EP2132488A1 - Verfahren zur umweltgerechten entsorgung von luft/lösemittelgemischen mit einer brennstoffzellenanlage und rückgewinnungseinheit - Google Patents

Verfahren zur umweltgerechten entsorgung von luft/lösemittelgemischen mit einer brennstoffzellenanlage und rückgewinnungseinheit

Info

Publication number
EP2132488A1
EP2132488A1 EP08717423A EP08717423A EP2132488A1 EP 2132488 A1 EP2132488 A1 EP 2132488A1 EP 08717423 A EP08717423 A EP 08717423A EP 08717423 A EP08717423 A EP 08717423A EP 2132488 A1 EP2132488 A1 EP 2132488A1
Authority
EP
European Patent Office
Prior art keywords
fuel cell
air
cell system
recovery unit
solvent mixtures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08717423A
Other languages
English (en)
French (fr)
Inventor
Dr. Claus Peter Kluge
Dr. Marc Bednarz
Erwin Frank
Alexander Gienapp
Gerhard Huppmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ceramtec GmbH
Rolls Royce Solutions Augsburg GmbH
Original Assignee
Ceramtec GmbH
MTU Onsite Energy GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ceramtec GmbH, MTU Onsite Energy GmbH filed Critical Ceramtec GmbH
Publication of EP2132488A1 publication Critical patent/EP2132488A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/061Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • H01M2250/405Cogeneration of heat or hot water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a method for the environmentally sound disposal of air / solvent mixtures, which consist of combustible gaseous, vapor or liquid waste, with a fuel cell system for recycling the air / solvent mixtures with removal of the resulting in the fuel cell system environmentally sound exhaust air and the generated waste heat and the electrical generated current.
  • air / solvent mixtures of thermal afterburning must be supplied in order to prevent harmful substances from entering the environment.
  • air / solvent mixtures as they leave the user process must be diluted with air so that no ignitable mixture is formed. This lean air is fed to the thermal afterburning.
  • the mixture air is preheated with the waste heat of the subsequent combustion process, before it reaches the combustion chamber of the thermal afterburning.
  • the air / solvent mixture enters the combustion chamber and is usually supplied with fuel, e.g. Fuel gas or electric energy fired. Also conceivable are catalytic afterburning.
  • fuel e.g. Fuel gas or electric energy fired. Also conceivable are catalytic afterburning.
  • the air / solvent mixture can be used, for example, for maintaining
  • the electrical power is generated via a separate circuit of fuel gas or combustible materials.
  • the invention has for its object to improve a method for the environmentally sound disposal of air / solvent mixtures according to the preamble of claim 1.
  • this object is achieved in that the air / solvent mixtures are partially or completely fed to a recovery unit and converted into a usable form of energy and these are partially or completely supplied to the fuel cell system for recovery and thereby partially or completely by itself with the fuel cell system during operation Fuel is supplied and the fuel cell system operates on the basis of a Molten Carbonate Fuel Cell.
  • a fuel cell system is also referred to as a molten carbonate fuel cell or systems.
  • Air / solvent mixtures is understood as meaning air and / or inert gas and / or mixtures thereof with combustible or combustible substances (hereinafter also referred to as a mixture).
  • Solvents are z. As alcohols, ketones such as acetone, aromatics such as toluene. Such solvents are also referred to in the English-speaking world as VOC (volatile organic compounds).
  • Fuel cell systems based on a Molten Carbonate Fuel Cell are known, for example, from DE 195 48 297 C2 and have the advantage that they can emit energy carriers with them with high electrical efficiency.
  • the air / solvent mixtures in the recovery unit are condensed out in a condensation device and the resulting combustible condensate after treatment in a gas treatment plant e-lektrochemisch reacted to fuel gas in the anode chambers of the fuel cell system.
  • the exhaust air leaving the recovery unit which has been largely freed from air / solvent mixtures, is preferably supplied as fresh air to the cathode chambers of the fuel cell system and the contained solvent constituents are oxidized by oxygen.
  • waste heat generated in the fuel cell system and / or the current are fed to the recovery unit for condensing the air / solvent mixture according to the invention.
  • the method or system concept according to the invention uses, to a large extent or exclusively, the energy which is contained in the combustible substance which has previously been condensed out of the air / solvent mixture. Only the starting can optionally be done with a conventional fuel, such as fuel gas.
  • the recovery unit is an absorption plant, condensation plant, inversion refrigeration plant or adsorption plant.
  • the combustible or combustible substances are completely or almost completely removed from the mixture or the air / solvent mixture and fed the residual gas from the mixture of the supply air to the fuel cell system.
  • Figure 1 shows the state of the art, i. schematically a method for the environmentally sound disposal of air / solvent mixtures 5, which consist of combustible vaporous or liquid waste, with a combustion unit 1 with removal of the resulting in the combustion unit 1 environmentally friendly exhaust air 2 and the generated waste heat 3 and / or stream.
  • the combustion unit 1 is here a thermal post-combustion plant 9, into which an air / solvent mixture 5 is introduced.
  • the air / solvent mixture 5 has been diluted with air so far that no ignitable mixture is present. This lean air is fed to the thermal afterburning.
  • a fuel / fuel gas 11 and / or electrical energy 12, ie, electricity are introduced into the afterburner 9.
  • the waste air 2 (CO 2 / H 2 O) and the waste heat 3 are removed from the post-combustion plant 9. It is also known to use the waste heat 3 for preheating the air / solvent mixture 1.
  • FIG 2 also shows the prior art, for. B. US 6,845,619 B2, only here is a fuel cell system 10 is used as the combustion unit 1, for which a solvent 5 is used as the fuel gas.
  • the exhaust air 2, the waste heat 3 and stream 4 are removed from the fuel cell system 10.
  • K ⁇ ausland ⁇ OZ08018 doc Figure 3 describes the novel coupling of a fuel cell system 10 and a recovery unit 6, wherein the fuel cell system 10 performs a conversion of the air / solvent mixture 5 in heat energy and exhaust air or exhaust gas or electricity.
  • the fuel cell system 10 supplies the recovery unit 6 with waste heat, which has been recovered from the combustible or combustible material.
  • a part of the air / solvent mixture 5 can be introduced directly into the cathode chambers of the fuel cells of the fuel cell system and another part or the remainder is introduced into the recovery unit 6 for condensation, where it is converted into usable energy forms and these are then converted into hydrogen initiated in a reformer in the anode chambers of the fuel cell of the fuel cell system as a fuel gas.
  • the hydrogen is reacted electrochemically according to the following reaction equation:
  • the recovery unit 6 separates the air / solvent mixture 5.
  • the combustible or combustible substance (the condensate 7) is transferred into a tank 8, from which in turn the fuel cell system 1 can remove the fuel necessary for the operation.
  • the air / solvent mixture 5 is introduced and condensed out there.
  • the condensate 7 is passed into a tank 8.
  • exhaust air 2 and / or waste heat 3 or electricity is introduced into the recovery unit, which is obtained in the combustion unit. This is, possibly supplemented by electrical energy 12, used for material conversion or condensation.
  • the exhaust air 17 accumulating in the recovery unit 6 is e.g. discharged from the recovery unit 6
  • the condensate 7 is stored until it is a liquid combustible substance
  • a further material conversion 16 can also be carried out in a corresponding converter, the material conversion
  • the fuel cell system 1 is a molten carbonate type fuel cell system. If required, fuel / fuel gas 11 originating from another source can also be introduced into the fuel cell system 1.
  • the exhaust air 2 and waste heat 3 of the combustion process is, at least partially transferred to the recovery unit 6, where it is used for the condensation of the air / solvent mixture 5.
  • the exhaust gas 18 (CO 2 / H 2 O) is discharged.
  • the plant concept is used for the environmentally sound disposal of mixtures of air and combustible or combustible substances and avoids the use of additional fuel gas for the combustion of flammable or combustible substances.
  • Fuel cell system is a fuel cell system based on a Molten Carbonate Fuel Cell.
  • Recovery units can be, for example, absorption plants, condensation plants, inversion refrigeration plants, adsorption plants.
  • the fuel cell system is not dependent on the constant concentration of combustible substances in the air mixture, but could be operated evenly by the continuous removal of combustible substances from the tank.
  • the system can also be operated if the supply of air / solvent mixture or condensate or combustible liquid material should be interrupted.
  • the combustible substance from the tank does not have to be completely recycled via the plant concept, but can optionally be used partly for other applications.
  • the essential feature of the coupling of the fuel cell system with the recovery unit is the transfer of waste heat in exhaust air or exhaust gas.
  • the use of a fuel cell system and electric power is included in the coupling.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel Cell (AREA)
  • Processing Of Solid Wastes (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Treating Waste Gases (AREA)
  • Incineration Of Waste (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur umweltgerechten Entsorgung von Luft/Lösemittelgemischen (5), die aus verbrennbaren gasförmigen, dampfförmigen oder flüssigen Abfallstoffen bestehen, mit einer Brennstoffzellenanlage (1) zur Verwertung der Luft/Lösemittelgemische (5) unter Abfuhr der in der Brennstoffzellenanlage (1) entstehenden umweltverträglichen Abluft (2) und der erzeugten Abwärme (3) und des erzeugten elektrischen Stroms. Zur Verbesserung des Verfahrens wird vorgeschlagen, dass die Luft/Lösemittelgemische (5) teilweise oder vollständig einer Rückgewinnungseinheit (6) zugeführt und dort in eine nutzbare Energieform (22, 24, 7) umgewandelt werden und diese teilweise oder vollständig der Brennstoffzellenanlage (1) zur Verwertung zugeführt werden und dadurch während des Betriebes die Brennstoffzellenanlage (1) teilweise oder vollständig von selbst mit Brennstoff versorgt wird und die Brennstoffzellenanlage (1) auf der Basis einer Molten Carbonate Fuel Cell arbeitet.

Description

Verfahren zur umweltgerechten Entsorgung von Luft/Lösemittelgemischen mit einer Brennstoffzellenanlage und Rückgewinnungseinheit
Die Erfindung betrifft ein Verfahren zur umweltgerechten Entsorgung von Luft/Lösemittelgemischen, die aus verbrennbaren gasförmigen, dampfförmigen oder flüssigen Abfallstoffen bestehen, mit einer Brennstoffzellenanlage zur Verwertung der Luft/Lösemittelgemische unter Abfuhr der in der Brennstoffzellenanlage entstehenden umweltverträglichen Abluft und der erzeugten Abwärme und des erzeugten elektrischen Stroms.
Nach dem Stand der Technik (siehe Figuren 1 und 2) müssen beispielsweise Luft/Lösemittelgemische einer thermischen Nachverbrennung (TNV) zugeführt werden, um keine schädlichen Stoffe in die Umwelt gelangen zu lassen. Aus Gründen der vorgeschriebenen Sicherheit müssen beispielsweise Luft/Lösemittelgemische wie sie den Anwenderprozess verlassen, soweit mit Luft verdünnt werden, dass kein zündfähiges Gemisch entsteht. Diese abgemagerte Luft wird der thermischen Nachverbrennung zugeführt. Teilweise wird dazu die Gemischluft mit der Abwärme des anschließenden Verbrennungsvorganges vorgewärmt, bevor diese die Brennkammer der thermischen Nachverbrennung erreicht.
Vorgewärmt oder nicht kommt das Luft/Lösemittelgemisch in die Brennkammer und diese wird üblicherweise mit Brennstoff, z.B. Brenngas oder elektrischer Energie befeuert. Denkbar sind auch katalytische Nachverbrennungen.
Wendet man statt einer thermischen Nachverbrennung eine Brennstoffzelle (BSZ) an, so kann das Luft/Lösemittelgemisch beispielsweise zur Aufrechterhal-
K \ausland\OZ08018 doc tung der Betriebstemperatur mit verbrannt werden. Der elektrische Strom wird über einen separaten Kreislauf von Brenngas oder brennbaren Stoffen erzeugt.
Die Konzepte nach dem Stand der Technik benötigen Brenngas um brennbare Stoffe zu verbrennen.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur umweltgerechten Entsorgung von Luft/Lösemittelgemischen nach dem Oberbegriff des Anspruchs 1 zu verbessern.
Erfindungsgemäß wird diese Aufgabe dadurch gelöst, dass die Luft/Lösemittelgemische teilweise oder vollständig einer Rückgewinnungseinheit zugeführt und dort in eine nutzbare Energieform umgewandelt werden und diese teilweise oder vollständig der Brennstoffzellenanlage zur Verwertung zugeführt werden und dadurch während des Betriebes die Brennstoffzellenanlage teilweise oder vollständig von selbst mit Brennstoff versorgt wird und die Brennstoffzellenanlage auf der Basis einer Molten Carbonate Fuel Cell arbeitet. Eine solche Brennstoffzellenanlage wird auch als Schmelzkarbonatbrennstoffzelle oder - anläge bezeichnet.
Unter Luft/Lösemittelgemische wird Luft und/oder Inertgas und/oder Mischungen hiervon mit verbrennbaren oder brennbaren Stoffen (im Folgenden auch als Gemisch bezeichnet) verstanden. Lösemittel sind z. B. Alkohole, Ketone wie A- zeton, Aromate wie Toluol. Solche Lösemittel werden im englischsprachigen Raum auch als VOC (volatile organic Compounds) bezeichnet.
Brennstoffzellenanlagen auf der Basis einer Molten Carbonate Fuel Cell sind zum Beispiel aus DE 195 48 297 C2 bekannt und haben den Vorteil, dass man mit ihnen mit hohem elektrischen Wirkungsgrad Energieträger verströmen kann.
K \ausland\OZ08018 doc Besondere erfindungsgemäße Merkmale der Brennstoffzellenanlage auf der Basis einer Molten Carbonate Fuel Cell ist die Anordnung, bei der alle heißen Anlagenbestandteile in einem Gehäuse untergebracht sind und bei der der Brennstoffzellenstapel in horizontaler Lage mit der Brennstoffeingangsseite nach un- ten auf einer Gaseinlasshaube lagert und sich dabei durch sein Eigengewicht selbst abdichtet.
In einer erfinderischen Ausgestaltung werden die Luft/Lösemittelgemische in der Rückgewinnungseinheit in einer Kondensationseinrichtung auskondensiert und das entstehende brennbare Kondensat nach Aufbereitung in einer Gasaufberei- tungsanlage zu Brenngas in den Anodenräumen der Brennstoffzellenanlage e- lektrochemisch umgesetzt.
Die aus der Rückgewinnungseineit austretende Abluft, die weitgehend von Luft/Lösemittelgemischen befreit wurde, wird bevorzugt als Frischluft den Kathodenräumen der Brennstoffzellenanlage zugeführt und die enthaltenen Lösemit- telbestandteile werden durch Sauerstoff oxidiert.
Die in der Brennstoffzellenanlage erzeugte Abwärme und/oder der Strom werden erfindungsgemäß der Rückgewinnungseinheit zur Auskondensierung des Luft/Lösemittelgemisches zugeführt.
Das erfindungsgemäße Verfahren oder Anlagenkonzept nutzt im Betrieb weitge- hend oder ausschließlich die Energie, die im brennbaren Stoff, der zuvor aus dem Luft/Lösemittelgemisch auskondensiert worden ist, steckt. Lediglich das Anfahren kann optional mit einem herkömmlichen Brennstoff, wie Brenngas erfolgen.
K \ausland\OZ08018 doc - A -
In weiterer Ausgestaltung der Erfindung ist die Rückgewinnungseinheit eine Absorptionsanlage, Kondensationsanlage, Inversionskälteanlage oder Adsorptionsanlage.
In einer Weiterbildung der Erfindung werden aus dem Gemisch bzw. dem Luft/Lösemittelgemisch die brennbaren oder verbrennbaren Stoffe vollständig oder nahezu vollständig entfernt und der Restgasanteil aus dem Gemisch der Zuluft der Brennstoffzellenanlage zugeführt.
Figur 1 zeigt den Stand der Technik, d.h. schematisch ein Verfahren zur umweltgerechten Entsorgung von Luft/Lösemittelgemischen 5, die aus verbrennba- ren dampfförmigen oder flüssigen Abfallstoffen bestehen, mit einer Verbrennungseinheit 1 unter Abfuhr der in der Verbrennungseinheit 1 entstehenden umweltverträglichen Abluft 2 und der erzeugten Abwärme 3 und/oder Strom 4.
Die Verbrennungseinheit 1 ist hier eine thermische Nachverbrennungsanlage 9, in die ein Luft/Lösemittelgemisch 5 eingeleitet wird. Das Luft/Lösemittelgemisch 5 ist soweit mit Luft verdünnt worden, dass kein zündfähiges Gemisch vorliegt. Diese abgemagerte Luft wird der thermischen Nachverbrennung zugeführt. Zur Verbrennung werden in die Nachverbrennungsanlage 9 ein Brennstoff/Brenngas 11 und/oder elektrische Energie 12, d.h. Strom eingeleitet. Aus der Nachverbrennungsanlage 9 werden die Abluft 2 (CO2/H2O) und die Abwärme 3 abge- führt. Es ist auch bekannt, die Abwärme 3 zur Vorwärmung des Luft/Lösemittelgemisches 1 zu verwenden.
Figur 2 zeigt ebenfalls den Stand der Technik, z. B. US 6,845,619 B2, nur wird hier als Verbrennungseinheit 1 eine Brennstoffzellenanlage 10 verwendet, für die ein Lösemittel 5 als Brenngas verwendet wird. Aus der Brennstoffzellenanla- ge 10 werden die Abluft 2, die Abwärme 3 und Strom 4 abgeführt.
K \ausland\OZ08018 doc Figur 3 beschreibt die neuartige Kopplung einer Brennstoffzellenanlage 10 und einer Rückgewinnungseinheit 6, wobei die Brennstoffzellenanlage 10 eine Wandlung des Luft/Lösemittelgemisches 5 in Wärmeenergie und Abluft oder Abgas oder Strom vornimmt. Die Brennstoffzellenanlage 10 beliefert die Rück- gewinnungseinheit 6 mit Abwärme, welche aus dem verbrennbaren oder brennbaren Stoff gewonnen worden ist.
Ein Teil des Luft/Lösemittelgemisches 5 kann direkt in die Kathodenräume der Brennstoffzellen der Brennstoffzellenanlage eingeleitet werden und ein anderer Teil oder der Rest wird zur Kondensation in die Rückgewinnungseinheit 6 einge- leitet, dort in nutzbare Energieformen umgewandelt und diese werden dann nach der Umwandlung in Wasserstoff in einem Reformer in die Anodenräume der Brennstoffzellen der Brennstoffzellenanlage als Brenngas eingeleitet. In den Anodenräumen wird der Wasserstoff elektrochemisch nach folgender Reaktionsgleichung umgesetzt:
H2 + CO3 2" → H2O + CO2 + 2e"
Die Rückgewinnungseinheit 6 trennt das Luft/Lösemittelgemisch 5 auf. Der verbrennbare oder brennbare Stoff (das Kondensat 7) wird in einen Tank 8 überführt, aus diesem wiederum die Brennstoffzellenanlage 1 den für den Betrieb nötigen Brennstoff entnehmen kann.
In die Rückgewinnungseinheit 6 wird also das Luft/Lösemittelgemisch 5 eingeleitet und dort auskondensiert. Das Kondensat 7 wird in einen Tank 8 geleitet. Neben dem Luft/Lösemittelgemisch 5 wird in die Rückgewinnungseinheit 6 Abluft 2 und/oder Abwärme 3 oder Strom eingeleitet, die in der Verbrennungseinheit anfällt. Diese wird, eventuell noch durch elektrische Energie 12 ergänzt, zur Stoff- Umwandlung bzw. zur Kondensation verwendet. Die in der Rückgewinnungseinheit 6 anfallende Abluft 17 wird z.B. aus der Rückgewinnungseinheit 6 abgeführt
K \ausland\OZ08018 doc und in die Kathodenräume der Brennstoffzellen der Brennstoffzellenanlage eingeleitet. Das in der Abluft noch enthaltene Lösemittel wird verbrannt durch Oxi- dation durch Sauerstoff in der heißen Umgebung des Kathodenraums zu CO2 und H2O. Soweit noch nicht oxidierte Lösemittelbestandteile den Kathodenraum verlassen, werden diese im nachgeschalteten katalytischen Brenner durch Verbrennung in harmlose Bestandteile umgewandelt. Der Aufbau einer entsprechenden Brennstoffzellenanlage ist z. B. in der DE 195 48 297 C2 dargestellt.
Im Tank 8 wird das Kondensat 7 gelagert, bis es als flüssiger brennbarer Stoff
15 in der Brennstoffzellenanlage 1 verwendet wird oder einer anderen Nutzung 14 zugeführt wird. Optional kann auch in einem entsprechenden Wandler eine weitere Stoffumwandlung 16 durchgeführt werden, wobei der Stoffumwandlung
16 elektrische Energie oder Prozesswärme zugeführt werden kann.
Die Brennstoffzellenanlage 1 ist eine Brennstoffzellenanlage vom Schmelzkarbonattyp. In die Brennstoffzellenanlage 1 kann bei Bedarf auch aus anderer Quelle stammender Brennstoff/Brenngas 11 zusätzlich eingeleitet werden. Die Abluft 2 und Abwärme 3 des Verbrennungsprozesses wird, wenigstens zum Teil in die Rückgewinnungseinheit 6 überführt, wo sie zur Kondensation des Luft/Lösemittelgemisch 5 verwendet wird. Das Abgas 18 (CO2/H2O) wird abgeführt.
Nachfolgend werden Merkmale des erfindungsgemäßen Verfahrens, nachfolgend auch Anlagenkonzept genannt, beschrieben.
1. Das Anlagenkonzept dient der umweltgerechten Entsorgung von Gemischen aus Luft und verbrennbaren oder brennbaren Stoffen und vermeidet die Nutzung von zusätzlichem Brenngas zur Verbrennung von brennbaren oder ver- brennbaren Stoffen.
K \ausland\OZ08018 doc 2. Das Anlagenkonzept ist dadurch gekennzeichnet, dass eine Koppelung von Brennstoffzellenanlage und Rückgewinnungseinheit vorgenommen wird. Brennstoffzellenanlage ist eine Brennstoffzellenanlage auf Basis einer Molten Carbonate Fuel Cell. Rückgewinnungseinheiten können beispielsweise Ab- sorptionsanlagen, Kondensationsanlagen, Inversionskälteanlagen, Adsorptionsanlagen sein.
3. Die Brennstoffzellenanlage ist nicht auf die konstante Konzentration von verbrennbaren Stoffen im Luftgemisch angewiesen, sondern könnte durch die stetige Entnahme von verbrennbaren Stoffen aus dem Tank gleichmäßig be- trieben werden.
4. Durch die stetige Entnahme von verbrennbaren Stoffen aus dem Tank kann die Anlage auch betrieben werden, wenn die Zufuhr von Luft/Lösemittelgemisch bzw. Kondensat oder brennbarer flüssiger Stoff unterbrochen sein sollte.
5. Durch die Nutzung einer Brennstoffzellenanlage wird neben der Abwärme auch elektrischer Strom aus dem verbrennbaren Stoff gewonnen.
6. Der verbrennbare Stoff aus dem Tank muss nicht vollständig über das Anlagenkonzept verwertet werden, sondern kann optional zum Teil anderen Anwendungen zugeführt werden.
7. Die wesentliche Eigenschaft der Koppelung von der Brennstoffzellenanlage mit der Rückgewinnungseinheit ist der Übertrag von Abwärme in Abluft oder Abgas. Durch die Verwendung einer Brennstoffzellenanlage wird auch elektrischer Strom mit in die Kopplung einbezogen.
K \ausland\OZ08018 doc

Claims

Patentansprüche
1. Verfahren zur umweltgerechten Entsorgung von Luft/Lösemittel - gemischen (5), die aus verbrennbaren gasförmigen, dampfförmigen oder flüssigen Abfallstoffen bestehen, mit einer Brennstoffzellenanlage (1 ) zur Verwertung der Luft/Lösemittelgemische (5) unter Abfuhr der in der
Brennstoffzellenanlage (1 ) entstehenden umweltverträglichen Abluft (2) und der erzeugten Abwärme (3) und des erzeugten elektrischen Stroms, dadurch gekennzeichnet, dass die Luft/Lösemittelgemische (5) teilweise oder vollständig einer Rückgewinnungseinheit (6) zugeführt und dort in eine nutzbare Energieform (22, 24, 7) umgewandelt werden und diese teilweise oder vollständig der Brennstoffzellenanlage (1 ) zur Verwertung zugeführt werden und dadurch während des Betriebes die Brennstoffzellenanlage (1 ) teilweise oder vollständig von selbst mit Brennstoff versorgt wird und die Brennstoffzellenanlage (1 ) auf der Basis einer Molten Car- bonate Fuel Cell arbeitet.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Luft/Lösemittelgemische (5) in der Rückgewinnungseinheit (6) in einer Kondensationseinrichtung auskondensiert werden und das entstehende brennbare Kondensat (7) nach Aufbereitung in einer Gasaufbereitungsan- läge zu Brenngas in den Anodenräumen der Brennstoffzellenanlage (1 ) elektrochemisch umgesetzt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die aus der Rückgewinnungseineit (6) austretende Abluft, die weitgehend von Luft/Lösemittelgemischen (5) befreit wurde, als Frischluft den Kathoden- räumen der Brennstoffzellenanlage (1 ) zugeführt wird und die enthaltenen
Lösemittelbestandteile durch Sauerstoff oxidiert werden.
K \ausland\OZ08018 doc
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die in der Brennstoffzellenanlage (1 ) erzeugte Abwärme (3) und/oder der Strom (4), der Rückgewinnungseinheit (6) zur Auskonden- sierung des Luft/Lösemittelgemisches (5) zugeführt werden.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Rückgewinnungseinheit (6) eine Absorptionsanlage, Kondensationsanlage, Inversionskälteanlage oder Adsorptionsanlage ist.
K \ausland\OZ08018 doc
EP08717423A 2007-03-06 2008-03-05 Verfahren zur umweltgerechten entsorgung von luft/lösemittelgemischen mit einer brennstoffzellenanlage und rückgewinnungseinheit Withdrawn EP2132488A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102007011195 2007-03-06
DE102008000417 2008-02-27
PCT/EP2008/052673 WO2008107457A1 (de) 2007-03-06 2008-03-05 Verfahren zur umweltgerechten entsorgung von luft/lösemittelgemischen mit einer brennstoffzellenanlage und rückgewinnungseinheit

Publications (1)

Publication Number Publication Date
EP2132488A1 true EP2132488A1 (de) 2009-12-16

Family

ID=39484550

Family Applications (2)

Application Number Title Priority Date Filing Date
EP08717424A Withdrawn EP2132489A1 (de) 2007-03-06 2008-03-05 Anlagenkonzept mit geringerem energieeinsatz und verbesserter energieausbeute
EP08717423A Withdrawn EP2132488A1 (de) 2007-03-06 2008-03-05 Verfahren zur umweltgerechten entsorgung von luft/lösemittelgemischen mit einer brennstoffzellenanlage und rückgewinnungseinheit

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP08717424A Withdrawn EP2132489A1 (de) 2007-03-06 2008-03-05 Anlagenkonzept mit geringerem energieeinsatz und verbesserter energieausbeute

Country Status (9)

Country Link
US (2) US9091437B2 (de)
EP (2) EP2132489A1 (de)
JP (3) JP2010532909A (de)
KR (1) KR101495504B1 (de)
CN (2) CN101688668B (de)
AU (1) AU2008223853B2 (de)
DE (2) DE102008000527A1 (de)
RU (1) RU2478170C2 (de)
WO (2) WO2008107457A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008107457A1 (de) * 2007-03-06 2008-09-12 Ceramtec Ag Verfahren zur umweltgerechten entsorgung von luft/lösemittelgemischen mit einer brennstoffzellenanlage und rückgewinnungseinheit
DE102013100108A1 (de) * 2013-01-08 2014-07-10 Clausthaler Umwelttechnik-Institut Gmbh (Cutec-Institut) Thermische Nachverbrennungsanlage und Stirling-Motor dafür
CN107420917A (zh) * 2016-05-24 2017-12-01 英尼奥斯欧洲股份公司 废气焚烧炉控制
DE102018219105A1 (de) * 2018-11-08 2020-05-14 Dürr Systems Ag Verfahren zur Reinigung eines Rohgasstroms und Reinigungsvorrichtung

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6186927A (ja) * 1984-10-02 1986-05-02 Mitsubishi Heavy Ind Ltd 溶剤含有排ガスの処理方法
DE3731882C1 (en) * 1987-09-23 1989-04-20 Kleinewefers Energie Umwelt Process and plant for exhaust air purification
DE4003210A1 (de) * 1990-02-01 1991-08-14 Mannesmann Ag Verfahren und anlage zur erzeugung mechanischer energie
JPH05227A (ja) * 1991-06-25 1993-01-08 Kikkoman Corp エタノールの分離濃縮法
PL181258B1 (pl) * 1995-12-08 2001-06-29 Megtec Systems Ab Urządzenie do odzysku energii z czynnika zawierającego substancje palne, nawet w małych stężeniach
DE19548297C2 (de) 1995-12-22 2001-03-08 Mtu Friedrichshafen Gmbh Brennstoffzellenanordnung und Verfahren zum Betreiben einer Solchen
DE19627393A1 (de) * 1996-07-06 1998-01-08 Erwin Dr Oser Verfahren zur kombinierten Abluftreinigung und Energieerzeugung an Behandlungsanlagen für bahn- und tafelförmige Materialien unter Einsatz von organischen Lösemitteln durch Verbrennen der Lösemittelemissionen im Motor eines BHKW-Moduls
CN1536270A (zh) * 1998-11-05 2004-10-13 株式会社荏原制作所 可燃物气化发电系统
EP1475429A1 (de) * 1999-05-21 2004-11-10 Ebara Corporation System zum Erzeugen elektrischer Energie mittels Vergasung.
RU2162526C1 (ru) * 1999-06-15 2001-01-27 Глушков Александр Иванович Силовая установка
TR200201269T2 (tr) * 1999-08-19 2002-08-21 Manufacturing And Technology Conversion International, Inc. Yeniden buharlaştırma sistemiyle yakıt hücresiyle ilgili uygulamaların sistem entegrasyonu.
US7097925B2 (en) 2000-10-30 2006-08-29 Questair Technologies Inc. High temperature fuel cell power plant
JP2002266702A (ja) * 2001-03-12 2002-09-18 Honda Motor Co Ltd 複合型エネルギー発生装置
JP3972675B2 (ja) * 2002-02-15 2007-09-05 日産自動車株式会社 燃料電池システム
RU2235947C2 (ru) * 2002-03-07 2004-09-10 Кокарев Владимир Архипович Пиролизное устройство для термической переработки бытовых и промышленных отходов
AUPS244802A0 (en) * 2002-05-21 2002-06-13 Ceramic Fuel Cells Limited Fuel cell system
JP2004037038A (ja) * 2002-07-05 2004-02-05 Niigata Power Systems Co Ltd 有機成分含有空気および廃液の処理方法と処理装置
US6845619B2 (en) 2002-12-11 2005-01-25 Advanced Technology Materials, Inc. Integrated system and process for effluent abatement and energy generation
US7279655B2 (en) 2003-06-11 2007-10-09 Plasmet Corporation Inductively coupled plasma/partial oxidation reformation of carbonaceous compounds to produce fuel for energy production
ES2350182T3 (es) 2003-06-20 2011-01-19 Detroit Edison Company Utilización de cov como carburante para un motor.
JP2005061353A (ja) * 2003-08-18 2005-03-10 Mitsubishi Heavy Ind Ltd 低濃度揮発性有機溶剤含有ガスの処理装置
US6896988B2 (en) * 2003-09-11 2005-05-24 Fuelcell Energy, Inc. Enhanced high efficiency fuel cell/turbine power plant
EP1682750B1 (de) * 2003-10-30 2012-11-28 Alstom Technology Ltd Kraftwerksanlage
NO321817B1 (no) * 2003-11-06 2006-07-10 Sargas As Renseanlegg for varmekraftverk
US7803473B2 (en) * 2004-06-30 2010-09-28 General Electric Company Integrated power plant and system and method incorporating the same
US7188478B2 (en) * 2004-09-13 2007-03-13 General Electric Company Power generation system and method of operating same
JP2006136823A (ja) * 2004-11-12 2006-06-01 Dainippon Printing Co Ltd コーティングシステム
US20070081930A1 (en) * 2005-10-06 2007-04-12 Menian Harry H Universal waste processor
WO2008107457A1 (de) * 2007-03-06 2008-09-12 Ceramtec Ag Verfahren zur umweltgerechten entsorgung von luft/lösemittelgemischen mit einer brennstoffzellenanlage und rückgewinnungseinheit

Also Published As

Publication number Publication date
JP2010532909A (ja) 2010-10-14
CN101790663A (zh) 2010-07-28
JP5453114B2 (ja) 2014-03-26
AU2008223853B2 (en) 2012-08-02
US20100047639A1 (en) 2010-02-25
RU2478170C2 (ru) 2013-03-27
WO2008107458A1 (de) 2008-09-12
CN101688668B (zh) 2012-01-11
WO2008107457A1 (de) 2008-09-12
DE102008000527A1 (de) 2008-09-11
CN101790663B (zh) 2012-06-27
JP5868295B2 (ja) 2016-02-24
CN101688668A (zh) 2010-03-31
RU2009136638A (ru) 2011-04-20
JP2013047601A (ja) 2013-03-07
AU2008223853A1 (en) 2008-09-12
DE102008000528A1 (de) 2008-09-25
US20100050629A1 (en) 2010-03-04
US9091437B2 (en) 2015-07-28
EP2132489A1 (de) 2009-12-16
KR20090119780A (ko) 2009-11-19
JP2010520408A (ja) 2010-06-10
KR101495504B1 (ko) 2015-02-26

Similar Documents

Publication Publication Date Title
CN107469506A (zh) 低温等离子体裂解氧化反应器处理恶臭废气的方法及装置
KR20160090094A (ko) 폐자원을 이용한 에너지 선순환 시스템
WO2008107457A1 (de) Verfahren zur umweltgerechten entsorgung von luft/lösemittelgemischen mit einer brennstoffzellenanlage und rückgewinnungseinheit
EP1522355B9 (de) Ressourcenrecyclingverfahren, -system und -behälter
CN111112319A (zh) 一种两相循环分级热脱附系统及其方法
CN212029520U (zh) 一种等离子熔融危险废弃物处理系统
WO2007069038A2 (de) Vorrichtung zum energetischen verwerten von festen abfällen
KR101499333B1 (ko) 폐가스 처리 시스템 및 처리방법
CN104107625A (zh) 一种连续式废气处理装置及方法
EP1304526A2 (de) Verfahren und Vorrichtung zum Reinigen von Abgasen
JPH11333254A (ja) 焼却設備の排煙処理装置
JP2014108408A (ja) Pcb汚染汚泥又は残渣類の脱水処理装置及びそれを用いたpcb処理システム
Hawk et al. High vacuum indirectly-heated rotary kiln for the removal and recovery of mercury from air pollution control scrubber waste
JP2000079377A (ja) 有害物質除去方法及び装置
CN110975541A (zh) 一种含VOCs烧结烟气的处理装置及方法
BR102018004299A2 (pt) Tecnologia de plasma frio para tratamento térmico de resíduos sólidos industriais e resíduos do serviço de saúde por oxidação espontãnea a partir de dispositivos de indução eletromagnética
WO2002008508A1 (de) Kreislaufverfahren zum umweltverträglichen reinigen von schadstoffbehafteten textilien, insbesondere industrie-putztüchern mit lösungsmittel-rückständen
JP2002361068A (ja) 超臨界反応による分解生成物の分離・回収システム
DE10036496A1 (de) Verfahren zur katalytisch gestützten thermischen Entsorgung von schwach methanhaltigen Deponiegasen
JPH1043708A (ja) 廃車の熱分解処理方法及びその装置
CZ9903253A3 (cs) Způsob postupného řízeného snižování obsahu organických látek a cyklický autogenní reaktor k jeho provádění
KR20140088316A (ko) 오염 토양 복원 방법과 시스템 및 이에 사용되는 배출가스 순환처리 시스템

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20091001

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CERAMTEC GMBH

Owner name: MTU ONSITE ENERGY GMBH

17Q First examination report despatched

Effective date: 20121221

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20151001