会社 多孔質セラミックハニカムフィルターおよびその製法
JPH08133857A (ja) * 1994-11-08 1996-05-28 Sumitomo Electric Ind Ltd セラミックス多孔体及びその製造方法
US7179430B1 (en) * 1998-07-07 2007-02-20 Corning Incorporated Diesel exhaust gas filter
DE20023989U1 (de) * 1999-09-29 2008-09-18 IBIDEN CO., LTD., Ogaki-shi Keramische Filteranordnung
JP4907756B2 (ja) * 2000-02-29 2012-04-04 イビデン株式会社 排ガス浄化用触媒およびその製造方法
JP4455708B2 (ja) * 2000-01-17 2010-04-21 日本碍子株式会社 ハニカム構造体及びその製造方法
JP4464568B2 (ja) * 2001-02-02 2010-05-19 日本碍子株式会社 ハニカム構造体及びその製造方法
CN1630556B (zh) * 2002-02-15 2012-10-03 株式会社Ict 内燃机废气净化用催化剂、其制备方法以及内燃机废气的净化方法
JP3874270B2 (ja) * 2002-09-13 2007-01-31 トヨタ自動車株式会社 排ガス浄化フィルタ触媒及びその製造方法
US6946013B2 (en) * 2002-10-28 2005-09-20 Geo2 Technologies, Inc. Ceramic exhaust filter
JP4516017B2 (ja) * 2003-02-28 2010-08-04 イビデン株式会社 セラミックハニカム構造体
DE10331049B4 (de) * 2003-07-09 2010-04-08 Saint-Gobain Industriekeramik Rödental GmbH Verfahren zur Herstellung eines porösen Keramikkörpers, danach hergestellter poröser Keramikkörper und dessen Verwendung
US7083842B2 (en) * 2003-07-28 2006-08-01 Ngk Insulators, Ltd. Honeycomb structure and process for production thereof
DE102004051376A1 (de) * 2004-09-13 2006-03-30 Matthias Mangold Herstellungsverfahren für ein Abgasreinigungsmittel und Abgasreinigungsmittel
EP1919613B1 (de) * 2005-08-05 2009-10-07 Basf Catalysts Llc Dieselabgasartikel und katalysatorzusammensetzungen dafür
EP1757351B1 (de) * 2005-08-26 2016-04-13 Ibiden Co., Ltd. Wabenkörperstruktur und dessen herstellung
US7640732B2 (en) * 2005-11-16 2010-01-05 Geo2 Technologies, Inc. Method and apparatus for filtration of a two-stroke engine exhaust
KR20140120360A (ko) * 2006-08-19 2014-10-13 우미코레 아게 운트 코 카게 촉매적으로 피복된 디젤 입자 필터, 이의 제조방법 및 이의 용도

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008142353A2 *

Also Published As

Publication number Publication date
KR20100017157A (ko) 2010-02-16
FR2916366A1 (fr) 2008-11-28
FR2916366B1 (fr) 2009-11-27
US20100158774A1 (en) 2010-06-24
WO2008142353A2 (fr) 2008-11-27
WO2008142353A3 (fr) 2009-01-29
JP2010529343A (ja) 2010-08-26

Similar Documents

Publication Publication Date Title
EP2155388A2 (de) Texturierter partikelfilter zur verwendung in katalysatoren
EP1917225B1 (de) Katalytischer siliziumcarbidfilter mit hochspezifischer oberfläche und träger
EP1945356B1 (de) Verfahren zum erhalt einer homogenen filterstruktur für eine katalytische anwendung
EP2197567B1 (de) Texturierte reinigungsstruktur mit einem elektrochemischen katalysatorsystem
EP1954374B1 (de) Auf silizium-carbid basierenden struktur mit gesteuerter oberflächenporosität zur filtrierung eines gases
WO1999067509A1 (fr) Procede de traitement par combustion des particules carbonees dans un circuit d'echappement d'un moteur a combustion interne
EP2310338A2 (de) Verschmolzene körner aus oxiden mit al, ti und mg sowie keramikprodukte mit solchen körnern
EP2419211A1 (de) Wabenkatalysatorsubstrat und herstellungsverfahren dafür
EP2091890B1 (de) Verfahren zur herstellung einer porösen struktur auf basis von siliciumcarbid sowie hergestellte poröse strucktur
EP2379207A1 (de) Reinigungsstruktur mit katalysesystem mit zirkon in reduziertem zustand
EP2307123A1 (de) Texturierter partikelfilter für katalytische anwendungen
WO2009156638A1 (fr) Filtre ou support catalytique à base de carbure de silicium et de titanate d'aluminium
WO2010112778A2 (fr) Structure filtrante a base de sic a proprietes thermomecaniques ameliorees
WO2011027083A1 (fr) Filtre a particules en sic incorporant du cerium
CN111375405B (zh) 具有大孔铈锰氧化物骨架的整体催化剂及其制造方法
WO2006134303A2 (fr) Structure et filtre catalytique pour la filtration d'un gaz comprenant un ciment hydrophobe ou oleophobe
EP2976148A1 (de) Partikelfilter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20091223

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17Q First examination report despatched

Effective date: 20100609

111L Licence recorded

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LT LU LV MC MT NL NO PL PT RO SE SI SK TR

Name of requester: SAINT-GOBAIN INDUSTRIEKERAMIK ROEDENTAL GMBH, DE

Effective date: 20110418

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20121201