EP2120244A1 - Hochspannungs-Leistungsschalter - Google Patents
Hochspannungs-Leistungsschalter Download PDFInfo
- Publication number
- EP2120244A1 EP2120244A1 EP08156231A EP08156231A EP2120244A1 EP 2120244 A1 EP2120244 A1 EP 2120244A1 EP 08156231 A EP08156231 A EP 08156231A EP 08156231 A EP08156231 A EP 08156231A EP 2120244 A1 EP2120244 A1 EP 2120244A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- chamber
- mixing chamber
- hot gas
- gas
- switch according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H33/00—High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
- H01H33/70—Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
- H01H33/72—Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid having stationary parts for directing the flow of arc-extinguishing fluid, e.g. arc-extinguishing chamber
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H33/00—High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
- H01H33/70—Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
- H01H33/88—Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
- H01H2033/888—Deflection of hot gasses and arcing products
Definitions
- the invention relates to a circuit breaker, comprising a container filled with insulating gas and a switching unit arranged in the container and aligned along an axis and capable of being acted upon by high voltage, having a quenching chamber and at least one exhaust volume.
- the exhaust volume is connected via an inlet to an arc zone forming when it is switched off in the quenching chamber and communicates with the interior of the container via an outlet which is led through a housing of the switching unit.
- the exhaust volume has an annularly guided around the axis chamber in which flowing from the arc zone hot gas is mixed by recirculation with cool insulating gas.
- the described switch has an extinguishing chamber, an exhaust chamber downstream of the extinguishing chamber and an extinguishing chamber and exhaust volume arranged and a baffle plate containing intermediate volume.
- hot gas generated in the quenching chamber by a switching arc flows out of an insulating nozzle into the exhaust volume via the intermediate volume.
- the hot gas hits the baffle plate and is deflected. Then it hits a bottleneck of a Laval nozzle.
- Downstream of the baffle plate creates a recirculation area in which an effective flow is formed, which leads to a particularly good mixing of the hot gas with already existing in the intermediate volume cooler insulating gas.
- the dielectric properties of the hot gas are improved and thus increases the switching capacity of the switch.
- EP 1 768 150 A1 shows a high-voltage switch, the switching power is achieved by precooling the hot gas formed during switching off by means of a filled with cold insulating gas intermediate volume, in which the hot gas is divided into two partial flows, one of which flows through the intermediate volume and thereby displaces the cold gas, while the other am Intermediate volume is passed and then mixed with the displaced cold gas to a dielectrically high-quality insulating gas.
- WO 2006/066420 A1 known circuit breaker recirculates the hot gas in a trained as a sleeve exhaust area and builds so inside the sleeve back pressure.
- the hot gas therefore subsequently flows in the form of a plurality of gas jets through openings in the sleeve.
- a large number of vortices is produced, which cause intensive cooling of the hot gas through turbulent convective heat transfer into the baffle wall.
- the purpose of the invention is to provide a circuit breaker with improved switching performance.
- a mixing chamber designed in the manner of a hollow cylinder with two annular end faces is provided in the exhaust volume, one of the fed hot gas front of both end faces of two axially staggered plates formed, and is arranged between the two plates a radially aligned annular gap through the hot gas supplied flows predominantly in the radial direction into the interior of the mixing chamber.
- the hot gas passing from the annular gap into the interior of the chamber has a pulse proportional to the width of the annular gap and flows along the chamber wall. It is thus produced a virtually the entire volume of the mixing chamber filling, toroidal vortex high energy. This vortex ensures a rapid and intensive mixing of the incoming hot gas with the entire existing in the mixing chamber cool insulating gas, whereby a particularly effective cooling of the hot gas is achieved. Therefore, the gas emerging from the exhaust volume has properties even when switching off large short-circuit currents, which satisfy the requirements in areas of the switch which are subject to high dielectric stress.
- a first of the two plates is fastened to a part of the housing designed as an inner tube and a second of the two plates to a part of the housing designed as an outer tube, and the outer radius of the first plate is at least equal to the inner radius of the second plate.
- the length of the mixing chamber in the axial direction is approximately equal to the height of the chamber in the radial direction. It is then ensured that the vortex can form without great flow resistance in the mixing chamber, and that the vortex is maintained over a comparatively large period of time without significant friction losses through the surrounding wall of the mixing chamber.
- the flow cross section of the annular gap is kept small, at least smaller than the flow cross section of the inlet to the exhaust volume and larger than the flow cross section of the outlet from the exhaust volume into a surrounding and the switching unit filled with insulating gas outside space.
- the dielectric properties of the hot gas can be further improved if the exhaust volume has at least two series-connected, similarly formed mixing chambers, wherein the rear end face facing away from the inlet of the upstream first mixing chamber at the same time forms the front end side of the downstream second mixing chamber.
- the homogeneous vortex builds up a back pressure in the upstream first mixing chamber. This back pressure ensures a strong flow of the passing of the upstream first in the downstream second mixing chamber gas.
- the exhaust volume having at least one hollow-cylindrical mixing chamber is generally arranged upstream of an insulating nozzle provided in the quenching chamber and radially delimiting the arc zone. Alternatively, however, it can also be arranged downstream of the insulating nozzle. In a particularly powerful embodiment of the switch according to the invention, a second exhaust volume closes downstream of the insulating nozzle. Also in this second exhaust volume is advantageously arranged at least one hollow cylindrical mixing chamber, since then an excessively high dielectric load is avoided in the surrounding insulating gas when exiting the dielectrically improved and cooled in the mixing chamber hot gas from the second exhaust.
- the hot gas does not necessarily have to flow directly from the arc zone into the hollow cylindrical mixing chamber. It can also pass indirectly from the arc zone into the mixing chamber, for example via a premixing chamber upstream of the mixing chamber.
- the in Fig. 1 shown high-voltage circuit breaker has a filled with a compressed insulating gas, such as based on sulfur hexafluoride or a sulfur hexafluoride gas mixture, and generally made of metal, possibly also from a weather-resistant insulating, existing container K.
- a switching unit E which can be acted upon by high voltage, which is aligned along an axis X and has an axially symmetrical, substantially tubular housing 10.
- the Housing 10 receives a quenching chamber 20 and two exhaust volumes 30 and 40, of which the exhaust volume 30 connects to the lower end and the exhaust volume 40 to the upper end of the quenching chamber 20.
- the housing 10 is formed in a coaxial arrangement of two metal hollow bodies 11 and 12 and an insulating tube 13, which connects the two metal hollow body together gas-tight and forms a determined by the high voltage insulation distance between the two metal hollow bodies 11, 12.
- In the quenching chamber 20 is a contact arrangement with two along the axis X relative to each other displaceable switching pieces each having a rated current and an arcing contact.
- An arc contact of a first one of the two contact pieces, which is movable by a drive D, is hollow and communicates via outlet openings 22 with a premixing chamber 31 located in the exhaust volume 30.
- the arcing contact of the fixedly arranged second contact piece is identified by reference numeral 23 and is referred to as a pin educated.
- the movable contact piece and thus also the arcing contact 21 are electrically conductively connected via a sliding contact 24 and the metal hollow body 11 to a first power connection, not shown, of the switching unit E.
- the stationary contact piece and thus also the arcing contact 23 are electrically connected via a supporting ring containing spokes 25 and the hollow metal body 12 with a second power connection, not shown, of the switching unit E.
- the movable contact piece carries an insulating nozzle 26 coaxially surrounding the two arcing contacts 21 and 23 from a polymeric insulating material, preferably polytetrafluoroethylene, which extinguishes in the event of arcing.
- the insulating nozzle 26 defines an arc zone 27 radially outward. The arc zone is formed when switched off by the separating arcing contacts 21, 23 and in this case takes on the two contacts 21, 23 footed switching arc.
- the exhaust volume 30 is enclosed by the metal hollow body 11 and contains not only the premixing chamber 31 but also four series mixing chambers 32, 33, 34 and 35, which are each guided in a ring around the axis X.
- the Mixing chambers 32, 33 and 34 are each designed in the manner of a hollow cylinder and each have two annular end faces 3, 3 '(only referred to in the mixing chamber 32).
- 3a ', 3b' (indicated only at the chamber 32) are formed.
- a radially aligned annular gap 3c respectively. 3c ' As can be seen, the two plates 3a and 3b respectively.
- 3a 'and 3b' each formed as a circular ring.
- the plates 3a and 3a ' are attached to a part of the metal hollow body 11 formed as an inner tube 11b as an outer tube 11a and the plates 3b and 3b'.
- the outer radius of the plates 3b and 3b ' is at least equal to the inner radius of the plate 3a and 3a'.
- Fig. 1 it can be seen that the mixing chamber 32 is connected via the premixing chamber 31 with the outlet openings 22 acting as a gas inlet of the exhaust volume 30, and that the mixing chamber 35 has outlet openings 36 acting as a gas outlet of the exhaust volume 30. Through these openings 36 can during operation of the switch insulating gas from the container K into the interior of the housing 10, ie in the two exhaust volumes 30, 40 and the quenching chamber 20, flow and flows when turned off exhaust gas from the exhaust volume 30 in the insulating gas-filled container K from ,
- the flow S1 is admitted through the outlet openings 22 into the premixing chamber 31, in which the incoming hot gas is calmed and pre-cooled by premixing with cool insulating gas.
- the when cooling large short-circuit currents in general temperatures higher than 3000 K exhibiting, pre-cooled hot gas now bounces on the end face 3a of the mixing chamber 32 and is deflected in the radial direction.
- the deflected hot gas S1 is in the off Fig.2 accelerated annular gap 3c accelerates and enters the interior of the mixing chamber 32 at high speed and with a predominantly radially oriented flow direction. In this case, it is largely guided along the inner wall of the mixing chamber 32.
- the impulse resp. the velocity of the incoming hot gas S1 and thus the intensity of the induced vortex W can be reduced by reducing the in Fig.2 increased with the reference numeral A flow cross-section of the annular gap 3c.
- the flow cross-section A of the annular gap 3c should be smaller than the flow cross-section of the gas inlet defined by the outlet openings 22 and larger than the flow cross-section of the outlet openings 36 be defined gas outlet of the exhaust volume 30. Is that off Fig.
- the dielectric properties of the hot gas flow S1 are successively improved by the similar mixing chambers 33 and 34 subsequently flowing through it and the mixing chamber 35. It is advantageous that the homogeneous vortex W builds up a dynamic pressure in the mixing chamber 32 which, for a strong flow, passes from the mixing chamber 32 into the mixing chamber 33 Flow S1 provides. In the case of large short-circuit currents, the momentum of the hot gas flow S1 passing out of the mixing chamber 32 is generally still sufficient to produce well-formed vortices in the chamber 33 and in the following chambers 34 and 35 as well. Since high-voltage circuit breakers outside the insulating gas-filled container, ie in air, have to hold the applied high voltage, they generally extend in the axial direction substantially longer than radially. Therefore, a plurality of mixing chambers connected in series can be installed in the switching unit E, without exceeding the predetermined length in the axial direction by the magnitude of the high voltage.
- At least one of the mixing chamber 32 comparable hollow cylindrical chamber 41 may be provided in the exhaust volume 40, in which the flowing out of the diffuser of the insulating 26 hot gas flow S2 is guided with a radially directed flow component into the interior of the mixing chamber 41 and in this case the vortex W ' forms.
- exhaust gas enters the space between the metal hollow body 12 and container K and is thus not significantly reduced the dielectric strength in this space when exhausts of switching gas.
- At least one downstream further mixing chambers 42 additionally improves the dielectric properties of the hot gas flow S2.
- the time dependence of the breakdown voltage U BD was determined at three comparably trained switches during a zero crossing CZ of the current to be disconnected.
- Erf1 means a first embodiment of the switch according to the invention with a mixing chamber corresponding to the mixing chamber 32
- Erf2 a second embodiment of the switch according to the invention with two such mixing chambers connected in series
- SdT a prior art embodiment without such a mixing chamber. From the diagram shows that the minimum of the breakdown voltage in both embodiments according to the invention is substantially higher than in the switch according to the prior art, and that at the same time the breakdown voltage in the two embodiments according to the invention is subjected to substantially lower fluctuations than the switch after the state of the art. Therefore, the switch according to the invention is characterized by an improved switching performance.
- the breakdown voltage is obviously increased compared to the embodiment erf1 and thus the switching performance is additionally improved.
Landscapes
- Circuit Breakers (AREA)
Abstract
Description
- Die Erfindung bezieht sich auf einen Leistungsschalter, enthaltend einen isoliergasgefüllten Behälter und eine im Behälter angeordnete, längs einer Achse ausgerichtete und mit Hochspannung beaufschlagbare Schalteinheit mit einer Löschkammer und mindestens einem Auspuffvolumen. Das Auspuffvolumen ist über einen Einlass mit einer beim Ausschalten in der Löschkammer sich bildenden Lichtbogenzone verbunden und kommuniziert über einen Auslass, der durch ein Gehäuse der Schalteinheit geführt ist, mit dem Inneren des Behälters. Das Auspuffvolumen weist eine ringförmig um die Achse geführte Kammer auf, in der aus der Lichtbogenzone zuströmendes Heissgas durch Rezirkulation mit kühlem Isoliergas vermischt wird.
- Bei diesem Schalter bildet sich beim Ausschalten in der Lichtbogenzone Heissgas mit Temperaturen, die im allgemeinen höher 10 000 K sind. Das Heissgas wird in das Auspuffvolumen ausgestossen. Bevor es dielektrisch hoch beanspruchte Bereiche des Schalters erreicht, muss es daher gekühlt werden, da der Schalter nur dann die anliegende Hochspannung, welche typischerweise zwischen einigen kV und mehreren hundert kV liegt, halten kann. Die Kühlung wird im allgemeinen durch Mischen des Heissgases mit kühlem Isoliergas erreicht und/oder durch Übertragung von Wärme aus dem Heissgas in feste Teile des Schalters, wie etwa metallene Wände oder Gitter. Aus Kostengründen ist das Auspuffvolumen jedoch klein zu halten, so dass zum Mischen mit dem Heissgas nur eine relativ geringe Menge an kühlem Isoliergas zur Verfügung steht.
- Eine Ausführungsform des Schalters der eingangs genannten Art ist beschrieben in
EP 1 605 485 A1 . Der beschriebene Schalter weist eine Löschkammer, ein der Löschkammer nachgeschaltetes Auspuffvolumen und ein zwischen Löschkammer und Auspuffvolumen angeordnetes und eine Prallplatte enthaltendes Zwischenvolumen auf. Beim Ausschalten strömt durch einen Schaltlichtbogen in der Löschkammer erzeugtes Heissgas aus einer Isolierdüse über das Zwischenvolumen ins Auspuffvolumen. Hierbei trifft das Heissgas auf die Prallplatte und wird umgelenkt. Danach trifft es auf eine Engstelle einer Lavaldüse. Stromabwärts der Prallplatte entsteht so ein Rezirkulationsgebiet, in dem sich eine effektive Strömung ausbildet, die zu einer besonders guten Durchmischung des Heissgases mit im Zwischenvolumen bereits vorhandenen kühlerem Isoliergas führt. Hierdurch und durch weitere Abkühlung des Heissgases im nachgeschalteten Auspuffvolumen werden die dielektrischen Eigenschaften des Heissgases verbessert und so die Schaltleistung des Schalters erhöht. -
EP 1 768 150 A1 zeigt einen Hochspannungsschalter, dessen Schaltleistung durch Vorkühlen des beim Ausschalten gebildeten Heissgases mittels eines mit kaltem Isoliergas gefüllten Zwischenvolumens erreicht wird, bei dem das Heissgas in zwei Teilströme aufgeteilt wird, von denen der eine das Zwischenvolumen durchströmt und hierbei das Kaltgas verdrängt, während der andere am Zwischenvolumen vorbeigeführt wird und sich danach mit dem verdrängten Kaltgas zu einem dielektrisch hochwertigen Isoliergas vermischt. - Bei einem aus
WO 2006/066420 A1 bekannten Leistungsschalter rezirkuliert das Heissgas in einem als Hülse ausgebildeten Auspuffbereich und baut so im Hülseninneren Staudruck auf. Das Heissgas strömt daher nachfolgend in Form einer Vielzahl von Gasjets durch Öffnungen in der Hülse. Durch Aufprall der Gasjets auf eine Wand werden so eine Vielzahl von Wirbeln erzeugt, die durch turbulent konvektiven Wärmeübergang in die Prallwand eine intensive Kühlung des Heissgases bewirken. - Die Erfindung wird im Hauptanspruch definiert und charakterisiert, während die abhängigen Ansprüche weitere Merkmale der Erfindung beschreiben.
- Zweck der Erfindung ist es, einen Leistungsschalter mit einer verbesserten Schaltleistung zu schaffen.
- Beim erfindungsgemässen Leistungsschalter ist im Auspuffvolumen eine nach Art eines Hohlzylinders ausgebildete Mischkammer mit zwei kreisringförmigen Stirnseiten vorgesehen, ist eine vom zugeführten Heissgas angeströmte vordere beider Stirnseiten von zwei axial gegeneinander versetzt angeordneten Platten gebildet, und ist zwischen den beiden Platten ein radial ausgerichteter Ringspalt angeordnet, durch den das zugeführte Heissgas überwiegend in radialer Richtung ins Innere der Mischkammer strömt.
- Das aus dem Ringspalt ins Innere der Kammer tretende Heissgas weist einen der Breite des Ringspalts proportionalen Impuls auf und strömt entlang der Kammerwand. Es wird so ein praktisch das gesamte Volumen der Mischkammer ausfüllender, torusförmiger Wirbel hoher Energie erzeugt. Dieser Wirbel sorgt für eine rasche und intensive Mischung des einströmenden Heissgases mit dem gesamten in der Mischkammer vorhandenen kühlen Isoliergas, wodurch eine besonders effektive Kühlung des Heissgases erreicht wird. Das aus dem Auspuffvolumen tretende Gas weist daher auch beim Abschalten grosser Kurzschlussströme Eigenschaften auf, die den Anforderungen in dielektrisch hoch beanspruchten Bereichen des Schalters genügen.
- Mit Vorteil ist eine erste der beiden Platten an einem als Innenrohr und eine zweite der beiden Platten an einem als Aussenrohr ausgeführten Teil des Gehäuses befestigt und ist der Aussenradius der ersten Platte mindestens gleich dem Innenradius der zweiten Platte. Das durch den Ringspalt vorwiegend in axialer Richtung in die Mischkammer einströmende Heissgas verteilt sich dann nämlich gleichmässig über den gesamten Umfang des Ringspalts und bewirkt so eine weitgehend gleichförmige Ausbildung des Wirbels. Dementsprechend vermischt sich das Heissgas sehr homogen mit dem kühlen Löschgas.
- Dadurch, dass die zweite Platte gegenüber der ersten Platte stromaufwärts der Heissgasströmung, also näher an der Lichtbogenzone angeordnet ist als die erste Platte, wird in der Mischkammer ein Wirbel erreicht, der von der vorderen Stirnseite zunächst an das Aussenrohr und erst dann über die hintere der beiden Stirnseiten an das Innenrohr gelangt. Auf das gut kühlbare und eine grosse Oberfläche aufweisende Aussenrohr kann so schon zu Beginn des Mischvorgangs Wärme aus dem Heissgas übertragen werden.
- Es ist anzustreben, dass die Länge der Mischkammer in axialer Richtung etwa gleich der Höhe der Kammer in radialer Richtung ist. Es ist dann sichergestellt, dass sich der Wirbel ohne grossen Strömungswiderstand in der Mischkammer ausbilden kann, und dass der Wirbel ohne wesentliche Reibungsverluste durch die umgebende Wand der Mischkammer über einen vergleichsweise grossen Zeitraum erhalten bleibt.
- Damit das in die Mischkammer einströmende Heissgas eine hohe Strömungsgeschwindigkeit und damit einen hohen Impuls aufweist, wird der Strömungsquerschnitt des Ringspalts gering gehalten, zumindest kleiner als der Strömungsquerschnitt des Einlasses ins Auspuffvolumen und grösser als der Strömungsquerschnitt des Auslasses aus dem Auspuffvolumen in einen die Schalteinheit umgebenden und mit Isoliergas gefüllten Aussenraum.
- Die dielektrischen Eigenschaften des Heissgases können zusätzlich verbessert werden, wenn das Auspuffvolumen mindestens zwei in Reihe geschaltete, gleichartig ausgebildete Mischkammern aufweist, wobei die vom Einlass abgewandte hintere Stirnseite der vorgeschalteten ersten Mischkammer zugleich die vordere Stirnseite der nachgeschalteten zweiten Mischkammer bildet. Hierbei ist es vor besonderem Vorteil, dass der homogene Wirbel in der vorgeschalteten ersten Mischkammer einen Staudruck aufbaut. Dieser Staudruck sorgt für eine starke Strömung des aus der vorgeschalteten ersten in die nachgeschaltete zweite Mischkammer tretenden Gases.
- Das mindestens eine hohlzylindrische Mischkammer aufweisende Auspuffvolumen ist im allgemeinen stromaufwärts einer in der Löschkammer vorgesehenen und die Lichtbogenzone radial begrenzenden Isolierdüse angeordnet. Alternativ kann es aber auch stromabwärts der Isolierdüse angeordnet sein. In einer besonders leistungsstarken Ausführungsform des Schalters nach der Erfindung schliesst sich stromabwärts der Isolierdüse ein zweites Auspuffvolumen an. Auch in diesem zweiten Auspuffvolumen ist mit Vorteil mindestens eine hohlzylindrische Mischkammer angeordnet, da dann beim Austreten des in der Mischkammer dielektrisch verbesserten und abgekühlten Heissgases aus dem zweiten Auspuffvolumen in das umgebende Isoliergas eine unzulässig hohe dielektrische Belastung vermieden wird.
- Das Heissgas muss nicht notwendigerweise unmittelbar aus der Lichtbogenzone in die hohlzylinderförmige Mischkammer strömen. Es kann auch mittelbar von der Lichtbogenzone in die Mischkammer gelangen, beispielsweise über eine der Mischkammer vorgeschaltete Vormischkammer.
- Anhand von Zeichnungen wird nachfolgend die Erfindung näher erläutert. Hierbei zeigt:
- Fig.1
- eine Aufsicht auf einen längs einer Symmetrieachse geführten Schnitt durch einen Hochspannungs-Leistungsschalter nach der Erfindung beim Ausschalten eines Kurzschlussstroms,
- Fig.2
- in vergrösserter Darstellung mehrere im Schalter nach
Fig.1 vorgesehene hohlzylinderförmige Mischkammern, und - Fig.3
- ein Diagramm, in dem die Durchschlagsspannung UDB [105 V ] zwischen einer auf Hochspannungspotential befindlichen Schalteinheit und einem die Schalteinheit aufnehmenden, isoliergasgefüllten und geerdeten Metallbehälter in Funktion der Zeit t [s ] bei einem Schalter nach dem Stand der Technik und bei zwei Ausführungsformen des Schalters nach der Erfindung dargestellt ist.
- In den Figuren beziehen sich gleiche Bezugszeichen auf gleichwirkende Teile. Der in
Fig. 1 dargestellte Hochspannungs-Leistungsschalter weist einen mit einem komprimierten Isoliergas, etwa auf der Basis Schwefelhexafluorid oder eines Schwefelhexafluorid enthaltenden Gasgemischs, gefüllten und im allgemeinen aus Metall, gegebenenfalls auch aus einem witterungsständigen Isolierstoff, bestehenden Behälter K auf. Im Behälter befindet sich eine mit Hochspannung beaufschlagbare Schalteinheit E , welche längs einer Achse X ausgerichtet ist und ein axialsymmetrisches, weitgehend rohrförmiges Gehäuse 10 aufweist. Das Gehäuse 10 nimmt eine Löschkammer 20 sowie zwei Auspuffvolumen 30 und 40 auf, von denen sich das Auspuffvolumen 30 an das untere Ende und das Auspuffvolumen 40 an das obere Ende der Löschkammer 20 anschliesst. Das Gehäuse 10 ist in koaxialer Anordnung von zwei Metallhohlkörpern 11 und 12 sowie einem Isolierrohr 13 gebildet, welches die beiden Metallhohlkörper gasdicht miteinander verbindet und einen durch die Hochspannung bestimmten Isolationsabstand zwischen den beiden Metallhohlkörpern 11, 12 bildet. - In der Löschkammer 20 befindet sich eine Kontaktanordnung mit zwei längs der Achse X relativ zueinander verschiebbaren Schaltstücken mit jeweils einem Nennstrom- und einem Lichtbogenkontakt. Ein mit dem Bezugszeichen 21 gekennzeichneter Lichtbogenkontakt eines von einen Antrieb D bewegbaren ersten beider Schaltstücke ist hohl ausgebildet und kommuniziert über Austrittsöffnungen 22 mit einer im Auspuffvolumen 30 angeordneten Vormischkammer 31. Der Lichtbogenkontakt des feststehend angeordneten zweiten Schaltstücks ist mit dem Bezugszeichen 23 gekennzeichnet und ist als Stift ausgebildet. Das bewegliche Schaltstück und damit auch der Lichtbogenkontakt 21 sind über einen Gleitkontakt 24 und den Metallhohlkörper 11 mit einem nicht dargestellten ersten Stromanschluss der Schalteinheit E elektrisch leitend verbunden. Das feststehende Schaltstück und damit auch der Lichtbogenkontakt 23 sind über einen Speichen enthaltenden Tragring 25 und den Metallhohlkörper 12 mit einem nicht dargestellten zweiten Stromanschluss der Schalteinheit E elektrisch leitend verbunden.
- Das bewegliche Schaltstück trägt eine die beiden Lichtbogenkontakte 21 und 23 koaxial umgebende Isolierdüse 26 aus einem bei Lichtbogeneinwirkung löschgasabgebenden polymeren Isoliermaterial, vorzugsweise Polytetrafluorethylen. Die Isolierdüse 26 begrenzt eine Lichtbogenzone 27 radial nach aussen. Die Lichtbogenzone wird beim Ausschalten durch die sich trennenden Lichtbogenkontakte 21, 23 gebildet und nimmt hierbei den auf den beiden Kontakten 21, 23 fussenden Schaltlichtbogen auf.
- Das Auspuffvolumen 30 ist vom Metallhohlkörper 11 umschlossen und enthält neben der Vormischkammer 31 auch vier in Reihe geschaltete Mischkammern 32, 33, 34 und 35, welche jeweils ringförmig um die Achse X geführt sind. Die Mischkammern 32, 33 und 34 sind jeweils nach Art eines Hohlzylinders ausgebildet und weisen jeweils zwei kreisringförmige Stirnseiten 3, 3' auf (nur bei der Mischkammer 32 bezeichnet).
- Wie
Fig. 2 entnommen werden kann, sind die beiden Stirnflächen 3, 3' jeweils von zwei axial gegeneinander versetzt angeordneten Platten 3a, 3b resp. 3a', 3b' (nur bei der Kammer 32 bezeichnet) gebildet sind. Zwischen den beiden Platten 3a, 3b resp. 3a', 3b' erstreckt sich ein radial ausgerichteter Ringspalt 3c resp. 3c'. Ersichtlich sind die beiden Platten 3a und 3b resp. 3a' und 3b' jeweils als Kreisring ausgebildet. Die Platten 3a und 3a' sind an einem als Aussenrohr 11a und die Platten 3b und 3b' an einem als Innenrohr 11b ausgebildeten Teil des Metallhohlkörpers 11 befestigt. Der Aussenradius der Platten 3b und 3b' ist mindestens gleich dem Innenradius der Platte 3a und 3a'.Fig. 1 kann entnommen werden, dass die Mischkammer 32 über die Vormischkammer 31 mit den als Gaseinlass des Auspuffvolumens 30 wirkenden Austrittsöffnungen 22 verbunden ist, und dass die Mischkammer 35 als Gasauslass des Auspuffvolumens 30 wirkende Austrittsöffnungen 36 aufweist. Durch diese Öffnungen 36 kann während des Betriebs des Schalters Isoliergas aus dem Behälter K ins Innere des Gehäuses 10, d.h. in die beiden Auspuffvolumen 30, 40 und die Löschkammer 20, strömen und strömt beim Ausschalten Auspuffgas aus dem Auspuffvolumen 30 in den isoliergasgefüllten Behälter K aus. - Beim Ausschalten baut der Schaltlichtbogen während der Hochstromphase des abzuschaltenden Stroms in der Löschkammer 20 einen hohen Gasdruck auf. Bei Annäherung des Stroms an einen Nulldurchgang treten aus der Löschkammer 20 zwei entgegensetzt gerichtetete Heissgasströmungen S1 und S2 aus, von denen die Strömung S1 durch den als Düse ausgebildeten hohlen Lichtbogenkontakt 21 und die Strömung S2 durch die Engstelle und den Diffusor der Isolierdüse 26 geführt werden.
- Die Strömung S1 wird durch die Austrittsöffnungen 22 in die Vormischkammer 31 eingelassen, in der das einströmende Heissgas beruhigt und durch Vormischen mit kühlem Isoliergas vorgekühlt wird. Das beim Ausschalten grosser Kurzschlussströme im allgemeinen Temperaturen höher 3000 K aufweisende, vorgekühlte Heissgas prallt nun auf die Stirnfläche 3a der Mischkammer 32 und wird in radialer Richtung abgelenkt. Das abgelenkte Heissgas S1 wird in dem aus
Fig.2 ersichtlichen Ringspalt 3c beschleunigt und tritt mit hoher Geschwindigkeit und mit vorwiegend radial ausgerichteter Strömungsrichtung ins Innere der Mischkammer 32 ein. Hierbei wird es weitgehend entlang der Innenwand der Mischkammer 32 geführt. Es bildet sich so ein praktisch den ganzen Innenraum der Mischkammer 32 erfassender homogener Strömungswirbel W aus, der nach Art eines Torus ausgebildet ist und der das zuströmende Heissgas S1 äusserst schnell mit dem bereits vorhandenen kühlen Isoliergas vermischt und so die dielektrischen Eigenschaften des Heissgases S1 weiter verbessert. - Der Impuls resp. die Geschwindigkeit des einströmenden Heissgases S1 und damit die Intensität des induzierten Wirbels W können durch Verkleinerung des in
Fig.2 mit dem Bezugszeichen A gekennzeichneten Strömungsquerschnitts des Ringspalts 3c erhöht werden. Um auch beim Ausschalten mittlerer oder kleiner Kurzschlussströme einen zur Impuls- und damit zur Wirbelbildung ausreichenden Staudruck stromaufwärts der Mischkammer 32 zu erreichen, sollte der Strömungsquerschnitt A des Ringspalts 3c kleiner als der Strömungsquerschnitt des durch die Austrittsöffnungen 22 definierten Gaseinlasses und grösser als der Strömungsquerschnitt des durch die Austrittsöffnungen 36 definierten Gasauslasses des Auspuffvolumen 30 sein. Ist die ausFig. 2 ersichtliche Länge L der Mischkammer 32 in axialer Richtung etwa gleich der Höhe R der Kammer 32 in radialer Richtung, so ist sichergestellt, dass sich der Wirbel W bei geringem Strömungswiderstand ausbilden und sich dementsprechend über einen grossen Zeitraum halten kann. Dadurch, dass bei der Mischkammer 32 die am Aussenring 11a befestigte Platte 3a gegenüber der Platte 3b stromaufwärts der Heissgasströmung S1 angeordnet ist, wird die Heissgasströmung S1 in der Mischkammer 32 zunächst radial nach aussen geführt und gelangt der Wirbel W so zunächst an das gut kühlbare Aussenrohr 11a, auf das er schon zu Beginn des Mischvorgangs in vorteilhafter Weise Wärme aus dem Heissgas übertragen hat. - Die dielektrischen Eigenschaften der Heissgasströmung S1 werden durch die nachfolgend von ihr durchströmten gleichartigen Mischkammern 33 und 34 und die Mischkammer 35 sukzessive verbessert. Hierbei ist es von Vorteil, dass der homogene Wirbel W in der Mischkammer 32 einen Staudruck aufbaut, der für eine starke Strömung der aus der Mischkammer 32 in die Mischkammer 33 tretenden Strömung S1 sorgt. Bei grossen Kurzschlussströmen reicht der Impuls der aus der Mischkammer 32 tretenden Heissgasströmung S1 im allgemeinen noch aus, um auch in der Kammer 33 und in den nachfolgenden Kammern 34 und 35 noch gut ausgebildete Wirbel zu erzeugen. Da Hochspannungs-Leistungsschalter ausserhalb des isoliergasgefüllten Behälters, d.h. an Luft, die anliegende Hochspannung halten müssen, erstrecken sie sich im allgemeinen in axialer Richtung wesentlich länger als radial. Daher können mehrere in Reihe geschaltete Mischkammern in der Schalteinheit E eingebaut sein, ohne die durch die Grösse der Hochspannung vorbestimmte Länge in axialer Richtung zu überschreiten.
- Alternativ oder - wie in
Fig.1 dargestellt - zusätzlich kann auch im Auspuffvolumen 40 mindestens eine der Mischkammer 32 vergleichbare hohlzylindrische Kammer 41 vorgesehen sein, bei der die aus dem Diffusor der Isolierdüse 26 tretende Heissgasströmung S2 mit einer radial gerichteten Strömungskomponente ins Innere der Mischkammer 41 geführt wird und hierbei den Wirbel W' bildet. Da die Heissgasströmung S1 entlang dem stiftförmigen Lichtbogenkontakt 23 axial geführt aus der Düse 26 austritt, wird sie einfacher Weise an einer zentral angeordneten, kreisringförmigen Platte 43 umgelenkt und kann dann mit einer radial nach innen geführten Strömungskomponente durch den von der Platte 43 und einer an einem Aussenrohr 12a des Metallhohlkörpers 12 befestigten, kreisscheibenförmigen Platte 44 begrenzten Ringspalt ins Innere der Mischkammer 41 gelangen. Ist die Platte 43 gegenüber der Platte 44 stromabwärts der Heissgasströmung S2 angeordnet, so wird die Heissgasströmung S2 wie die Heissgasströmung S1 bei der Mischkammer 32 mit einer radial nach innen gerichteten Strömungskomponente in die Mischkammer 41 geführt. An einem von Austrittsöffnungen 45 gebildeten Gasauslass des Auspuffvolumens 40 gelangt dann gekühltes Auspuffgas in den Raum zwischen Metallhohlkörper 12 und Behälter K und wird so die dielektrische Festigkeit in diesem Raum beim Auspuffen von Schaltgas nicht wesentlich reduziert. Mindestens eine nachgeschaltete weitere Mischkammern 42 verbessert die dielektrischen Eigenschaften der Heissgasströmung S2 zusätzlich. - In dem in
Fig. 3 dargestellten Diagramm wurde die zeitliche Abhängigkeit der Durchschlagsspannung UBD bei drei vergleichbar ausgebildeten Schaltern während eines Nulldurchgang CZ des abzuschaltenden Stroms ermittelt. Hierbei bedeutet Erf1 eine erste Ausführungsform des erfindungsgemässen Schalters mit einer entsprechend der Mischkammer 32 ausgebildeten Mischkammer, Erf2 eine zweite Ausführungsform des erfindungsgemässen Schalters mit zwei solcher in Reihe geschalteter Mischkammern und SdT eine Ausführungsform nach dem Stand der Technik ohne eine solche Mischkammer. Aus dem Diagramm geht hervor, dass das Minimum der Durchschlagsspannung bei beiden Ausführungsformen nach der Erfindung wesentlich höher liegt als beim Schalter nach dem Stand der Technik, und dass zugleich die Durchschlagsspannung bei den beiden Ausführungsformen nach der Erfindung wesentlich geringeren Schwankungen unterworfen ist als beim Schalter nach dem Stand der Technik. Daher zeichnet sich der Schalter nach der Erfindung durch eine verbesserte Schaltleistung aus. - Durch die Verwendung einer in Reihe geschalteten zweiten Mischkammer bei der Ausführungsform Erf2 wird die Durchschlagsspannung gegenüber der Ausführungsform Erf1 ersichtlich erhöht und somit die Schaltleistung zusätzlich verbessert.
-
- A
- Strömungsquerschnitt
- CZ
- Stromnulldurchgang
- D
- Antrieb
- E
- Schalteinheit
- K
- Behälter
- L
- Länge
- R
- Höhe
- S1, S2
- Heissgasströmungen
- t
- Zeit
- UBD
- Durchschlagsspannung
- W, W'
- Wirbel
- X
- Achse
- 3, 3'
- Stirnseiten
- 3a, 3b, 3a', 3b'
- Platten
- 3c, 3c'
- Ringspalte
- 10
- Gehäuse
- 11, 12
- Metallhohlkörper
- 11a, 12a
- Aussenrohre
- 11b
- Innenrohr
- 13
- Isolierrohr
- 20
- Löschkammer
- 21, 23
- Lichtbogenkontakte
- 22
- Austrittsöffnungen, Gaseinlass
- 24
- Gleitkontakt
- 25
- Tragring
- 26
- Isolierdüse
- 27
- Lichtbogenzone
- 30
- Auspuffvolumen
- 31
- Vormischkammer
- 32, 33, 34, 35
- Mischkammern
- 36
- Austrittsöffnungen, Gasauslass
- 36
- Austrittsöffnungen, Gasauslass
- 40
- Auspuffvolumen
- 41, 42
- Mischkammern
- 43, 44
- Platten
- 45
- Austrittsöffnungen, Gasauslass
Claims (10)
- Leistungsschalter, enthaltend einen isoliergasgefüllten Behälter (K) und eine im Behälter (K) angeordnete, längs einer Achse (X) ausgerichtete und mit Hochspannung beaufschlagbare Schalteinheit (E) mit einer Löschkammer (20) und mindestens einem Auspuffvolumen (30, 40), welches über einen Gaseinlass (22) mit einer beim Ausschalten in der Löschkammer (20) sich bildenden Lichtbogenzone (27) verbunden ist, und welches über einen Gasauslass (36, 45), der durch ein Gehäuse (10) der Schaltereinheit (E) geführt ist, mit dem Inneren des Behälters (K) kommuniziert, bei dem das Auspuffvolumen (30, 40) eine ringförmig um die Achse (A) geführte Kammer (32, 33, 34, 35, 41, 42) aufweist, in der aus der Lichtbogenzone (27) zuströmendes Heissgas (S1, S2) durch Rezirkulation mit kühlem Isoliergas vermischt wird,
dadurch gekennzeichnet, dass die Mischkammer (32) nach Art eines Hohlzylinders ausgebildet ist und zwei kreisringförmige Stirnseiten (3, 3') aufweist, dass eine vom Heissgas (S1) angeströmte erste (3) beider Stirnseiten (3, 3') von zwei axial gegeneinander versetzt angeordneten Platten (3a, 3b) gebildet ist, und dass zwischen den beiden Platten (3a, 3b) ein radial ausgerichteter Ringspalt (3c) angeordnet ist, durch den das zugeführte Heissgas (S1) überwiegend in radialer Richtung ins Innere der Mischkammer (32) strömt. - Schalter nach Anspruch 1, dadurch gekennzeichnet, dass die beiden Platten (3a, 3b) jeweils als Kreisring ausgebildet sind, dass eine erste (3b) beider Platten an einem als Innenrohr (11b) und eine zweite (3a) beider Platten an einem als Aussenrohr (11a) ausgeführten Teil des Gehäuses (10) befestigt ist, und dass der Aussenradius der ersten Platte (3b) mindestens gleich dem Innenradius der zweiten Platte (3a) ist.
- Schalter nach Anspruch 2, dadurch gekennzeichnet, dass die am Aussenrohr (11a) befestigte zweite Platte (3a) gegenüber der ersten Platte (3b) stromaufwärts der Heissgasströmung (S1) angeordnet ist.
- Schalter nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Länge (L) der Mischkammer (32) in axialer Richtung etwa gleich der Höhe (R) der Kammer (32) in radialer Richtung ist.
- Schalter nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Strömungsquerschnitt (A) des Ringspalts (3c) kleiner als der Strömungsquerschnitt des Gaseinlasses (22) und grösser als der Strömungsquerschnitt des Gasauslasses (36) ist.
- Schalter nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Auspuffvolumen (30) eine der Mischkammer (32) vorgeschaltete Vormischkammer (31) enthält.
- Schalter nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Auspuffvolumen (30) mindestens zwei in Reihe geschaltete, gleichartig ausgebildete Mischkammern (32, 33, 34) aufweist, wobei die gegenüber der ersten Stirnseite (3) stromabwärts der Heissgasströmung (S1) angeordnete zweite Stirnseite (3') der vorgeschalteten ersten Mischkammer (32) zugleich eine Stirnseite der nachgeschalteten zweiten Mischkammer (34) bildet.
- Schalter nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Auspuffvolumen (30) stromaufwärts einer in der Löschkammer (20) vorgesehenen und die Lichtbogenzone (27) radial begrenzenden Isolierdüse (26) angeordnet ist.
- Schalter nach Anspruch 8, dadurch gekennzeichnet, dass stromabwärts der Isolierdüse (26) ein zweites Auspuffvolumen (40) mit mindestens einer hohlzylindrischen Mischkammer (41) angeordnet ist.
- Schalter nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Auspuffvolumen (40) stromabwärts einer in der Löschkammer (20) vorgesehenen und die Lichtbogenzone (27) radial begrenzenden Isolierdüse (26) angeordnet ist.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08156231A EP2120244A1 (de) | 2008-05-15 | 2008-05-15 | Hochspannungs-Leistungsschalter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08156231A EP2120244A1 (de) | 2008-05-15 | 2008-05-15 | Hochspannungs-Leistungsschalter |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2120244A1 true EP2120244A1 (de) | 2009-11-18 |
Family
ID=39832672
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08156231A Withdrawn EP2120244A1 (de) | 2008-05-15 | 2008-05-15 | Hochspannungs-Leistungsschalter |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP2120244A1 (de) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012067759A1 (en) * | 2010-11-15 | 2012-05-24 | Schneider Electric USA, Inc. | Circuit breaker with controlled exhaust |
WO2013120733A1 (de) * | 2012-02-16 | 2013-08-22 | Siemens Aktiengesellschaft | Schaltgeräteanordnung |
DE102012202406A1 (de) * | 2012-02-16 | 2013-08-22 | Siemens Ag | Schaltgeräteanordnung |
DE102013209663A1 (de) * | 2013-05-24 | 2014-11-27 | Siemens Aktiengesellschaft | Schaltgaskanal sowie Schalteinrichtung mit Schaltgaskanal |
WO2017162533A1 (en) | 2016-03-24 | 2017-09-28 | Abb Schweiz Ag | Electrical circuit breaker device with particle trap |
EP3407370A1 (de) * | 2017-05-24 | 2018-11-28 | General Electric Technology GmbH | Druckgasschalter mit optimierter gasspeicherkammer |
EP3726554A1 (de) * | 2019-04-16 | 2020-10-21 | General Electric Technology GmbH | Trennschalter mit metallischem gehäuse |
EP3767659A1 (de) * | 2019-07-15 | 2021-01-20 | ABB Power Grids Switzerland AG | Leistungsschalter mit verbesserter abgaskühlung |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4181942A (en) | 1978-03-31 | 1980-01-01 | International Business Machines Corporation | Program branching method and apparatus |
US4182942A (en) * | 1976-05-04 | 1980-01-08 | Hitachi, Ltd. | Puffer-type gas-blast circuit breaker |
DE3009504A1 (de) * | 1979-11-30 | 1981-06-04 | Sprecher & Schuh AG, 5001 Aarau, Aargau | Druckgasschalter |
EP0177714A2 (de) * | 1984-10-10 | 1986-04-16 | BBC Brown Boveri AG | Druckgasschalter |
JPH1012104A (ja) * | 1996-06-25 | 1998-01-16 | Toshiba Corp | ガス遮断器 |
EP1605485A1 (de) | 2004-06-07 | 2005-12-14 | ABB Technology AG | Leistungsschalter |
WO2006066420A1 (de) | 2004-12-24 | 2006-06-29 | Abb Technology Ag | Generatorschalter mit verbesserter schaltleistung |
EP1768150A1 (de) | 2005-09-26 | 2007-03-28 | ABB Technology AG | Hochspannungsschalter mit verbesserter Schaltleistung |
-
2008
- 2008-05-15 EP EP08156231A patent/EP2120244A1/de not_active Withdrawn
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4182942A (en) * | 1976-05-04 | 1980-01-08 | Hitachi, Ltd. | Puffer-type gas-blast circuit breaker |
US4181942A (en) | 1978-03-31 | 1980-01-01 | International Business Machines Corporation | Program branching method and apparatus |
DE3009504A1 (de) * | 1979-11-30 | 1981-06-04 | Sprecher & Schuh AG, 5001 Aarau, Aargau | Druckgasschalter |
EP0177714A2 (de) * | 1984-10-10 | 1986-04-16 | BBC Brown Boveri AG | Druckgasschalter |
JPH1012104A (ja) * | 1996-06-25 | 1998-01-16 | Toshiba Corp | ガス遮断器 |
EP1605485A1 (de) | 2004-06-07 | 2005-12-14 | ABB Technology AG | Leistungsschalter |
WO2006066420A1 (de) | 2004-12-24 | 2006-06-29 | Abb Technology Ag | Generatorschalter mit verbesserter schaltleistung |
EP1768150A1 (de) | 2005-09-26 | 2007-03-28 | ABB Technology AG | Hochspannungsschalter mit verbesserter Schaltleistung |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8519287B2 (en) | 2010-11-15 | 2013-08-27 | Schneider Electric USA, Inc. | Circuit breaker with controlled exhaust |
CN103210464A (zh) * | 2010-11-15 | 2013-07-17 | 施耐德电气美国股份有限公司 | 具有可控排出的断路器 |
WO2012067759A1 (en) * | 2010-11-15 | 2012-05-24 | Schneider Electric USA, Inc. | Circuit breaker with controlled exhaust |
CN103210464B (zh) * | 2010-11-15 | 2014-11-12 | 施耐德电气美国股份有限公司 | 具有可控排出的断路器 |
US9396891B2 (en) | 2012-02-16 | 2016-07-19 | Siemens Aktiengesellschaft | Switchgear arrangement |
CN104115251A (zh) * | 2012-02-16 | 2014-10-22 | 西门子公司 | 开关器装置 |
DE102012202406A1 (de) * | 2012-02-16 | 2013-08-22 | Siemens Ag | Schaltgeräteanordnung |
WO2013120733A1 (de) * | 2012-02-16 | 2013-08-22 | Siemens Aktiengesellschaft | Schaltgeräteanordnung |
US10199189B2 (en) | 2012-02-16 | 2019-02-05 | Siemens Aktiengesellschaft | Switchgear arrangement |
DE102013209663A1 (de) * | 2013-05-24 | 2014-11-27 | Siemens Aktiengesellschaft | Schaltgaskanal sowie Schalteinrichtung mit Schaltgaskanal |
CN109155217A (zh) * | 2016-03-24 | 2019-01-04 | Abb瑞士股份有限公司 | 带有微粒捕集器的电气断路器装置 |
WO2017162533A1 (en) | 2016-03-24 | 2017-09-28 | Abb Schweiz Ag | Electrical circuit breaker device with particle trap |
US10553378B2 (en) | 2016-03-24 | 2020-02-04 | Abb Schweiz Ag | Electrical circuit breaker device with particle trap |
CN109155217B (zh) * | 2016-03-24 | 2020-03-17 | Abb瑞士股份有限公司 | 带有微粒捕集器的电气断路器装置 |
EP3407370A1 (de) * | 2017-05-24 | 2018-11-28 | General Electric Technology GmbH | Druckgasschalter mit optimierter gasspeicherkammer |
EP3726554A1 (de) * | 2019-04-16 | 2020-10-21 | General Electric Technology GmbH | Trennschalter mit metallischem gehäuse |
WO2020212284A1 (en) * | 2019-04-16 | 2020-10-22 | General Electric Technology Gmbh | Circuit breaker with metallic enclosure |
EP3767659A1 (de) * | 2019-07-15 | 2021-01-20 | ABB Power Grids Switzerland AG | Leistungsschalter mit verbesserter abgaskühlung |
WO2021009148A1 (en) * | 2019-07-15 | 2021-01-21 | Abb Power Grids Switzerland Ag | Circuit breaker with improved exhaust cooling |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2120244A1 (de) | Hochspannungs-Leistungsschalter | |
EP0075668B1 (de) | Druckgasschalter | |
EP1768150B1 (de) | Hochspannungsschalter mit verbesserter Schaltleistung | |
EP1403891B1 (de) | Leistungsschalter | |
WO2005122201A1 (de) | Leistungsschalter | |
EP1826792A1 (de) | Schaltkammer eines Hochspannungsschalters mit einem Heizvolumen zur Aufnahme von schaltlichtbogenerzeugtem Löschgas | |
DE19816505A1 (de) | Leistungsschalter | |
WO2009049669A1 (de) | Gasisolierter hochspannungs-leistungsschalter mit einem von einem überstromventil gesteuerten entlastungskanal | |
DE2215656B2 (de) | Elektrischer Druckgasschalter | |
DE2438017C3 (de) | Druckgasschalter | |
EP2316122B1 (de) | Hochspannungs-leistungsschalter mit einer schaltstrecke | |
EP1226597B1 (de) | Druckgas-leistungsschalter | |
EP1835520B1 (de) | Schaltkammer für einen gasisolierten Hochspannungsschalter | |
WO2013045233A1 (de) | Leistungsschalterunterbrechereinheit | |
DE2118166C3 (de) | Unterbrecherkammer für einen elektrischen Druckgasschalter mit einer Blasdüse | |
WO2009124582A1 (de) | Gasisolierter hochspannungsschalter | |
DE2647643C2 (de) | Druckgasschalter | |
EP3039703A2 (de) | Gasisolierter hochspannungsschalter | |
DE19850395A1 (de) | Leistungsschalter | |
DE10018915A1 (de) | Gasgenerator, insbesondere für einen Airbag | |
DE2719135A1 (de) | Druckgas-leistungsschalter | |
EP1780741B2 (de) | Schaltkammer eines Hochspannungsschalters mit einem Heizvolumen zur Aufnahme von Druckgas | |
DE3543762A1 (de) | Blasduesenanordnung an einem druckgasschalter | |
DE3042112A1 (de) | Blasduesenanordnung fuer einen druckgasschalter | |
DE4114627A1 (de) | Metallgekapselter druckgasleistungsschalter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ABB TECHNOLOGY AG |
|
17P | Request for examination filed |
Effective date: 20100421 |
|
17Q | First examination report despatched |
Effective date: 20100601 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150724 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20151201 |