EP2126467A2 - Method and device for fired intermediate overheating during direct solar vapourisation in a solar thermal power station - Google Patents

Method and device for fired intermediate overheating during direct solar vapourisation in a solar thermal power station

Info

Publication number
EP2126467A2
EP2126467A2 EP08716323A EP08716323A EP2126467A2 EP 2126467 A2 EP2126467 A2 EP 2126467A2 EP 08716323 A EP08716323 A EP 08716323A EP 08716323 A EP08716323 A EP 08716323A EP 2126467 A2 EP2126467 A2 EP 2126467A2
Authority
EP
European Patent Office
Prior art keywords
power plant
solar
thermal power
solar thermal
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08716323A
Other languages
German (de)
French (fr)
Inventor
Jürgen Birnbaum
Markus Fichtner
Georg Haberberger
Gerhard Zimmermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2126467A2 publication Critical patent/EP2126467A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/006Methods of steam generation characterised by form of heating method using solar heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/18Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
    • F01K3/188Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters using heat from a specified chemical reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • F01K7/223Inter-stage moisture separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/003Devices for producing mechanical power from solar energy having a Rankine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/003Methods of steam generation characterised by form of heating method using combustion of hydrogen with oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G1/00Steam superheating characterised by heating method
    • F22G1/12Steam superheating characterised by heating method by mixing steam with furnace gases or other combustion products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Definitions

  • the invention relates to a method for operating a solar thermal power plant, as well as a solar thermal power plant with a based on direct evaporation solar steam generator and a fired reheate of working fluid.
  • Solar thermal power plants represent an alternative to conventional power generation.
  • a solar thermal power plant uses solar radiation energy to produce electrical energy. It consists of a solar power plant section for the absorption of solar energy and a second mostly conventional power plant part.
  • the solar power plant part includes a solar field, that is, a concentration system with collectors.
  • the concentrating collectors are the main component of the solar power plant part.
  • the more familiar collectors are the parabolic trough collector, the Fresnel collector, the solar tower and the parabolic mirror.
  • Parabolic trough collectors concentrate the sun's rays onto an absorber tube placed in the focal line. There, the solar energy is absorbed and passed as heat to a heat transfer medium.
  • Thermal oil, water, air or molten salt can be used as the heat transfer medium.
  • the conventional power plant part usually comprises a steam turbine and a generator and a condenser, wherein in comparison to the conventional power plant, the heat input is replaced by the boiler by the heat input generated by the solar field.
  • solar thermal power plants are carried out with indirect evaporation, ie that are connected between the solar power plant part and the conventional power plant part heat exchanger to the energy generated in the solar field from the heat transfer medium of a solar field cycle on a
  • a future option is the direct evaporation, in which form the solar field circuit of the solar power plant part and the water-steam cycle of the conventional power plant part of a common circuit, the feedwater is preheated in the solar field, evaporated and superheated and so the conventional part is supplied.
  • the solar power plant part is thus a solar steam generator.
  • the conventional power plant part can not be optimally operated.
  • the relaxation of the steam over the largest possible pressure gradient is very limited by the resulting in the relaxation in the turbine moisture.
  • a reheating of the steam is necessary.
  • reheating is carried out by means of a heat exchanger in the boiler.
  • reheating can be carried out in a separate solar field.
  • this embodiment of the reheat does not seem appropriate, since a very high pressure loss is to be expected at a reheat in the solar field.
  • the device-related object of the invention is therefore to provide a solar thermal power plant with improved reheat. Another task is the statement of a method for operating such a power plant.
  • the inventive solar thermal power plant includes a working fluid circuit, a direct evaporation based solar steam generator and a steam turbine, for relaxation of the working fluid under delivery of technical work, the solar steam generator and the steam turbine are connected in the working fluid circuit, with an additional firing for reheating of working fluid.
  • the advantage of this arrangement is that the reheater steam temperature may be equal to or even higher than the fresh steam temperature.
  • the additional firing with hydrogen is operable. It is particularly useful if the hydrogen is produced by means of an electrolysis, the energy demand is covered for example by a photovoltaic system. This solution is particularly advantageous because the firing, as the solar thermal power plant itself, is also realized on renewable energy and no carbon dioxide enters the water-steam cycle.
  • the solar thermal power plant includes a generator for electrical power generation.
  • hydrogen can be directly burned at several other points of the conventional steam cycle for process optimization or efficiency increase.
  • the hydrogen combustion by means of a hydrogen burner, which fires directly into the steam, can be used to advantage, for example, to increase the live steam parameters or to compensate for temperature fluctuations in cloud passage or to start the plant.
  • a steam separator in the circuit upstream of the reheater may be expedient to drive with the highest possible steam content in the steam-steam heat exchanger on the cold secondary side of the reheater.
  • Particularly advantageous solar thermal power plant aläge includes parabolic trough collectors, which have a high level of technological maturity and have the highest concentration factor for linearly concentrating systems, whereby high process temperatures are possible.
  • Fresnel collectors used.
  • An advantage of the Fresnel collectors over the parabolic trough collector lies in the piping and the resulting, relatively low pressure losses.
  • Another advantage of the Fresnel collectors are the largely standardized components compared to parabolic trough collectors, which can be produced without high-tech know-how. Fresnel collectors are therefore inexpensive to purchase and maintain.
  • a further advantageous alternative embodiment uses a solar tower for solar direct evaporation, which enables the highest process temperatures.
  • the object is achieved by a method for operating a solar thermal power plant, in which a working fluid is circulated, in which the working fluid directly by solar irradiation evaporates and relaxed by releasing technical work on a relaxation section and in a Additional firing is overheated.
  • the method makes use of the device described.
  • the advantages of the device therefore also result for the method.
  • FIG. 1 shows a reheating by means of a supplementary firing
  • FIG. 2 shows a reheating by means of a hydrogen-fired supplementary firing, wherein hydrogen is produced regeneratively via a photovoltaic system
  • FIG. 3 shows reheating by means of hydrogen-fired supplementary firing, with hydrogen being obtained by means of electricity from its own power plant production
  • FIG. 1 shows a reheating by means of a supplementary firing
  • FIG. 2 shows a reheating by means of a hydrogen-fired supplementary firing, wherein hydrogen is produced regeneratively via a photovoltaic system
  • FIG. 3 shows reheating by means of hydrogen-fired supplementary firing, with hydrogen being obtained by means of electricity from its own power plant production
  • FIG. 1 shows a reheating by means of a supplementary firing
  • FIG. 2 shows a reheating by means of a hydrogen-fired supplementary firing, wherein hydrogen is produced regeneratively via a photovoltaic system
  • FIG. 3 shows reheat
  • FIG. 4 shows a general use of the direct hydrogen combustion in the solar thermal power plant
  • FIG. 1 shows the schematic structure and the circulation process of a solar thermal power plant 1 with direct evaporation according to the invention.
  • the plant 1 comprises a solar field 2, in which the solar radiation is concentrated and converted into heat energy and can for example have parabolic trough collectors, solar towers or Fresnel collectors. Concentrated solar radiation is emitted to a heat transfer medium which evaporates and is introduced via a live steam line 10 into a expansion section 19, consisting of a steam turbine 3, as working fluid.
  • the steam turbine 3 comprises a high-pressure turbine 4 and a low-pressure turbine 5, which drive a generator 6.
  • the working fluid is expanded and then liquefied in a condenser 7.
  • a feedwater pump 8 pumps the liquefied heat transfer medium back into the solar field 2, whereby the circuit 9 of the heat transfer medium and the working fluid is closed.
  • the steam of the cold reheat is superheated by means of an additional firing 22 (eg fossil, biomass, hydrogen).
  • a fossil-fired supplementary firing 22 can be carried out in various boiler types. Their arrangement allows them to be used specifically for superheating the cold reheat steam to the corresponding hot reheat steam parameters.
  • the use of a steam separator 14 may be useful before the fossil-fired reheat 22 to obtain an optimum steam content for the fossil-fired overheating.
  • the condensate from the steam separator 14 is introduced again into the feedwater circuit 9 at a suitable point (feed point 15).
  • FIG. 2 shows an embodiment of the invention which describes in more detail the intermediate overheating with additional firing 22.
  • the supplemental furnace is operated with hydrogen 26 in this embodiment, i. a hydrogen burner 21 fires directly into the water vapor.
  • the required hydrogen 26 is generated by means of an electrolysis 24.
  • the energy required for the electrolysis 24 is provided by a photovoltaic system 23, whereby the normally fired by fossil fuels or biomass additional firing 22 is also realized via renewable energy and no carbon dioxide enters the water-steam cycle 9.
  • FIG. 3 like FIG. 2, shows an additional firing 22 in which a hydrogen burner 21 fires directly into the steam. Unlike in the embodiment shown in Figure 2, the energy required for the electrolysis 24 but supplied by the power plant 1 itself, whereby the additional firing 22 is again carried out purely regenerative.
  • FIG. 5 shows an embodiment in which a first reheat of the partially released steam via a Steam-steam heat exchanger 17 is realized.
  • the intermediate superheating to the necessary steam parameters takes place by means of additional firing 22, for example with a hydrogen burner 21, which fires directly into the intermediate superheating.
  • the steam for the first reheat can be taken either from a special tap 16 of the high-pressure turbine 4 or a removal point from a tap for feedwater preheating and after cooling in the steam-steam heat exchanger 17 at a feed point 18 for recirculating feedwater preheating again be recycled to the circulation 9 of the working fluid.
  • the hydrogen 26 for the additional firing can be obtained by means of electrolysis 24 or thermal cleavage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

The invention relates to a solar thermal power station (1) comprising a work fluid circuit (9), a solar steam generator based on direct vapourisation and a steam turbine (3) for releasing the work fluid for technical work. The solar steam generator and the steam turbine (3) are mounted in the work fluid circuit (9). The solar thermal power station comprises an additional firing system (22) for intermediate heating of the work fluid. The invention also relates to a method for operating said type of installation.

Description

Beschreibung description
Verfahren und Vorrichtung zur befeuerten Zwischenüberhitzung bei solarer Direktverdampfung in einem solarthermischen KraftwerkProcess and apparatus for fired reheat in direct solar evaporation in a solar thermal power plant
Die Erfindung betrifft ein Verfahren zum Betrieb einer solarthermischen Kraftwerksanlage, sowie eine solarthermische Kraftwerksanlage mit einem auf Direktverdampfung basierenden solaren Dampferzeuger und einer befeuerten Zwischenüberhitzung von Arbeitsfluid.The invention relates to a method for operating a solar thermal power plant, as well as a solar thermal power plant with a based on direct evaporation solar steam generator and a fired reheate of working fluid.
Solarthermische Kraftwerke stellen eine alternative zur herkömmlichen Stromerzeugung dar. Ein solarthermisches Kraftwerk nutzt solare Strahlungsenergie um elektrische Energie zu produzieren. Es besteht aus einem solaren Kraftwerksteil zur Absorption der Sonnenenergie und einem zweiten meist konventionellen Kraftwerksteil .Solar thermal power plants represent an alternative to conventional power generation. A solar thermal power plant uses solar radiation energy to produce electrical energy. It consists of a solar power plant section for the absorption of solar energy and a second mostly conventional power plant part.
Der solare Kraftwerksteil umfasst dabei ein Solarfeld, das heißt, ein Konzentrationssystem mit Kollektoren. Die konzentrierenden Kollektoren sind der Hauptbestandteil des solaren Kraftwerksteils. Bekanntere Kollektoren sind dabei der Para- bolrinnenkollektor, der Fresnel-Kollektor, der Solar-Turm und der Paraboloidspiegel . Parabolrinnenkollektoren konzentrieren die Sonnenstrahlen auf ein in der Fokuslinie platziertes Absorberrohr. Dort wird die Sonnenenergie absorbiert und als Wärme an ein Wärmeträgermedium weitergegeben.The solar power plant part includes a solar field, that is, a concentration system with collectors. The concentrating collectors are the main component of the solar power plant part. The more familiar collectors are the parabolic trough collector, the Fresnel collector, the solar tower and the parabolic mirror. Parabolic trough collectors concentrate the sun's rays onto an absorber tube placed in the focal line. There, the solar energy is absorbed and passed as heat to a heat transfer medium.
Als Wärmeträgermedium kann dabei Thermoöl, Wasser, Luft oder Salzschmelze zum Einsatz kommen.Thermal oil, water, air or molten salt can be used as the heat transfer medium.
Der konventionelle Kraftwerksteil umfasst zumeist eine Dampfturbine sowie einen Generator und einen Kondensator, wobei im Vergleich zum konventionellen Kraftwerk der Wärmeeintrag durch den Kessel durch den vom Solarfeld erzeugten Wärmeeintrag ersetzt wird. Zurzeit werden solarthermische Kraftwerke mit indirekter Verdampfung ausgeführt, d.h. dass zwischen dem solaren Kraftwerksteil und dem konventionellen Kraftwerksteil Wärmetauscher geschaltet sind, um die im Solarfeld erzeugte Energie vom Wärmeträgermedium eines Solarfeldkreislaufes auf einenThe conventional power plant part usually comprises a steam turbine and a generator and a condenser, wherein in comparison to the conventional power plant, the heat input is replaced by the boiler by the heat input generated by the solar field. At present, solar thermal power plants are carried out with indirect evaporation, ie that are connected between the solar power plant part and the conventional power plant part heat exchanger to the energy generated in the solar field from the heat transfer medium of a solar field cycle on a
Wasser-Dampf-Kreislauf des konventionellen Kraftwerksteils zu übertragen .To transfer water-steam cycle of the conventional power plant part.
Eine künftige Option stellt die direkte Verdampfung dar, bei der der Solarfeldkreislauf des solaren Kraftwerksteils und der Wasser-Dampf-Kreislauf des konventionellen Kraftwerksteils einen gemeinsamen Kreislauf bilden, wobei das Speisewasser im Solarfeld vorgewärmt, verdampft und überhitzt und so dem konventionellen Teil zugeführt wird. Der solare Kraft- werksteil ist somit ein solarer Dampferzeuger.A future option is the direct evaporation, in which form the solar field circuit of the solar power plant part and the water-steam cycle of the conventional power plant part of a common circuit, the feedwater is preheated in the solar field, evaporated and superheated and so the conventional part is supplied. The solar power plant part is thus a solar steam generator.
Mit den in einem Solarfeld mit direkter Verdampfung erreichten Dampfparametern kann der konventionelle Kraftwerksteil nicht optimal betrieben werden. Die Entspannung des Dampfes über ein möglichst großes Druckgefälle ist durch die bei der Entspannung in der Turbine entstehende Nässe sehr begrenzt. Um die Entstehung von Nässe in der Turbine bei Ausnutzung eines möglichst großen Druckgefälles zu minimieren, ist eine Zwischenüberhitzung des Dampfes notwendig.With the steam parameters achieved in a solar field with direct evaporation, the conventional power plant part can not be optimally operated. The relaxation of the steam over the largest possible pressure gradient is very limited by the resulting in the relaxation in the turbine moisture. In order to minimize the formation of moisture in the turbine when using the largest possible pressure gradient, a reheating of the steam is necessary.
In einem konventionellen Dampfkraftwerk wird die Zwischenüberhitzung mittels eines Wärmetauschers im Kessel durchgeführt. Bei solarthermischen Kraftwerken mit direkter Verdampfung kann die Zwischenüberhitzung in einem separaten Solar- feld ausgeführt werden. Diese Ausführung der Zwischenüberhitzung erscheint aber nicht zweckmäßig, da bei einer Zwischenüberhitzung im Solarfeld ein sehr hoher Druckverlust zu erwarten ist.In a conventional steam power plant reheating is carried out by means of a heat exchanger in the boiler. For solar thermal power plants with direct evaporation, reheating can be carried out in a separate solar field. However, this embodiment of the reheat does not seem appropriate, since a very high pressure loss is to be expected at a reheat in the solar field.
Die auf eine Vorrichtung bezogene Aufgabe der Erfindung ist daher die Angabe einer solarthermischen Kraftwerksanlage mit verbesserter Zwischenüberhitzung. Eine weitere Aufgabe ist die Angabe eines Verfahrens zum Betrieb einer solchen Kraftwerksanlage .The device-related object of the invention is therefore to provide a solar thermal power plant with improved reheat. Another task is the statement of a method for operating such a power plant.
Diese Aufgabe wird erfindungsgemäß gelöst durch die Merkmale des Patentanspruchs 1 sowie des Patentanspruchs 15.This object is achieved by the features of claim 1 and of claim 15.
Weitere vorteilhafte Ausführungsformen sind in den Unteransprüchen genannt .Further advantageous embodiments are mentioned in the subclaims.
Die erfinderische Solarthermische Kraftwerksanlage umfasst einen Arbeitsfluidkreislauf , einen auf Direktverdampfung basierenden solaren Dampferzeuger und eine Dampfturbine, zur Entspannung des Arbeitsfluids unter Abgabe technischer Arbeit, wobei der solare Dampferzeuger und die Dampfturbine in den Arbeitsfluidkreislauf geschaltet sind, mit einer Zusatzfeuerung zur Zwischenüberhitzung von Arbeitsfluid.The inventive solar thermal power plant includes a working fluid circuit, a direct evaporation based solar steam generator and a steam turbine, for relaxation of the working fluid under delivery of technical work, the solar steam generator and the steam turbine are connected in the working fluid circuit, with an additional firing for reheating of working fluid.
Der Vorteil dieser Anordnung ist, dass die Zwischenüberhitzerdampftemperatur gleich oder sogar höher als die Frisch- dampftemperatur sein kann.The advantage of this arrangement is that the reheater steam temperature may be equal to or even higher than the fresh steam temperature.
Vorteilhafterweise ist die Zusatzfeuerung mit Wasserstoff betreibbar. Dabei ist es besonders zweckmäßig, wenn der Wasserstoff mittels einer Elektrolyse hergestellt wird, deren Energiebedarf beispielsweise von einer Photovoltaikanlage gedeckt wird. Besonders vorteilhaft ist diese Lösung, weil die Zufeuerung, wie das solarthermische Kraftwerk selbst, ebenfalls über regenerative Energien verwirklicht wird und kein Kohlendioxid in den Wasser-Dampf-Kreislauf gelangt.Advantageously, the additional firing with hydrogen is operable. It is particularly useful if the hydrogen is produced by means of an electrolysis, the energy demand is covered for example by a photovoltaic system. This solution is particularly advantageous because the firing, as the solar thermal power plant itself, is also realized on renewable energy and no carbon dioxide enters the water-steam cycle.
In vorteilhafter Ausgestaltung umfasst die solarthermische Kraftwerksanlage einen Generator zur elektrischen Energieerzeugung.In an advantageous embodiment, the solar thermal power plant includes a generator for electrical power generation.
Es ist dann zweckmäßig, wenn die elektrische Energie für die Elektrolyse vom solarthermischen Kraftwerk selbst geliefert wird. Der Vorteil dieser Anordnung wäre eine Wirkungsgrader- höhung aufgrund der besseren Dampfparameter bei der Zwischen- überhitzung, sowie die rein regenerativ ausgeführte Zusatz- feuerung .It is expedient if the electrical energy for the electrolysis is supplied by the solar thermal power plant itself. The advantage of this arrangement would be an increase in efficiency due to better steam parameters in the intermediate Overheating, as well as the purely regenerative running additional firing.
Neben der direkten Feuerung in die Zwischenüberhitzung mit einem Wasserstoffbrenner, wobei Wasserstoff direkt im Wasserdampf verbrannt wird, kann Wasserstoff an mehreren anderen Stellen des konventionellen Dampfkreislaufes zur Prozessoptimierung bzw. Wirkungsgradsteigerung direkt verbrannt werden. Die WasserstoffVerbrennung mittels eines Wasserstoffbrenners, der direkt in den Wasserdampf feuert, kann beispielsweise zur Anhebung der Frischdampfparameter oder zum Ausgleichen von Temperaturschwankungen bei Wolkendurchzug oder zum Anfahren der Anlage vorteilhaft genutzt werden.In addition to the direct firing in the reheat with a hydrogen burner, where hydrogen is burned directly in the steam, hydrogen can be directly burned at several other points of the conventional steam cycle for process optimization or efficiency increase. The hydrogen combustion by means of a hydrogen burner, which fires directly into the steam, can be used to advantage, for example, to increase the live steam parameters or to compensate for temperature fluctuations in cloud passage or to start the plant.
Je nach Dampfparameter kann ein Dampfabscheider im Kreislauf vor dem Zwischenüberhitzer zweckmäßig sein, um mit möglichst hohem Dampfgehalt in den Dampf-Dampf-Wärmetauscher auf der kalten Sekundärseite des Zwischenüberhitzers zu fahren.Depending on the steam parameters, a steam separator in the circuit upstream of the reheater may be expedient to drive with the highest possible steam content in the steam-steam heat exchanger on the cold secondary side of the reheater.
Dabei ist es weiterhin zweckmäßig, wenn das Kondensat aus dem Dampfabscheider an geeigneter Stelle wieder in den Ar- beitsfluidkreislauf eingebracht wird.It is furthermore expedient for the condensate from the steam separator to be introduced again into the working fluid circuit at a suitable point.
Besonders vorteilhaft umfasst die solarthermische Kraftwerks- anläge Parabolrinnenkollektoren, welche über eine hohe Technologiereife verfügen und den höchsten Konzentrationsfaktor für linear konzentrierende Systeme aufweisen, wodurch hohe Prozesstemperaturen möglich sind.Particularly advantageous solar thermal power plant aläge includes parabolic trough collectors, which have a high level of technological maturity and have the highest concentration factor for linearly concentrating systems, whereby high process temperatures are possible.
In einer alternativen Ausführungsform werden Fresnel-In an alternative embodiment, Fresnel
Kollektoren verwendet. Ein Vorteil der Fresnel-Kollektoren gegenüber dem Parabolrinnenkollektor liegt in der Verrohrung und den resultierenden, vergleichsweise geringen Druckverlusten. Ein weiterer Vorteil der Fresnel-Kollektoren sind die gegenüber Parabolrinnenkollektoren weitgehend standardisierten Komponenten, die ohne hochtechnologisches Know-how herzustellen sind. Fresnel-Kollektoren sind daher kostengünstig in Anschaffung und Unterhalt. Eine weitere vorteilhafte alternative Ausführungsform nutzt für die solare Direktverdampfung einen Solarturm, der höchste Prozesstemperaturen ermöglicht.Collectors used. An advantage of the Fresnel collectors over the parabolic trough collector lies in the piping and the resulting, relatively low pressure losses. Another advantage of the Fresnel collectors are the largely standardized components compared to parabolic trough collectors, which can be produced without high-tech know-how. Fresnel collectors are therefore inexpensive to purchase and maintain. A further advantageous alternative embodiment uses a solar tower for solar direct evaporation, which enables the highest process temperatures.
Aufgrund seiner sehr hohen spezifischen Wärmekapazität bzw. seiner hohen spezifischen Verdampfungsenthalpie und seiner einfachen Handhabbarkeit ist Wasser ein sehr guter Wärmeträger und somit als Arbeitsfluid sehr geeignet.Due to its very high specific heat capacity or its high specific enthalpy of evaporation and its easy handling, water is a very good heat transfer medium and thus very suitable as a working fluid.
Bezogen auf das Verfahren wird die Aufgabe durch ein Verfahren zum Betrieb einer solarthermischen Kraftwerksanlage gelöst, in welcher ein Arbeitsfluid in einem Kreislauf geleitet wird, bei dem das Arbeitsfluid durch solare Einstrahlung di- rekt verdampft und unter Abgabe technischer Arbeit auf einer Entspannungsstrecke entspannt und in einer Zusatzfeuerung überhitzt wird.Relative to the method, the object is achieved by a method for operating a solar thermal power plant, in which a working fluid is circulated, in which the working fluid directly by solar irradiation evaporates and relaxed by releasing technical work on a relaxation section and in a Additional firing is overheated.
Das Verfahren bedient sich der beschriebenen Vorrichtung. Die Vorteile der Vorrichtung ergeben sich daher auch für das Verfahren .The method makes use of the device described. The advantages of the device therefore also result for the method.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele und Zeichnungen sowie aus weiteren Unteransprüchen .Further advantages, features and details of the invention will become apparent from the following description of preferred embodiments and drawings and from further subclaims.
Nachfolgend wird die Erfindung beispielhaft anhand der Zeichnungen näher erläutert .The invention will be explained in more detail by way of example with reference to the drawings.
Darin zeigen in vereinfachter und nicht maßstäblicher Darstellung:In it show in simplified and not to scale representation:
FIG 1 eine Zwischenüberhitzung mittels einer Zusatzfeuerung, FIG 2 eine Zwischenüberhitzung mittels Wasserstoff-befeuerter Zusatzfeuerung, wobei Wasserstoff regenerativ über eine Photovoltaikanlage produziert wird, FIG 3 eine Zwischenüberhitzung mittels Wasserstoff-befeuerter Zusatzfeuerung, wobei Wasserstoff mittels Strom aus eigener Kraftwerksproduktion gewonnen wird,1 shows a reheating by means of a supplementary firing, FIG. 2 shows a reheating by means of a hydrogen-fired supplementary firing, wherein hydrogen is produced regeneratively via a photovoltaic system, FIG. 3 shows reheating by means of hydrogen-fired supplementary firing, with hydrogen being obtained by means of electricity from its own power plant production, FIG.
FIG 4 eine allgemeine Nutzung der direkten Wasserstofffeue- rung im solarthermischen Kraftwerk undFIG. 4 shows a general use of the direct hydrogen combustion in the solar thermal power plant and
FIG 5 eine Kombination zweier Systeme (Dampf -Dampf-5 shows a combination of two systems (steam vapor
Wärmetauscher und direkte Wasserstoffverbrennung) .Heat exchanger and direct hydrogen combustion).
Gleiche Teile sind in allen Figuren mit denselben Bezugszei- chen versehen.The same parts are provided with the same reference numbers in all figures.
Figur 1 zeigt den schematischen Aufbau und den Kreislaufpro- zess einer solarthermischen Kraftwerksanlage 1 mit Direktverdampfung nach der Erfindung. Die Anlage 1 umfasst ein Solar- feld 2, in dem die Sonnenstrahlung konzentriert und in Wärmeenergie umgewandelt wird und kann beispielsweise Parabolrin- nenkollektoren, Solartürme oder Fresnel-Kollektoren aufweisen. Konzentrierte Sonnenstrahlung wird an ein Wärmeträgerme- dium abgegeben, welches verdampft und« über eine Frischdampf- leitung 10 in eine Entspannungsstrecke 19, bestehend aus einer Dampfturbine 3, als Arbeitsfluid eingeleitet wird. Die Dampfturbine 3 umfasst eine Hochdruckturbine 4 und eine Niederdruckturbine 5, welche einen Generator 6 antreiben. In der Turbine 3 wird das Arbeitsfluid entspannt und anschließend in einem Kondensator 7 verflüssigt. Eine Speisewasserpumpe 8 pumpt das verflüssigte Wärmeträgermedium wieder zurück in das Solarfeld 2, womit der Kreislauf 9 des Wärmeträgermediums bzw. des Arbeitsfluids geschlossen ist.FIG. 1 shows the schematic structure and the circulation process of a solar thermal power plant 1 with direct evaporation according to the invention. The plant 1 comprises a solar field 2, in which the solar radiation is concentrated and converted into heat energy and can for example have parabolic trough collectors, solar towers or Fresnel collectors. Concentrated solar radiation is emitted to a heat transfer medium which evaporates and is introduced via a live steam line 10 into a expansion section 19, consisting of a steam turbine 3, as working fluid. The steam turbine 3 comprises a high-pressure turbine 4 and a low-pressure turbine 5, which drive a generator 6. In the turbine 3, the working fluid is expanded and then liquefied in a condenser 7. A feedwater pump 8 pumps the liquefied heat transfer medium back into the solar field 2, whereby the circuit 9 of the heat transfer medium and the working fluid is closed.
Im Ausführungsbeispiel der Figur 1 wird der Dampf der kalten Zwischenüberhitzung mittels einer Zusatzfeuerung 22 (z.B. fossil, Biomasse, Wasserstoff) überhitzt. Eine fossilbefeuerte Zusatzfeuerung 22 kann in verschiedenen Kesselbauarten ausgeführt werden. Durch ihre Anordnung kann sie gezielt für die Überhitzung des kalten Zwischenüberhitzungsdampfes auf die entsprechenden heißen Zwischenüberhitzungsdampfparameter eingesetzt werden. Vor der fossil befeuerten Zwischenüberhitzung 22 kann je nach kalten Zwischenüberhitzungsdampfparametern die Verwendung eines Dampfabscheiders 14 sinnvoll sein, um einen optimalen Dampfgehalt für die fossil befeuerte Überhitzung zu erhalten. Das Kondensat aus dem Dampfabscheider 14 wird an einer geeigneten Stelle (Einspeisestelle 15) wieder in den Speisewasserkreislauf 9 eingebracht .In the exemplary embodiment of FIG. 1, the steam of the cold reheat is superheated by means of an additional firing 22 (eg fossil, biomass, hydrogen). A fossil-fired supplementary firing 22 can be carried out in various boiler types. Their arrangement allows them to be used specifically for superheating the cold reheat steam to the corresponding hot reheat steam parameters. Depending on the cold reheat steam parameters, the use of a steam separator 14 may be useful before the fossil-fired reheat 22 to obtain an optimum steam content for the fossil-fired overheating. The condensate from the steam separator 14 is introduced again into the feedwater circuit 9 at a suitable point (feed point 15).
Figur 2 zeigt eine Ausführung der Erfindung, welche die Zwi- schenüberhitzung mit Zusatzfeuerung 22 genauer beschreibt.FIG. 2 shows an embodiment of the invention which describes in more detail the intermediate overheating with additional firing 22.
Die Zusatzfeuerung wird in dieser Ausführung mit Wasserstoff 26 betrieben, d.h. dass ein Wasserstoffbrenner 21 direkt in den Wasserdampf feuert. Der benötigte Wasserstoff 26 wird mittels einer Elektrolyse 24 erzeugt. Die für die Elektrolyse 24 benötigte Energie wird von einer Photovoltaikanlage 23 zur Verfügung gestellt, wodurch die normalerweise über fossile Energieträger oder Biomasse befeuerte Zusatzfeuerung 22 ebenfalls über regenerative Energien verwirklicht wird und kein Kohlendioxid in den Wasser-Dampf-Kreislauf 9 gelangt.The supplemental furnace is operated with hydrogen 26 in this embodiment, i. a hydrogen burner 21 fires directly into the water vapor. The required hydrogen 26 is generated by means of an electrolysis 24. The energy required for the electrolysis 24 is provided by a photovoltaic system 23, whereby the normally fired by fossil fuels or biomass additional firing 22 is also realized via renewable energy and no carbon dioxide enters the water-steam cycle 9.
Figur 3 zeigt wie Figur 2 eine Zusatzfeuerung 22, bei der ein Wasserstoffbrenner 21 direkt in den Wasserdampf feuert. Anders als in der in Figur 2 gezeigten Ausführung wird die für die Elektrolyse 24 benötigte Energie aber vom Kraftwerk 1 selbst geliefert, wodurch die Zusatzfeuerung 22 wiederum rein regenerativ ausgeführt wird.FIG. 3, like FIG. 2, shows an additional firing 22 in which a hydrogen burner 21 fires directly into the steam. Unlike in the embodiment shown in Figure 2, the energy required for the electrolysis 24 but supplied by the power plant 1 itself, whereby the additional firing 22 is again carried out purely regenerative.
In einer in Figur 4 gezeigten Ausführung wird nicht nur die direkte Feuerung in die Zwischenüberhitzung mittels Wasser- stoffbrenner 21 gezeigt, wobei Wasserstoff 26 direkt im Wasserdampf verbrannt wird. Wasserstoff 26 wird hier im Hinblick auf Prozessoptimierung und Wirkungsgradsteigerung auch zur Anhebung der Frischdampfparameter oder zum Ausgleichen von Temperaturschwankungen durch Wolkendurchzug genutzt und di- rekt im Wasserdampf der Frischdampfleitung 10 verbrannt.In an embodiment shown in FIG. 4, not only the direct firing into the reheating by means of hydrogen burner 21 is shown, with hydrogen 26 being burned directly in the steam. Hydrogen 26 is also used here with regard to process optimization and efficiency increase to increase the live steam parameters or to compensate for temperature fluctuations by cloud passage and burned directly in the steam of the main steam line 10.
Figur 5 zeigt eine Ausführungsform, bei der eine erste Zwischenüberhitzung des teilentspannten Dampfes über einen Dampf-Dampf-Wärmetauscher 17 realisiert ist. Die Zwischen- überhitzung auf die notwendigen Dampfparameter erfolgt mittels Zusatzfeuerung 22, beispielsweise mit einem Wasserstoff- brenner 21, der direkt in die Zwischenüberhitzung feuert. Der Dampf für die erste Zwischenüberhitzung kann dabei entweder aus einer speziellen Anzapfung 16 der Hochdruckturbine 4 oder einer Entnahmestelle aus einer Anzapfung zur Speisewasservor- wärmung entnommen werden und nach der Abkühlung im Dampf- Dampf-Wärmetauscher 17 an einer Einspeisestelle 18 zur reku- perativen Speisewasservorwärmung wieder in den Kreislauf 9 des Arbeitsfluids zurückgeführt werden. Der Wasserstoff 26 für die Zusatzfeuerung kann mittels Elektrolyse 24 oder thermischer Spaltung gewonnen werden. FIG. 5 shows an embodiment in which a first reheat of the partially released steam via a Steam-steam heat exchanger 17 is realized. The intermediate superheating to the necessary steam parameters takes place by means of additional firing 22, for example with a hydrogen burner 21, which fires directly into the intermediate superheating. The steam for the first reheat can be taken either from a special tap 16 of the high-pressure turbine 4 or a removal point from a tap for feedwater preheating and after cooling in the steam-steam heat exchanger 17 at a feed point 18 for recirculating feedwater preheating again be recycled to the circulation 9 of the working fluid. The hydrogen 26 for the additional firing can be obtained by means of electrolysis 24 or thermal cleavage.

Claims

Patentansprüche claims
1. Solarthermische Kraftwerksanlage (1), mit einem Ar- beitsfluidkreislauf (9), einem auf Direktverdampfung basie- renden solaren Dampferzeuger und einer Dampfturbine (3), zur Entspannung des Arbeitsfluids unter Abgabe technischer Arbeit, wobei der solare Dampferzeuger und die Dampfturbine (3) in den Arbeitsfluidkreislauf (9) geschaltet sind, mit einer Zusatzfeuerung (22) zur Zwischenüberhitzung von Arbeitsfluid.1. Solar thermal power plant (1), with a working fluid circuit (9), based on direct evaporation solar steam generator and a steam turbine (3), to relax the working fluid under delivery of technical work, the solar steam generator and the steam turbine (3 ) are connected in the working fluid circuit (9), with an additional firing (22) for the reheating of working fluid.
2. Solarthermische Kraftwerksanlage (1) nach Anspruch 1, wobei die Zusatzfeuerung (22) mit einem Brennstoff betreibbar ist.2. Solar thermal power plant (1) according to claim 1, wherein the additional firing (22) is operable with a fuel.
3. Solarthermische Kraftwerksanlage (1) nach einem der Ansprüche 1 oder 2, wobei die Zusatzfeuerung (22) mit Wasserstoff (26) betreibbar ist.3. Solar thermal power plant (1) according to any one of claims 1 or 2, wherein the additional firing (22) with hydrogen (26) is operable.
4. Solarthermische Kraftwerksanlage (1) nach Anspruch 3, mit einer Elektrolyseeinrichtung (24) zur Gewinnung von Wasserstoff (26) .4. Solar thermal power plant (1) according to claim 3, with an electrolysis device (24) for the recovery of hydrogen (26).
5. Solarthermische Kraftwerksanlage (1) nach Anspruch 4, wobei die Elektrolyseeinrichtung (24) an eine Photovoltaikanla- ge (23) angeschlossen ist.5. Solar thermal power plant (1) according to claim 4, wherein the electrolysis device (24) ge to a Photovoltaikanla- (23) is connected.
6. Solarthermische Kraftwerksanlage (1) nach einem der vorhergehenden Ansprüche, weiter umfassend einen Generator (6) zur elektrischen Energieerzeugung, wobei der Generator über eine Welle an die Dampfturbine (3) gekoppelt ist.6. Solar thermal power plant (1) according to one of the preceding claims, further comprising a generator (6) for generating electrical energy, wherein the generator is coupled via a shaft to the steam turbine (3).
7. Solarthermische Kraftwerksanlage (1) nach Anspruch 6, wobei die für die Elektrolyse (24) benötigte Energie vom Generator (6) der Kraftwerksanlage (1) selbst lieferbar ist.7. Solar thermal power plant (1) according to claim 6, wherein the energy required for the electrolysis (24) from the generator (6) of the power plant (1) itself is available.
8. Solarthermische Kraftwerksanlage (1) nach einem der vorhergehenden Ansprüche, wobei ein Dampfabscheider (14) der Zusatzfeuerung (22) vorgeschaltet ist. 8. Solar thermal power plant (1) according to one of the preceding claims, wherein a steam separator (14) of the additional firing (22) is connected upstream.
9. Solarthertnische Kraftwerksanlage (1) nach Anspruch 8, wobei ein Kondensatausgang des Dampfabscheiders (14) in den Ar- beitsfluidkreislauf (9) geschaltet ist.9. Solarthertnische power plant (1) according to claim 8, wherein a condensate outlet of the vapor separator (14) in the working fluid circuit (9) is connected.
10. Solarthermische Kraftwerksanlage (1) nach einem der vorhergehenden Ansprüche, wobei der solare Dampferzeuger mit der Turbine (3) über eine Frischdampfleitung (10) verbunden ist, wobei eine Zusatzfeuerung in die Frischdampfleitung geschal- tet ist.10. Solar thermal power plant (1) according to one of the preceding claims, wherein the solar steam generator with the turbine (3) via a main steam line (10) is connected, wherein an additional firing is switched into the main steam line.
11. Solarthermische Kraftwerksanlage (1) nach einem der vorhergehenden Ansprüche, wobei der solare Dampferzeuger Para- bolrinnenkollektoren umfasst.11. Solar thermal power plant (1) according to one of the preceding claims, wherein the solar steam generator parabolic trough collectors comprises.
12. Solarthermische Kraftwerksanlage (1) nach einem der Ansprüche 1 bis 10, wobei der solare Dampferzeuger Fresnel- Kollektoren umfasst.12. Solar thermal power plant (1) according to one of claims 1 to 10, wherein the solar steam generator comprises Fresnel collectors.
13. Solarthermische Kraftwerksanlage (1) nach einem der Ansprüche 1 bis 10, wobei der solare Dampferzeuger einen Solarturm umfasst.13. Solar thermal power plant (1) according to one of claims 1 to 10, wherein the solar steam generator comprises a solar tower.
14. Solarthermische Kraftwerksanlage (1) nach einem der vor- hergehenden Ansprüche, wobei das Arbeitsfluid Wasser bzw.14. Solar thermal power plant (1) according to one of the preceding claims, wherein the working fluid is water or
Wasserdampf ist.Steam is.
15. Verfahren zum Betrieb einer solarthermischen Kraftwerks- anläge (1) , in welcher ein Arbeitsfluid in einem Kreislauf (9) geführt wird, bei dem das Arbeitsfluid durch solare Einstrahlung direkt verdampft und unter Abgabe technischer Arbeit entspannt und in einer Zusatzfeuerung (22) überhitzt wird. 15. A method for operating a solar thermal power plant aläge (1), in which a working fluid in a circuit (9) is performed, in which the working fluid directly evaporated by solar radiation and relaxed under delivery of technical work and superheated in an additional firing (22) becomes.
EP08716323A 2007-03-20 2008-03-06 Method and device for fired intermediate overheating during direct solar vapourisation in a solar thermal power station Withdrawn EP2126467A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007013852 2007-03-20
PCT/EP2008/001808 WO2008113482A2 (en) 2007-03-20 2008-03-06 Method and device for fired intermediate overheating during direct solar vapourisation in a solar thermal power station

Publications (1)

Publication Number Publication Date
EP2126467A2 true EP2126467A2 (en) 2009-12-02

Family

ID=39766534

Family Applications (2)

Application Number Title Priority Date Filing Date
EP08716323A Withdrawn EP2126467A2 (en) 2007-03-20 2008-03-06 Method and device for fired intermediate overheating during direct solar vapourisation in a solar thermal power station
EP08717938A Withdrawn EP2126468A2 (en) 2007-03-20 2008-03-18 Method and device for intermediate superheating in solar direct evaporation in a solar-thermal power plant

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP08717938A Withdrawn EP2126468A2 (en) 2007-03-20 2008-03-18 Method and device for intermediate superheating in solar direct evaporation in a solar-thermal power plant

Country Status (7)

Country Link
US (1) US20100162700A1 (en)
EP (2) EP2126467A2 (en)
CN (2) CN101680649A (en)
AU (2) AU2008228596B2 (en)
IL (2) IL200913A (en)
WO (2) WO2008113482A2 (en)
ZA (2) ZA200906293B (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009007915B4 (en) * 2008-11-07 2015-05-13 Deutsches Zentrum für Luft- und Raumfahrt e.V. Process for desalting saline water
RO126018A2 (en) * 2009-06-18 2011-02-28 Vasile Muscalu Installation and process for the desalination of water
CN102072115B (en) * 2009-11-23 2013-02-27 张建城 Slotted concentrating solar power device
WO2011068880A2 (en) * 2009-12-01 2011-06-09 Areva Solar, Inc. Utilizing steam and/or hot water generated using solar energy
CN101839224B (en) * 2010-03-16 2011-07-20 王承辉 Solar-powered thermal generating set
CH702906A1 (en) * 2010-03-26 2011-09-30 Alstom Technology Ltd Method for operating an integrated solar combined cycle power plant and solar combined cycle power plant for implementing the process.
CN101858320A (en) * 2010-04-07 2010-10-13 河海大学 Solar heating and generating system and method for biological sewage treatment
JP5479191B2 (en) * 2010-04-07 2014-04-23 株式会社東芝 Steam turbine plant
EP2385223A1 (en) * 2010-05-04 2011-11-09 Thermal PowerTec GmbH Procedure for the increase of the efficiency of gas and steam turbine power plants
DE102010027226A1 (en) * 2010-05-06 2011-11-10 Siemens Aktiengesellschaft Solar power plant part of a solar thermal power plant and solar thermal power plant with solar collector surfaces for heat transfer medium and work medium
US8573196B2 (en) 2010-08-05 2013-11-05 Babcock Power Services, Inc. Startup/shutdown systems and methods for a solar thermal power generating facility
US9447963B2 (en) 2010-08-16 2016-09-20 Emerson Process Management Power & Water Solutions, Inc. Dynamic tuning of dynamic matrix control of steam temperature
US9217565B2 (en) * 2010-08-16 2015-12-22 Emerson Process Management Power & Water Solutions, Inc. Dynamic matrix control of steam temperature with prevention of saturated steam entry into superheater
US9335042B2 (en) 2010-08-16 2016-05-10 Emerson Process Management Power & Water Solutions, Inc. Steam temperature control using dynamic matrix control
WO2012083377A1 (en) * 2010-12-23 2012-06-28 Kashima Industries Holding Pty Ltd Solar thermal power apparatus
EP2487338A1 (en) 2011-02-11 2012-08-15 Alstom Technology Ltd Solar thermal power plant
DE102011000946A1 (en) * 2011-02-25 2012-08-30 Hitachi Power Europe Gmbh Solar thermal power generation plant and method for energy production by means of a solar thermal energy generation plant
CN102168587B (en) * 2011-04-07 2013-08-28 王承辉 Ethanol vapor power-generating device
ITRM20110316A1 (en) * 2011-06-17 2012-12-18 Valerio Maria Porpora ELECTRIC ENERGY PRODUCTION PLANT WITH ANY COGENERATION OF USING HEAT RENEWABLE FUEL, IN PARTICULAR BIOGAS.
EP2574739A1 (en) * 2011-09-29 2013-04-03 Siemens Aktiengesellschaft Assembly for storing thermal energy and method for its operation
US9163828B2 (en) 2011-10-31 2015-10-20 Emerson Process Management Power & Water Solutions, Inc. Model-based load demand control
US20150108759A1 (en) * 2012-02-20 2015-04-23 Regen Technologies Pty Ltd Variable Speed Gas Turbine Generation System and Method
ES2422955B1 (en) * 2012-03-09 2014-09-19 Sener Grupo De Ingeniería, S.A. PROCEDURE TO IMPROVE THE PERFORMANCE OF THE THERMAL CYCLE IN NUCLEAR POWER STATIONS.
EP2644849B1 (en) * 2012-03-28 2018-11-07 General Electric Technology GmbH Circulating fluidized bed boiler device
JP2015164714A (en) * 2014-02-28 2015-09-17 真 細川 Solar power generation system fresh water generator
DE102014225696A1 (en) 2014-12-12 2016-06-16 Siemens Aktiengesellschaft Method for operating a thermochemical heat store
CN107956524A (en) * 2016-10-18 2018-04-24 神华集团有限责任公司 Steam power system and coal-to-olefin chemical system
DE102021204208A1 (en) 2021-04-28 2022-11-03 Siemens Energy Global GmbH & Co. KG Storage power station and method for operating a storage power station

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4074708A (en) * 1976-06-07 1978-02-21 Combustion Engineering, Inc. Burning hydrogen and oxygen to superheat steam
JPS60216009A (en) * 1984-04-12 1985-10-29 Toshiba Corp Steam turbine plant
DE4126037A1 (en) * 1991-08-06 1993-02-11 Siemens Ag GAS AND STEAM TURBINE POWER PLANT WITH A SOLAR HEATED STEAM GENERATOR
EP0784157A1 (en) * 1995-04-03 1997-07-16 Compania Sevillana de Electricidad System for the integration of solar energy in a conventional thermal power plant generating electric energy
DE10128562C1 (en) * 2001-06-13 2003-01-09 Deutsch Zentr Luft & Raumfahrt Solar power plant comprises an evaporator branch with solar collectors for producing steam in a working medium, a steam turbine branch for producing steam, and a pre-heater branch for recycling the working medium to the evaporator branch
JP3780884B2 (en) * 2001-08-31 2006-05-31 株式会社日立製作所 Steam turbine power plant
JP4521202B2 (en) * 2004-02-24 2010-08-11 株式会社東芝 Steam turbine power plant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008113482A2 *

Also Published As

Publication number Publication date
ZA200906293B (en) 2010-05-26
CN101680648A (en) 2010-03-24
AU2008228211A1 (en) 2008-09-25
AU2008228596A1 (en) 2008-09-25
IL200912A (en) 2013-03-24
CN101680649A (en) 2010-03-24
AU2008228211B2 (en) 2013-01-17
WO2008113482A2 (en) 2008-09-25
ZA200906294B (en) 2010-05-26
WO2008113482A3 (en) 2009-11-26
WO2008113798A3 (en) 2009-11-26
US20100162700A1 (en) 2010-07-01
EP2126468A2 (en) 2009-12-02
IL200913A (en) 2012-10-31
IL200912A0 (en) 2010-05-17
WO2008113798A2 (en) 2008-09-25
AU2008228596B2 (en) 2012-02-09
IL200913A0 (en) 2010-05-31

Similar Documents

Publication Publication Date Title
EP2126467A2 (en) Method and device for fired intermediate overheating during direct solar vapourisation in a solar thermal power station
DE102008051384B3 (en) Solar-hybrid operated gas and steam power plant has solar plant, gas turbine system and steam turbine system, where heat-carrier circuit is provided for transmitting solar heat
DE19723543C2 (en) Power generation plant
DE4212336C1 (en)
EP1984624B1 (en) Method and device to increase the energy production in a solar thermal power plant
EP0526816A1 (en) Power plant with gas and steam turbines with solar steam generator
EP2101051A1 (en) Storage of electrical energy in a heat accumulator and reverse electrical energy production by means of a thermodynamic cycle
DE19651645A1 (en) Method of using solar power in gas-and-steam power station
WO2010118796A2 (en) Steam power plant having solar collectors
EP1820965A1 (en) Method and device to control the energy production in a solar thermal power plant
WO2010054911A1 (en) Method and device for resuperheating in a solar thermal power station with indirect evaporation
WO2008067855A2 (en) Method and apparatus for increasing the performance and efficiency of an orc power plant process
DE19652349C2 (en) Solar and low-temperature combined heating system Solico
DE4126038A1 (en) Gas and steam turbine plant with solar heated steam generator - has additional combustion chamber in exhaust gas line from gas turbine
DE3017699A1 (en) SOLAR POWER PLANT WITH A SOLAR HEATER ARRANGED ON A TOWER
EP0856104B1 (en) Energy-generation process and power station for carrying out the process
DE4126036A1 (en) Gas and steam turbine plant with solar heated system generator - with generator connected to heat exchanger in h.p. steam line from waste heat steam generator
DE19627425A1 (en) Method of operating hybrid solar powered combined plant
DE102010040208B4 (en) Solar thermal continuous evaporator heating surface with local cross-sectional constriction at its inlet
DE19510006A1 (en) Hybrid powerstation steam-raiser unit
DE102012217371A1 (en) Power plant arrangement e.g. gas and steam power plant arrangement has water-vapor circuit that is thermally coupled with electric heater, and non-inverter that is provided between electric heater and photovoltaic cell
EP2177757A1 (en) Method and device for intermediate heating with saturated steam for direct solar damping in a solar thermal power plant
WO2010031375A2 (en) Method for overheating vapour
DE102010040200A1 (en) Solar thermal absorber for direct evaporation, in particular a solar tower power plant
DE102012103621A1 (en) Solar-thermal power plant e.g. paraboloid power plant, for electricity generation, has heat accumulators comprising electrical heater attached to public, external electricity main and/or power plant-self electricity generator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090904

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

R17D Deferred search report published (corrected)

Effective date: 20091126

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20131001