EP2117744B1 - Method and mould arrangement for explosion forming - Google Patents

Method and mould arrangement for explosion forming Download PDF

Info

Publication number
EP2117744B1
EP2117744B1 EP07856709.6A EP07856709A EP2117744B1 EP 2117744 B1 EP2117744 B1 EP 2117744B1 EP 07856709 A EP07856709 A EP 07856709A EP 2117744 B1 EP2117744 B1 EP 2117744B1
Authority
EP
European Patent Office
Prior art keywords
workpiece
liquid
cavity
gas mixture
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07856709.6A
Other languages
German (de)
French (fr)
Other versions
EP2117744A1 (en
Inventor
Alexander Zak
Seetarama Kotagiri
Andreas Stranz
Philipp Stoeger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosma Engineering Europe AG
Original Assignee
Cosma Engineering Europe AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosma Engineering Europe AG filed Critical Cosma Engineering Europe AG
Publication of EP2117744A1 publication Critical patent/EP2117744A1/en
Application granted granted Critical
Publication of EP2117744B1 publication Critical patent/EP2117744B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/06Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure by shock waves
    • B21D26/08Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure by shock waves generated by explosives, e.g. chemical explosives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S72/00Metal deforming
    • Y10S72/706Explosive

Definitions

  • the invention relates to a method and a tool assembly for explosive forming with the features of the preamble of claims 1 and 8.
  • the GB 2 047 147 discloses a device of the type mentioned, which is used for the production of receiving sleeves for prostheses by shock wave deformation.
  • a hollow-shaped metal blank is inserted into a recess of a die, wherein the recess corresponds to the shape of the body stump, the shape of the metal blank should take after forming.
  • a cylindrical extension of a gas pressure chamber is introduced into the metal blank which is open at the top.
  • a sealing membrane is located at the end of the cylindrical extension.
  • the device is secured with a slidable flat ring prior to igniting the gas mixture. After ignition of the gas mixture within the gas pressure chamber, the resulting shock wave breaks through the sealing membrane and then passes into the liquid-filled hollow body to deform it.
  • the workpiece to be deformed, z As a tube, inserted into a mold and filled with water.
  • a multi-electrode device for the production and ignition of oxyhydrogen gas is in an elastic container, for.
  • oxyhydrogen gas is generated under water, which accumulates in the surrounding bag.
  • By igniting the detonating gas produced in the bag by means of a spark plug or a filament a pressure wave is generated in the water, which presses the workpiece into the mold.
  • this method is complicated and time-consuming.
  • the invention has for its object to improve a method and a tool assembly for explosive forming of the type mentioned in that the method and the tool assembly is simplified and suitable for mass production.
  • the provision of the gas mixture at least partially above the liquid surface ensures easy and rapid supply of the gas mixture.
  • the gas mixture is arranged here above the liquid surface, that is, is relatively widely spaced from the workpiece to be deformed, a good deformation result can nevertheless be achieved with the method according to the invention.
  • the explosion of the gas mixture and thus the formation of a detonation front takes place here above the liquid surface.
  • the power or energy transfer over the phase boundary Gas-liquid away is enough good to achieve a good forming result.
  • the required amount of gas can be reduced.
  • burns of the workpiece are largely avoided. Due to the high cycle times in today's production processes, the mold reaches high temperatures relatively quickly.
  • the liquid located in the receiving space can thus serve not only as a pressure transmission medium but also for cooling.
  • the gas mixture increases directly to the liquid surface.
  • the detonation front hits the surface of the liquid unhindered in this case, the direct application of the gas to the surface of the liquid achieves good force transmission across the gas-liquid interface.
  • the receiving space can be filled via a valve with liquid. This ensures a good control of the filling process and a precise metering of the amount of liquid.
  • the gas mixture can be at least partially passed through the liquid.
  • higher pressures can be achieved with otherwise constant gas quantity. It has been found that the gas is in a state in which an ignition of the gas leads to a significantly higher explosion pressure as a result of passing through the liquid such as water. This also results in a higher forming pressure acting on the workpiece.
  • the receiving space may extend at least partially through a preformed workpiece cavity in which the detonation front propagates.
  • the detonation front propagating inside the workpiece can thus well reshape the wall of the workpiece. So can be z. B. finished tube-like work well.
  • the workpiece can be filled with liquid in a workpiece holding region on which the workpiece is held in the mold.
  • a workpiece holding region on which the workpiece is held in the mold.
  • the workpiece holding area cutting or contact points are present z. B. between the workpiece and the mold, which must keep tight during the Explosionsumformreaes. By covering these interface areas with liquid, the structural design of these areas can be simplified. A liquid-tight interface is easier and cheaper to produce than z. B. a gas-tight.
  • the entire workpiece cavity can be completely filled with liquid.
  • large areas of the workpiece are protected against burns with good power transmission.
  • a remaining, liquid-free workpiece cavity can be at least partially filled with the explosive gas mixture. This ensures easy and fast filling with the gas mixture.
  • a remaining, liquid-free cavity which is spaced from the introduced workpiece, at least partially filled with the explosive gas mixture.
  • the receiving space can be filled by immersing the workpiece in a liquid bath with liquid.
  • the liquid filling of the workpiece can be such. B. already done before the introduction of the workpiece in the receiving space of the mold. This simple way of filling ensures good cycle times.
  • the liquid bath can also serve as a buffer for further workpieces.
  • the ratio of explosive gas to liquid may be about 1:10 to 1:20, preferably 1: 2 to 1:15, and more preferably 1: 3 to 1:10. This ratio ensures a sufficiently large explosion force for forming and a good propagation of the detonation front also over the phase boundary.
  • the ignition of the gas mixture can take place outside the workpiece cavity.
  • the liquid level in the receiving space can be adapted to the production requirements. Also maximum fluid levels such. As a complete covering of the workpiece with liquid are possible.
  • the arrangement of the explosive gas mixture at least partially above the liquid surface allows easy and rapid filling. At the same time a good transfer of the explosive force or the detonation front across the phase boundary is possible. Although the gas mixture is arranged here above the water surface, a good forming result is achieved.
  • the receiving space can be filled via a valve with liquid. This allows a good control of the filling process and a good dosage of the amount of liquid.
  • a gas connection may be provided below the liquid surface.
  • the gas mixture can be passed through the liquid into the receiving space. This allows, depending on the gas mixture, higher forming pressures for the same amount of gas.
  • the receiving space may at least partially extend through a preformed workpiece cavity.
  • the detonation front can also spread inside the workpiece.
  • the workpiece may be filled with liquid in a workpiece holding region on which the workpiece is held in the mold.
  • the ends of the workpiece held in the mold are also protected from burns.
  • the design requirements for the tightness of lying in the tool holding area interfaces such. As the interface workpiece-forming tool, reduce. Liquid-tight interfaces are structurally easier to implement than z. B. gas-tight interfaces.
  • the entire workpiece cavity may be completely filled with liquid.
  • a large part of the workpiece surface is under the liquid and thus protected against burns.
  • a remaining, liquid-free workpiece cavity may be at least partially filled with the explosive gas mixture. This ensures easy filling with the gas mixture.
  • a remaining, liquid-free cavity which is spaced from the inserted workpiece, be at least partially filled with the explosive gas mixture.
  • This cavity ensures the absorption of a sufficiently large amount of gas and thus a good explosion and propagation of the detonation front regardless of the liquid level of the receiving space.
  • an ignition device may be arranged outside the workpiece cavity.
  • the ignition of the gas mixture can thus be carried out independently of the liquid level in the interior of the workpiece.
  • FIG. 1 shows a perspective view of a tool assembly 1 according to the invention according to a first embodiment of the invention.
  • the tool assembly 1 has in this embodiment, a mold 2 and an ignition unit 3.
  • the mold 2 is formed in several parts. It consists of several mold halves 4, which are composable to the mold 2. In the closed state, that is, when all mold halves 4 are assembled, results in the interior of the mold 2, a horrkavtician 14 whose contour results in the later shape of the finished workpiece. In addition, in the contour of the mold 2, cutting or separating edges 29 and punch matrices 30 may be provided to simultaneously cut the workpiece during the explosion forming, as in the FIGS. 3 to 5 shown.
  • the tool cavity 14 at the same time forms a receiving space 15 of the molding tool 2. According to the invention, the receiving space 15 is at least partially filled with a liquid, as later described with reference to FIG FIGS. 3 to 5 is explained.
  • the mold 2 may also be arranged in a press 5, which keeps the mold 2 closed.
  • the individual mold halves 4 can then z. B. by one or more stamp the press against each other.
  • the ignition unit 3 has a holder 7 and an ignition tube 8 in this embodiment.
  • the ignition tube 8 runs at its the mold 2 facing front end 18 conical and is mounted in the holder 7 at least in its longitudinal direction 9 slidably. It is so between a working position 10, in which the ignition tube 8 rests against a located in the mold 2 workpiece 12 or on the mold 2, and a parking position 11, in which the ignition tube 8 is spaced from the mold 2 and which here by a dashed line is indicated, movable.
  • the ignition tube 8 may also have several degrees of freedom and z. B. also be displaceable transversely to its longitudinal direction 9.
  • FIG. 2 shows a perspective sectional view through the inventive tool assembly 1 with inserted workpiece.
  • Reference numerals used denote the same parts as in FIG. 1 , so in this regard to the description of the FIG. 1 is referenced.
  • a workpiece 12 is inserted in the receiving space 15 of the mold 2.
  • the workpiece 12 is approximately tubular and has a preformed workpiece cavity 13 in its interior.
  • the contour of the mold 2, to which the workpiece 12 is adapted by forming, here is approximately like a tube.
  • the mold 2 On its side facing the ignition tube 8 side 16, the mold 2 has an opening 17 which is in communication with the receiving space 15 in the interior of the mold 2 and whose edge is beveled corresponding to the front end 18 of the ignition tube 8 and so forms a contact surface 20 ,
  • the ignition tube 8 is located in FIG. 2 in its working position 10 and presses an edge region 19 of the workpiece 12 against the mold 2.
  • the edge region 19 is deformed and between the two corresponding conical contact surfaces 18, 20th the ignition tube 8 and the mold 2 clamped and thus forms a workpiece holding portion 21.
  • the receiving space 15 of the tool 2 is simultaneously sealed gas-tight.
  • the ignition tube 8 has in this embodiment, a valve 28, via which the receiving space 15 in the interior of the mold 2 and the workpiece cavity 13 can be filled with liquid.
  • a valve 28 via which the receiving space 15 in the interior of the mold 2 and the workpiece cavity 13 can be filled with liquid.
  • several valves can be provided.
  • FIG. 3 shows a section through the inventive tool assembly 1 with inserted workpiece 12.
  • the in FIG. 3 used reference numerals denote the same parts as in the FIGS. 1 and 2 , so in this regard to the description of the FIGS. 1 and 2 is referenced.
  • the receiving space 15 of the mold 2 extends in this embodiment through the workpiece cavity 13.
  • the receiving space 15 and the workpiece cavity 13 are in FIG. 3 about three quarters filled with a liquid 26.
  • Suitable liquids include, for example, water, but also certain oils.
  • Above the liquid surface 22 is an explosive gas mixture 23.
  • the gas molecules are distributed in the available, liquid-free space 24. Depending on the type of gas, some gas molecules also lie directly on the liquid surface 22.
  • the explosive gas mixture 23 is oxyhydrogen.
  • This can consist of a hydrogen (H 2 ) -oxygen (O 2 ) mixture or also of a hydrogen (H 2 ) -air mixture.
  • the gas mixture depending on the application, also targeted other gases such. B. be added with nitrogen.
  • the oxyhydrogen used here is a stoichiometric gas mixture with a slight excess of hydrogen.
  • the hydrogen content may be in a range of about 4 to 76%. Alternatively, however, another explosive gas mixture could also be used.
  • a connection 25 for introducing the explosive gas mixture and an igniter 27 are provided for igniting the explosive gas mixture.
  • one or more gas connections 25 may be provided in the mold 2, as in FIG FIG. 4 shown.
  • FIG. 4 shows a section through a tool assembly 1 according to the invention according to a second embodiment of the invention.
  • reference numerals denote the same parts as in the FIGS. 1 to 3 , so in this regard to the description of the FIGS. 1 to 3 is referenced.
  • FIG. 4 is the receiving space 15 and the workpiece cavity 13 completely filled with the liquid. Again, the explosive gas mixture 23 is above the liquid surface 22.
  • the gas connection 25 is located in this embodiment below the liquid surface 22. He is here in one of the mold halves 4 is arranged.
  • FIG. 5 shows a section through the tool assembly 1 according to the invention FIG. 4 with a changed fluid level.
  • reference numerals denote the same parts as in the FIGS. 1 to 4 , so in this regard to the description of the FIGS. 1 to 4 is referenced.
  • the workpiece cavity 13 is completely filled with liquid 26 here. Also, the workpiece holding portion 21 is covered by the liquid.
  • This has the advantage that the cutting or contact points, which are in this area z. B. the interface between the workpiece 12 and the mold 2 but also the interface between the workpiece 12 and the ignition tube 8, liquid-tight can be formed. As a result, z. B. the structural design of these interface areas simplified or the contact pressure of the ignition tube 8 can be reduced.
  • the explosive gas mixture 23 is here also above the liquid surface 22, namely in the remaining, liquid-free cavity 24. This is at the liquid level shown here completely within the ignition tube 8. That is, the explosive gas mixture 23 and the cavity 24, in which it is located at such a high liquid level of the workpiece 12 spaced apart.
  • the ignition tube 8 is in its parking position 11.
  • the mold 2 is opened, in which at least one of the mold halves 4 is spaced from the remaining mold halves.
  • the workpiece 12 is introduced into the receiving space 15 of the mold 2.
  • the mold 2 is closed again, in which all mold halves 4 of the mold 2 are joined together.
  • the edge region 19 of the workpiece 12 extends into the opening 17 of the mold 2, as in FIG. 2 to see.
  • the ignition tube 8 is moved along its longitudinal direction 9 from the parking position 11 into the working position 10.
  • the front, conical end 18 dese ignition tube 8 comes into contact with the edge portion 19 of the workpiece 12 and deforms it to a workpiece holding portion 21 until it rests against the conical contact surface 20 of the mold 2.
  • the ignition tube 8 presses the workpiece holding region 21 with a predetermined force against the contact surface 20. This can lead to an additional deformation of the workpiece holding region 21, as in FIG FIG. 3 shown.
  • the receiving space 15 is sealed gas-tight at the same time.
  • the receiving space 15 which corresponds approximately to the workpiece cavity 13 in the exemplary embodiments shown here, is filled with a certain amount of liquid 26, for example water.
  • the liquid 26 collects in the workpiece cavity 13 and forms a liquid surface 22.
  • the remaining, liquid-free cavity 24 is filled with a certain amount of the explosive gas mixture 23.
  • the ratio of explosive gas to liquid is in the range of 1: 1 to 1:20.
  • Gas-liquid ratios in the range of 1: 2 to 1:15 have proved to be advantageous, wherein a ratio in the range of 1: 3 to 1:10 is particularly favorable.
  • a gas-liquid ratio of 1: 7 is desirable.
  • the gas pressure before explosion forming is in the range of about 60 to 200 bar, advantageously in the range of 70 to 120 bar and in particular in the range of 95 to 105 bar, or 110 to 130 bar.
  • the amount of liquid or the liquid level can be as in the FIGS. 3 to 5 vary.
  • the volume and the position of the remaining, liquid-free cavity 24 changes as a result of the relatively low liquid level in FIG. 3 extends the cavity 24 and the gas mixture 23 z. B. from the workpiece cavity 13 over the workpiece holding portion 21 away into the ignition tube 8 into it.
  • the entire receiving space 15 is filled with liquid 26.
  • the explosive gas mixture 23 or the remaining, liquid-free cavity 24 extends here only in the tool holding region 21 and into the ignition tube 8.
  • the liquid-free cavity 24 is only in the ignition tube 8 and is thus spaced from the workpiece 12.
  • the volume of the free cavity 24 may be in a range of about one-half liter to ten liters. Cavities 24 with a volume of about one-half to four liters have proven to be advantageous in practice, with a void volume of about one to two liters is particularly economical.
  • the explosive gas mixture 23, which is located in the cavity 24 is ignited.
  • the oxygen present in the explosion is approximately completely burned or converted. This is to counteract corrosion of the workpiece and the tool or the entire system.
  • Zündmechanismen come here in principle the usual, z. B. known from the prior art ignition mechanisms in question.
  • the resulting detonation front initially spreads in the gas mixture 23 or the cavity 24 and then impinges on the phase boundary, namely the liquid surface 22. In this case, about four fifths of the energy or the force of the detonation front are transferred to the liquid.
  • the direct contact between the gas mixture 23 and the liquid 26, without additional intermediate components, ensures a relatively good Power transmission.
  • the pressure wave delivered to the liquid 26 continues in this and thus presses the workpiece 12 into the cavity 14 of the molding tool 2.
  • the workpiece holding region 21 is separated from the remainder of the formed workpiece 12 by means of the separating edge 29 provided in the molding tool 2.
  • the forming pressure achieved in this case is in the filled in this embodiment amount of gas of about one liter and at the prevailing outlet pressure of about 100 bar at about 2000 to 2500 bar.
  • the liquid 26 covers large areas of the workpiece 12 and protects them from burns. If 4 cutting or separating edges 29 are provided in the mold to simultaneously cut the workpiece 12 during forming, the quality of these edges is improved by the transfer of pressure by means of liquid. The edge quality of holes that can be punched during forming is also improved.
  • Another advantage of the liquid filling is the simplification of the interfaces in the workpiece holding region 21 and / or between the individual mold halves 4. These lie here, as in the FIGS. 3 to 5 shown below the liquid surface 22 and are therefore only liquid-tight. The liquid filling also reduces the amount of gas required in comparison to explosion forming without liquid filling.
  • the liquid filling takes place via a valve 28 in the ignition tube 8, since this is an approximately straight, tubular workpiece 12.
  • the liquid filling of the workpiece cavity 13 can also take place via an immersion bath.
  • This is particularly suitable for workpieces which are suitable by their shape to absorb liquid, eg. B. for curved or trough-shaped workpieces.
  • Such workpieces can, for. B. preformed from bar stock and then transported in a liquid bath, for example, a water bath. Here they are dipped depending on the desired amount of liquid before they are inserted into the mold 2.
  • Such a liquid bath can simultaneously z. B. as Serve production buffer in which a certain number of preformed and liquid-filled workpieces 12 can be stored before they are inserted into the mold 2.
  • the filling with the gas mixture 23 does not necessarily have to take place via one or more connections 25 in the ignition tube 8.
  • the gas mixture 23 may also be introduced below the liquid surface according to the second embodiment of the invention, for. B. by one or more gas ports 25 in the mold 2, as in FIG. 4 shown. In this case, the gas 23 introduced below the liquid surface rises through the liquid 26 and collects in the liquid-free cavity 24.
  • the ignition takes place here via the ignition device 27.
  • the ignition can be done after all the gas has collected 23 in the cavity 24 or even if the gas mixture 23 is still at least partially in the liquid 26.
  • the introduction of the gas 23 through a liquid 26, such as water through has the advantage that despite the same amount of gas, a higher forming pressure can be achieved. Depending on the workpiece and the amount of gas or liquid filled, an increase of the forming pressure up to four times the value is possible.
  • Conceivable here would be liquids, which especially by their viscosity range suitable for this purpose, such as. For example, certain oils.
  • the tool cavity 13 is filled with liquid.
  • liquid This is particularly suitable for tubular workpieces and has proven to be advantageous in practice.
  • the liquid may also be located outside of the workpiece cavity 13 in the receiving space 15.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

Die Erfindung betrifft ein Verfahren und eine Werkzeuganordnung zum Explosionsumformen mit den Merkmalen des Oberbegriffs der Ansprüche 1 und 8.The invention relates to a method and a tool assembly for explosive forming with the features of the preamble of claims 1 and 8.

Die GB 2 047 147 offenbart eine Vorrichtung der eingangs genannten Gattung, welche zur Herstellung von Aufnahmehülsen für Prothesen durch Stoßwellenumformung eingesetzt wird. Hierbei wird ein hohlgeformter Metallrohling in eine Aussparung einer Matrize eingelegt, wobei die Aussparung der Form des Körperstummels entspricht, dessen Form der Metallrohling nach dem Umformen annehmen soll. Nach dem Befüllen des Metallrohlings mit einer Flüssigkeit wird in den nach oben hin geöffneten Metallrohling ein zylinderförmiger Ansatz einer Gasdruckkammer eingeführt. Um die in der Gasdruckkammer befindlichen Gase von der Flüssigkeit zu separieren, befindet sich an dem Ende des zylinderförmigen Ansatzes eine Abdichtmembran. Die Vorrichtung wird vor dem Zünden des Gasgemisches mit einem verschiebbaren flachen Ring befestigt. Nach der Zündung des Gasgemisches innerhalb der Gasdruckkammer durchbricht die resultierende Stoßwelle die Abdichtmembran und läuft anschließend in den mit Flüssigkeit gefüllten Hohlkörper um diesen zu verformen.The GB 2 047 147 discloses a device of the type mentioned, which is used for the production of receiving sleeves for prostheses by shock wave deformation. Here, a hollow-shaped metal blank is inserted into a recess of a die, wherein the recess corresponds to the shape of the body stump, the shape of the metal blank should take after forming. After filling the metal blank with a liquid, a cylindrical extension of a gas pressure chamber is introduced into the metal blank which is open at the top. In order to separate the gases in the gas pressure chamber from the liquid, a sealing membrane is located at the end of the cylindrical extension. The device is secured with a slidable flat ring prior to igniting the gas mixture. After ignition of the gas mixture within the gas pressure chamber, the resulting shock wave breaks through the sealing membrane and then passes into the liquid-filled hollow body to deform it.

Bei einem aus der CH 409 831 bekannten Verfahren wird das zu verformende Werkstück, z. B. ein Rohr, in eine Form eingesetzt und mit Wasser gefüllt. Eine mehrere Elektroden umfassende Vorrichtung zur Erzeugung und Zündung von Knallgas wird in einem elastischen Behälter, z. B. einem Plastikbeutel, verpackt. Dieser wird innerhalb des Werkstücks platziert so tief in das Wasser eingesenkt, bis der Beutel völlig unter der Wasseroberfläche liegt. Durch Aktivieren zweier Elektroden wird unter Wasser Knallgas erzeugt, welches sich in dem umgebenden Beutel sammelt. Durch Zünden des in dem Beutel produzierten Knallgases mittels einer Zündkerze oder eines Glühdrahtes, wird in dem Wasser eine Druckwelle erzeugt, welche das Werkstück in die Form presst. Dieses Verfahren ist jedoch aufwendig und zeitintensiv.At one of the CH 409 831 known method is the workpiece to be deformed, z. As a tube, inserted into a mold and filled with water. A multi-electrode device for the production and ignition of oxyhydrogen gas is in an elastic container, for. As a plastic bag, packed. This is placed inside the workpiece so deep in the water, until the bag is completely below the water surface. By activating two electrodes, oxyhydrogen gas is generated under water, which accumulates in the surrounding bag. By igniting the detonating gas produced in the bag by means of a spark plug or a filament, a pressure wave is generated in the water, which presses the workpiece into the mold. However, this method is complicated and time-consuming.

Der Erfindung liegt die Aufgabe zugrunde ein Verfahren und eine Werkzeuganordnung zum Explosionsumformen der eingangs genannten Gattung dahingehend zu verbessern, dass das Verfahren und die Werkzeuganordnung vereinfacht und für die Massenproduktion geeignet sind.The invention has for its object to improve a method and a tool assembly for explosive forming of the type mentioned in that the method and the tool assembly is simplified and suitable for mass production.

Diese Aufgabe wird erfindungsgemäß gelöst mit einem Verfahren mit den Merkmalen des Anspruchs 1.This object is achieved according to the invention with a method having the features of claim 1.

Das Vorsehen des Gasgemisches wenigstens teilweise über der Flüssigkeitsoberfläche gewährleistet eine leichte und rasche Zufuhr des Gasgemisches. Obwohl das Gasgemisch hier oberhalb der Flüssigkeitsoberfläche angeordnet, also von dem zu verformenden Werkstück relativ weit beabstandet ist, kann mit dem erfindungsgemäßen Verfahren dennoch ein gutes Umformergebnis erzielt werden. Die Explosion des Gasgemisches und damit die Entstehung einer Detonationsfront erfolgt hier zunächst oberhalb der Flüssigkeitsoberfläche. Es hat sich jedoch gezeigt, dass die Kraft- bzw. Energieübertragung über die Phasengrenze Gas-Flüssigkeit hinweg ausreichend gut ist, um ein gutes Umformergebnis zu erzielen. Durch das teilweise Befüllen des Aufnahmeraums mit Flüssigkeit, welche als Druckübertragungsmedium dient, kann die benötigte Gasmenge reduziert werden. Im Gegensatz zum Explosionsumformen ohne Flüssigkeit, werden Verbrennungen des Werkstücks weitgehend vermieden. Durch die hohen Taktzeiten in heutigen Produktionsprozessen erreicht das Formwerkzeug relativ rasch hohe Temperaturen. Die sich in dem Aufnahmeraum befindende Flüssigkeit kann so nicht nur als Druckübertragungsmedium sondern auch der Kühlung dienen.The provision of the gas mixture at least partially above the liquid surface ensures easy and rapid supply of the gas mixture. Although the gas mixture is arranged here above the liquid surface, that is, is relatively widely spaced from the workpiece to be deformed, a good deformation result can nevertheless be achieved with the method according to the invention. The explosion of the gas mixture and thus the formation of a detonation front takes place here above the liquid surface. However, it has been shown that the power or energy transfer over the phase boundary Gas-liquid away is enough good to achieve a good forming result. By partially filling the receiving space with liquid, which serves as a pressure transmission medium, the required amount of gas can be reduced. In contrast to explosive forming without liquid, burns of the workpiece are largely avoided. Due to the high cycle times in today's production processes, the mold reaches high temperatures relatively quickly. The liquid located in the receiving space can thus serve not only as a pressure transmission medium but also for cooling.

Gemäß der Erfindung greuzt das Gasgemisch unmittelbar an die Flüssigkeitsoberfläche an. Obwohl die Detonationsfront in diesem Fall ungehindert auf die Flüssigkeitsoberfläche aufschlägt, wird durch die unmittelbare Anlage des Gases an der Flüssigkeitsoberfläche wird eine gute Kraftübertragung über die Phasengrenze Gas-Flüssigkeit hinweg erreicht.According to the invention, the gas mixture increases directly to the liquid surface. Although the detonation front hits the surface of the liquid unhindered in this case, the direct application of the gas to the surface of the liquid achieves good force transmission across the gas-liquid interface.

Vorteilhafterweise kann der Aufnahmeraum über ein Ventil mit Flüssigkeit befüllt werden. Dies gewährleistet eine gute Steuerung des Befüllvorgangs sowie eine präzise Dosierung der Flüssigkeitsmenge.Advantageously, the receiving space can be filled via a valve with liquid. This ensures a good control of the filling process and a precise metering of the amount of liquid.

In einer Variante der Erfindung kann das Gasgemisch wenigstens teilweise durch die Flüssigkeit hindurchgeleitet werden. Je nach Gasgemisch können dadurch bei ansonsten gleichbleibender Gasmenge höhere Drücke erzielt werden. Es hat sich gezeigt, dass das Gas in Folge des Hindurchleitens durch die Flüssigkeit wie zum Beispiel Wasser in einem Zustand ist, in welchem eine Zündung des Gases zu einem deutlich höheren Explosionsdruck führt. Dadurch resultiert auch ein höherer auf das Werkstück wirkender Umformdruck.In a variant of the invention, the gas mixture can be at least partially passed through the liquid. Depending on the gas mixture higher pressures can be achieved with otherwise constant gas quantity. It has been found that the gas is in a state in which an ignition of the gas leads to a significantly higher explosion pressure as a result of passing through the liquid such as water. This also results in a higher forming pressure acting on the workpiece.

Günstigerweise kann sich der Aufnahmeraum wenigstens teilweise durch einen vorgeformten Werkstückhohlraum erstrecken, in welchem sich die Detonationsfront ausbreitet. Die sich im Innern des Werkstücks ausbreitende Detonationsfront kann so die Wandung des Werkstücks gut umformen. So lassen sich z. B. rohrartige Werkstücke gut fertigen.Conveniently, the receiving space may extend at least partially through a preformed workpiece cavity in which the detonation front propagates. The detonation front propagating inside the workpiece can thus well reshape the wall of the workpiece. So can be z. B. finished tube-like work well.

In einer weiteren Ausführungsform der Erfindung kann das Werkstück in einem Werkstückhaltebereich, an welchem das Werkstück in dem Formwerkzeug gehalten ist, mit Flüssigkeitgefüllt werden. So werden auch die in der Werkzeuganordnung gehaltenen Enden des Werkstücks vor Verbrennungen geschützt. In dem Werkstückhaltebereich sind Schnitt- bzw. Kontaktstellen vorhanden z. B. zwischen dem Werkstück und dem Formwerkzeug, welche während des Explosionsumformprozesses dicht halten müssen. Durch das Bedecken dieser Schnittstellenbereiche mit Flüssigkeit kann die konstruktive Ausgestaltung dieser Bereiche vereinfacht werden. Eine flüssigkeitsdichte Schnittstelle ist einfacher und kostengünstiger herzustellen als z. B. eine gasdichte.In a further embodiment of the invention, the workpiece can be filled with liquid in a workpiece holding region on which the workpiece is held in the mold. Thus, also held in the tool assembly ends of the workpiece are protected from burns. In the workpiece holding area cutting or contact points are present z. B. between the workpiece and the mold, which must keep tight during the Explosionsumformprozesses. By covering these interface areas with liquid, the structural design of these areas can be simplified. A liquid-tight interface is easier and cheaper to produce than z. B. a gas-tight.

Vorteilhafterweise kann der gesamte Werkstückhohlraum vollständig mit Flüssigkeit befüllt werden. Dadurch werden große Flächen des Werkstücks vor Verbrennungen geschützt bei gleichzeitig guter Kraftübertragung.Advantageously, the entire workpiece cavity can be completely filled with liquid. As a result, large areas of the workpiece are protected against burns with good power transmission.

Günstigerweise kann ein verbleibender, flüssigkeitsfreier Werkstückhohlraum wenigstens teilweise mit dem explosiven Gasgemisch gefüllt werden. Dies gewährleistet ein einfaches und schnelles Befüllen mit dem Gasgemisch.Conveniently, a remaining, liquid-free workpiece cavity can be at least partially filled with the explosive gas mixture. This ensures easy and fast filling with the gas mixture.

In einer vorteilhaften Ausführungsform der Erfindung kann ein verbleibender, flüssigkeitsfreier Hohlraum, welcher beabstandet zu dem eingebrachten Werkstück ist, wenigstens teilweise mit dem explosiven Gasgemisch gefüllt werden. So kann selbst bei vollständig mit Flüssigkeit befülltem Aufnahme- bzw. Werkstückhohlraum eine ausreichend große Gasmenge aufgenommen werden, um eine gute Explosion sowie Ausbreitung der Detonationsfront zu gewährleisten.In an advantageous embodiment of the invention, a remaining, liquid-free cavity, which is spaced from the introduced workpiece, at least partially filled with the explosive gas mixture. Thus, even with completely filled with liquid receiving or workpiece cavity a sufficiently large amount of gas to be taken in order to ensure a good explosion and propagation of the detonation front.

In einer Variante der Erfindung kann der Aufnahmeraum durch Tauchen des Werkstücks in ein Flüssigkeitsbad mit Flüssigkeit befüllt werden. Die Flüssigkeitsbefüllung des Werkstücks kann so z. B. schon vor dem Einbringen des Werkstücks in dem Aufnahmeraum des Formwerkzeugs erfolgen. Diese einfache Art des Befüllens gewährleistet gute Taktzeiten. Innerhalb des Produktionsprozesses kann das Flüssigkeitsbad zugleich als Puffer für weiterzuverarbeitende Werkstücke dienen.In a variant of the invention, the receiving space can be filled by immersing the workpiece in a liquid bath with liquid. The liquid filling of the workpiece can be such. B. already done before the introduction of the workpiece in the receiving space of the mold. This simple way of filling ensures good cycle times. Within the production process, the liquid bath can also serve as a buffer for further workpieces.

Vorteilhafterweise kann das Verhältnis von explosivem Gas zu Flüssigkeit etwa 1:10 bis 1:20, vorzugsweise 1:2 bis 1:15, und insbesondere 1:3 bis 1:10 betragen. Dieses Verhältnis gewährleistet eine für das Umformen ausreichend große Explosionskraft sowie eine gute Ausbreitung der Detonationsfront auch über die Phasengrenze hinweg.Advantageously, the ratio of explosive gas to liquid may be about 1:10 to 1:20, preferably 1: 2 to 1:15, and more preferably 1: 3 to 1:10. This ratio ensures a sufficiently large explosion force for forming and a good propagation of the detonation front also over the phase boundary.

Vorteilhafterweise kann die Zündung des Gasgemisches außerhalb des Werkstückhohlraums erfolgen. So kann der Flüssigkeitsstand im Aufnahmeraum den Produktionserfordernissen angepasst werden. Auch maximale Flüssigkeitsstände wie z. B. ein vollständiges Bedecken des Werkstücks mit Flüssigkeit sind so möglich.Advantageously, the ignition of the gas mixture can take place outside the workpiece cavity. Thus, the liquid level in the receiving space can be adapted to the production requirements. Also maximum fluid levels such. As a complete covering of the workpiece with liquid are possible.

Die eingangs genannte Aufgabe wird ferner vorrichtungsseitig gelöst durch eine Werkzeuganordnung mit den Merkmalen des Anspruchs 8.The object mentioned at the outset is furthermore achieved on the device side by a tool arrangement having the features of claim 8.

Die Anordnung des explosiven Gasgemisches wenigstens teilweise über der Flüssigkeitsoberfläche, erlaubt ein leichtes und rasches Befüllen. Zugleich ist eine gute Übertragung der Explosionskraft bzw. der Detonationsfront über die Phasengrenze hinweg möglich. Obwohl das Gasgemisch hier über der Wasseroberfläche angeordnet ist, wird ein gutes Umformergebnis erzielt.The arrangement of the explosive gas mixture at least partially above the liquid surface, allows easy and rapid filling. At the same time a good transfer of the explosive force or the detonation front across the phase boundary is possible. Although the gas mixture is arranged here above the water surface, a good forming result is achieved.

Gemäß der Erfindung greuzt das Gasgemisch unmittelbar an die Flüssigkeitsoberfläche an. Die unmittelbare und ungehinderte Berührung des Gasgemisches mit der Flüssigkeitsoberfläche gewährleistet eine gute Kraftübertragung.According to the invention, the gas mixture increases directly to the liquid surface. The direct and unhindered contact of the gas mixture with the liquid surface ensures good power transmission.

Vorteilhafterweise kann der Aufnahmeraum über ein Ventil mit Flüssigkeit befüllbar sein. Dies erlaubt eine gute Steuerung des Befüllvorgangs und eine gute Dosierung der Flüssigkeitsmenge.Advantageously, the receiving space can be filled via a valve with liquid. This allows a good control of the filling process and a good dosage of the amount of liquid.

In einer Variante der Erfindung kann ein Gasanschluss unterhalb der Flüssigkeitsoberfläche vorgesehen sein. So kann das Gasgemisch durch die Flüssigkeit hindurch in den Aufnahmeraum geleitet werden. Dies erlaubt, je nach Gasgemisch, höhere Umformdrücke bei gleicher Gasmenge.In a variant of the invention, a gas connection may be provided below the liquid surface. Thus, the gas mixture can be passed through the liquid into the receiving space. This allows, depending on the gas mixture, higher forming pressures for the same amount of gas.

Günstigerweise kann sich der Aufnahmeraum wenigstens teilweise durch einen vorgeformten Werkstückhohlraum erstrecken. So kann sich die Detonationsfront auch im Innern des Werkstücks ausbreiten.Conveniently, the receiving space may at least partially extend through a preformed workpiece cavity. Thus, the detonation front can also spread inside the workpiece.

In einer weiteren Ausführungsform der Erfindung kann das Werkstück in einem Werkstückhaltebereich, an welchem das Werkstück in dem Formwerkzeug gehalten ist mit Flüssigkeit gefüllt sein. So werden auch die in dem Formwerkzeug gehaltenen Enden des Werkstücks vor Verbrennungen geschützt. Zugleich lassen sich durch diese Anordnung die konstruktiven Anforderungen an die Dichtheit der in dem Werkzeughaltebereich liegenden Schnittstellen, wie z. B. der Schnittstelle Werkstück-Formwerkzeug, reduzieren. Flüssigkeitsdichte Schnittstellen sind konstruktiv einfacher zu realisieren als z. B. gasdichte Schnittstellen.In a further embodiment of the invention, the workpiece may be filled with liquid in a workpiece holding region on which the workpiece is held in the mold. Thus, the ends of the workpiece held in the mold are also protected from burns. At the same time, the design requirements for the tightness of lying in the tool holding area interfaces such. As the interface workpiece-forming tool, reduce. Liquid-tight interfaces are structurally easier to implement than z. B. gas-tight interfaces.

Vorteilhafterweise kann der gesamte Werkstückhohlraum, vollständig mit Flüssigkeit gefüllt sein. Dadurch befindet sich ein Großteil der Werkstückfläche unter der Flüssigkeit und ist somit vor Verbrennungen geschützt.Advantageously, the entire workpiece cavity may be completely filled with liquid. As a result, a large part of the workpiece surface is under the liquid and thus protected against burns.

Bei einer vorteilhaften Ausführungsform der Erfindung kann ein verbleibender, flüssigkeitsfreier Werkstückhohlraum wenigstens teilweise mit dem explosiven Gasgemisch gefüllt sein. Dies gewährleistet ein leichtes Befüllen mit dem Gasgemisch.In an advantageous embodiment of the invention, a remaining, liquid-free workpiece cavity may be at least partially filled with the explosive gas mixture. This ensures easy filling with the gas mixture.

Günstigerweise kann ein verbleibender, flüssigkeitsfreier Hohlraum, welcher beabstandet zu dem eingelegten Werkstück ist, wenigstens teilweise mit dem explosiven Gasgemisch gefüllt sein. Dieser Hohlraum gewährleistet die Aufnahme einer ausreichend großen Gasmenge und somit eine gute Explosion und Ausbreitung der Detonationsfront unabhängig von dem Flüssigkeitsfüllstand des Aufnahmeraums.Conveniently, a remaining, liquid-free cavity, which is spaced from the inserted workpiece, be at least partially filled with the explosive gas mixture. This cavity ensures the absorption of a sufficiently large amount of gas and thus a good explosion and propagation of the detonation front regardless of the liquid level of the receiving space.

In einer Variante der Erfindung kann eine Zündvorrichtung außerhalb des Werkstückhohlraums angeordnet sein. Die Zündung des Gasgemisches kann somit unabhängig von dem Flüssigkeitsfüllstand im Innern des Werkstücks erfolgen.In a variant of the invention, an ignition device may be arranged outside the workpiece cavity. The ignition of the gas mixture can thus be carried out independently of the liquid level in the interior of the workpiece.

Im Folgenden werden Ausführungsbeispiele der Erfindung anhand der folgenden Zeichnung beschrieben:In the following, embodiments of the invention will be described with reference to the following drawing:

Dabei zeigen:

Figur 1
eine perspektivische Ansicht einer erfindungsgemäßen Werkzeuganordnung gemäß eines ersten Ausführungsbeispiels der Erfindung,
Figur 2
eine vergrößerte, perspektivische Schnittansicht durch die erfindungsgemäße Werkzeuganordnung mit eingesetztem Werkstück,
Figur 3
einen Schnitt durch das erfindungsgemäße Werkzeug mit eingesetztem Werkstück und Flüssigkeitsfüllung,
Figur 4
einen Schnitt durch die erfindungsgemäße Werkzeuganordnung mit eingesetztem Werkstück und geändertem Flüssigkeitsfüllstand gemäß einem zweiten Ausführungsbeispiel der Erfindung und
Figur 5
die erfindungsgemäße Werkzeuganordnung aus Figur 4 mit geändertem Flüssigkeitsfüllstand.
Showing:
FIG. 1
a perspective view of a tool assembly according to the invention according to a first embodiment of the invention,
FIG. 2
an enlarged, perspective sectional view through the tool assembly according to the invention with inserted workpiece,
FIG. 3
a section through the tool according to the invention with inserted workpiece and liquid filling,
FIG. 4
a section through the inventive tool assembly with inserted workpiece and changed liquid level according to a second embodiment of the invention and
FIG. 5
the tool assembly according to the invention FIG. 4 with changed liquid level.

Figur 1 zeigt eine perspektivische Ansicht einer erfindungsgemäßen Werkzeuganordnung 1 gemäß einem ersten Ausführungsbeispiel der Erfindung. Die Werkzeuganordnung 1 weist in diesem Ausführungsbeispiel ein Formwerkzeug 2 und ein Zündaggregat 3 auf. FIG. 1 shows a perspective view of a tool assembly 1 according to the invention according to a first embodiment of the invention. The tool assembly 1 has in this embodiment, a mold 2 and an ignition unit 3.

Das Formwerkzeug 2 ist mehrteilig ausgebildet. Es besteht aus mehreren Werkzeughälften 4, welche zu dem Formwerkzeug 2 zusammensetzbar sind. In geschlossenem Zustand, das heißt, wenn alle Formwerkzeughälften 4 zusammengesetzt sind, ergibt sich im Innern des Formwerkzeugs 2 eine Werkzeugkavität 14, deren Kontur die spätere Form des fertigen Werkstücks ergibt. Zusätzlich können in der Kontur des Formwerkzeugs 2 auch Schneid- oder Trennkanten 29 sowie Lochmatrizen 30 vorgesehen sein, um das Werkstück während des Explosionsumformens gleichzeitig zu beschneiden, wie in den Figuren 3 bis 5 dargestellt. Die Werkzeugkavität 14 bildet zugleich einen Aufnahmeraum 15 des Formwerkzeugs 2. Erfindungsgemäß ist der Aufnahmeraum 15 wenigstens teilweise mit einer Flüssigkeit gefüllt, wie später anhand der Figuren 3 bis 5 erläutert wird.The mold 2 is formed in several parts. It consists of several mold halves 4, which are composable to the mold 2. In the closed state, that is, when all mold halves 4 are assembled, results in the interior of the mold 2, a Werkzeugkavität 14 whose contour results in the later shape of the finished workpiece. In addition, in the contour of the mold 2, cutting or separating edges 29 and punch matrices 30 may be provided to simultaneously cut the workpiece during the explosion forming, as in the FIGS. 3 to 5 shown. The tool cavity 14 at the same time forms a receiving space 15 of the molding tool 2. According to the invention, the receiving space 15 is at least partially filled with a liquid, as later described with reference to FIG FIGS. 3 to 5 is explained.

Das Formwerkzeug 2 kann auch in einer Presse 5 angeordnet sein, welche das Formwerkzeug 2 geschlossen hält. Die einzelnen Formwerkzeughälften 4 können dann z. B. durch einen oder mehrere Stempel der Presse gegeneinander gepresst werden.The mold 2 may also be arranged in a press 5, which keeps the mold 2 closed. The individual mold halves 4 can then z. B. by one or more stamp the press against each other.

Das Zündaggregat 3 weist in diesem Ausführungsbeispiel eine Halterung 7 und ein Zündrohr 8 auf. Das Zündrohr 8 läuft an seinem dem Formwerkzeug 2 zugewandten, vorderen Ende 18 konisch zu und ist in der Halterung 7 wenigstens in seiner Längsrichtung 9 verschieblich gelagert. Es ist so zwischen einer Arbeitsstellung 10, in welcher das Zündrohr 8 an einem in dem Formwerkzeug 2 befindlichen Werkstück 12 oder an dem Formwerkzeug 2 anliegt, und einer Parkstellung 11, in welcher das Zündrohr 8 von dem Formwerkzeug 2 beabstandet ist und welche hier durch eine gestrichelte Linie angedeutet ist, bewegbar. In anderen Ausführungsbeispielen der Erfindung kann das Zündrohr 8 jedoch auch mehrere Freiheitsgrade aufweisen und z. B. auch etwa quer zu seiner Längsrichtung 9 verschieblich sein.The ignition unit 3 has a holder 7 and an ignition tube 8 in this embodiment. The ignition tube 8 runs at its the mold 2 facing front end 18 conical and is mounted in the holder 7 at least in its longitudinal direction 9 slidably. It is so between a working position 10, in which the ignition tube 8 rests against a located in the mold 2 workpiece 12 or on the mold 2, and a parking position 11, in which the ignition tube 8 is spaced from the mold 2 and which here by a dashed line is indicated, movable. In other embodiments of the invention, however, the ignition tube 8 may also have several degrees of freedom and z. B. also be displaceable transversely to its longitudinal direction 9.

Figur 2 zeigt eine perspektivische Schnittansicht durch die erfindungsgemäße Werkzeuganordnung 1 mit eingesetztem Werkstück. Die in Figur 2 verwendeten Bezugszeichen bezeichnen dieselben Teile wie in Figur 1, so dass diesbezüglich auf die Beschreibung der Figur 1 verwiesen wird. FIG. 2 shows a perspective sectional view through the inventive tool assembly 1 with inserted workpiece. In the FIG. 2 Reference numerals used denote the same parts as in FIG FIG. 1 , so in this regard to the description of the FIG. 1 is referenced.

In den Aufnahmeraum 15 des Formwerkzeugs 2 ist ein Werkstück 12 eingesetzt. In diesem Ausführungsbeispiel ist das Werkstück 12 etwa rohrförmig und weist in seinem Inneren einen vorgeformten Werkstückhohlraum 13 auf. Auch die Kontur des Formwerkzeugs 2, an welche das Werkstück 12 durch Umformen angepasst wird, ist hier etwa rohrartig.In the receiving space 15 of the mold 2, a workpiece 12 is inserted. In this embodiment, the workpiece 12 is approximately tubular and has a preformed workpiece cavity 13 in its interior. Also, the contour of the mold 2, to which the workpiece 12 is adapted by forming, here is approximately like a tube.

An seiner dem Zündrohr 8 zugewandten Seite 16 weist das Formwerkzeug 2 eine Öffnung 17 auf, welche mit dem Aufnahmeraum 15 im Innern des Formwerkzeugs 2 in Verbindung steht und deren Rand korrespondierend zu dem vorderen Ende 18 des Zündrohrs 8 abgeschrägt ist und so eine Anlagefläche 20 bildet.On its side facing the ignition tube 8 side 16, the mold 2 has an opening 17 which is in communication with the receiving space 15 in the interior of the mold 2 and whose edge is beveled corresponding to the front end 18 of the ignition tube 8 and so forms a contact surface 20 ,

Das Zündrohr 8 befindet sich in Figur 2 in seiner Arbeitsstellung 10 und drückt einen Randbereich 19 des Werkstücks 12 gegen das Formwerkzeug 2. Der Randbereich 19 wird dabei verformt und zwischen den beiden korrespondierenden, konischen Anlageflächen 18, 20 des Zündrohrs 8 sowie des Formwerkzeugs 2 festgeklemmt und bildet so einen Werkstückhaltebereich 21. Dadurch ist der Aufnahmeraum 15 des Werkzeugs 2 zugleich gasdicht verschlossen.The ignition tube 8 is located in FIG. 2 in its working position 10 and presses an edge region 19 of the workpiece 12 against the mold 2. The edge region 19 is deformed and between the two corresponding conical contact surfaces 18, 20th the ignition tube 8 and the mold 2 clamped and thus forms a workpiece holding portion 21. As a result, the receiving space 15 of the tool 2 is simultaneously sealed gas-tight.

Das Zündrohr 8 weist in diesem Ausführungsbeispiel ein Ventil 28 auf, über welches der Aufnahmeraum 15 im Innern des Formwerkzeugs 2 bzw. der Werkstückhohlraum 13 mit Flüssigkeit befüllbar ist. Zur schnelleren Befüllung können alternativ auch mehrere Ventile vorgesehen sein.The ignition tube 8 has in this embodiment, a valve 28, via which the receiving space 15 in the interior of the mold 2 and the workpiece cavity 13 can be filled with liquid. For faster filling alternatively several valves can be provided.

Figur 3 zeigt einen Schnitt durch die erfindungsgemäße Werkzeuganordnung 1 mit eingesetztem Werkstück 12. Die in Figur 3 verwendeten Bezugszeichen bezeichnen dieselben Teile wie in den Figuren 1 und 2, so dass diesbezüglich auf die Beschreibung der Figuren 1 und 2 verwiesen wird. FIG. 3 shows a section through the inventive tool assembly 1 with inserted workpiece 12. The in FIG. 3 used reference numerals denote the same parts as in the FIGS. 1 and 2 , so in this regard to the description of the FIGS. 1 and 2 is referenced.

Der Aufnahmeraum 15 des Formwerkzeugs 2 erstreckt sich in diesem Ausführungsbeispiel durch den Werkstückhohlraum 13. Der Aufnahmeraum 15 bzw. der Werkstückhohlraum 13 sind in Figur 3 zu etwa drei Viertel mit einer Flüssigkeit 26 gefüllt. Als geeignete Flüssigkeit kommen zum Beispiel Wasser, aber auch bestimmte Öle in Betracht. Oberhalb der Flüssigkeitsoberfläche 22 befindet sich ein explosives Gasgemisch 23. Die Gasmoleküle sind in dem zur Verfügung stehenden, flüssigkeitsfreien Raum 24 verteilt. Je nach Gasart liegen einige Gasmoleküle auch direkt an der Flüssigkeitsoberfläche 22 an.The receiving space 15 of the mold 2 extends in this embodiment through the workpiece cavity 13. The receiving space 15 and the workpiece cavity 13 are in FIG. 3 about three quarters filled with a liquid 26. Suitable liquids include, for example, water, but also certain oils. Above the liquid surface 22 is an explosive gas mixture 23. The gas molecules are distributed in the available, liquid-free space 24. Depending on the type of gas, some gas molecules also lie directly on the liquid surface 22.

In diesem Ausführungsbeispiel ist das explosive Gasgemisch 23 Knallgas. Dieses kann aus einem Wasserstoff (H2)-Sauerstoff (O2)-Gemisch oder auch aus einem Wasserstoff (H2)-Luftgemisch bestehen. In anderen Ausführungsformen der Erfindung können dem Gasgemisch je nach Anwendungsfall auch gezielt andere Gase wie z. B. Stickstoff beigemengt werden. Das hier verwendete Knallgas ist ein stöchiometrisches Gasgemisch mit einem leichten Wasserstoffüberschuss. Der Wasserstoffanteil kann dabei in einem Bereich von etwa 4 bis 76% liegen. Alternativ könnte jedoch auch ein anderes explosives Gasgemisch Verwendung finden.In this embodiment, the explosive gas mixture 23 is oxyhydrogen. This can consist of a hydrogen (H 2 ) -oxygen (O 2 ) mixture or also of a hydrogen (H 2 ) -air mixture. In other embodiments of the invention, the gas mixture, depending on the application, also targeted other gases such. B. be added with nitrogen. The oxyhydrogen used here is a stoichiometric gas mixture with a slight excess of hydrogen. The hydrogen content may be in a range of about 4 to 76%. Alternatively, however, another explosive gas mixture could also be used.

In dem Zündrohr 8 sind ein Anschluss 25 zum Einleiten des explosiven Gasgemisches sowie eine Zündvorrichtung 27 zum Zünden des explosiven Gasgemisches vorgesehen. Alternativ können auch mehrere Gasanschlüsse 25, z. B. für jede Gasart einer, in dem Zündrohr 8 vorgesehen sein. In einem weiteren Ausführungsbeispiel der Erfindung können jedoch auch einer oder mehrere Gasanschlüsse 25 in dem Formwerkzeug 2 vorgesehen sein, wie in Figur 4 gezeigt.In the ignition tube 8, a connection 25 for introducing the explosive gas mixture and an igniter 27 are provided for igniting the explosive gas mixture. alternative can also be several gas connections 25, z. B. for each type of gas, be provided in the ignition tube 8. In a further embodiment of the invention, however, one or more gas connections 25 may be provided in the mold 2, as in FIG FIG. 4 shown.

Figur 4 zeigt einen Schnitt durch eine erfindungsgemäße Werkzeuganordnung 1 gemäß einem zweiten Ausführungsbeispiel der Erfindung. Die in Figur 4 verwendeten Bezugszeichen bezeichnen dieselben Teile wie in den Figuren 1 bis 3, so dass diesbezüglich auf die Beschreibung der Figuren 1 bis 3 verwiesen wird. FIG. 4 shows a section through a tool assembly 1 according to the invention according to a second embodiment of the invention. In the FIG. 4 used reference numerals denote the same parts as in the FIGS. 1 to 3 , so in this regard to the description of the FIGS. 1 to 3 is referenced.

In Figur 4 ist der Aufnahmeraum 15 bzw. der Werkstückhohlraum 13 vollständig mit der Flüssigkeit gefüllt. Auch hier befindet sich das explosive Gasgemisch 23 oberhalb der Flüssigkeitsoberfläche 22. Der Gasanschluss 25 befindet sich in diesem Ausführungsbeispiel unterhalb der Flüssigkeitsoberfläche 22. Er ist hier in einer der Formwerkzeughälften 4 angeordnet.In FIG. 4 is the receiving space 15 and the workpiece cavity 13 completely filled with the liquid. Again, the explosive gas mixture 23 is above the liquid surface 22. The gas connection 25 is located in this embodiment below the liquid surface 22. He is here in one of the mold halves 4 is arranged.

Figur 5 zeigt einen Schnitt durch die erfindungsgemäße Werkzeuganordnung 1 aus Figur 4 mit einem geänderten Flüssigkeitsfüllstand. Die in Figur 5 verwendeten Bezugszeichen bezeichnen dieselben Teile wie in den Figuren 1 bis 4, so dass diesbezüglich auf die Beschreibung der Figuren 1 bis 4 verwiesen wird. FIG. 5 shows a section through the tool assembly 1 according to the invention FIG. 4 with a changed fluid level. In the FIG. 5 used reference numerals denote the same parts as in the FIGS. 1 to 4 , so in this regard to the description of the FIGS. 1 to 4 is referenced.

Der Werkstückhohlraum 13 ist hier vollständig mit Flüssigkeit 26 gefüllt. Auch der Werkstückhaltebereich 21 ist von der Flüssigkeit bedeckt. Das hat den Vorteil, dass die Schnitt- bzw. Kontaktstellen, welche in diesem Bereich liegen z. B. die Schnittstelle zwischen dem Werkstück 12 und dem Formwerkzeug 2 aber auch die Schnittstelle zwischen dem Werkstück 12 und dem Zündrohr 8, flüssigkeitsdicht ausgebildet werden können. Dadurch kann z. B. der konstruktive Aufbau dieser Schnittstellenbereiche vereinfacht oder die Anpresskraft des Zündrohrs 8 verringert werden. Das explosive Gasgemisch 23 befindet sich auch hier oberhalb der Flüssigkeitsoberfläche 22, nämlich in dem verbleibenden, flüssigkeitsfreien Hohlraum 24. Dieser liegt bei dem hier gezeigten Flüssigkeitsfüllstand vollständig innerhalb des Zündrohrs 8. Das heißt, das explosive Gasgemisch 23 bzw. der Hohlraum 24, in welchem es sich befindet, ist bei einem derart hohen Flüssigkeitsfüllstand von dem Werkstück 12 beabstandet.The workpiece cavity 13 is completely filled with liquid 26 here. Also, the workpiece holding portion 21 is covered by the liquid. This has the advantage that the cutting or contact points, which are in this area z. B. the interface between the workpiece 12 and the mold 2 but also the interface between the workpiece 12 and the ignition tube 8, liquid-tight can be formed. As a result, z. B. the structural design of these interface areas simplified or the contact pressure of the ignition tube 8 can be reduced. The explosive gas mixture 23 is here also above the liquid surface 22, namely in the remaining, liquid-free cavity 24. This is at the liquid level shown here completely within the ignition tube 8. That is, the explosive gas mixture 23 and the cavity 24, in which it is located at such a high liquid level of the workpiece 12 spaced apart.

Im Folgenden wird die Funktionsweise der in den Figuren 1 bis 5 beschriebenen erfindungsgemäßen Ausführungsbeispiele erläutert.The following is the operation of the in the FIGS. 1 to 5 described embodiments of the invention described.

Zum Einsetzen des Werkstücks 12 in das Formwerkzeug 2 befindet sich das Zündrohr 8 in seiner Parkposition 11. Das Formwerkzeug 2 wird geöffnet, in dem wenigstens eine der Formwerkzeughälften 4 von den restlichen Formwerkzeughälften beabstandet wird. Anschließend wird das Werkstück 12 in den Aufnahmeraum 15 des Formwerkzeugs 2 eingebracht. Danach wird das Formwerkzeug 2 wieder geschlossen, in dem alle Formwerkzeughälften 4 des Formwerkzeugs 2 zusammengefügt werden. Der Randbereich 19 des Werkstücks 12 erstreckt sich dabei in die Öffnung 17 des Formwerkzeugs 2, wie in Figur 2 zu sehen.For insertion of the workpiece 12 in the mold 2, the ignition tube 8 is in its parking position 11. The mold 2 is opened, in which at least one of the mold halves 4 is spaced from the remaining mold halves. Subsequently, the workpiece 12 is introduced into the receiving space 15 of the mold 2. Thereafter, the mold 2 is closed again, in which all mold halves 4 of the mold 2 are joined together. The edge region 19 of the workpiece 12 extends into the opening 17 of the mold 2, as in FIG. 2 to see.

Anschließend wird das Zündrohr 8 entlang seiner Längsrichtung 9 aus der Parkposition 11 in die Arbeitsposition 10 verschoben. Das vordere, konische Ende 18 dese Zündrohrs 8 kommt dabei mit dem Randbereich 19 des Werkstücks 12 in Kontakt und verformt diesen zu einem Werkstückhaltebereich 21 bis er an der konischen Anlagefläche 20 des Formwerkzeugs 2 anliegt. Entsprechend den jeweiligen Produktionsanforderungen presst das Zündrohr 8 den Werkstückhaltebereich 21 mit einer vorbestimmten Kraft gegen die Anlagefläche 20. Dies kann zu einer zusätzlichen Verformung des Werkstückhaltebereichs 21 führen, wie in Figur 3 dargestellt. Durch das Einpressen des Werkstückhaltebereichs 21 zwischen dem Zündrohr 8 und dem Formwerkzeug 2 wird der Aufnahmeraum 15 zugleich gasdicht gedichtet.Subsequently, the ignition tube 8 is moved along its longitudinal direction 9 from the parking position 11 into the working position 10. The front, conical end 18 dese ignition tube 8 comes into contact with the edge portion 19 of the workpiece 12 and deforms it to a workpiece holding portion 21 until it rests against the conical contact surface 20 of the mold 2. In accordance with the respective production requirements, the ignition tube 8 presses the workpiece holding region 21 with a predetermined force against the contact surface 20. This can lead to an additional deformation of the workpiece holding region 21, as in FIG FIG. 3 shown. By pressing the workpiece holding portion 21 between the ignition tube 8 and the mold 2, the receiving space 15 is sealed gas-tight at the same time.

Über das Ventil 28 im Zündrohr 8 wird der Aufnahmeraum 15, welcher in den hier gezeigten Ausführungsbeispielen in etwa dem Werkstückhohlraum 13 entspricht, mit einer bestimmten Menge Flüssigkeit 26 zum Beispiel Wasser gefüllt. Die Flüssigkeit 26 sammelt sich in dem Werkstückhohlraum 13 und bildet eine Flüssigkeitsoberfläche 22.Via the valve 28 in the ignition tube 8, the receiving space 15, which corresponds approximately to the workpiece cavity 13 in the exemplary embodiments shown here, is filled with a certain amount of liquid 26, for example water. The liquid 26 collects in the workpiece cavity 13 and forms a liquid surface 22.

Über den Gasanschluss 25 in dem Zündrohr 8 wird der verbleibende, flüssigkeitsfreie Hohlraum 24 mit einer bestimmten Menge des explosiven Gasgemisches 23 gefüllt. Das Verhältnis von explosivem Gas zu Flüssigkeit liegt dabei im Bereich von 1:1 bis 1:20. Gas-Flüssigkeitsverhältnisse im Bereich von 1:2 bis 1:15 haben sich als vorteilhaft erwiesen, wobei ein Verhältnis im Bereich von 1:3 bis 1:10 besonders günstig ist. Insbesondere ist ein Gas-Flüssigkeitsverhältnis von 1:7 anzustreben. Der Gasdruck vor dem Explosionsumformen liegt im Bereich von ca. 60 bis 200 bar, vorteilhafterweise im Bereich von 70 bis 120 bar und insbesondere im Bereich von 95 bis 105 bar, oder 110 bis 130 bar.Via the gas connection 25 in the ignition tube 8, the remaining, liquid-free cavity 24 is filled with a certain amount of the explosive gas mixture 23. The ratio of explosive gas to liquid is in the range of 1: 1 to 1:20. Gas-liquid ratios in the range of 1: 2 to 1:15 have proved to be advantageous, wherein a ratio in the range of 1: 3 to 1:10 is particularly favorable. In particular, a gas-liquid ratio of 1: 7 is desirable. The gas pressure before explosion forming is in the range of about 60 to 200 bar, advantageously in the range of 70 to 120 bar and in particular in the range of 95 to 105 bar, or 110 to 130 bar.

Die Flüssigkeitsmenge bzw. der Flüssigkeitsfüllstand lässt sich wie in den Figuren 3 bis 5 gezeigt variieren. Je nach Flüssigkeitsfüllstand verändert sich dabei das Volumen sowie die Lage des verbleibenden, flüssigkeitsfreien Hohlraums 24. Durch den relativ niedrigen Flüssigkeitsfüllstand in Figur 3 erstreckt sich der Hohlraum 24 bzw. das Gasgemisch 23 z. B. von dem Werkstückhohlraum 13 über den Werkstückhaltebereich 21 hinweg bis in das Zündrohr 8 hinein. In Figur 4 z. B. ist der gesamte Aufnahmeraum 15 mit Flüssigkeit 26 gefüllt. Das explosive Gasgemisch 23 bzw. der verbleibende, flüssigkeitsfreie Hohlraum 24 erstreckt sich hier lediglich im Werkzeughaltebereich 21 und in das Zündrohr 8 hinein. In Figur 5 dagegen befindet sich der flüssigkeitsfreie Hohlraum 24 nur noch im Zündrohr 8 und ist damit beabstandet zu dem Werkstück 12. Das Volumen des freien Hohlraums 24 kann in einem Bereich von etwa einem halben Liter bis zu zehn Litern liegen. Hohlräume 24 mit einem Volumen von ca. einem halben bis vier Litern haben sich in der Praxis als vorteilhaft erwiesen, wobei ein Hohlraumvolumen von ca. ein bis zwei Litern besonders wirtschaftlich ist.The amount of liquid or the liquid level can be as in the FIGS. 3 to 5 vary. Depending on the liquid level, the volume and the position of the remaining, liquid-free cavity 24 changes as a result of the relatively low liquid level in FIG. 3 extends the cavity 24 and the gas mixture 23 z. B. from the workpiece cavity 13 over the workpiece holding portion 21 away into the ignition tube 8 into it. In FIG. 4 z. B. the entire receiving space 15 is filled with liquid 26. The explosive gas mixture 23 or the remaining, liquid-free cavity 24 extends here only in the tool holding region 21 and into the ignition tube 8. In FIG. 5 on the other hand, the liquid-free cavity 24 is only in the ignition tube 8 and is thus spaced from the workpiece 12. The volume of the free cavity 24 may be in a range of about one-half liter to ten liters. Cavities 24 with a volume of about one-half to four liters have proven to be advantageous in practice, with a void volume of about one to two liters is particularly economical.

Durch Betätigen der Zündvorrichtung 27 wird das explosive Gasgemisch 23, welches sich in dem Hohlraum 24 befindet gezündet. Bei dem in dieser Ausführungsform der Erfindung verwendeten Knallgas wird der vorhandene Sauerstoff bei der Explosion etwa vollständig verbrannt bzw. umgewandelt. Dies soll einem Korrodieren des Werkstücks und des Werkzeugs bzw. der ganzen Anlage entgegenwirken. Als Zündmechanismen kommen hier grundsätzlich die gängigen, z. B. aus dem Stand der Technik bekannten Zündmechanismen in Frage.By actuating the ignition device 27, the explosive gas mixture 23, which is located in the cavity 24 is ignited. In the explosive gas used in this embodiment of the invention, the oxygen present in the explosion is approximately completely burned or converted. This is to counteract corrosion of the workpiece and the tool or the entire system. As Zündmechanismen come here in principle the usual, z. B. known from the prior art ignition mechanisms in question.

Die entstehende Detonationsfront breitet sich zunächst in dem Gasgemisch 23 bzw. dem Hohlraum 24 aus und trifft dann auf die Phasengrenze, nämlich die Flüssigkeitsoberfläche 22. Dabei werden etwa vier Fünftel der Energie bzw. der Kraft der Detonationsfront an die Flüssigkeit übertragen. Der unmittelbare Kontakt zwischen dem Gasgemisch 23 und der Flüssigkeit 26, ohne zusätzliche Zwischenkomponenten, gewährleistet eine relativ gute Kraftübertragung. Die an die Flüssigkeit 26 abgegebene Druckwelle setzt sich in dieser fort und presst so das Werkstück 12 in die Kavität 14 des Formwerkzeugs 2. Gleichzeitig wird der Werkstückhaltebereich 21 mittels der in dem Formwerkzeug 2 vorgesehenen Trennkante 29 von dem übrigen, umgeformten Werkstück 12 abgetrennt. Der dabei erzielte Umformdruck liegt bei der in diesem Ausführungsbeispiel eingefüllten Gasmenge von etwa einem Liter und bei dem hier herrschenden Ausgangsdruck von ca. 100 bar bei etwa 2000 bis 2500 bar.The resulting detonation front initially spreads in the gas mixture 23 or the cavity 24 and then impinges on the phase boundary, namely the liquid surface 22. In this case, about four fifths of the energy or the force of the detonation front are transferred to the liquid. The direct contact between the gas mixture 23 and the liquid 26, without additional intermediate components, ensures a relatively good Power transmission. The pressure wave delivered to the liquid 26 continues in this and thus presses the workpiece 12 into the cavity 14 of the molding tool 2. At the same time, the workpiece holding region 21 is separated from the remainder of the formed workpiece 12 by means of the separating edge 29 provided in the molding tool 2. The forming pressure achieved in this case is in the filled in this embodiment amount of gas of about one liter and at the prevailing outlet pressure of about 100 bar at about 2000 to 2500 bar.

Die Flüssigkeit 26 deckt dabei je nach Flüssigkeitsfüllstand große Stellen des Werkstücks 12 ab und schützt diese vor Verbrennungen. Sind in dem Formwerkzeug 4 Schneid- oder Trennkanten 29 vorgesehen, um das Werkstück 12 während des Umformens gleichzeitig auch zuzuschneiden, wird die Qualität dieser Kanten durch die Druckübertragung mittels Flüssigkeit verbessert. Auch die Kantenqualität von Löchern, welche während des Umformens gestanzt werden können, wird verbessert. Ein weiterer Vorteil der Flüssigkeitsbefüllung ist die Vereinfachung der Schnittstellen in dem Werkstückhaltebereich 21 und/oder zwischen den einzelnen Formwerkzeughälften 4. Diese liegen hier, wie in den Figuren 3 bis 5 gezeigt, unterhalb der Flüssigkeitsoberfläche 22 und sind daher lediglich flüssigkeitsdicht. Durch die Flüssigkeitsfüllung lässt sich auch die benötigte Gasmenge im Vergleich zum Explosionsumformen ohne Flüssigkeitsfüllung reduzieren. Um in dem hier gezeigten Ausführungsbeispiel ein Explosionsumformen des Werkstücks mit einer reinen Gasfüllung zu erreichen, würden etwa drei Liter des explosiven Gasgemisches 23 benötigt. Mit der hier gezeigten Flüssigkeitsfüllung 26 lässt sich die benötigte Gasmenge auf ca. ein Liter reduzieren. Das erzielte Umformergebnis ist dabei etwa gleichwertig und oft sogar qualitativ besser.Depending on the liquid level, the liquid 26 covers large areas of the workpiece 12 and protects them from burns. If 4 cutting or separating edges 29 are provided in the mold to simultaneously cut the workpiece 12 during forming, the quality of these edges is improved by the transfer of pressure by means of liquid. The edge quality of holes that can be punched during forming is also improved. Another advantage of the liquid filling is the simplification of the interfaces in the workpiece holding region 21 and / or between the individual mold halves 4. These lie here, as in the FIGS. 3 to 5 shown below the liquid surface 22 and are therefore only liquid-tight. The liquid filling also reduces the amount of gas required in comparison to explosion forming without liquid filling. In order to achieve in the embodiment shown here an explosion deformation of the workpiece with a pure gas filling, about three liters of the explosive gas mixture 23 would be needed. With the liquid filling 26 shown here, the required amount of gas can be reduced to about one liter. The resulting forming result is about equivalent and often even better quality.

In dem oben beschriebenen Ausführungsbeispiel erfolgt die Flüssigkeitsbefüllung über ein Ventil 28 in dem Zündrohr 8, da es sich hier um ein annähernd gerades, rohrförmiges Werkstück 12 handelt. Alternativ kann die Flüssigkeitsbefüllung des Werkstückhohlraums 13 jedoch auch über ein Tauchbad erfolgen. Dies eignet sich insbesondere für Werkstücke, welche durch ihre Form dafür geeignet sind Flüssigkeit aufzunehmen, z. B. für gekrümmte oder wannenartig geformte Werkstücke. Solche Werkstücke können z. B. aus Stangenmaterial vorgeformt und anschließend in ein Flüssigkeitsbad zum Beispiel ein Wasserbad befördert werden. Hier werden sie je nach gewünschter Flüssigkeitsmenge getaucht bevor sie in das Formwerkzeug 2 eingesetzt werden. Ein solches Flüssigkeitsbad kann gleichzeitig z. B. als Produktionspuffer dienen, in welchem eine gewisse Anzahl an vorgeformten und flüssigkeitsgefüllten Werkstücken 12 zwischengelagert werden kann, bevor sie in das Formwerkzeug 2 eingesetzt werden.In the embodiment described above, the liquid filling takes place via a valve 28 in the ignition tube 8, since this is an approximately straight, tubular workpiece 12. Alternatively, however, the liquid filling of the workpiece cavity 13 can also take place via an immersion bath. This is particularly suitable for workpieces which are suitable by their shape to absorb liquid, eg. B. for curved or trough-shaped workpieces. Such workpieces can, for. B. preformed from bar stock and then transported in a liquid bath, for example, a water bath. Here they are dipped depending on the desired amount of liquid before they are inserted into the mold 2. Such a liquid bath can simultaneously z. B. as Serve production buffer in which a certain number of preformed and liquid-filled workpieces 12 can be stored before they are inserted into the mold 2.

Auch das Befüllen mit dem Gasgemisch 23 muss nicht zwangsläufig über einen oder mehrere Anschlüsse 25 im Zündrohr 8 erfolgen. Das Gasgemisch 23 kann gemäß dem zweiten Ausführungsbeispiel der Erfindung auch unterhalb der Flüssigkeitsoberfläche eingeleitet werden, z. B. durch einen oder mehrere Gasanschlüsse 25 in dem Formwerkzeug 2, wie in Figur 4 gezeigt. In diesem Fall steigt das unterhalb der Flüssigkeitsoberfläche eingeleitete Gas 23 durch die Flüssigkeit 26 hindurch und sammelt sich in dem flüssigkeitsfreien Hohlraum 24.The filling with the gas mixture 23 does not necessarily have to take place via one or more connections 25 in the ignition tube 8. The gas mixture 23 may also be introduced below the liquid surface according to the second embodiment of the invention, for. B. by one or more gas ports 25 in the mold 2, as in FIG. 4 shown. In this case, the gas 23 introduced below the liquid surface rises through the liquid 26 and collects in the liquid-free cavity 24.

Die Zündung erfolgt auch hier über die Zündvorrichtung 27. Je nach Taktzeit und gewünschten Umformergebnis kann die Zündung erfolgen, nachdem sich das gesamte Gas 23 in dem Hohlraum 24 gesammelt hat oder bereits wenn sich das Gasgemisch 23 noch wenigstens teilweise in der Flüssigkeit 26 befindet.The ignition takes place here via the ignition device 27. Depending on the cycle time and desired deformation, the ignition can be done after all the gas has collected 23 in the cavity 24 or even if the gas mixture 23 is still at least partially in the liquid 26.

Das Einleiten des Gases 23 durch eine Flüssigkeit 26, wie zum Beispiel Wasser hindurch hat den Vorteil, dass trotz gleicher Gasmenge ein höherer Umformdruck erzielt werden kann. Je nach Werkstück und eingefüllter Gas- bzw. Flüssigkeitsmenge ist so eine Steigerung des Umformdrucks bis zu dem vierfachen Wert möglich.The introduction of the gas 23 through a liquid 26, such as water through has the advantage that despite the same amount of gas, a higher forming pressure can be achieved. Depending on the workpiece and the amount of gas or liquid filled, an increase of the forming pressure up to four times the value is possible.

Die erfindungsgemäße Werkzeuganordnung und Verfahren wurden hier anhand eines etwa rohrförmigen Werkstücks 12 und eines korrespondierenden Formwerkzeugs 2 beschrieben. Dennoch sind auch andere Werkstückformen und dementsprechend anders geformte Formwerkzeuge möglich. Zum Beispiel können mit der hier beschriebenen Werkzeuganordnung und Verfahren auch relativ flache oder gebogene Werkstücke umgeformt werden. Auch Werkstücke und Formwerkzeuge, welche abweichend von den hier gezeigten Ausführungsbeispielen mehr als einen Werkzeughaltebereich aufweisen sind möglich.The tool arrangement and method according to the invention have been described here with reference to an approximately tubular workpiece 12 and a corresponding molding tool 2. Nevertheless, other workpiece shapes and accordingly differently shaped molds are possible. For example, with the tooling arrangement and method described herein, relatively flat or curved workpieces may also be formed. Also, workpieces and molds, which differ from the embodiments shown here have more than one tool holding area are possible.

Obwohl in der hier beschriebenen Werkzeuganordnung und Verfahren Wasser als Befüll- und Druckübertragungsmedium dient, können hierfür prinzipiell auch andere Fluide in dem erfindungsgemäßen Verfahren Anwendung finden. Denkbar wären hier Flüssigkeiten, welche sich vor allem durch ihren Viskositätsbereich für diesen Zweck eignen, wie z. B. bestimmte Öle.Although water is used as the filling and pressure transfer medium in the tool arrangement and method described here, in principle other fluids can also be used in the method according to the invention. Conceivable here would be liquids, which especially by their viscosity range suitable for this purpose, such as. For example, certain oils.

In dem oben beschriebenen Verfahren wird der Werkzeughohlraum 13 mit Flüssigkeit gefüllt. Dies eignet sich insbesondere für rohrartige Werkstücke und hat sich in der Praxis als vorteilhaft erwiesen. In anderen Ausführungsformen der Erfindung kann sich die Flüssigkeit jedoch auch außerhalb des Werkstückhohlraums 13 in dem Aufnahmeraum 15 befinden.In the method described above, the tool cavity 13 is filled with liquid. This is particularly suitable for tubular workpieces and has proven to be advantageous in practice. However, in other embodiments of the invention, the liquid may also be located outside of the workpiece cavity 13 in the receiving space 15.

Claims (13)

  1. Method for the explosive forming of a workpiece (12) by means of gas explosion, in which the workpiece (12) is arranged in an intake area (15) of a moulding tool (2), whereas the explosion is triggered by means of ignition of an explosive gas mixture (23) in an ignition tube (8) to form a detonation front,
    characterised in that
    a workpiece cavity (13), whose wall has a closed shape in the cross-section, is at least partially filled with liquid and the explosive gas mixture (23) is provided in direct fluidic contact to the surface of the liquid (22) before the ignition, whereas the ignition tube (8) and the workpiece cavity (13) together form a sealed passage, which has a substantially constant cross section.
  2. Method according to Claim 1, whereas the workpiece (12) has a workpiece holding area (21) and the ignition tube (8) is brought into contact with the workpiece holding area (21) prior to triggering the explosion.
  3. Method according to Claim 2, whereas the workpiece cavity (13) has a cross section, and the ignition tube (8) has an inside space with a cross section, which is substantially equal to the cross section of the workpiece cavity (13).
  4. Method according to Claim 3, whereas the moulding tool (2) comprises a mould cavity (14) having separating edges (29), and the explosion causes the workpiece (12) to be pressed against the mould cavity (14), such that the workpiece holding area (21) is separated from the remaining workpiece (12) by engagement with the separating edges (29).
  5. Method according to at least one of the preceding claims, whereas the gas mixture (23) is filled at least in part passing through a liquid (26).
  6. Method according to at least one of the preceding claims, whereas the surface of the liquid (26) is within the ignition tube (8).
  7. Method according to at least one of the preceding claims, whereas the gas mixture (23) mainly is a mixture of hydrogen and oxygen, preferably a substantially stoichiometric mixture of hydrogen and oxygen, and particularly a substantially stoichiometric mixture of hydrogen and oxygen with a slight hydrogen excess; the pressure of the gas mixture prior to the explosion usually is in the range of 60 to 200 bar, preferably in the range of 70 to 120 bar and particularly in the range from 95 to 105 bar or 110 to 130 bar; and the ratio of the gas mixture (23) to liquid (26) is roughly 1:1 to 1:20, preferably 1:2 to 1:15 and particularly 1:3 to 1:10.
  8. Tool arrangement (1) for explosive forming of a workpiece (12) arranged in a moulding tool (2) by means of an explosive gas mixture (23), wherein the tool arrangement (1) has a intake area (15) into which the workpiece (12) is introduced and which is at least partially filled with liquid (26),
    characterised in that
    a workpiece cavity (13), whose wall has a closed shape in the cross-section, is at least partially filled with liquid and the explosive gas mixture (23) is arranged in direct fluidic contact with surface of the liquid (22) before the ignition, whereas the ignition tube (8) and the workpiece (12) together form a sealed passage, which has a substantially constant cross section.
  9. Tool arrangement (1) according to Claim 8, whereas the workpiece (12) has a workpiece holding area (21) and the ignition tube (8) is brought into contact with the workpiece holding area (21) prior to triggering the explosion.
  10. Tool arrangement (1) according to Claim 9, whereas the workpiece cavity (13) has a cross section, and the igintion tube (8) has an inside space with a cross section, which is substantially equal to the cross section of the workpiece cavity (13).
  11. Tool arrangement (1) according to one of the preceeding Claims, whereas the moulding tool (2) comprises a mould cavity (14) having separating edges (29), which are positioned to separate the workpiece holding area (21) from the remaining workpiece (12) by engagement with the separating edges (29) due to the explosion.
  12. Tool arrangement (1) according to one of the Claims 8 to 11, whereas the workpiece (12) is filled with liquid (26) in at least one workpiece holding area (21).
  13. Tool arrangement (1) according to one of the Claims 8 to 12, whereas the surface of the liquid (26) is within the ignition tube (8).
EP07856709.6A 2007-02-14 2007-12-13 Method and mould arrangement for explosion forming Not-in-force EP2117744B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007007330A DE102007007330A1 (en) 2007-02-14 2007-02-14 Method and tool assembly for explosion forming
PCT/EP2007/010966 WO2008098608A1 (en) 2007-02-14 2007-12-13 Method and mould arrangement for explosion forming

Publications (2)

Publication Number Publication Date
EP2117744A1 EP2117744A1 (en) 2009-11-18
EP2117744B1 true EP2117744B1 (en) 2018-09-26

Family

ID=39110763

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07856709.6A Not-in-force EP2117744B1 (en) 2007-02-14 2007-12-13 Method and mould arrangement for explosion forming

Country Status (11)

Country Link
US (1) US8875553B2 (en)
EP (1) EP2117744B1 (en)
JP (1) JP5583412B2 (en)
KR (1) KR20090122442A (en)
CN (1) CN101622085B (en)
AU (1) AU2007346789A1 (en)
CA (1) CA2680322A1 (en)
DE (1) DE102007007330A1 (en)
EA (1) EA016721B1 (en)
MX (1) MX2009008694A (en)
WO (1) WO2008098608A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005025660B4 (en) 2005-06-03 2015-10-15 Cosma Engineering Europe Ag Apparatus and method for explosion forming
DE102006037742B4 (en) 2006-08-11 2010-12-09 Cosma Engineering Europe Ag Method and apparatus for explosion forming
DE102006037754B3 (en) 2006-08-11 2008-01-24 Cosma Engineering Europe Ag Procedure for the explosion forming, comprises arranging work piece in tools and deforming by means of explosion means, igniting the explosion means in ignition place of the tools using induction element, and cooling the induction element
DE102006056788B4 (en) 2006-12-01 2013-10-10 Cosma Engineering Europe Ag Closing device for explosion forming
DE102006060372A1 (en) 2006-12-20 2008-06-26 Cosma Engineering Europe Ag Workpiece for explosion reformation process, is included into molding tool and is deformed from output arrangement by explosion reformation
DE102007007330A1 (en) 2007-02-14 2008-08-21 Cosma Engineering Europe Ag Method and tool assembly for explosion forming
US8443641B2 (en) 2007-02-14 2013-05-21 Cosma Engineering Europe Ag Explosion forming system
DE102007023669B4 (en) 2007-05-22 2010-12-02 Cosma Engineering Europe Ag Ignition device for explosion forming
DE102007036196A1 (en) 2007-08-02 2009-02-05 Cosma Engineering Europe Ag Apparatus for supplying a fluid for explosion forming
US9636736B2 (en) * 2007-12-13 2017-05-02 Cosma Engineering Europe Ag Method and mould arrangement for explosion forming
DE102008006979A1 (en) 2008-01-31 2009-08-06 Cosma Engineering Europe Ag Device for explosion forming
KR20110003559A (en) * 2008-04-30 2011-01-12 마그나 인터내셔널 인코포레이티드 Explosion forming system
FR3009214B1 (en) * 2013-08-01 2016-01-01 Nantes Ecole Centrale ELECTRO-HYDROFORMING MACHINE FOR THE PLASTIC DEFORMATION OF A PROJECTILE PART OF THE WALL OF A WORKPIECE
CN104325004B (en) * 2014-10-31 2016-04-13 西安交通大学 A kind of bars and tubes material blanking device of explosive chemical energy release explosion driving
KR102552514B1 (en) * 2021-09-06 2023-07-05 단국대학교 산학협력단 Peening apparatus and method of peening using the same

Family Cites Families (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US392635A (en) * 1888-11-13 powers
US1280451A (en) * 1917-02-02 1918-10-01 William F Hagen Valve.
GB742460A (en) 1952-06-11 1955-12-30 Union Carbide & Carbon Corp Sheet metal forming by use of detonation waves
GB878178A (en) 1959-12-01 1961-09-27 Olin Mathieson Metal forming
US3252312A (en) 1962-04-25 1966-05-24 Continental Can Co Method and apparatus for explosive reshaping of hollow ductile objects
US3160949A (en) 1962-05-21 1964-12-15 Aerojet General Co Method of joining elongated objects
CH409831A (en) 1962-08-28 1966-03-31 Josef Schaberger & Co G M B H Device for deforming bodies by explosion
US3342048A (en) 1964-08-13 1967-09-19 Gen Am Transport Detonation wave forming machine
GB1129562A (en) 1966-03-07 1968-10-09 Vickers Ltd The generation of shock waves by exploding wire methods
GB1280451A (en) 1968-05-02 1972-07-05 Int Research & Dev Co Ltd Improvements in and relating to methods of explosively welding tubes into tube plates
AT299664B (en) 1968-05-17 1972-06-26 Boehler & Co Ag Geb Device for the explosion deformation of metallic materials
DE1777208A1 (en) 1968-09-25 1971-04-01 Hertel Heinrich Prof Dr Ing Device for high-performance forming of workpieces, in particular made of sheet metal, with the aid of shock agents
DE1777207A1 (en) 1968-09-25 1971-04-01 Hertel Heinrich Prof Dr Ing Device for high-performance forming of workpieces, in particular made of sheet metal, with the aid of shock agents
DE1808942A1 (en) 1968-11-14 1970-06-11 Rune Hank Explosive forming
US3654788A (en) 1968-11-20 1972-04-11 Lead Metal Kogyo Kk Method of discharge forming bulged articles
US3640110A (en) * 1969-08-14 1972-02-08 Inoue K Shock forming
US3661004A (en) 1969-11-07 1972-05-09 Atlas Chem Ind Explosive tubing swager
US3737975A (en) 1970-07-15 1973-06-12 Kinnon C Mc Arrangement for explosively formed connections and method of making such connections
DE2043251A1 (en) 1970-09-01 1972-03-02 Nydamit Nobel Ag Explosive forming - by shock wave conducted into the workpiece from outside
DE2059181C3 (en) 1970-12-02 1975-02-27 Messwandler-Bau Gmbh, 8600 Bamberg Arrangement for high pressure energy conversion of bodies
US3742746A (en) 1971-01-04 1973-07-03 Continental Can Co Electrohydraulic plus fuel detonation explosive forming
DE2107460A1 (en) 1971-02-17 1972-08-31 Mylaeus Geb Internally expanding pipes - to centrally increase their buckling strength
GB1436538A (en) 1972-11-17 1976-05-19 Dale Ltd John Manufacture of articles such as collapsible tubes
GB1419889A (en) * 1973-12-21 1975-12-31 Kh Aviatsionnyj Institut Plant for explosive forming
ZA754574B (en) * 1974-07-29 1976-06-30 Concast Inc A method of forming the walls of continuous casting and chill
SU575161A1 (en) 1975-05-11 1977-10-05 Физико-технический институт АН Белорусской ССР Device for stamping sheet parts by high-pressure liquid
GB1542519A (en) 1976-07-07 1979-03-21 Fiz Tekh I An Brus Ssr Electrical discharge forming devices
US4187709A (en) 1976-08-23 1980-02-12 Kevin Strickland Explosive forming
JPS53139250A (en) * 1977-05-11 1978-12-05 Jiyuntarou Yamada Heat engine underwaterrburning oxygen and hydrogen
DE2754666A1 (en) 1977-12-08 1979-06-13 Hinapat Ag METHOD AND DEVICE FOR PRODUCING A TUBE BLANK
DD135859A1 (en) 1978-04-24 1979-06-06 Heinz Heinrich PROCESS FOR TERMINATION OF EXPLOSIVE IN EXPLOSIVE PLANTS
SU878278A1 (en) * 1979-04-06 1981-11-07 Украинский Научно-Исследовательский Институт Протезирования,Протезостроения,Экспертизы И Восстановления Трудоспособности Инвалидов Method of making metal receiving cases of extremity prostheses
AT387515B (en) 1979-04-06 1989-02-10 Uk Nii Protezirovania Protezos METHOD FOR THE PRODUCTION OF RECEIVING SLEEVES FOR PROSTHESES TO BE ATTACHED TO STUPS AND GAS CANNON FOR
JPS55139128A (en) 1979-04-13 1980-10-30 Mitsubishi Electric Corp Electric discharge forming die in liquid
BG34210A1 (en) * 1981-07-15 1983-08-15 Kortenski Machine for explosive forming
US4492104A (en) * 1981-12-02 1985-01-08 Meadowcraft Inc. Explosive shaping of metal tubing
JPS58145381A (en) 1982-02-23 1983-08-30 Mitsubishi Heavy Ind Ltd Manufacture of clad steel tube
US4494392A (en) * 1982-11-19 1985-01-22 Foster Wheeler Energy Corporation Apparatus for forming an explosively expanded tube-tube sheet joint including a low energy transfer cord and booster
DE3305615C2 (en) 1983-02-18 1986-10-16 Heinrich Dr.-Ing. 4290 Bocholt Hampel Arrangement for fastening a pipe in a perforated plate by means of explosion pressure waves
US4571800A (en) 1983-07-11 1986-02-25 Thiokol Corporation Method for explosively forming an auxiliary exit cone for the nozzle of a rocket motor
DE3347319A1 (en) 1983-12-28 1985-07-11 Kraftwerk Union AG, 4330 Mülheim DEVICE FOR WELDING PLATING PIPES
DE3581293D1 (en) 1984-02-09 1991-02-21 Toyota Motor Co Ltd METHOD FOR PRODUCING ULTRAFINE CERAMIC PARTICLES.
SU1181331A1 (en) 1984-06-05 1989-10-23 Научно-исследовательский институт технологии автомобильной промышленности Installation for spraying by detonation
DE3512015A1 (en) 1985-04-02 1986-10-02 Robert Bosch Gmbh, 7000 Stuttgart DEVICE FOR THE TREATMENT OF WORKPIECES BY MEANS OF TEMPERATURE AND PRESSURE BLOWERS FROM THE END OF A COMBUSTIBLE GAS MIXTURE, ESPECIALLY THERMAL DEBURRING SYSTEM
US4738012A (en) 1985-12-31 1988-04-19 Hughes Robert W Method of making a cam shaft
DE3709181A1 (en) 1987-03-20 1988-09-29 Asea Ab METHOD FOR THE PRODUCTION OF COMPLEX SHEET METAL PARTS AND TOOL FOR PRINT FORMING SUCH SHEET METAL PARTS
AU615193B2 (en) 1987-04-15 1991-09-26 Research Foundation Institute Pty Limited, The A method of forming metal
US4856311A (en) * 1987-06-11 1989-08-15 Vital Force, Inc. Apparatus and method for the rapid attainment of high hydrostatic pressures and concurrent delivery to a workpiece
US4788841A (en) 1987-11-18 1988-12-06 Aluminum Company Of America Method and apparatus for making step wall tubing
JPH02117728A (en) 1988-10-25 1990-05-02 Sumitomo Metal Ind Ltd Manufacturing device for outer two-finned tube
GB8918552D0 (en) * 1989-08-15 1989-09-27 Alford Sidney C Flexible linear explosive cutting or fracturing charge
DE4035894C1 (en) 1990-11-12 1992-01-30 Hampel, Heinrich, Dr., Moresnet, Be Cooling box for blast furnaces with low mfr. cost - produced from cooling pipe preformed with number bends and explosively welded
US5256430A (en) 1991-05-29 1993-10-26 Nkk Corporation Method for generating a detonation pressure
GB9114444D0 (en) 1991-07-04 1991-08-21 Cmb Foodcan Plc Apparatus and method for reshaping containers
US5220727A (en) 1992-06-25 1993-06-22 Hochstein Peter A Method making cam shafts
DE4232913C2 (en) * 1992-10-01 1995-04-27 Daimler Benz Ag Two-stage process for hydromechanical explosion-assisted deep-drawing of sheet metal and a deep-drawing press for carrying out the process
JP2768227B2 (en) * 1993-07-08 1998-06-25 日本鋼管株式会社 Detonation trimming device
JPH0739958A (en) 1993-07-28 1995-02-10 Nkk Corp Detonation pressure working device
JPH0751760A (en) 1993-08-18 1995-02-28 Nkk Corp Production of strength parts for automobile by detonation pressure
JPH0751761A (en) 1993-08-18 1995-02-28 Nkk Corp Production of panel parts by detonation pressure
CN2206165Y (en) * 1994-04-18 1995-08-30 熊世纬 Double directional explosive forming container closing device
CN2231147Y (en) * 1995-06-26 1996-07-17 陶鹤龄 Water explosion forming vacuum machine tool for full span beam
DE19536292C2 (en) 1995-09-29 1997-09-25 Leinemann Gmbh & Co Method and device for reducing a detonation in a container or piping system
DE19638678A1 (en) 1996-09-20 1998-03-26 Schmalbach Lubeca Closure device for a device for expansion molding
DE19638688A1 (en) * 1996-09-20 1998-03-26 Schmalbach Lubeca Sealing device for unit for moulding hollow bodies
DE19638679A1 (en) 1996-09-20 1998-03-26 Schmalbach Lubeca Sealing device for unit for moulding hollow bodies
EP0830907A3 (en) 1996-09-20 1998-09-23 Schmalbach-Lubeca AG Sealing device for an apparatus for expansion moulding
DE19709918C2 (en) 1997-03-11 2001-02-01 Dornier Medizintechnik High performance pressure wave source
US5890698A (en) * 1997-10-13 1999-04-06 Domytrak; Walter Valve having pressure equalizing conduit
IL122795A (en) 1997-12-29 2002-02-10 Pulsar Welding Ltd Combined pulsed magnetic and pulsed discharge forming of a dish from a planar plate
DE19818572C1 (en) 1998-04-25 1999-11-11 Leinemann Gmbh & Co Process for rendering a detonation front harmless and detonation protection
SE518722C2 (en) 1998-06-26 2002-11-12 Flow Holdings Gmbh Sagl Llc Device and method for expansion molding
DE19852302A1 (en) 1998-11-12 2000-05-25 Fraunhofer Ges Forschung Method and device for processing workpieces with high-energy radiation
DE19915383B4 (en) 1999-04-06 2004-07-22 Amborn, Peter, Dr.-Ing. Hydroforming
JP4421021B2 (en) 1999-08-19 2010-02-24 株式会社ディスコ Electric discharge molding unit and cutting device
JP2002093379A (en) 2000-09-14 2002-03-29 Matsushita Electric Ind Co Ltd Discharge formation device, discharge luminous device, plasma display panel and illumination device and display device using these
US7093470B2 (en) 2002-09-24 2006-08-22 The Boeing Company Methods of making integrally stiffened axial load carrying skin panels for primary aircraft structure and fuel tank structures
DE10328154A1 (en) 2003-06-07 2004-12-23 Günter Volland Bomb protective container
DE10359834B3 (en) * 2003-12-19 2004-09-16 Daimlerchrysler Ag Device for removing a hollow profile molded in a high pressure deformation process has sealing elements arranged on an inner wall
US7296449B2 (en) 2004-09-21 2007-11-20 Ball Corporation Dry hydraulic can shaping
DE102005012475A1 (en) 2005-03-16 2006-09-21 IFUTEC Ingenieurbüro für Umformtechnik GmbH Process for producing a transition to a hollow molded part
DE102005025660B4 (en) 2005-06-03 2015-10-15 Cosma Engineering Europe Ag Apparatus and method for explosion forming
DE102006008533A1 (en) 2006-02-22 2007-08-30 Rheinisch-Westfälisch-Technische Hochschule Aachen Tubular hollow body shaping method, involves inserting form-stable body into hollow body for equalization of pressure profile along detonation direction, where form-stable body projects over shaping area
JP2007222778A (en) 2006-02-23 2007-09-06 Toto Ltd Discharge-formed gas dissolving apparatus
DE102006019856A1 (en) 2006-04-28 2007-11-08 Admedes Schuessler Gmbh Process for working materials using porous silicon as explosive
DE102006037742B4 (en) 2006-08-11 2010-12-09 Cosma Engineering Europe Ag Method and apparatus for explosion forming
DE102006037754B3 (en) 2006-08-11 2008-01-24 Cosma Engineering Europe Ag Procedure for the explosion forming, comprises arranging work piece in tools and deforming by means of explosion means, igniting the explosion means in ignition place of the tools using induction element, and cooling the induction element
DE102006056788B4 (en) 2006-12-01 2013-10-10 Cosma Engineering Europe Ag Closing device for explosion forming
DE102006060372A1 (en) 2006-12-20 2008-06-26 Cosma Engineering Europe Ag Workpiece for explosion reformation process, is included into molding tool and is deformed from output arrangement by explosion reformation
DE102007007330A1 (en) 2007-02-14 2008-08-21 Cosma Engineering Europe Ag Method and tool assembly for explosion forming
DE102007023669B4 (en) 2007-05-22 2010-12-02 Cosma Engineering Europe Ag Ignition device for explosion forming
DE102007036196A1 (en) 2007-08-02 2009-02-05 Cosma Engineering Europe Ag Apparatus for supplying a fluid for explosion forming
DE102008006979A1 (en) 2008-01-31 2009-08-06 Cosma Engineering Europe Ag Device for explosion forming

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
KR20090122442A (en) 2009-11-30
EA200901069A1 (en) 2010-06-30
MX2009008694A (en) 2009-11-02
JP5583412B2 (en) 2014-09-03
JP2010517791A (en) 2010-05-27
US20100206034A1 (en) 2010-08-19
AU2007346789A2 (en) 2010-01-28
CN101622085A (en) 2010-01-06
WO2008098608A1 (en) 2008-08-21
DE102007007330A1 (en) 2008-08-21
CA2680322A1 (en) 2008-08-21
EA016721B1 (en) 2012-07-30
EP2117744A1 (en) 2009-11-18
AU2007346789A1 (en) 2008-08-21
CN101622085B (en) 2015-10-14
US8875553B2 (en) 2014-11-04

Similar Documents

Publication Publication Date Title
EP2117744B1 (en) Method and mould arrangement for explosion forming
DE102005025660B4 (en) Apparatus and method for explosion forming
DE4019899C1 (en)
DE102006060372A1 (en) Workpiece for explosion reformation process, is included into molding tool and is deformed from output arrangement by explosion reformation
EP1506898A1 (en) Airbag device for motor vehicles
EP0761336A1 (en) Method and apparatus for producing a unitary manifold
EP0759120B1 (en) Exhaust manifold for a multi-cylinder internal combustion engine
EP0849011A1 (en) Method of and installation for manufacturing hollow profiles with end cross-section extensions
DE1452547B2 (en) Hydraulic pressure control device on a device for making a branched pipe connection
DE19751408C2 (en) Method and device for producing an integral housing for hydraulic steering
DE19805275A1 (en) Wall breakthrough production
DE102005036419A1 (en) Production of a bulged hollow profile used as a gas generator housing for an airbag arrangement comprises placing a hollow profile into an inner high pressure deforming tool, flattening and further processing
CH403282A (en) Method and device for producing hollow bodies from thermoplastic material
DE1153674B (en) Arrangement for filling cavities formed from preformed plastic films
DE2152248C3 (en) Block mold for making blocks from expanded polystyrene
DE10360738B4 (en) Method and forming tool for cutting a hollow profile
DE10351139B3 (en) Production of a twin-chambered hollow profile comprises bending a tubular hollow profile blank with a single hollow chamber to form two partial branches running almost parallel to each other
DE148227C (en)
DE19911364C2 (en) Method and device for sealing the ends of hollow profiles in hydroforming
DE10332509B3 (en) Production of a workpiece provided with holes comprises a perforating process during which a pump separate to a fluid high pressure producing system partly delivers a pressurized fluid
DE1452547C (en) Hydraulic pressure control device on a device for making a branched pipe connection
AT228606B (en) Method and device for forming containers, container bodies or container parts from a thin-walled preform
DE1807814C (en) Device for preparing a pipe end for a subsequent drawing process
DE1452665C (en) Device for the sudden shaping, in particular of sheet metal
AT155778B (en) Extruded pipe, in particular lead cable jacket and device for its manufacture.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090814

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20101229

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180409

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1045383

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007016411

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181227

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181127

Year of fee payment: 12

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190126

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190126

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007016411

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181213

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

26N No opposition filed

Effective date: 20190627

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181213

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181226

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1045383

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20071213

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007016411

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200701