EP2126467A2 - Procédé et dispositif de surchauffe intermédiaire par mise à feu lors de l'évaporation directe solaire dans une centrale thermique solaire - Google Patents

Procédé et dispositif de surchauffe intermédiaire par mise à feu lors de l'évaporation directe solaire dans une centrale thermique solaire

Info

Publication number
EP2126467A2
EP2126467A2 EP08716323A EP08716323A EP2126467A2 EP 2126467 A2 EP2126467 A2 EP 2126467A2 EP 08716323 A EP08716323 A EP 08716323A EP 08716323 A EP08716323 A EP 08716323A EP 2126467 A2 EP2126467 A2 EP 2126467A2
Authority
EP
European Patent Office
Prior art keywords
power plant
solar
thermal power
solar thermal
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08716323A
Other languages
German (de)
English (en)
Inventor
Jürgen Birnbaum
Markus Fichtner
Georg Haberberger
Gerhard Zimmermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2126467A2 publication Critical patent/EP2126467A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/006Methods of steam generation characterised by form of heating method using solar heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/18Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
    • F01K3/188Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters using heat from a specified chemical reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • F01K7/223Inter-stage moisture separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/003Devices for producing mechanical power from solar energy having a Rankine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/003Methods of steam generation characterised by form of heating method using combustion of hydrogen with oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G1/00Steam superheating characterised by heating method
    • F22G1/12Steam superheating characterised by heating method by mixing steam with furnace gases or other combustion products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Definitions

  • the invention relates to a method for operating a solar thermal power plant, as well as a solar thermal power plant with a based on direct evaporation solar steam generator and a fired reheate of working fluid.
  • Solar thermal power plants represent an alternative to conventional power generation.
  • a solar thermal power plant uses solar radiation energy to produce electrical energy. It consists of a solar power plant section for the absorption of solar energy and a second mostly conventional power plant part.
  • the solar power plant part includes a solar field, that is, a concentration system with collectors.
  • the concentrating collectors are the main component of the solar power plant part.
  • the more familiar collectors are the parabolic trough collector, the Fresnel collector, the solar tower and the parabolic mirror.
  • Parabolic trough collectors concentrate the sun's rays onto an absorber tube placed in the focal line. There, the solar energy is absorbed and passed as heat to a heat transfer medium.
  • Thermal oil, water, air or molten salt can be used as the heat transfer medium.
  • the conventional power plant part usually comprises a steam turbine and a generator and a condenser, wherein in comparison to the conventional power plant, the heat input is replaced by the boiler by the heat input generated by the solar field.
  • solar thermal power plants are carried out with indirect evaporation, ie that are connected between the solar power plant part and the conventional power plant part heat exchanger to the energy generated in the solar field from the heat transfer medium of a solar field cycle on a
  • a future option is the direct evaporation, in which form the solar field circuit of the solar power plant part and the water-steam cycle of the conventional power plant part of a common circuit, the feedwater is preheated in the solar field, evaporated and superheated and so the conventional part is supplied.
  • the solar power plant part is thus a solar steam generator.
  • the conventional power plant part can not be optimally operated.
  • the relaxation of the steam over the largest possible pressure gradient is very limited by the resulting in the relaxation in the turbine moisture.
  • a reheating of the steam is necessary.
  • reheating is carried out by means of a heat exchanger in the boiler.
  • reheating can be carried out in a separate solar field.
  • this embodiment of the reheat does not seem appropriate, since a very high pressure loss is to be expected at a reheat in the solar field.
  • the device-related object of the invention is therefore to provide a solar thermal power plant with improved reheat. Another task is the statement of a method for operating such a power plant.
  • the inventive solar thermal power plant includes a working fluid circuit, a direct evaporation based solar steam generator and a steam turbine, for relaxation of the working fluid under delivery of technical work, the solar steam generator and the steam turbine are connected in the working fluid circuit, with an additional firing for reheating of working fluid.
  • the advantage of this arrangement is that the reheater steam temperature may be equal to or even higher than the fresh steam temperature.
  • the additional firing with hydrogen is operable. It is particularly useful if the hydrogen is produced by means of an electrolysis, the energy demand is covered for example by a photovoltaic system. This solution is particularly advantageous because the firing, as the solar thermal power plant itself, is also realized on renewable energy and no carbon dioxide enters the water-steam cycle.
  • the solar thermal power plant includes a generator for electrical power generation.
  • hydrogen can be directly burned at several other points of the conventional steam cycle for process optimization or efficiency increase.
  • the hydrogen combustion by means of a hydrogen burner, which fires directly into the steam, can be used to advantage, for example, to increase the live steam parameters or to compensate for temperature fluctuations in cloud passage or to start the plant.
  • a steam separator in the circuit upstream of the reheater may be expedient to drive with the highest possible steam content in the steam-steam heat exchanger on the cold secondary side of the reheater.
  • Particularly advantageous solar thermal power plant aläge includes parabolic trough collectors, which have a high level of technological maturity and have the highest concentration factor for linearly concentrating systems, whereby high process temperatures are possible.
  • Fresnel collectors used.
  • An advantage of the Fresnel collectors over the parabolic trough collector lies in the piping and the resulting, relatively low pressure losses.
  • Another advantage of the Fresnel collectors are the largely standardized components compared to parabolic trough collectors, which can be produced without high-tech know-how. Fresnel collectors are therefore inexpensive to purchase and maintain.
  • a further advantageous alternative embodiment uses a solar tower for solar direct evaporation, which enables the highest process temperatures.
  • the object is achieved by a method for operating a solar thermal power plant, in which a working fluid is circulated, in which the working fluid directly by solar irradiation evaporates and relaxed by releasing technical work on a relaxation section and in a Additional firing is overheated.
  • the method makes use of the device described.
  • the advantages of the device therefore also result for the method.
  • FIG. 1 shows a reheating by means of a supplementary firing
  • FIG. 2 shows a reheating by means of a hydrogen-fired supplementary firing, wherein hydrogen is produced regeneratively via a photovoltaic system
  • FIG. 3 shows reheating by means of hydrogen-fired supplementary firing, with hydrogen being obtained by means of electricity from its own power plant production
  • FIG. 1 shows a reheating by means of a supplementary firing
  • FIG. 2 shows a reheating by means of a hydrogen-fired supplementary firing, wherein hydrogen is produced regeneratively via a photovoltaic system
  • FIG. 3 shows reheating by means of hydrogen-fired supplementary firing, with hydrogen being obtained by means of electricity from its own power plant production
  • FIG. 1 shows a reheating by means of a supplementary firing
  • FIG. 2 shows a reheating by means of a hydrogen-fired supplementary firing, wherein hydrogen is produced regeneratively via a photovoltaic system
  • FIG. 3 shows reheat
  • FIG. 4 shows a general use of the direct hydrogen combustion in the solar thermal power plant
  • FIG. 1 shows the schematic structure and the circulation process of a solar thermal power plant 1 with direct evaporation according to the invention.
  • the plant 1 comprises a solar field 2, in which the solar radiation is concentrated and converted into heat energy and can for example have parabolic trough collectors, solar towers or Fresnel collectors. Concentrated solar radiation is emitted to a heat transfer medium which evaporates and is introduced via a live steam line 10 into a expansion section 19, consisting of a steam turbine 3, as working fluid.
  • the steam turbine 3 comprises a high-pressure turbine 4 and a low-pressure turbine 5, which drive a generator 6.
  • the working fluid is expanded and then liquefied in a condenser 7.
  • a feedwater pump 8 pumps the liquefied heat transfer medium back into the solar field 2, whereby the circuit 9 of the heat transfer medium and the working fluid is closed.
  • the steam of the cold reheat is superheated by means of an additional firing 22 (eg fossil, biomass, hydrogen).
  • a fossil-fired supplementary firing 22 can be carried out in various boiler types. Their arrangement allows them to be used specifically for superheating the cold reheat steam to the corresponding hot reheat steam parameters.
  • the use of a steam separator 14 may be useful before the fossil-fired reheat 22 to obtain an optimum steam content for the fossil-fired overheating.
  • the condensate from the steam separator 14 is introduced again into the feedwater circuit 9 at a suitable point (feed point 15).
  • FIG. 2 shows an embodiment of the invention which describes in more detail the intermediate overheating with additional firing 22.
  • the supplemental furnace is operated with hydrogen 26 in this embodiment, i. a hydrogen burner 21 fires directly into the water vapor.
  • the required hydrogen 26 is generated by means of an electrolysis 24.
  • the energy required for the electrolysis 24 is provided by a photovoltaic system 23, whereby the normally fired by fossil fuels or biomass additional firing 22 is also realized via renewable energy and no carbon dioxide enters the water-steam cycle 9.
  • FIG. 3 like FIG. 2, shows an additional firing 22 in which a hydrogen burner 21 fires directly into the steam. Unlike in the embodiment shown in Figure 2, the energy required for the electrolysis 24 but supplied by the power plant 1 itself, whereby the additional firing 22 is again carried out purely regenerative.
  • FIG. 5 shows an embodiment in which a first reheat of the partially released steam via a Steam-steam heat exchanger 17 is realized.
  • the intermediate superheating to the necessary steam parameters takes place by means of additional firing 22, for example with a hydrogen burner 21, which fires directly into the intermediate superheating.
  • the steam for the first reheat can be taken either from a special tap 16 of the high-pressure turbine 4 or a removal point from a tap for feedwater preheating and after cooling in the steam-steam heat exchanger 17 at a feed point 18 for recirculating feedwater preheating again be recycled to the circulation 9 of the working fluid.
  • the hydrogen 26 for the additional firing can be obtained by means of electrolysis 24 or thermal cleavage.

Abstract

L'invention concerne une centrale thermique solaire (1) comportant un circuit de fluide de travail (9), un générateur de vapeur solaire à évaporation directe et une turbine à vapeur (3), destinée à détendre le fluide de travail avec production de travail technique, le générateur de vapeur solaire et la turbine à vapeur (3) étant montés dans le circuit de fluide de travail (9). La centrale thermique selon l'invention comporte un système de mise à feu supplémentaire (22) destiné à la surchauffe intermédiaire du fluide de travail. L'invention concerne également un procédé destiné à faire fonctionner un tel dispositif.
EP08716323A 2007-03-20 2008-03-06 Procédé et dispositif de surchauffe intermédiaire par mise à feu lors de l'évaporation directe solaire dans une centrale thermique solaire Withdrawn EP2126467A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007013852 2007-03-20
PCT/EP2008/001808 WO2008113482A2 (fr) 2007-03-20 2008-03-06 Procédé et dispositif de surchauffe intermédiaire par mise à feu lors de l'évaporation directe solaire dans une centrale thermique solaire

Publications (1)

Publication Number Publication Date
EP2126467A2 true EP2126467A2 (fr) 2009-12-02

Family

ID=39766534

Family Applications (2)

Application Number Title Priority Date Filing Date
EP08716323A Withdrawn EP2126467A2 (fr) 2007-03-20 2008-03-06 Procédé et dispositif de surchauffe intermédiaire par mise à feu lors de l'évaporation directe solaire dans une centrale thermique solaire
EP08717938A Withdrawn EP2126468A2 (fr) 2007-03-20 2008-03-18 Procédé et dispositif de surchauffe intermédiaire lors de l'évaporation directe solaire dans une centrale thermique solaire

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP08717938A Withdrawn EP2126468A2 (fr) 2007-03-20 2008-03-18 Procédé et dispositif de surchauffe intermédiaire lors de l'évaporation directe solaire dans une centrale thermique solaire

Country Status (7)

Country Link
US (1) US20100162700A1 (fr)
EP (2) EP2126467A2 (fr)
CN (2) CN101680649A (fr)
AU (2) AU2008228596B2 (fr)
IL (2) IL200913A (fr)
WO (2) WO2008113482A2 (fr)
ZA (2) ZA200906294B (fr)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009007915B4 (de) * 2008-11-07 2015-05-13 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zur Entsalzung von salzhaltigem Wasser
RO126018A2 (ro) * 2009-06-18 2011-02-28 Vasile Muscalu Instalaţie şi procedeu pentru desalinizarea apei
CN102072115B (zh) * 2009-11-23 2013-02-27 张建城 槽式太阳能聚热发电装置
WO2011068880A2 (fr) * 2009-12-01 2011-06-09 Areva Solar, Inc. Utilisation de vapeur et/ou d'eau chaude générées par l'énergie solaire
CN101839224B (zh) * 2010-03-16 2011-07-20 王承辉 一种太阳能热力发电装置
CH702906A1 (de) * 2010-03-26 2011-09-30 Alstom Technology Ltd Verfahren zum betrieb eines integrierten solar-kombikraftwerks sowie solar-kombikraftwerk zur durchführung des verfahrens.
JP5479191B2 (ja) * 2010-04-07 2014-04-23 株式会社東芝 蒸気タービンプラント
CN101858320A (zh) * 2010-04-07 2010-10-13 河海大学 用于污水生物处理的太阳能加热发电系统及方法
EP2385223A1 (fr) * 2010-05-04 2011-11-09 Thermal PowerTec GmbH Procédé d'augmentation du degré d'efficacité d'installations de turbines à gaz et à vapeur
DE102010027226A1 (de) * 2010-05-06 2011-11-10 Siemens Aktiengesellschaft Solarer Kraftwerksteil einer solarthermischen Kraftwerksanlage und solarthermische Kraftwerksanlage mit Sonnenkollektorflächen für Wärmeträgermedium und Arbeismedium
US8573196B2 (en) * 2010-08-05 2013-11-05 Babcock Power Services, Inc. Startup/shutdown systems and methods for a solar thermal power generating facility
US9217565B2 (en) * 2010-08-16 2015-12-22 Emerson Process Management Power & Water Solutions, Inc. Dynamic matrix control of steam temperature with prevention of saturated steam entry into superheater
US9447963B2 (en) 2010-08-16 2016-09-20 Emerson Process Management Power & Water Solutions, Inc. Dynamic tuning of dynamic matrix control of steam temperature
US9335042B2 (en) 2010-08-16 2016-05-10 Emerson Process Management Power & Water Solutions, Inc. Steam temperature control using dynamic matrix control
WO2012083377A1 (fr) * 2010-12-23 2012-06-28 Kashima Industries Holding Pty Ltd Appareil d'énergie thermique solaire
EP2487338A1 (fr) 2011-02-11 2012-08-15 Alstom Technology Ltd Centrale thermoélectrique solaire
DE102011000946A1 (de) * 2011-02-25 2012-08-30 Hitachi Power Europe Gmbh Solarthermische Energieerzeugungsanlage und Verfahren zur Energiegewinnung mittels einer solarthermischen Ernergieerzeugungsanlage
CN102168587B (zh) * 2011-04-07 2013-08-28 王承辉 一种乙醇蒸汽发电装置
ITRM20110316A1 (it) * 2011-06-17 2012-12-18 Valerio Maria Porpora Impianto di produzione di energia elettrica con eventuale cogenerazione di calore utilizzante combustibile rinnovabile, in particolare biogas.
EP2574739A1 (fr) * 2011-09-29 2013-04-03 Siemens Aktiengesellschaft Installation de stockage d'énergie thermique et son procédé de fonctionnement
US9163828B2 (en) 2011-10-31 2015-10-20 Emerson Process Management Power & Water Solutions, Inc. Model-based load demand control
AU2012371202A1 (en) * 2012-02-20 2014-10-09 Regen Technologies Pty Ltd Variable speed gas turbine generation system and method
ES2422955B1 (es) * 2012-03-09 2014-09-19 Sener Grupo De Ingeniería, S.A. Procedimiento para mejorar el rendimiento del ciclo térmico en las centrales nucleares.
EP2644849B1 (fr) * 2012-03-28 2018-11-07 General Electric Technology GmbH Dispositif de chaudière à lit fluidisé à circulation
JP2015164714A (ja) * 2014-02-28 2015-09-17 真 細川 太陽熱発電方式造水器
DE102014225696A1 (de) 2014-12-12 2016-06-16 Siemens Aktiengesellschaft Verfahren zum Betrieb eines thermochemischen Wärmespeichers
CN107956524A (zh) * 2016-10-18 2018-04-24 神华集团有限责任公司 蒸汽动力系统和煤制烯烃化工系统
DE102021204208A1 (de) 2021-04-28 2022-11-03 Siemens Energy Global GmbH & Co. KG Speicherkraftwerk und Verfahren zum Betreiben eines Speicherkraftwerks

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4074708A (en) * 1976-06-07 1978-02-21 Combustion Engineering, Inc. Burning hydrogen and oxygen to superheat steam
JPS60216009A (ja) * 1984-04-12 1985-10-29 Toshiba Corp 蒸気タ−ビンプラント
DE4126037A1 (de) * 1991-08-06 1993-02-11 Siemens Ag Gas- und dampfturbinenkraftwerk mit einem solar beheizten dampferzeuger
EP0784157A1 (fr) * 1995-04-03 1997-07-16 Compania Sevillana de Electricidad Systeme d'integration de l'energie solaire dans une centrale thermique classique de production d'energie electrique
DE10128562C1 (de) * 2001-06-13 2003-01-09 Deutsch Zentr Luft & Raumfahrt Solarthermisches Kraftwerk und Verfahren zur Umwandlung von thermischer Energie in mechanische/elektrische Energie in einem solarthermischen Kraftwerk
JP3780884B2 (ja) * 2001-08-31 2006-05-31 株式会社日立製作所 蒸気タービン発電プラント
JP4521202B2 (ja) * 2004-02-24 2010-08-11 株式会社東芝 蒸気タービン発電プラント

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008113482A2 *

Also Published As

Publication number Publication date
US20100162700A1 (en) 2010-07-01
EP2126468A2 (fr) 2009-12-02
CN101680648A (zh) 2010-03-24
IL200913A (en) 2012-10-31
AU2008228211B2 (en) 2013-01-17
AU2008228211A1 (en) 2008-09-25
CN101680649A (zh) 2010-03-24
ZA200906294B (en) 2010-05-26
WO2008113798A2 (fr) 2008-09-25
IL200912A (en) 2013-03-24
WO2008113482A2 (fr) 2008-09-25
AU2008228596B2 (en) 2012-02-09
IL200912A0 (en) 2010-05-17
WO2008113482A3 (fr) 2009-11-26
WO2008113798A3 (fr) 2009-11-26
AU2008228596A1 (en) 2008-09-25
IL200913A0 (en) 2010-05-31
ZA200906293B (en) 2010-05-26

Similar Documents

Publication Publication Date Title
EP2126467A2 (fr) Procédé et dispositif de surchauffe intermédiaire par mise à feu lors de l'évaporation directe solaire dans une centrale thermique solaire
DE102008051384B3 (de) Solarhybridbetriebenes Gas- und Dampfkraftwerk
DE19723543C2 (de) Energieerzeugungsanlage
DE4212336C1 (fr)
EP1984624B1 (fr) Méthode et dispositif pour augmenter la production énergétique dans une centrale thermique solaire
EP0526816A1 (fr) Centrale à turbines à gaz et à vapeur avec un générateur de vapeur solaire
EP2101051A1 (fr) Stockage d'énergie électrique dans un accumulateur thermique et rétro-électrification à l'aide d'un cycle thermodynamique
DE19651645A1 (de) Verfahren zur Nutzung von Solarenergie in einem Gas- und Dampf-Kraftwerk und Gas- und Dampf-Kraftwerk
EP2419634A2 (fr) Centrale thermique à vapeur comportant des capteurs solaires
EP1820965A1 (fr) Méthode et dispositif pour régler la production énergétique dans une centrale thermique solaire
WO2010054911A1 (fr) Procédé et dispositif pour le surchauffage intermédiaire dans une centrale solaire thermique avec vaporisation indirecte.
WO2008067855A2 (fr) Procédé et dispositif d'augmentation de la puissance et du rendement d'un processus de centrale orc
DE19652349C2 (de) Solar- und Niedertemperaturwärme-Kombianlage-Solico
DE4126038A1 (de) Gas- und dampfturbinenkraftwerk mit einem solarbeheizten dampferzeuger
DE3017699A1 (de) Sonnenkraftwerk mit einem auf einem turm angeordnetem solarerhitzer
EP0856104B1 (fr) Procede de production d'energie et centrale electrique pour la mise en oeuvre de ce procede
DE19627425A1 (de) Verfahren zum Betrieb einer Hybrid-Solar-Kombianlage sowie eine Hybrid-Solar-Kombianlage
DE4126036A1 (de) Gas- und dampfturbinenkraftwerk mit einem solar beheizten dampferzeuger
DE102010040208B4 (de) Solarthermische Durchlaufverdampfer-Heizfläche mit lokaler Querschnittsverengung an ihrem Eintritt
DE19510006A1 (de) Vorrichtung zur Dampferzeugung, insbesondere für Hybrid-Energiekraftwerke zur Nutzung fossiler und solarer Energiequellen
DE102012217371A1 (de) Kraftwerksanordnung zur Warmwasser- bzw. Dampfbereitung mit PV-Modulen
EP2177757A1 (fr) Procédé et dispositif de surchauffe intermédiaire à l'aide de vapeur saturée pendant l'évaporation directe solaire dans une centrale thermique solaire
WO2010031375A2 (fr) Procédé de surchauffage de vapeur
DE102010040200A1 (de) Solarthermischer Absorber zur Direktverdampfung, insbesondere ein einem Solarturm-Kraftwerk
DE102012103621A1 (de) Solarthermisches Kraftwerk mit elektrisch beheiztem Wärmespeicher

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090904

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

R17D Deferred search report published (corrected)

Effective date: 20091126

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20131001