EP2127739A1 - Verfahren zur Beeinflussung eines Energiezustandes einer Strahlungsquelle - Google Patents

Verfahren zur Beeinflussung eines Energiezustandes einer Strahlungsquelle Download PDF

Info

Publication number
EP2127739A1
EP2127739A1 EP08009685A EP08009685A EP2127739A1 EP 2127739 A1 EP2127739 A1 EP 2127739A1 EP 08009685 A EP08009685 A EP 08009685A EP 08009685 A EP08009685 A EP 08009685A EP 2127739 A1 EP2127739 A1 EP 2127739A1
Authority
EP
European Patent Office
Prior art keywords
radiation source
energy
radiation
sink
influencing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08009685A
Other languages
English (en)
French (fr)
Inventor
Volker Schaft
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to EP08009685A priority Critical patent/EP2127739A1/de
Priority to US12/465,208 priority patent/US20090294699A1/en
Publication of EP2127739A1 publication Critical patent/EP2127739A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/10Shields, screens, or guides for influencing the discharge
    • H01J61/103Shields, screens or guides arranged to extend the discharge path

Definitions

  • the invention relates to a method for influencing an energy state of a radiation source.
  • the invention relates to a device for influencing an energy state of a radiation source.
  • High-pressure metal halide lamps such as mercury vapor lamps, which are still widely used as light sources, should be mentioned here.
  • the invention places the interaction of matter and radiation at the center of the considerations.
  • at least one energy sink is brought into the propagation direction of the electromagnetic radiation of the radiation source for energy increase and decrease of the radiation source.
  • the term energy sink is a material body that interacts with electromagnetic radiation from a radiation source and flows to the energy flow of the radiation source.
  • an attempt at interpretation of the invention can be made that the mere introduction of an energy sink, for example a metal body, in the direction of propagation of electromagnetic radiation of a radiation source such as a plasma path in a mercury vapor lamp causes a disturbance of the radiation source, resulting in a direct change in the energy state such as an energy decrease Radiation source manifested.
  • a radiation source such as a plasma path in a mercury vapor lamp
  • the radiation source is formed in the form of a plasma path.
  • a radiation source in the form of a plasma path is found, for example, in gas discharge lamps, so that the method according to the invention can be used in particular in gas discharge lamps.
  • the invention also relates to a device for influencing an energy state of a radiation source, wherein at least one energy sink is arranged in the propagation direction of the electromagnetic radiation of the radiation source for increasing or decreasing the energy of the radiation source.
  • inventive method and the device according to the invention are particularly suitable for gas discharge lamps.
  • the invention also contemplates the use of the method or apparatus in a gas discharge lamp.
  • the illustrated method starts from a radiation source 10, which in the embodiment shown here is a plasma path in a device 100, electromagnetic radiation 11, 12 from.
  • the device 100 is provided with a wall 15.
  • an energy sink 13 is brought. This results in an interaction between the radiation source 10 and energy sink 13.
  • the experiment now shows that this interaction in turn has effects on the energy state of the radiation source 10.
  • a part of the electromagnetic radiation in the form of the radiation 12 strikes the carrier material 14, on which the energy sink 13 is located. It has been found experimentally that the arrangement of the energy sink 13 in the propagation direction of the electromagnetic radiation 11 can also result in an energy decrease of the radiation source 10.
  • the temperature of the radiation source 10 present as a plasma path changes inversely with respect to the energy sink 13 when the energy sink 13 is brought into the propagation direction of the electromagnetic radiation 11 of the energy sink 13.
  • the energy flow between the radiation source 10 and the energy sink 13 is given only as long as the energy sink, which in the embodiment shown here is given as a substrate-like UV color, ie as a UV-reactive mixture, is in the focus of the energy source 10.
  • the carrier material 14 is in the focus of the radiation source 10
  • a large part of the radiation source 12 is reflected back and also produces a changed energy state of the plasma.
  • a practicable implementation of the method can take place in such a way that the energy sink 13 influences the radiation source 10 so strongly that the change can be used as a controlled variable (compare: U lamp -t diagram).
  • the radiation source 10 can be used as a receiver and the energy emission can be controlled so that only defined energy sinks 13 are irradiated. If it is also assumed that, for example, substrates are always applied in a recurring sequence in coating processes, the disturbance of the radiation source 10 due to the energy sink 13 can continue to be evaluated as a speed signal. This allows an interference signal to be evaluated both as a control signal and the time size of the radiation source 10 and used.
  • the present invention is not limited in its embodiment to the above-mentioned, preferred embodiment. Rather, a number of variants are conceivable, which make use of the illustrated solution even with fundamentally different types of execution.
  • further energy sinks 13 can be arranged, to which the electromangetic radiation (11) strikes.

Abstract

Die Erfindung betrifft ein Verfahren zur Beeinflussung eines Energiezustandes einer Strahlungsquelle (10). Um ein Verfahren zur Verfügung zu stellen, welches auf einfache Weise den Energiezustand einer Strahlungsquelle (10) in einer Hochdruck-Metalldampflampe beeinflusst, schlägt die Erfindung vor, dass für die Energiezunahme oder Energieabnahme der Strahlungsquelle (10) mindestens eine Energiesenke (13) in die Ausbreitungsrichtung der elektromagnetischen Strahlung (11) der Strahlungsquelle (10) gebracht wird.

Description

  • Die Erfindung betrifft ein Verfahren zur Beeinflussung eines Energiezustandes einer Strahlungsquelle.
  • Zudem betrifft die Erfindung eine Vorrichtung zur Beeinflussung eines Energiezustandes einer Strahlungsquelle.
  • Verfahren der eingangs genannten Art sind aus dem Stand der Technik bekannt, wobei diese jedoch in Hochdruck-Dampfentladungslampen bisher keine Berücksichtigung gefunden haben. Hierbei sind wiederum Hochdruck-Metalldampflampen wie Quecksilberdampflampen zu nennen, die nach wie vor breite Verwendung als Lichtquellen finden.
  • Es ist daher Aufgabe der Erfindung, ein Verfahren der eingangs genannten Art zur Verfügung zu stellen, welches auf einfache Weise den Energiezustand einer Strahlungsquelle in einer Hochdruck-Metalldampflampe beeinflusst.
  • Diese Aufgabe wird mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.
  • Die Erfindung stellt die Wechselwirkung von Materie und Strahlung in den Mittelpunkt der Betrachtungen. Gemäß der Erfindung wird zur Energiezunahme und -abnahme der Strahlungsquelle mindestens eine Energiesenke in die Ausbreitungsrichtung der elektromagnetischen Strahlung der Strahlungsquelle gebracht. In einer hier verwendeten Terminologie wird als Energiesenke ein materieller Körper bezeichnet, der mit elektromagnetischer Strahlung einer Strahlungsquelle wechselwirkt und zu dem der Energiefluss der Strahlungsquelle strömt.
  • Es hat sich experimentell überraschenderweise gezeigt, dass lediglich das Einbringen einer Energiesenke (Körper) in ein elektromagnetisches Feld einer Strahlungsquelle einer Gasentladungslampe Kenngrößen des Plasmas wie Temperatur und Druck beeinflusst. Hierbei kann es auch zu einer Temperaturabnahme d. h. Energieabnahme der Strahlungsquelle kommen.
  • Ein Deutungsversuch der Erfindung kann dahingehend erfolgen, dass das bloße Einbringen einer Energiesenke, beispielsweise eines Metallkörpers, in Ausbreitungsrichtung einer elektromagnetischen Strahlung einer Strahlungsquelle wie einer Plasmastrecke in einer Quecksilberdampflampe eine Störung der Strahlungsquelle hervorruft, die sich in einer unmittelbaren Änderung des Energiezustandes wie einer Energieabnahme der Strahlungsquelle manifestiert.
  • Vorteilhafter Weise wird die Strahlungsquelle in Gestalt einer Plasmastrecke gebildet. Eine Strahlungsquelle in Form einer Plasmastrecke findet sich bspw. in Gasentladungslampen, so dass das erfindungsgemäße Verfahren insbesondere in Gasentladungslampen eingesetzt werden kann.
  • Gegenstand der Erfindung ist zudem eine Vorrichtung zur Beeinflussung eines Energiezustandes einer Strahlungsquelle, wobei zur Energieerhöhung oder -abnahme der Strahlungsquelle mindestens eine Energiesenke in Ausbreitungsrichtung der elektromagnetischen Strahlung der Strahlungsquelle angeordnet ist.
  • Das erfindungsgemäße Verfahren sowie die erfindungsgemäße Vorrichtung eignen sich insbesondere für Gasentladungslampen. Folglich sieht die Erfindung auch die Verwendung des Verfahrens bzw. der Vorrichtung in einer Gasentladungslampe vor.
  • Die Erfindung wird im Folgenden anhand der Figuren näher erläutert. Es zeigt in schematischer Darstellung:
  • Fig. 1
    ein Verfahren gemäß der Erfindung.
  • Gemäß dem in Fig. 1 dargestellten Verfahren geht von einer Strahlungsquelle 10, welches in der hier dargestellten Ausführungsform eine Plasmastrecke in einer Vorrichtung 100 ist, elektromagnetische Strahlung 11, 12 aus. Die Vorrichtung 100 ist mit einer Wandung 15 versehen. In Ausbreitungsrichtung der elektromagnetischen Strahlung 11 wird eine Energiesenke 13 gebracht. Dadurch kommt es zu einer Wechselwirkung zwischen Strahlungsquelle 10 und Energiesenke 13. Das Experiment zeigt nun, dass diese Wechselwirkung wiederum Auswirkungen auf den Energiezustand der Strahlungsquelle 10 hat. Ein Teil der elektromagnetischen Strahlung in Form der Strahlung 12 trifft auf das Trägermaterial 14, auf dem sich die Energiesenke 13 befindet. Es hat sich experimentell herausgestellt, dass die Anordnung der Energiesenke 13 in Ausbreitungsrichtung der elektromagnetischen Strahlung 11 auch eine Energieabnahme der Strahlungsquelle 10 zur Folge haben kann.
  • So hat sich gezeigt, dass sich die Temperatur der als Plasmastrecke vorliegenden Strahlungsquelle 10 umgekehrt zur Energiesenke 13 verändert, wenn die Energiesenke 13 in die Ausbreitungsrichtung der elektromagnetische Strahlung 11 der Energiesenke 13 gebracht wird. Der Energiefluss zwischen Strahlungsquelle 10 und Energiesenke 13 ist dabei nur so lange gegeben, wie die Energiesenke, die in der hier gezeigten Ausführungsform als eine substratförmige UV-Farbe, d. h. als ein UV-reaktives Gemisch, gegeben ist, im Fokus der Energiequelle 10 ist. Ist dagegen lediglich das Trägermaterial 14 im Fokus der Strahlungsquelle 10, so wird ein großer Teil der Strahlungsquelle 12 zurückgeworfen und bringt ebenfalls einen veränderten Energiezustand des Plasmas hervor.
  • Eine praktikable Umsetzung des Verfahrens kann derart erfolgen, dass die Energiesenke 13 die Strahlungsquelle 10 so stark beeinflusst, dass die Änderung als Regelgröße genutzt werden kann (vgl. hierzu: ULampe-t Diagramm). Hierbei kann auch die Strahlungsquelle 10 als Empfänger genutzt werden und die Energieaussendung so geregelt werden, dass nur definierte Energiesenken 13 bestrahlt werden. Wenn man zudem davon ausgeht, dass bspw. in Beschichtungsprozessen Substrate stets in einer wiederkehrenden Folge aufgetragen werden, kann man die in Folge der durch die Energiesenke 13 erfolgten Störung der Strahlenquelle 10 weiterhin als Geschwindigkeitssignal auswerten. Damit kann man ein Störsignal sowohl als Steuersignal und die Zeitgröße der Strahlenquelle 10 ausgewertet und genutzt werden.
  • Die vorliegende Erfindung beschränkt sich in ihrer Ausführungsform nicht auf das vorstehend angegebene, bevorzugte Ausführungsbeispiel. Vielmehr ist eine Anzahl von Varianten denkbar, welche von der dargestellten Lösung auch bei grundsätzlich anders gearteten Ausführungen Gebrauch machen. So können bspw. zwischen Strahlungsquelle 10 und Energiesenke 13 weitere Energiesenken 13 angeordnet sein, auf die die elektromangetische Strahlung (11) trifft.
  • Bezugszeichenliste
  • 100
    Vorrichtung
    10
    Strahlungsquelle
    11
    elektromagnetische Strahlung
    12
    elektromagnetische Strahlung
    13
    Energiesenke
    14
    Trägermaterial
    15
    Wandung

Claims (7)

  1. Verfahren zur Beeinflussung eines Energiezustandes einer Strahlungsquelle (10), dadurch gekennzeichnet, dass für die Energiezunahme oder Energieabnahme der Strahlungsquelle (10) mindestens eine Energiesenke (13) in die Ausbreitungsrichtung der elektromagnetischen Strahlung (11) der Strahlungsquelle (10) gebracht wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Strahlungsquelle (10) in Gestalt einer Plasmastrecke gebildet wird.
  3. Vorrichtung (100) zur Beeinflussung eines Energiezustandes einer Strahlungsquelle (10), dadurch gekennzeichnet, dass zur Energieerhöhung oder zur Energieabnahme der Strahlungsquelle (10) mindestens eine Energiesenke (13) in Ausbreitungsrichtung der elektromagnetischen Strahlung (11) der Strahlungsquelle (10) angeordnet ist.
  4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass die Energiesenke (13) ein UV-reaktives Gemisch ist.
  5. Vorrichtung nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die Strahlungsquelle (10) eine Plasmastrecke ist.
  6. Verwendung eines Verfahrens nach einem der Ansprüche 1 oder 2 in einer Gasentladungslampe.
  7. Verwendung einer Vorrichtung nach einem der Ansprüche 3 bis 5 in einer Gasentladungslampe.
EP08009685A 2008-05-28 2008-05-28 Verfahren zur Beeinflussung eines Energiezustandes einer Strahlungsquelle Withdrawn EP2127739A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP08009685A EP2127739A1 (de) 2008-05-28 2008-05-28 Verfahren zur Beeinflussung eines Energiezustandes einer Strahlungsquelle
US12/465,208 US20090294699A1 (en) 2008-05-28 2009-05-13 Method for influencing an energy state of a radiation source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08009685A EP2127739A1 (de) 2008-05-28 2008-05-28 Verfahren zur Beeinflussung eines Energiezustandes einer Strahlungsquelle

Publications (1)

Publication Number Publication Date
EP2127739A1 true EP2127739A1 (de) 2009-12-02

Family

ID=39817015

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08009685A Withdrawn EP2127739A1 (de) 2008-05-28 2008-05-28 Verfahren zur Beeinflussung eines Energiezustandes einer Strahlungsquelle

Country Status (2)

Country Link
US (1) US20090294699A1 (de)
EP (1) EP2127739A1 (de)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1524728A (en) * 1974-12-12 1978-09-13 Harris Corp Wide range arc lamp control means and press using the sam
US5003185A (en) * 1988-11-17 1991-03-26 Burgio Joseph T Jr System and method for photochemically curing a coating on a substrate
WO1991012897A1 (en) * 1990-02-28 1991-09-05 Aetek International, Inc. Ultraviolet light curing apparatus and process
EP0727813A2 (de) * 1995-02-14 1996-08-21 General Electric Company UV-Strahlung absorbierende Beschichtungen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1524728A (en) * 1974-12-12 1978-09-13 Harris Corp Wide range arc lamp control means and press using the sam
US5003185A (en) * 1988-11-17 1991-03-26 Burgio Joseph T Jr System and method for photochemically curing a coating on a substrate
WO1991012897A1 (en) * 1990-02-28 1991-09-05 Aetek International, Inc. Ultraviolet light curing apparatus and process
EP0727813A2 (de) * 1995-02-14 1996-08-21 General Electric Company UV-Strahlung absorbierende Beschichtungen

Also Published As

Publication number Publication date
US20090294699A1 (en) 2009-12-03

Similar Documents

Publication Publication Date Title
EP1844181B1 (de) Verfahren zum kaltgasspritzen
EP2795657B1 (de) Vorrichtung zum erzeugen eines hohlkathodenbogenentladungsplasmas
EP1425048A1 (de) Sterilisiervorrichtung mit h2o2-verdampfer
DE202007019184U1 (de) Vorrichtung zur Behandlung oder Beschichtung von Oberflächen
DE3913463A1 (de) Verfahren und vorrichtung zur plasmabehandlung
DE2626420A1 (de) Verfahren zum gleichzeitigen aetzen von mehreren durchgehenden loechern
DE2638097A1 (de) Verfahren zur oberflaechenbehandlung von kunststofflinsen und nach diesem hergestellte produkte
EP1169145A1 (de) Verfahren und vorrichtung zum reinigen von substraten
DE102014216505A1 (de) Verfahren und Vorrichtung zur Erzeugung eines Plasmastrahls
DE1496444A1 (de) Verfahren und Vorrichtung zum Haerten und Abkuehlen von Glas
EP1946623B1 (de) Vorrichtung zum zünden und erzeugen eines sich ausdehnenden, diffusen mikrowellenplasmas vorrichtung zur plasmabehandlung von oberflächen und stoffen mittels dieses plasmas
EP2127739A1 (de) Verfahren zur Beeinflussung eines Energiezustandes einer Strahlungsquelle
DE2064273A1 (de) Verfahren zur Steuerung der Intensi tat eines Elektronenstrahles und Vornch tung hierfür
EP2774713A1 (de) Laserverfahren mit unterschiedlichen Laserstrahlbereichen innerhalb eines Strahls und Vorrichtungen
DE1771248A1 (de) Verfahren zur Veraenderung der Eigenschaften von Glas oder anderem Material
WO2005027595A2 (de) Ecr-plasmaquelle mit linearer plasmaaustrittsöffnung
DE102010061178A1 (de) Chromatischer Energiefilter
DE2529484C3 (de) Verfahren und Vorrichtung zum epitaktischen Abscheiden von Silicium auf einem Substrat
DE175044C (de)
DE102017007489A1 (de) Verfahren und Vorrichtung zum Aufbringen von Leimportionen aus Heißleim auf Substrate
CH684950A5 (de) Verfahren zum Dotieren von Targetmaterial.
DE102013217068A1 (de) Elektronenstrahlunterstützte Herstellung von elektrischen Bauelementen
DE102014001666B4 (de) Verfahren zur Homogenisierung der Oberflächentopologie bei der Trocknung einer Beschichtung
DE202013007063U1 (de) Elektrode zur Verwendung in Plasmaspritzdüsen
AT286523B (de) Verfahren zur Veränderung einer Eigenschaft eines Gegenstandes aus Glas od.ähnl. Material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090328

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20110207