WO2008113798A2 - Verfahren und vorrichtung zur zwischenüberhitzung bei solarer direktverdampfung in einem solarthermischen kraftwerk - Google Patents
Verfahren und vorrichtung zur zwischenüberhitzung bei solarer direktverdampfung in einem solarthermischen kraftwerk Download PDFInfo
- Publication number
- WO2008113798A2 WO2008113798A2 PCT/EP2008/053205 EP2008053205W WO2008113798A2 WO 2008113798 A2 WO2008113798 A2 WO 2008113798A2 EP 2008053205 W EP2008053205 W EP 2008053205W WO 2008113798 A2 WO2008113798 A2 WO 2008113798A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steam
- power plant
- thermal power
- solar
- solar thermal
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B1/00—Methods of steam generation characterised by form of heating method
- F22B1/006—Methods of steam generation characterised by form of heating method using solar heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K3/00—Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
- F01K3/18—Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
- F01K3/188—Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters using heat from a specified chemical reaction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K7/00—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
- F01K7/16—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
- F01K7/22—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K7/00—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
- F01K7/16—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
- F01K7/22—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
- F01K7/223—Inter-stage moisture separation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G6/00—Devices for producing mechanical power from solar energy
- F03G6/003—Devices for producing mechanical power from solar energy having a Rankine cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B1/00—Methods of steam generation characterised by form of heating method
- F22B1/003—Methods of steam generation characterised by form of heating method using combustion of hydrogen with oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22G—SUPERHEATING OF STEAM
- F22G1/00—Steam superheating characterised by heating method
- F22G1/12—Steam superheating characterised by heating method by mixing steam with furnace gases or other combustion products
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/46—Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
Definitions
- the invention relates to a method for operating a solar thermal power plant, as well as a solar thermal power plant in which a working fluid circulates in a cycle, with a direct evaporation based solar steam generator and a steam turbine, in which the working fluid is discharged while releasing technical work on a relaxation section , with at least one reheater, which is heated by means of working fluid removed from the circuit upstream of the reheater and which overheats at least one reheater working fluid which flows downstream of the heated removal by an inflow into the expansion section.
- Solar thermal power plants represent an alternative to conventional power generation.
- a solar thermal power plant uses solar radiation energy to produce electrical energy. It consists of a solar power plant section for absorption of solar energy and a second mostly conventional power plant section.
- the solar power plant part includes a solar field, that is, a concentration system with collectors.
- the concentrating collectors are the main component of the solar power plant part.
- the more familiar collectors are the parabolic trough collector, the Fresnel collector, the solar tower and the parabolic mirror.
- Parabolic trough collectors concentrate the sun's rays onto an absorber tube placed in the focal line. There, the solar energy is absorbed and passed as heat to a heat transfer medium.
- Thermal oil, water, air or molten salt can be used as the heat transfer medium.
- the conventional power plant part usually comprises a steam turbine and a generator and a condenser, wherein in comparison to the conventional power plant, the heat input is replaced by the boiler by the heat input generated by the solar field.
- solar thermal power plants are operated with indirect evaporation, i. that heat exchangers are connected between the solar power plant part and the conventional power plant part in order to transfer the energy generated in the solar field from the heat transfer medium of a solar field circuit to a water-steam cycle of the conventional power plant part.
- a future option is the direct evaporation, in which the solar field circuit of the solar power plant part and the water-steam circuit of the conventional power plant part form a common circuit, wherein the feed water in the solar field preheated, evaporated and superheated and is thus fed to the conventional part ,
- the solar power plant part is thus a solar steam generator.
- the conventional power plant part can not be optimally operated.
- the relaxation of the steam over the largest possible pressure gradient is very limited by the resulting in the relaxation in the turbine moisture.
- a reheating of the steam is necessary.
- the intermediate superheating is carried out by means of a heat exchanger in the boiler.
- the reheat can be carried out in a separate solar field.
- this type of reheating does not seem appropriate since Overheating in the solar field, a very high pressure drop is expected.
- the device-related object of the invention is therefore to provide a solar thermal power plant with improved reheat. Another object is the specification of a method for operating such a power plant.
- the inventive solar thermal power plant includes a working fluid circuit, a direct evaporation based solar steam generator and a steam turbine, for relaxation of the working fluid on a relaxation section under output technical work, with at least one reheater, which is heated by means of upstream of the reheater cycle removable working fluid and by means of working fluid can be overheated, which can be fed downstream of the heated removal by an on-flow of the expansion zone.
- the working fluid can be overheated without the very high pressure loss expected in the solar field during reheating.
- heating of the reheater takes place by means of steam extraction before the expansion section or by means of taps from the expansion section of the turbine.
- “tapping” means vapor extraction between two blade stages.
- the reheater is a steam-steam heat exchanger, which is connected on the primary side in a main steam line.
- live steam is generated upstream of the turbine. and used to overheat the cooled reheat steam.
- the steam-steam heat exchanger is connected on the primary side in a tap of the high pressure part of the turbine. This is advantageously dispensed with a removal of the higher quality live steam.
- the reheating takes place via two steam-steam heat exchangers, one of which is connected on the primary side in a live steam line and another on the primary side in a tap of the high pressure part.
- the respective share of the intermediate overheating can be set.
- a steam separator in the circuit upstream of the reheater may be expedient to drive with the highest possible steam content in the steam-steam heat exchanger on the cold secondary side of the reheater.
- the solar thermal includes
- Power plant a generator for electrical power generation.
- Relaxation section are provided, for example, a combined high-pressure turbine at the beginning and a low-pressure turbine at the end of the expansion section, wherein working fluid After the first part turbine in a steam-steam heat exchanger is subjected to reheating and then the low-pressure turbine section is supplied.
- At least three turbines, a high-pressure turbine, a medium-pressure turbine and at least one low-pressure turbine in the expansion section are advantageous.
- this configuration offers the possibility of a particularly flexible design of the intermediate overheating.
- the working fluid may be withdrawn to the high pressure turbine section and / or the medium pressure turbine section and subjected to reheat in a steam to steam heat exchanger before entering the downstream turbine section.
- the low-pressure turbine parts can always be single-flow or multi-flow. It is also possible to provide several low-pressure turbine parts following the regenerative reheat according to the invention.
- Particularly advantageous solar thermal power plant includes parabolic trough collectors, which have a high technology maturity and have the highest concentration factor for linearly concentrating systems, whereby high process temperatures are possible.
- Fresnel collectors are used.
- An advantage of the Fresnel collectors over the parabolic trough collector lies in the piping and the resulting, comparatively low pressure losses.
- Another advantage of the Fresnel collectors are the largely standardized components compared to parabolic trough collectors, which can be produced without high-tech know-how. Fresnel collectors are therefore inexpensive to purchase and maintain.
- a further advantageous alternative embodiment uses a solar tower for solar direct evaporation, which enables the highest process temperatures. Due to its very high specific heat capacity or its high specific enthalpy of evaporation and its easy handling, water is a very good heat transfer medium and thus very suitable as a working fluid.
- the object is achieved by a method for operating a solar thermal power plant, in which a working fluid circulates in a cycle, based on direct evaporation solar steam generator and a steam turbine, in which the working fluid is discharged while releasing technical work on a relaxation section , with at least one reheater, which is heated by means of working fluid removed from the circuit upstream of the reheater, and which overheats at least one reheater working fluid, which flows into the expansion section downstream of the heated removal by an inflow.
- the method makes use of the device described.
- the advantages of the device therefore also result for the method.
- 1 shows a reheat by means of a live steam tapping point in front of the HP turbine and a steam-steam heat exchanger
- 2 shows a reheating by means of two steam-steam heat exchanger and two different extraction steam flows
- FIG. 1 shows the schematic structure and the circulation process of a solar thermal power plant 1 with direct evaporation according to the invention.
- the plant 1 comprises a solar field 2, in which the solar radiation is concentrated and converted into heat energy and can have, for example, parabolic trough collectors, solar towers, paraboloidal reflector or Fresnel collectors.
- Concentrated solar radiation is delivered to a heat transfer medium, which is vaporized and introduced via a live steam line 10 into an expansion section 19, consisting of a steam turbine 3, as working fluid.
- the steam turbine 3 comprises a high-pressure turbine 4 and a low-pressure turbine 5, which drive a generator 6.
- the working fluid is expanded and then liquefied in a condenser 7.
- a feed water pump 8 pumps the liquefied heat transfer medium back into the solar field 2, whereby the circuit 9 of the heat transfer medium or the working fluid is closed.
- live steam is removed from the main steam line 10 upstream of the turbine 3 at the removal point 11 and fed to a steam-steam heat exchanger 12 via a line 20 branching off from the main steam line 10 for overheating the cold intermediate superheat steam.
- the live steam is cooled down so far that it can be used for recuperative feed water preheating at the corresponding point in the feedwater system (feed point 13).
- feed point 13 Before the intermediate superheating can, if this should be necessary due to the steam parameters, still a steam separator 14 are installed in the circuit 9 to go with the highest possible steam content in the steam-steam heat exchanger 12 on the cold reheat side.
- the condensate from the vapor separator 14 is returned to the appropriate location (feed point 15)
- Feedwater circuit 9 introduced.
- the temperature of the hot reheat steam is given by the rate of the steam-steam heat exchanger 12 and the saturated steam temperature of the extraction steam at the removal point 11 at the pressure given by the solar field 2 and the pressure loss of the steam-steam heat exchanger 12.
- FIG. 2 shows a second embodiment of reheating, in which the steam, after leaving the high-pressure turbine, is supplied to reheat by means of two extraction steam flows in two steam-steam heat exchangers.
- the first extraction steam flow is removed from a tap 16 of the high-pressure turbine 4 and fed to the steam-steam heat exchanger 17.
- the second removal steam flow is removed from the fresh steam line 10 upstream of the turbine 3 (removal point
- a steam separator 14 can optionally be installed in the reheat unit (depending on the steam pressure rameters of cold reheat) to drive with the highest possible steam content in the heat exchanger 12,17.
- FIG. 3 shows the reheating by means of a tap 16 of the high-pressure turbine 4.
- the extraction steam is used for reheating the cold steam after the high-pressure turbine 4 in a steam-steam heat exchanger 17.
- the cooled withdrawal steam is introduced into the feedwater system for recuperative feedwater preheating (feed point 18).
- feed point 18 recuperative feedwater preheating
- a steam separator 14 can be installed in front of the heat exchanger 17 in order to obtain the highest possible steam content in the heat exchanger 17.
- the separated condensate is introduced at the appropriate point (feed point 15) in the feedwater circuit.
- a tapping point 16 on the high-pressure turbine 4 is provided specifically for the overheating of the cold reheat steam and designed for the requirements of reheating.
- a steam-steam heat exchanger 17 the cold reheat steam is overheated by means of the steam of the tapping point 16 on the turbine 3.
- the cooled steam is introduced at the appropriate point (feed point 18) in the feedwater circuit for recuperative feed water preheating.
- a steam separator 14 which ensures optimum steam content in the steam-steam heat exchanger 17.
- the condensate is introduced into the feedwater circuit for recuperative feed water preheating at the corresponding point (feed point 15). Whether the use of a steam separator 14 makes sense depends on the steam parameters of the cold reheat.
- FIG. 5 shows an embodiment in which a first reheat of the partially released steam is realized via a steam-steam heat exchanger 17 and the intermediate heat to the necessary steam parameters by means of additional firing 21, for example, a H2 burner, which fires directly into the reheat is performed.
- the steam for the first reheat can either from a special tap 16 of the high-pressure turbine 4 or a
- Removal point be taken from a tap for feedwater pre-heating.
- the hydrogen 26 for this type of furnace may be recovered by electrolysis or thermal cracking.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08717938A EP2126468A2 (de) | 2007-03-20 | 2008-03-18 | Verfahren und vorrichtung zur zwischenüberhitzung bei solarer direktverdampfung in einem solarthermischen kraftwerk |
US12/531,954 US20100162700A1 (en) | 2007-03-20 | 2008-03-18 | Method and device for intermediate superheating in solar direct evaporation in a solar-thermal power plant |
CN200880012811A CN101680648A (zh) | 2007-03-20 | 2008-03-18 | 当在太阳能热电厂中太阳能直接汽化时中间再热的方法和设备 |
AU2008228211A AU2008228211B2 (en) | 2007-03-20 | 2008-03-18 | Method and device for intermediate superheating in solar direct evaporation in a solar-thermal power plant |
IL200912A IL200912A (en) | 2007-03-20 | 2009-09-14 | Method and device for intermediate superheating in solar direct evaporation in a solar-thermal power plant |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102007013852.2 | 2007-03-20 | ||
DE102007013852 | 2007-03-20 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2008113798A2 true WO2008113798A2 (de) | 2008-09-25 |
WO2008113798A3 WO2008113798A3 (de) | 2009-11-26 |
Family
ID=39766534
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2008/001808 WO2008113482A2 (de) | 2007-03-20 | 2008-03-06 | Verfahren und vorrichtung zur befeuerten zwischenüberhitzung bei solarer direktverdampfung in einem solarthermischen kraftwerk |
PCT/EP2008/053205 WO2008113798A2 (de) | 2007-03-20 | 2008-03-18 | Verfahren und vorrichtung zur zwischenüberhitzung bei solarer direktverdampfung in einem solarthermischen kraftwerk |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2008/001808 WO2008113482A2 (de) | 2007-03-20 | 2008-03-06 | Verfahren und vorrichtung zur befeuerten zwischenüberhitzung bei solarer direktverdampfung in einem solarthermischen kraftwerk |
Country Status (7)
Country | Link |
---|---|
US (1) | US20100162700A1 (de) |
EP (2) | EP2126467A2 (de) |
CN (2) | CN101680649A (de) |
AU (2) | AU2008228596B2 (de) |
IL (2) | IL200912A (de) |
WO (2) | WO2008113482A2 (de) |
ZA (2) | ZA200906294B (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010151164A2 (en) * | 2009-06-18 | 2010-12-29 | S.C. Hellenic Tiler Invest Srl | Installation and procedure for water desalination |
CN102072115B (zh) * | 2009-11-23 | 2013-02-27 | 张建城 | 槽式太阳能聚热发电装置 |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009007915B4 (de) * | 2008-11-07 | 2015-05-13 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Verfahren zur Entsalzung von salzhaltigem Wasser |
WO2011068880A2 (en) * | 2009-12-01 | 2011-06-09 | Areva Solar, Inc. | Utilizing steam and/or hot water generated using solar energy |
CN101839224B (zh) * | 2010-03-16 | 2011-07-20 | 王承辉 | 一种太阳能热力发电装置 |
CH702906A1 (de) * | 2010-03-26 | 2011-09-30 | Alstom Technology Ltd | Verfahren zum betrieb eines integrierten solar-kombikraftwerks sowie solar-kombikraftwerk zur durchführung des verfahrens. |
CN101858320A (zh) * | 2010-04-07 | 2010-10-13 | 河海大学 | 用于污水生物处理的太阳能加热发电系统及方法 |
JP5479191B2 (ja) * | 2010-04-07 | 2014-04-23 | 株式会社東芝 | 蒸気タービンプラント |
EP2385223A1 (de) * | 2010-05-04 | 2011-11-09 | Thermal PowerTec GmbH | Verfahren zur Steigerung des Wirkungsgrades von Gas- und Dampfturbinenanlagen |
DE102010027226A1 (de) * | 2010-05-06 | 2011-11-10 | Siemens Aktiengesellschaft | Solarer Kraftwerksteil einer solarthermischen Kraftwerksanlage und solarthermische Kraftwerksanlage mit Sonnenkollektorflächen für Wärmeträgermedium und Arbeismedium |
US8573196B2 (en) | 2010-08-05 | 2013-11-05 | Babcock Power Services, Inc. | Startup/shutdown systems and methods for a solar thermal power generating facility |
US9335042B2 (en) | 2010-08-16 | 2016-05-10 | Emerson Process Management Power & Water Solutions, Inc. | Steam temperature control using dynamic matrix control |
US9217565B2 (en) * | 2010-08-16 | 2015-12-22 | Emerson Process Management Power & Water Solutions, Inc. | Dynamic matrix control of steam temperature with prevention of saturated steam entry into superheater |
US9447963B2 (en) | 2010-08-16 | 2016-09-20 | Emerson Process Management Power & Water Solutions, Inc. | Dynamic tuning of dynamic matrix control of steam temperature |
WO2012083377A1 (en) * | 2010-12-23 | 2012-06-28 | Kashima Industries Holding Pty Ltd | Solar thermal power apparatus |
EP2487338A1 (de) | 2011-02-11 | 2012-08-15 | Alstom Technology Ltd | Sonnenwärmekraftanlage |
DE102011000946A1 (de) * | 2011-02-25 | 2012-08-30 | Hitachi Power Europe Gmbh | Solarthermische Energieerzeugungsanlage und Verfahren zur Energiegewinnung mittels einer solarthermischen Ernergieerzeugungsanlage |
CN102168587B (zh) * | 2011-04-07 | 2013-08-28 | 王承辉 | 一种乙醇蒸汽发电装置 |
ITRM20110316A1 (it) * | 2011-06-17 | 2012-12-18 | Valerio Maria Porpora | Impianto di produzione di energia elettrica con eventuale cogenerazione di calore utilizzante combustibile rinnovabile, in particolare biogas. |
EP2574739A1 (de) * | 2011-09-29 | 2013-04-03 | Siemens Aktiengesellschaft | Anlage zur Speicherung thermischer Energie und Verfahren zu deren Betrieb |
US9163828B2 (en) | 2011-10-31 | 2015-10-20 | Emerson Process Management Power & Water Solutions, Inc. | Model-based load demand control |
US20150108759A1 (en) * | 2012-02-20 | 2015-04-23 | Regen Technologies Pty Ltd | Variable Speed Gas Turbine Generation System and Method |
ES2422955B1 (es) * | 2012-03-09 | 2014-09-19 | Sener Grupo De Ingeniería, S.A. | Procedimiento para mejorar el rendimiento del ciclo térmico en las centrales nucleares. |
EP2644849B1 (de) * | 2012-03-28 | 2018-11-07 | General Electric Technology GmbH | Zirkulierung einer fluidisierten Bettkesselvorrichtung |
JP2015164714A (ja) * | 2014-02-28 | 2015-09-17 | 真 細川 | 太陽熱発電方式造水器 |
DE102014225696A1 (de) * | 2014-12-12 | 2016-06-16 | Siemens Aktiengesellschaft | Verfahren zum Betrieb eines thermochemischen Wärmespeichers |
CN107956524A (zh) * | 2016-10-18 | 2018-04-24 | 神华集团有限责任公司 | 蒸汽动力系统和煤制烯烃化工系统 |
DE102021204208A1 (de) | 2021-04-28 | 2022-11-03 | Siemens Energy Global GmbH & Co. KG | Speicherkraftwerk und Verfahren zum Betreiben eines Speicherkraftwerks |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60216009A (ja) * | 1984-04-12 | 1985-10-29 | Toshiba Corp | 蒸気タ−ビンプラント |
DE10128562C1 (de) * | 2001-06-13 | 2003-01-09 | Deutsch Zentr Luft & Raumfahrt | Solarthermisches Kraftwerk und Verfahren zur Umwandlung von thermischer Energie in mechanische/elektrische Energie in einem solarthermischen Kraftwerk |
US20030043952A1 (en) * | 2001-08-31 | 2003-03-06 | Shuuichi Itou | Steam turbine power plant |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4074708A (en) * | 1976-06-07 | 1978-02-21 | Combustion Engineering, Inc. | Burning hydrogen and oxygen to superheat steam |
DE4126037A1 (de) * | 1991-08-06 | 1993-02-11 | Siemens Ag | Gas- und dampfturbinenkraftwerk mit einem solar beheizten dampferzeuger |
JPH10501600A (ja) * | 1995-04-03 | 1998-02-10 | カンパーニャ セビラーナ デ エレクトリシダッド エス.エー. | 太陽エネルギーを統合した火力発電装置 |
JP4521202B2 (ja) * | 2004-02-24 | 2010-08-11 | 株式会社東芝 | 蒸気タービン発電プラント |
-
2008
- 2008-03-06 WO PCT/EP2008/001808 patent/WO2008113482A2/de active Application Filing
- 2008-03-06 AU AU2008228596A patent/AU2008228596B2/en not_active Ceased
- 2008-03-06 CN CN200880012848A patent/CN101680649A/zh active Pending
- 2008-03-06 EP EP08716323A patent/EP2126467A2/de not_active Withdrawn
- 2008-03-18 US US12/531,954 patent/US20100162700A1/en not_active Abandoned
- 2008-03-18 CN CN200880012811A patent/CN101680648A/zh active Pending
- 2008-03-18 WO PCT/EP2008/053205 patent/WO2008113798A2/de active Application Filing
- 2008-03-18 AU AU2008228211A patent/AU2008228211B2/en not_active Ceased
- 2008-03-18 EP EP08717938A patent/EP2126468A2/de not_active Withdrawn
-
2009
- 2009-09-10 ZA ZA200906294A patent/ZA200906294B/xx unknown
- 2009-09-10 ZA ZA200906293A patent/ZA200906293B/xx unknown
- 2009-09-14 IL IL200912A patent/IL200912A/en not_active IP Right Cessation
- 2009-09-14 IL IL200913A patent/IL200913A/en not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60216009A (ja) * | 1984-04-12 | 1985-10-29 | Toshiba Corp | 蒸気タ−ビンプラント |
DE10128562C1 (de) * | 2001-06-13 | 2003-01-09 | Deutsch Zentr Luft & Raumfahrt | Solarthermisches Kraftwerk und Verfahren zur Umwandlung von thermischer Energie in mechanische/elektrische Energie in einem solarthermischen Kraftwerk |
US20030043952A1 (en) * | 2001-08-31 | 2003-03-06 | Shuuichi Itou | Steam turbine power plant |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010151164A2 (en) * | 2009-06-18 | 2010-12-29 | S.C. Hellenic Tiler Invest Srl | Installation and procedure for water desalination |
WO2010151164A3 (en) * | 2009-06-18 | 2011-03-24 | S.C. Hellenic Tiler Invest Srl | Installation and procedure for water desalination |
CN102072115B (zh) * | 2009-11-23 | 2013-02-27 | 张建城 | 槽式太阳能聚热发电装置 |
Also Published As
Publication number | Publication date |
---|---|
AU2008228211B2 (en) | 2013-01-17 |
ZA200906294B (en) | 2010-05-26 |
WO2008113482A2 (de) | 2008-09-25 |
AU2008228596B2 (en) | 2012-02-09 |
EP2126468A2 (de) | 2009-12-02 |
ZA200906293B (en) | 2010-05-26 |
IL200912A (en) | 2013-03-24 |
IL200912A0 (en) | 2010-05-17 |
CN101680648A (zh) | 2010-03-24 |
AU2008228596A1 (en) | 2008-09-25 |
AU2008228211A1 (en) | 2008-09-25 |
IL200913A (en) | 2012-10-31 |
IL200913A0 (en) | 2010-05-31 |
US20100162700A1 (en) | 2010-07-01 |
CN101680649A (zh) | 2010-03-24 |
EP2126467A2 (de) | 2009-12-02 |
WO2008113482A3 (de) | 2009-11-26 |
WO2008113798A3 (de) | 2009-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2008113798A2 (de) | Verfahren und vorrichtung zur zwischenüberhitzung bei solarer direktverdampfung in einem solarthermischen kraftwerk | |
DE102008051384B3 (de) | Solarhybridbetriebenes Gas- und Dampfkraftwerk | |
EP2521861B1 (de) | Solarthermisches kraftwerk mit indirekter verdampfung und verfahren zum betrieb eines solchen solarthermischen kraftwerks | |
EP1984624B1 (de) | Verfahren und vorrichtung zur gezielten erhöhung der elektrischen energieerzeugung eines solarthermischen kraftwerks | |
EP2419634B1 (de) | Dampfkraftwerk mit solarkollektoren | |
WO2010054911A1 (de) | Verfahren und vorrichtung zur zwischenüberhitzung in einem solarthermischen kraftwerk mit indirekter verdampfung | |
DE102009038446B4 (de) | Solarthermisches Kraftwerk mit Wärmetauscher in der Speisewasservorwärmstrecke | |
EP0526816A1 (de) | Gas- und Dampfturbinenkraftwerk mit einem solar beheizten Dampferzeuger | |
WO2009112421A1 (de) | Speicherung elektrischer energie mit wärmespeicher und rückverstromung mittels eines thermodynamischen kreisprozesses | |
EP0898641B1 (de) | Gas- und dampfturbinenanlage sowie verfahren zu deren betrieb | |
WO2011138215A2 (de) | Solarer kraftwerksteil einer solarthermischen kraftwerksanlage und solarthermische kraftwerksanlage mit sonnenkollektorflächen für wärmeträgermedium und arbeitsmedium | |
EP2368021A1 (de) | Abhitzedampferzeuger sowie ein verfahren zum verbesserten betrieb eines abhitzedampferzeugers | |
EP1584798B1 (de) | Verfahren und Einrichtung zur Erzeugung von Kraft und Wärme | |
DE19627425A1 (de) | Verfahren zum Betrieb einer Hybrid-Solar-Kombianlage sowie eine Hybrid-Solar-Kombianlage | |
DE102012110579B4 (de) | Anlage und Verfahren zur Erzeugung von Prozessdampf | |
WO2015003898A1 (de) | Vorwärmsystem und verfahren mit einem solchen vorwärmsystem | |
DE102010040208B4 (de) | Solarthermische Durchlaufverdampfer-Heizfläche mit lokaler Querschnittsverengung an ihrem Eintritt | |
EP2177757A1 (de) | Verfahren und Vorrichtung zur Zwischenüberhitzung mit Sattdampf bei solarer Direktverdampfung in einem solarthermischen Kraftwerk | |
EP2138677A1 (de) | Gas- und Dampfturbinenanlage | |
DE102011004271A1 (de) | Durchlaufdampferzeuger für die indirekte Verdampfung insbesondere in einem Solarturm-Kraftwerk | |
WO2012028502A2 (de) | Solarthermischer durchlaufdampferzeuger mit einem dampfabscheider und nachgeschaltetem sternverteiler für solarturm-kraftwerke mit direkter verdampfung | |
DE3534230A1 (de) | Kernreaktoranlage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880012811.6 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008717938 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200912 Country of ref document: IL |
|
WWE | Wipo information: entry into national phase |
Ref document number: 3269/KOLNP/2009 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009091361 Country of ref document: EG |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008228211 Country of ref document: AU |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: DZP2009000595 Country of ref document: DZ |
|
ENP | Entry into the national phase |
Ref document number: 2008228211 Country of ref document: AU Date of ref document: 20080318 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009138473 Country of ref document: RU |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08717938 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12531954 Country of ref document: US |