EP2126468A2 - Procédé et dispositif de surchauffe intermédiaire lors de l'évaporation directe solaire dans une centrale thermique solaire - Google Patents

Procédé et dispositif de surchauffe intermédiaire lors de l'évaporation directe solaire dans une centrale thermique solaire

Info

Publication number
EP2126468A2
EP2126468A2 EP08717938A EP08717938A EP2126468A2 EP 2126468 A2 EP2126468 A2 EP 2126468A2 EP 08717938 A EP08717938 A EP 08717938A EP 08717938 A EP08717938 A EP 08717938A EP 2126468 A2 EP2126468 A2 EP 2126468A2
Authority
EP
European Patent Office
Prior art keywords
steam
power plant
thermal power
solar
solar thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08717938A
Other languages
German (de)
English (en)
Inventor
Jürgen Birnbaum
Markus Fichtner
Georg Haberberger
Gerhard Zimmermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2126468A2 publication Critical patent/EP2126468A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/006Methods of steam generation characterised by form of heating method using solar heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/18Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
    • F01K3/188Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters using heat from a specified chemical reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • F01K7/223Inter-stage moisture separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/003Devices for producing mechanical power from solar energy having a Rankine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/003Methods of steam generation characterised by form of heating method using combustion of hydrogen with oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G1/00Steam superheating characterised by heating method
    • F22G1/12Steam superheating characterised by heating method by mixing steam with furnace gases or other combustion products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Definitions

  • the invention relates to a method for operating a solar thermal power plant, as well as a solar thermal power plant in which a working fluid circulates in a cycle, with a direct evaporation based solar steam generator and a steam turbine, in which the working fluid is discharged while releasing technical work on a relaxation section , with at least one reheater, which is heated by means of working fluid removed from the circuit upstream of the reheater and which overheats at least one reheater working fluid which flows downstream of the heated removal by an inflow into the expansion section.
  • Solar thermal power plants represent an alternative to conventional power generation.
  • a solar thermal power plant uses solar radiation energy to produce electrical energy. It consists of a solar power plant section for absorption of solar energy and a second mostly conventional power plant section.
  • the solar power plant part includes a solar field, that is, a concentration system with collectors.
  • the concentrating collectors are the main component of the solar power plant part.
  • the more familiar collectors are the parabolic trough collector, the Fresnel collector, the solar tower and the parabolic mirror.
  • Parabolic trough collectors concentrate the sun's rays onto an absorber tube placed in the focal line. There, the solar energy is absorbed and passed as heat to a heat transfer medium.
  • Thermal oil, water, air or molten salt can be used as the heat transfer medium.
  • the conventional power plant part usually comprises a steam turbine and a generator and a condenser, wherein in comparison to the conventional power plant, the heat input is replaced by the boiler by the heat input generated by the solar field.
  • solar thermal power plants are operated with indirect evaporation, i. that heat exchangers are connected between the solar power plant part and the conventional power plant part in order to transfer the energy generated in the solar field from the heat transfer medium of a solar field circuit to a water-steam cycle of the conventional power plant part.
  • a future option is the direct evaporation, in which the solar field circuit of the solar power plant part and the water-steam circuit of the conventional power plant part form a common circuit, wherein the feed water in the solar field preheated, evaporated and superheated and is thus fed to the conventional part ,
  • the solar power plant part is thus a solar steam generator.
  • the conventional power plant part can not be optimally operated.
  • the relaxation of the steam over the largest possible pressure gradient is very limited by the resulting in the relaxation in the turbine moisture.
  • a reheating of the steam is necessary.
  • the intermediate superheating is carried out by means of a heat exchanger in the boiler.
  • the reheat can be carried out in a separate solar field.
  • this type of reheating does not seem appropriate since Overheating in the solar field, a very high pressure drop is expected.
  • the device-related object of the invention is therefore to provide a solar thermal power plant with improved reheat. Another object is the specification of a method for operating such a power plant.
  • the inventive solar thermal power plant includes a working fluid circuit, a direct evaporation based solar steam generator and a steam turbine, for relaxation of the working fluid on a relaxation section under output technical work, with at least one reheater, which is heated by means of upstream of the reheater cycle removable working fluid and by means of working fluid can be overheated, which can be fed downstream of the heated removal by an on-flow of the expansion zone.
  • the working fluid can be overheated without the very high pressure loss expected in the solar field during reheating.
  • heating of the reheater takes place by means of steam extraction before the expansion section or by means of taps from the expansion section of the turbine.
  • “tapping” means vapor extraction between two blade stages.
  • the reheater is a steam-steam heat exchanger, which is connected on the primary side in a main steam line.
  • live steam is generated upstream of the turbine. and used to overheat the cooled reheat steam.
  • the steam-steam heat exchanger is connected on the primary side in a tap of the high pressure part of the turbine. This is advantageously dispensed with a removal of the higher quality live steam.
  • the reheating takes place via two steam-steam heat exchangers, one of which is connected on the primary side in a live steam line and another on the primary side in a tap of the high pressure part.
  • the respective share of the intermediate overheating can be set.
  • a steam separator in the circuit upstream of the reheater may be expedient to drive with the highest possible steam content in the steam-steam heat exchanger on the cold secondary side of the reheater.
  • the solar thermal includes
  • Power plant a generator for electrical power generation.
  • Relaxation section are provided, for example, a combined high-pressure turbine at the beginning and a low-pressure turbine at the end of the expansion section, wherein working fluid After the first part turbine in a steam-steam heat exchanger is subjected to reheating and then the low-pressure turbine section is supplied.
  • At least three turbines, a high-pressure turbine, a medium-pressure turbine and at least one low-pressure turbine in the expansion section are advantageous.
  • this configuration offers the possibility of a particularly flexible design of the intermediate overheating.
  • the working fluid may be withdrawn to the high pressure turbine section and / or the medium pressure turbine section and subjected to reheat in a steam to steam heat exchanger before entering the downstream turbine section.
  • the low-pressure turbine parts can always be single-flow or multi-flow. It is also possible to provide several low-pressure turbine parts following the regenerative reheat according to the invention.
  • Particularly advantageous solar thermal power plant includes parabolic trough collectors, which have a high technology maturity and have the highest concentration factor for linearly concentrating systems, whereby high process temperatures are possible.
  • Fresnel collectors are used.
  • An advantage of the Fresnel collectors over the parabolic trough collector lies in the piping and the resulting, comparatively low pressure losses.
  • Another advantage of the Fresnel collectors are the largely standardized components compared to parabolic trough collectors, which can be produced without high-tech know-how. Fresnel collectors are therefore inexpensive to purchase and maintain.
  • a further advantageous alternative embodiment uses a solar tower for solar direct evaporation, which enables the highest process temperatures. Due to its very high specific heat capacity or its high specific enthalpy of evaporation and its easy handling, water is a very good heat transfer medium and thus very suitable as a working fluid.
  • the object is achieved by a method for operating a solar thermal power plant, in which a working fluid circulates in a cycle, based on direct evaporation solar steam generator and a steam turbine, in which the working fluid is discharged while releasing technical work on a relaxation section , with at least one reheater, which is heated by means of working fluid removed from the circuit upstream of the reheater, and which overheats at least one reheater working fluid, which flows into the expansion section downstream of the heated removal by an inflow.
  • the method makes use of the device described.
  • the advantages of the device therefore also result for the method.
  • 1 shows a reheat by means of a live steam tapping point in front of the HP turbine and a steam-steam heat exchanger
  • 2 shows a reheating by means of two steam-steam heat exchanger and two different extraction steam flows
  • FIG. 1 shows the schematic structure and the circulation process of a solar thermal power plant 1 with direct evaporation according to the invention.
  • the plant 1 comprises a solar field 2, in which the solar radiation is concentrated and converted into heat energy and can have, for example, parabolic trough collectors, solar towers, paraboloidal reflector or Fresnel collectors.
  • Concentrated solar radiation is delivered to a heat transfer medium, which is vaporized and introduced via a live steam line 10 into an expansion section 19, consisting of a steam turbine 3, as working fluid.
  • the steam turbine 3 comprises a high-pressure turbine 4 and a low-pressure turbine 5, which drive a generator 6.
  • the working fluid is expanded and then liquefied in a condenser 7.
  • a feed water pump 8 pumps the liquefied heat transfer medium back into the solar field 2, whereby the circuit 9 of the heat transfer medium or the working fluid is closed.
  • live steam is removed from the main steam line 10 upstream of the turbine 3 at the removal point 11 and fed to a steam-steam heat exchanger 12 via a line 20 branching off from the main steam line 10 for overheating the cold intermediate superheat steam.
  • the live steam is cooled down so far that it can be used for recuperative feed water preheating at the corresponding point in the feedwater system (feed point 13).
  • feed point 13 Before the intermediate superheating can, if this should be necessary due to the steam parameters, still a steam separator 14 are installed in the circuit 9 to go with the highest possible steam content in the steam-steam heat exchanger 12 on the cold reheat side.
  • the condensate from the vapor separator 14 is returned to the appropriate location (feed point 15)
  • Feedwater circuit 9 introduced.
  • the temperature of the hot reheat steam is given by the rate of the steam-steam heat exchanger 12 and the saturated steam temperature of the extraction steam at the removal point 11 at the pressure given by the solar field 2 and the pressure loss of the steam-steam heat exchanger 12.
  • FIG. 2 shows a second embodiment of reheating, in which the steam, after leaving the high-pressure turbine, is supplied to reheat by means of two extraction steam flows in two steam-steam heat exchangers.
  • the first extraction steam flow is removed from a tap 16 of the high-pressure turbine 4 and fed to the steam-steam heat exchanger 17.
  • the second removal steam flow is removed from the fresh steam line 10 upstream of the turbine 3 (removal point
  • a steam separator 14 can optionally be installed in the reheat unit (depending on the steam pressure rameters of cold reheat) to drive with the highest possible steam content in the heat exchanger 12,17.
  • FIG. 3 shows the reheating by means of a tap 16 of the high-pressure turbine 4.
  • the extraction steam is used for reheating the cold steam after the high-pressure turbine 4 in a steam-steam heat exchanger 17.
  • the cooled withdrawal steam is introduced into the feedwater system for recuperative feedwater preheating (feed point 18).
  • feed point 18 recuperative feedwater preheating
  • a steam separator 14 can be installed in front of the heat exchanger 17 in order to obtain the highest possible steam content in the heat exchanger 17.
  • the separated condensate is introduced at the appropriate point (feed point 15) in the feedwater circuit.
  • a tapping point 16 on the high-pressure turbine 4 is provided specifically for the overheating of the cold reheat steam and designed for the requirements of reheating.
  • a steam-steam heat exchanger 17 the cold reheat steam is overheated by means of the steam of the tapping point 16 on the turbine 3.
  • the cooled steam is introduced at the appropriate point (feed point 18) in the feedwater circuit for recuperative feed water preheating.
  • a steam separator 14 which ensures optimum steam content in the steam-steam heat exchanger 17.
  • the condensate is introduced into the feedwater circuit for recuperative feed water preheating at the corresponding point (feed point 15). Whether the use of a steam separator 14 makes sense depends on the steam parameters of the cold reheat.
  • FIG. 5 shows an embodiment in which a first reheat of the partially released steam is realized via a steam-steam heat exchanger 17 and the intermediate heat to the necessary steam parameters by means of additional firing 21, for example, a H2 burner, which fires directly into the reheat is performed.
  • the steam for the first reheat can either from a special tap 16 of the high-pressure turbine 4 or a
  • Removal point be taken from a tap for feedwater pre-heating.
  • the hydrogen 26 for this type of furnace may be recovered by electrolysis or thermal cracking.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

L'invention concerne une centrale thermique solaire (1) comportant un circuit de fluide de travail (9), un générateur de vapeur solaire à évaporation directe, et une turbine à vapeur (3), pour détendre le fluide de travail sur une voie de détente (19) avec production de travail technique. La centrale thermique comporte au moins un surchauffeur intermédiaire pouvant être chauffé au moyen de fluide de travail prélevé dans le circuit (9) en amont du surchauffeur intermédiaire, et permettant de chauffer du fluide de travail introduit dans la voie de détente (19) au moyen d'une admission en aval du prélèvement pour le chauffage. L'invention concerne également un procédé d'utilisation d'un tel dispositif.
EP08717938A 2007-03-20 2008-03-18 Procédé et dispositif de surchauffe intermédiaire lors de l'évaporation directe solaire dans une centrale thermique solaire Withdrawn EP2126468A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007013852 2007-03-20
PCT/EP2008/053205 WO2008113798A2 (fr) 2007-03-20 2008-03-18 Procédé et dispositif de surchauffe intermédiaire lors de l'évaporation directe solaire dans une centrale thermique solaire

Publications (1)

Publication Number Publication Date
EP2126468A2 true EP2126468A2 (fr) 2009-12-02

Family

ID=39766534

Family Applications (2)

Application Number Title Priority Date Filing Date
EP08716323A Withdrawn EP2126467A2 (fr) 2007-03-20 2008-03-06 Procédé et dispositif de surchauffe intermédiaire par mise à feu lors de l'évaporation directe solaire dans une centrale thermique solaire
EP08717938A Withdrawn EP2126468A2 (fr) 2007-03-20 2008-03-18 Procédé et dispositif de surchauffe intermédiaire lors de l'évaporation directe solaire dans une centrale thermique solaire

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP08716323A Withdrawn EP2126467A2 (fr) 2007-03-20 2008-03-06 Procédé et dispositif de surchauffe intermédiaire par mise à feu lors de l'évaporation directe solaire dans une centrale thermique solaire

Country Status (7)

Country Link
US (1) US20100162700A1 (fr)
EP (2) EP2126467A2 (fr)
CN (2) CN101680649A (fr)
AU (2) AU2008228596B2 (fr)
IL (2) IL200913A (fr)
WO (2) WO2008113482A2 (fr)
ZA (2) ZA200906294B (fr)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009007915B4 (de) * 2008-11-07 2015-05-13 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zur Entsalzung von salzhaltigem Wasser
RO126018A2 (ro) * 2009-06-18 2011-02-28 Vasile Muscalu Instalaţie şi procedeu pentru desalinizarea apei
CN102072115B (zh) * 2009-11-23 2013-02-27 张建城 槽式太阳能聚热发电装置
AU2010326107B2 (en) * 2009-12-01 2016-02-25 Areva Solar, Inc. Utilizing steam and/or hot water generated using solar energy
CN101839224B (zh) * 2010-03-16 2011-07-20 王承辉 一种太阳能热力发电装置
CH702906A1 (de) * 2010-03-26 2011-09-30 Alstom Technology Ltd Verfahren zum betrieb eines integrierten solar-kombikraftwerks sowie solar-kombikraftwerk zur durchführung des verfahrens.
JP5479191B2 (ja) * 2010-04-07 2014-04-23 株式会社東芝 蒸気タービンプラント
CN101858320A (zh) * 2010-04-07 2010-10-13 河海大学 用于污水生物处理的太阳能加热发电系统及方法
EP2385223A1 (fr) * 2010-05-04 2011-11-09 Thermal PowerTec GmbH Procédé d'augmentation du degré d'efficacité d'installations de turbines à gaz et à vapeur
DE102010027226A1 (de) * 2010-05-06 2011-11-10 Siemens Aktiengesellschaft Solarer Kraftwerksteil einer solarthermischen Kraftwerksanlage und solarthermische Kraftwerksanlage mit Sonnenkollektorflächen für Wärmeträgermedium und Arbeismedium
US8573196B2 (en) 2010-08-05 2013-11-05 Babcock Power Services, Inc. Startup/shutdown systems and methods for a solar thermal power generating facility
US9217565B2 (en) * 2010-08-16 2015-12-22 Emerson Process Management Power & Water Solutions, Inc. Dynamic matrix control of steam temperature with prevention of saturated steam entry into superheater
US9447963B2 (en) 2010-08-16 2016-09-20 Emerson Process Management Power & Water Solutions, Inc. Dynamic tuning of dynamic matrix control of steam temperature
US9335042B2 (en) 2010-08-16 2016-05-10 Emerson Process Management Power & Water Solutions, Inc. Steam temperature control using dynamic matrix control
WO2012083377A1 (fr) * 2010-12-23 2012-06-28 Kashima Industries Holding Pty Ltd Appareil d'énergie thermique solaire
EP2487338A1 (fr) 2011-02-11 2012-08-15 Alstom Technology Ltd Centrale thermoélectrique solaire
DE102011000946A1 (de) * 2011-02-25 2012-08-30 Hitachi Power Europe Gmbh Solarthermische Energieerzeugungsanlage und Verfahren zur Energiegewinnung mittels einer solarthermischen Ernergieerzeugungsanlage
CN102168587B (zh) * 2011-04-07 2013-08-28 王承辉 一种乙醇蒸汽发电装置
ITRM20110316A1 (it) * 2011-06-17 2012-12-18 Valerio Maria Porpora Impianto di produzione di energia elettrica con eventuale cogenerazione di calore utilizzante combustibile rinnovabile, in particolare biogas.
EP2574739A1 (fr) * 2011-09-29 2013-04-03 Siemens Aktiengesellschaft Installation de stockage d'énergie thermique et son procédé de fonctionnement
US9163828B2 (en) 2011-10-31 2015-10-20 Emerson Process Management Power & Water Solutions, Inc. Model-based load demand control
AU2012371202A1 (en) * 2012-02-20 2014-10-09 Regen Technologies Pty Ltd Variable speed gas turbine generation system and method
ES2422955B1 (es) * 2012-03-09 2014-09-19 Sener Grupo De Ingeniería, S.A. Procedimiento para mejorar el rendimiento del ciclo térmico en las centrales nucleares.
EP2644849B1 (fr) * 2012-03-28 2018-11-07 General Electric Technology GmbH Dispositif de chaudière à lit fluidisé à circulation
JP2015164714A (ja) * 2014-02-28 2015-09-17 真 細川 太陽熱発電方式造水器
DE102014225696A1 (de) 2014-12-12 2016-06-16 Siemens Aktiengesellschaft Verfahren zum Betrieb eines thermochemischen Wärmespeichers
CN107956524A (zh) * 2016-10-18 2018-04-24 神华集团有限责任公司 蒸汽动力系统和煤制烯烃化工系统
DE102021204208A1 (de) 2021-04-28 2022-11-03 Siemens Energy Global GmbH & Co. KG Speicherkraftwerk und Verfahren zum Betreiben eines Speicherkraftwerks

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4074708A (en) * 1976-06-07 1978-02-21 Combustion Engineering, Inc. Burning hydrogen and oxygen to superheat steam
JPS60216009A (ja) * 1984-04-12 1985-10-29 Toshiba Corp 蒸気タ−ビンプラント
DE4126037A1 (de) * 1991-08-06 1993-02-11 Siemens Ag Gas- und dampfturbinenkraftwerk mit einem solar beheizten dampferzeuger
EP0784157A1 (fr) * 1995-04-03 1997-07-16 Compania Sevillana de Electricidad Systeme d'integration de l'energie solaire dans une centrale thermique classique de production d'energie electrique
DE10128562C1 (de) * 2001-06-13 2003-01-09 Deutsch Zentr Luft & Raumfahrt Solarthermisches Kraftwerk und Verfahren zur Umwandlung von thermischer Energie in mechanische/elektrische Energie in einem solarthermischen Kraftwerk
JP3780884B2 (ja) * 2001-08-31 2006-05-31 株式会社日立製作所 蒸気タービン発電プラント
JP4521202B2 (ja) * 2004-02-24 2010-08-11 株式会社東芝 蒸気タービン発電プラント

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008113798A2 *

Also Published As

Publication number Publication date
AU2008228596A1 (en) 2008-09-25
IL200912A0 (en) 2010-05-17
AU2008228596B2 (en) 2012-02-09
AU2008228211A1 (en) 2008-09-25
US20100162700A1 (en) 2010-07-01
ZA200906294B (en) 2010-05-26
WO2008113482A3 (fr) 2009-11-26
IL200912A (en) 2013-03-24
AU2008228211B2 (en) 2013-01-17
CN101680648A (zh) 2010-03-24
WO2008113482A2 (fr) 2008-09-25
EP2126467A2 (fr) 2009-12-02
IL200913A (en) 2012-10-31
WO2008113798A3 (fr) 2009-11-26
CN101680649A (zh) 2010-03-24
IL200913A0 (en) 2010-05-31
WO2008113798A2 (fr) 2008-09-25
ZA200906293B (en) 2010-05-26

Similar Documents

Publication Publication Date Title
EP2126468A2 (fr) Procédé et dispositif de surchauffe intermédiaire lors de l'évaporation directe solaire dans une centrale thermique solaire
DE102008051384B3 (de) Solarhybridbetriebenes Gas- und Dampfkraftwerk
EP2521861B1 (fr) Centrale solaire thermique à évaporation indirecte et procédé permettant de faire fonctionner une telle centrale solaire thermique
EP1984624B1 (fr) Méthode et dispositif pour augmenter la production énergétique dans une centrale thermique solaire
EP2419634B1 (fr) Centrale thermique à vapeur comportant des capteurs solaires
WO2010054911A1 (fr) Procédé et dispositif pour le surchauffage intermédiaire dans une centrale solaire thermique avec vaporisation indirecte.
DE102009038446B4 (de) Solarthermisches Kraftwerk mit Wärmetauscher in der Speisewasservorwärmstrecke
EP0526816A1 (fr) Centrale à turbines à gaz et à vapeur avec un générateur de vapeur solaire
EP2250356A1 (fr) Stockage d'énergie électrique avec un accumulateur de chaleur et production d'énergie en retour grâce à un procédé de circuit thermodynamique
EP0898641B1 (fr) Installation a turbine a gaz et a turbine a vapeur et procede permettant de la faire fonctionner
WO2011138215A2 (fr) Partie solaire d'une centrale héliothermique et centrale héliothermique présentant des surfaces de collecteurs solaires pour agent caloporteur et agent de travail
WO2010069671A1 (fr) Générateur de vapeur à récupération de chaleur et procédé pour améliorer le fonctionnement d'un générateur de vapeur à récupération de chaleur
EP1584798B1 (fr) Méthode et appareil pour la production d'électricité et de chaleur
DE19627425A1 (de) Verfahren zum Betrieb einer Hybrid-Solar-Kombianlage sowie eine Hybrid-Solar-Kombianlage
WO2015003898A1 (fr) Système de préchauffage et procédé utilisant un tel système de préchauffage
DE102010040208B4 (de) Solarthermische Durchlaufverdampfer-Heizfläche mit lokaler Querschnittsverengung an ihrem Eintritt
DE102012110579A1 (de) Anlage und Verfahren zur Erzeugung von Prozessdampf
EP2177757A1 (fr) Procédé et dispositif de surchauffe intermédiaire à l'aide de vapeur saturée pendant l'évaporation directe solaire dans une centrale thermique solaire
EP2138677A1 (fr) Installation de turbines à gaz et à vapeur
DE102011004271A1 (de) Durchlaufdampferzeuger für die indirekte Verdampfung insbesondere in einem Solarturm-Kraftwerk
WO2012028502A2 (fr) Générateur de vapeur continu solaire thermique doté d'un séparateur de vapeur et d'un répartiteur en étoile monté en aval pour centrales solaires à tour à évaporation directe
DE3534230A1 (de) Kernreaktoranlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090903

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

R17D Deferred search report published (corrected)

Effective date: 20091126

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

17Q First examination report despatched

Effective date: 20131007

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140218