EP2096208A1 - support d'enregistrement - Google Patents

support d'enregistrement Download PDF

Info

Publication number
EP2096208A1
EP2096208A1 EP08008392A EP08008392A EP2096208A1 EP 2096208 A1 EP2096208 A1 EP 2096208A1 EP 08008392 A EP08008392 A EP 08008392A EP 08008392 A EP08008392 A EP 08008392A EP 2096208 A1 EP2096208 A1 EP 2096208A1
Authority
EP
European Patent Office
Prior art keywords
coating
alumina particles
recording medium
coating composition
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP08008392A
Other languages
German (de)
English (en)
Other versions
EP2096208B1 (fr
Inventor
Michael S. Darsillo
David J. Fluck
Rudiger Laufhutte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cabot Corp
Original Assignee
Cabot Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cabot Corp filed Critical Cabot Corp
Publication of EP2096208A1 publication Critical patent/EP2096208A1/fr
Application granted granted Critical
Publication of EP2096208B1 publication Critical patent/EP2096208B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/52Macromolecular coatings
    • B41M5/5218Macromolecular coatings characterised by inorganic additives, e.g. pigments, clays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/502Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording characterised by structural details, e.g. multilayer materials
    • B41M5/508Supports

Definitions

  • the present invention relates to recording media comprising alumina particles in the coating thereof, compositions comprising such particles, and production methods therefor.
  • a surface coating is sometimes applied to a recording medium in order to improve its printing properties.
  • the coating can improve the appearance, ink absorption, and/or image smear resistance of the medium.
  • Glossy coatings are highly desirable, as they are very smooth, and can impart a superior feel and a photograph-like quality to a recorded image.
  • it remains a challenge to provide a glossy medium that imparts superior printing properties to the medium (e.g., good ink absorption, good dye-fixing ability, good waterfastness, and/or good resistance to image smear), in addition to superior smoothness and gloss.
  • Gloss and dye immobilization can sometimes be achieved by incorporating different types of polymeric resins into a coating.
  • a gelatin, a polyvinyl alcohol, a polyolefin resin, polyester resin, polyamide resin, and/or polycarbonate resin can be used to produce glossiness
  • a cationic polymer e.g., polyvinylpyrrolidone
  • inks applied to resin-coated recording media dry relatively slowly, and often have an undesirable tendency to smear and rub off. While some pigments such as certain treated kaolin clays or treated calcium carbonates can immobilize dyes, the overall absorptivity and rate of absorption are often compromised.
  • a metal oxide pigment such as silica or alumina can be advantageous in that they have good absorptivity and also can produce an excellent coating.
  • Alumina is particularly advantageous in that its particles naturally have a cationic surface (i.e., a positive zeta potential). Since the vast majority of ink dyes are anionic in nature, the cationic surface of alumina imparts superior dye immobilizing properties to coatings derived therefrom. Moreover, alumina also imparts good ink absorption, good waterfastness, and good image smear resistance, in addition to superior gloss, smoothness, and brightness, to the coating.
  • alumina is very difficult to process.
  • silica which is typically amorphous
  • alumina is crystalline, and can exist in various crystalline phases, for example, alpha, or the transitional phases, for example, gamma, delta, and theta phases.
  • long drying times are typically required in recording medium coating which utilize low solids alumina dispersions, making the overall coating process costly and inefficient.
  • some forms of alumina require a relatively high binder ratio (about 3:1 pigment to binder ratio).
  • the high binder demand of alumina restricts the ratio of alumina particles (relative to binder) that can be achieved in the coating, sacrificing desirable properties that could otherwise be imparted to the coating by the alumina particles (e.g., drying time, dye immobilization, waterfastness, image quality, and the like). As such, the overall quality of the recording medium can be limited.
  • coating compositions are produced from an initial alumina dispersion.
  • the initial dispersion is often manufactured in a separate facility and shipped to the end user.
  • the end user processes the initial dispersion into a coating composition, which is normally applied to a substrate shortly after its production.
  • low solids initial dispersions are used.
  • the overall quality of recording media is limited by the low alumina solids content (e.g., in terms of porosity, dye immobilization, image quality, or the like).
  • an improved recording medium comprising alumina particles, desirably having a low binder demand and high porosity, as well as an alumina-based coating composition and a method of producing such a composition and recording medium.
  • the present invention provides such a recording medium, coating composition, and methods of making them.
  • the present invention provides a recording medium comprising a substrate having a glossy coating thereon, wherein the glossy coating comprises a binder and alumina particles that are aggregates of primary particles.
  • the coating of the recording medium of the present invention comprises alumina particles that are aggregates of primary particles, with pyrogenic or fumed alumina being preferred.
  • the present invention further provides a coating composition comprising alumina particles and a binder, wherein the alumina particles are aggregates of primary particles and the solids content of the alumina in the coating composition is at least about 20 wt.%.
  • the present invention also provides a method of preparing a coating composition.
  • the inventive method of preparing a coating composition comprises providing a colloidally stable dispersion comprising water and alumina particles, wherein the alumina particles are aggregates of primary particles and the solids content of the alumina particles in the dispersion is at least about 30 wt.%; adding a binder to and, optionally, diluting the colloidally stable dispersion, until a desired pigment to binder ratio and overall solids content are obtained; and optionally adjusting the pH with a suitable acid or base.
  • the present invention additionally provides a method of preparing a recording medium.
  • the inventive method of preparing a recording medium comprises providing a substrate; coating the substrate with the coating composition of the present invention to produce a substrate coated with a coating; optionally calendering the coated substrate; and drying the coated substrate.
  • the coating composition of the present invention dries quickly when applied to a substrate, to form a non-tacky glossy coating.
  • the present invention provides a recording medium comprising a substrate having a glossy coating thereon, wherein the glossy coating comprises a binder and alumina particles that are aggregates of primary particles.
  • the inventive recording medium comprises a substrate, which can be either transparent or opaque, and which can be made of any suitable material.
  • suitable materials include, but are not limited to, films or sheets of polymer resins (e.g., poly(ethylene terephthalate)), diacetate resins, triacetate resins, acrylic resins, polycarbonate resins, polyvinyl chloride resins, polyimide resins, cellophane and celluloid, glass sheets, metal sheets, plastic sheets, paper (e.g., cellulose paper, synthetic paper), coated paper (e.g., resin-coated paper), pigment-containing opaque films, and foamed films. Polyester sheets and cellulose paper are preferred, with poly(ethylene terephthalate) sheets being a preferred polyester.
  • the substrate used in the recording medium of the present invention has a glossy coating thereon, which can be of any suitable thickness.
  • the coating is preferably from about 1 ⁇ m to about 50 ⁇ m in thickness, more preferably from about 5 ⁇ m to about 40 ⁇ m in thickness, and most preferably from about 10 ⁇ m to about 30 ⁇ m in thickness.
  • the recording medium of the present invention provides excellent gloss and also has good ink absorption, dye immobilization, a high rate of liquid absorption, and overall liquid absorption capacity. Moreover, the recording medium of the present invention provides excellent image quality, particularly when used in ink jet printing applications.
  • the inventive recording medium comprises a substrate having more than one layer of coating, which can be the same or different.
  • at least one of the coating layers comprises alumina particles with properties as described herein.
  • the recording medium of the present invention can comprise a substrate coated with one or more ink-receptive layers (e.g., comprising anionic silica) and/or one or more resinous layers (e.g., a glossy, laminated surface layer).
  • ink-receptive layers e.g., comprising anionic silica
  • resinous layers e.g., a glossy, laminated surface layer
  • the coating of the recording medium of the present invention comprises alumina particles that are aggregates of primary particles, with pyrogenic or fumed alumina being preferred.
  • Particles of pyrogenic alumina are aggregates of smaller, primary particles.
  • the primary particles are not porous, the aggregates contain a significant void volume, and are capable of rapid liquid absorption. These void-containing aggregates enable a coating to retain a significant capacity for liquid absorption even when the aggregate particles are densely packed, which minimizes the inter-particle void volume of the coating.
  • the size of the alumina particles of which the coating is comprised impacts the glossiness of the coating.
  • the diameter values refer to the diameters of the aggregates.
  • Particle diameter can be determined by any suitable technique, for example, by a light scattering technique, (e.g., using a Brookhaven 90Plus Particle Scanner, available from Brookhaven Instruments Corporation, Holtsville, New York).
  • the mean diameter of the alumina particles is less than about 1 ⁇ m. More preferably, the mean diameter of the alumina particles is less than about 500 nm, still more preferably the mean diameter of the alumina particles is less than about 400 nm, and most preferably the mean diameter of the alumina particles is less than about 300 nm.
  • At least about 80% (e.g., at least about 90%) or substantially all of the alumina particles have diameters smaller than the mean diameter values set forth above.
  • at least about 80% (e.g., at least about 90%) or substantially all of the particles have diameters of less than about 1 ⁇ m
  • at least about 80% (e.g., at least about 90%) or substantially all of the particles have diameters of less than about 500 nm
  • at least about 80% (e.g., at least about 90%) or substantially all of the particles have diameters of less than about 400 nm
  • most highly preferred that at least about 80% (e.g., at least about 90%) or substantially all of the particles have diameters of less than about 300 nm.
  • the mean diameter of the alumina particles is at least about 40 nm (e.g., particles having a mean diameter from about 40 nm to about 300 nm, more preferably from about 100 nm to about 200 nm, still more preferably from about 120 to about 190 nm, and most preferably from about 140-180 nm (e.g., from about 150-170 nm)).
  • At least about 80% (e.g., at least about 90%) or substantially all of the alumina particles have diameters of at least about 100 nm (e.g., from about 100 nm to about 200 nm, more preferably from about 120 to about 190 nm, and most preferably from about 140-180 nm (e.g., from about 150-170 nm)).
  • the alumina particles preferably have a mean diameter of less than about 300 nm, more preferably less than about 200 nm, still more preferably less than about 190 nm, and most preferably less than about 180. In certain embodiments it is preferred that at least about 80% (e.g., at least about 90%) or substantially all of the alumina particles have diameters of less than about 300 nm, more preferably less than about 200 nm, still more preferably less than about 190 nm, and most preferably less than about 180 nm.
  • the coating can comprise alumina particles having any suitable range of individual particle diameters, such as a relatively broad range or a relatively narrow range.
  • the particles also can be monodispersed. By monodispersed is meant that the individual particles have diameters that are substantially identical. For example, substantially all monodispersed 150 nm particles have diameters in the range of from about 140 nm to about 160 nm.
  • the primary particles in certain embodiments of the present invention, such as when a glossy coating having a relatively high rate of and capacity for liquid absorption is desired, it is preferred that the primary particles have a mean diameter of less than about 100 nm (e.g., from about 1 nm to about 100 nm). More preferably, the primary particles have a mean diameter of less than about 80 nm (e.g., from about 1 nm to about 80 nm), even more preferably less than about 50 nm (e.g., from about 1 nm to about 50 nm), and most preferably less than about 40 nm (e.g., from about 5 nm to about 40 nm).
  • At least about 80% (e.g., at least about 90%) or substantially all of the primary particles have diameters smaller than the mean diameter values set forth above.
  • at least about 80% (e.g., at least about 90%) or substantially all of the primary particles have diameters of less than about 100 nm (e.g., from about 1 nm to about 100 nm), more preferred that at least about 80% (e.g., at least about 90%) or substantially all of the primary particles have diameters of less than about 80 nm (e.g., from about 1 nm to about 80 nm), even more preferred that at least about 80% (e.g., at least about 90%) or substantially all of the primary particles have diameters of less than about 50 nm (e.g., from about 1 nm to about 50 nm), and most preferred that at least about 80% (e.g., at least about 90%) or substantially all of the primary particles have diameters of less than about 40
  • the surface area of the alumina particles of the recording medium of the present invention is largely a function of the mean diameter of the primary particles, rather than the mean diameter of the aggregates.
  • the alumina particles of the recording medium of the present invention can have any suitable surface area. While the alumina particles of the recording medium of the present invention can have a surface area of up to about 400 m 2 /g, it is preferred that the surface area of the alumina particles of the recording medium of the present invention have a surface area of less than about 200 m 2 /g, more preferably less than about 150 m 2 /g.
  • the alumina particles of the recording medium of the present invention have a surface area of less than about 400 m 2 /g (e.g., about 15-300 m 2 /g, more preferably about 20-200 m 2 /g, more preferably about 30-80 m 2 /g, and most preferably about 40-60 m 2 /g).
  • the glossiness of the recording medium of the present invention can be measured using any suitable technique.
  • the glossiness of the present invention can be measured in terms of the 75° specular gloss, e.g., according to JIS P 8142, or an equivalent U.S. standard, using a gloss photometer, for example, a VGS-1001, manufactured by Nihon Denshoku Kogyosha, a Hunter 75° Gloss Meter, a Technidyne Glossmeter (e.g., Model T480A), or the like.
  • Other suitable test methods can be used to determine glossiness, for example, ASTM, TAPPI, or the like. When TAPPI is used, it is preferably TAPPI T480. When ASTM is used, it is preferably ASTM D1223.
  • the recording medium of the present invention has a 75° specular gloss of at least about 15%. More preferably, the recording medium of the present invention has a glossiness of at least about 25%, even more preferably at least about 35%, still more preferably at least about 45%. In some instances, the glossiness is least about 55%, and even at least about 65%.
  • the recording medium of the present invention is calendered to provide a glossier coating.
  • c preferably has a 75° specular gloss of at least about 15%, more preferably at least about 25%, even more preferably at least about 35%, and still more preferably at least about 45%.
  • the recording medium of the present invention when calendered, has a 75° specular gloss of at least about 50%.
  • the recording medium of the present invention when calendered, can have glossiness is least about 55%, and even at least about 65%.
  • the coating of the recording medium of the present invention has good dye immobilization properties and waterfastness.
  • Organic dyes such as those used in ink-jet inks, often contain ionizable functional groups (e.g., SO 3 H, COOH, PO 3 H 2 , etc.), which increase the water solubility of the dyes.
  • the dyes become negatively charged when these functional groups ionize in water (e.g., to SO 3 - , COO - , PO 3 2- , etc.).
  • the alumina used in the glossy coating of the recording medium of the present invention has a cationic surface, the alumina particles enhances the ability of the coating to immobilize (i.e., adsorb) and display dye molecules at the surface of the coating. This is due to the strong electrostatic attraction of the dye toward the alumina particles in the glossy coating of the recording medium of the present invention.
  • the coating of the recording medium of the present invention has excellent dye immobilizing ability, which promotes desirable qualities, for example, superior image quality and high optical density.
  • the alumina particles in the coating of the the recording medium of the present invention can have a high positive zeta potential.
  • the net charge on the alumina particles of the recording medium of the present invention can be qualitatively determined by measuring the zeta potential of the dispersion (e.g., using a Matec MBS 8000 or a Brookhaven Zeta Plus instrument).
  • a negative zeta potential is indicative of a net negative charge, while a positive zeta potential indicates a net positive charge.
  • the magnitude of the zeta potential is proportional to the magnitude of the charge.
  • Dye adhesion to the surface of a recording medium can be quantified by measuring the optical density and waterfastness of a test sample of the recording medium to which an aqueous ink-jet ink comprising an anionic dye has been applied.
  • a test sample having an ink coverage of about 12 g/m 2 over an area of about 90 cm 2 can be cut in half and tested in the following manner.
  • One minute after applying the ink one of the halves is soaked in deionized water for one minute and then repeatedly dipped in and out of the water to remove all dissolved ink from the sample.
  • a densitometer e.g., a MacBeth 512 densitometer
  • the optical density of the recording medium is the average image intensity of the half of the test sample that was not soaked in water.
  • the waterfastness can be reported as: 1 - ave . I . I . of unsoaked - ave . I . I . of soaked ave . I . I . of unsoaked wherein ave. I.I. is the average image intensity of each half of the test sample (i.e., the half that was soaked in water and the half that was not soaked in water). Waterfastness values that are less than one, when calculated in this fashion, generally indicate loss of ink from the coating.
  • waterfastness can be evaluated in terms of retained optical density.
  • a test print can be evaluated by immersing a sample in deionized water for 5 minutes with light agitation, drying the sample, and comparing the color density of the dry soaked sample with that of an unsoaked sample (as indicated above) by measuring color density with a suitable densitomer (e.g., X-Rite ® 938 Spectrodensitometer). Waterfastness can then be expressed in terms of the percentage of optical density retained by the soaked sample relative to the unsoaked sample.
  • a suitable densitomer e.g., X-Rite ® 938 Spectrodensitometer
  • the recording medium of the present invention exhibits excellent waterfastness.
  • the recording medium of the present invention typically retains at least about 50% of the optical density after immersion in deionized water for 5 minutes with light agitation.
  • the recording medium of the present invention retains at least about 60% of the optical density of the printed image, more preferably at least about 70% of the optical density, still more preferably at least about 80% of the optical density, and most preferably at least about 90% of the optical density is retained (e.g., about 95% or even 100% of the optical density).
  • the recording medium of the present invention also has a good rate of liquid absorption and good capacity for liquid absorption.
  • the rate of liquid absorption can be measured by any suitable method, for example, by applying a droplet of a liquid (e.g., distilled water) to the coating surface and measuring the change in the angle of the droplet with respect to the surface (contact angle) over time.
  • a liquid e.g., distilled water
  • the contact angle of distilled water when applied to the glossy coating of the recording medium of the present invention, decreases by at least about 5° over the first five minutes. More preferably, the contact angle decreases by at least about 7° over the first five minutes.
  • the contact angle of distilled water when applied to the glossy coating of the recording medium of the present invention, decreases by at least about 10° over the first five minutes.
  • the capacity for liquid absorption of the coating of the recording medium of the present invention can be measured by any suitable technique.
  • the capacity for liquid absorption can be measured by contacting a liquid, for example, water, or a 1:1 solution of polyethylene glycol (e.g., PEG 400) and water, or the like, with a predetermined area of the glossy coating of the recording medium of the present invention for 10 seconds at 22 °C, followed by contacting the medium with a blotting paper to remove excess solution, measuring the weight of the solution absorbed by the glossy coating, and expressing that weight in terms of g/m 2 .
  • a liquid for example, water, or a 1:1 solution of polyethylene glycol (e.g., PEG 400) and water, or the like
  • the liquid absorption capacity of the coating can be measured as a function of porosity.
  • Porosity can be measured by any suitable method, for example, by measuring the total intrusion volume of a liquid (e.g., mercury) into the glossy coating applied to a non-porous substrate (e.g., polyethylene).
  • a liquid e.g., mercury
  • the total intrusion volume of a liquid for a particular coating can be a function of variables that influence the structure of the coating, for example, binder type, pigment-to-binder ratio, pigment particle size, calendering, and the like.
  • the porosity is determined by measuring the total intrusion volume of mercury.
  • the glossy coating of the recording medium of the present invention when the substrate is a non-porous substrate, preferably has a total mercury intrusion volume of at least about 0.3 ml/g, more preferably at least about 0.5 ml/g, still more preferably at least about 0.8 ml/g, most preferably about 1 ml/g or greater.
  • the properties of the inventive recording medium promote high image quality when used in the vast majority of printing applications.
  • Any suitable printing method can be used to apply an image to the inventive recording medium.
  • printing methods include, but are not limited to gravure, letterpress, collotype, lithography (e.g., offset lithography), ink-jet, and printing with hand-held implements (e.g., pens), with ink-jet printing being preferred.
  • binders include, but are not limited to, polyvinyl alcohol (PVOH), polyvinyl acetate, polyvinyl acetal, polyvinyl pyrrolidone, oxidized starch, etherified starch, cellulose derivatives (e.g., carboxymethyl cellulose (CMC), hydroxyethyl cellulose, etc.), casein, gelatin, soybean protein, silyl-modified polyvinyl alcohol, conjugated diene copolymer latexes (e.g., maleic anhydride resin, styrene-butadiene copolymer, methyl methacrylate-butadiene copolymers, etc.), acrylic polymer latexes (e.g., polymers and copolymers of acrylic esters and methacrylic esters, polymers and copolymers of acrylic acid and methacrylic acid, etc.), vinyl polymer latexes (e.g., polymers and copolymers of acrylic esters and methacrylic
  • the alumina particles in the coating of the recording medium of the present invention have a low binder demand.
  • a higher pigment to binder ratio can be utilized in the coating of the recording medium of the present invention.
  • the high pigment to binder ratio is advantageous in that a greater number of alumina particles per unit volume can exist in the coating of the recording medium of the present invention, improving the properties thereof (e.g., gloss and porosity).
  • the pigment to binder ratio of the coating of the recording medium of the present invention is at least about 2:1 by weight. More preferably the pigment to binder ratio of the coating of the recording medium of the present invention is at least about 5:1 by weight, still more preferably at least about 7:1 by weight, and most preferably at least about 8:1 by weight. In some embodiments, the pigment to binder ration of the coating of the recording medium of the present invention is at least about 9:1 by weight (e.g., at least about 10:1 by weight).
  • the total amount of binder can be any suitable amount, but is preferably from about 1% to about 50% of the composition (i.e., dry binder and particles combined) by weight. More preferably, the total amount of binder is from about 1% to about 40% of the composition by weight, even more preferably from about 1% to about 30% by weight, still more preferably from about 3% to about 25% by weight, yet more preferably from about 5% to about 15% by weight, and most preferably from about 5% to about 10% by weight (e.g., about 9% by weight).
  • the total amount of PVOH is preferably from about 1% to about 50% of the composition by weight, more preferably from about 1% to about 40% by weight, even more preferably from about 1% to 30% by weight, yet more preferably from about 3% to about 25% by weight, still more preferably from about 5% to about 15% by weight, and most preferably from about 5% to about 10% by weight (e.g., about 9% by weight).
  • the glossy coating of the inventive recording medium comprises one or more pigments in addition to alumina particles, such as calcium carbonate, clays, aluminum silicates, urea-formaldehyde fillers, and the like.
  • suitable pigments include silica (e.g., colloidal silica, precipitated silica, silica gel, pyrogenic silica, or cationically modified analogs thereof), alumina (e.g., alumina sols, colloidal alumina, cationic aluminum oxide or hydrates thereof, pseudoboehmite, boehmite, Al(OH) 3 , etc.), magnesium silicate, magnesium carbonate, kaolin, talc, calcium sulfate, barium sulfate, titanium dioxide, zinc oxide, zinc sulfide, zinc carbonate, satin white, diatomaceous earth, calcium silicate, aluminum hydroxide, lithopone, zeolite, hydrated halloycite, magnesium hydroxide, polyo
  • the glossy coating of the recording medium of the present invention also can comprise one or more other additives, such as surfactants (e.g., cationic surfactants, anionic surfactants such as long-chain alkylbenzene sulfonate salts and long-chain, preferably branched chain, alkylsulfosuccinate esters, nonionic surfactants such as polyalkylene oxide ethers of long-chain, preferably branched-chain alkyl group-containing phenols and polyalkylene oxide ethers of long-chain alkyl alcohols, and fluorinated surfactants), silane coupling agents (e.g., ⁇ -aminopropyltriethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane, etc.), hardeners (e.g., active halogen compounds, vinylsulfone compounds, aziridine compounds, epoxy compounds, acryloyl compounds isocyanate compounds
  • the present invention further provides a coating composition comprising alumina particles and a binder, wherein the alumina particles are aggregates of primary particles and the solids content of the alumina in the coating composition greater than about 10 wt.%.
  • Suitable alumina particles include the alumina particles described herein with respect to the coating of the recording medium of the present invention.
  • the alumina particles used in the coating composition of the present invention can be of any suitable diameter and surface area. Suitable particle diameters and surface areas of the particles include the particle diameters and surface areas described herein with respect to the coating of the recording medium of the present invention.
  • any suitable binder can be used in coating composition of the present invention, including those described herein with respect to the coating of the recording medium of the present invention.
  • any suitable pigment to binder ratio can be used in the coating composition of the present invention.
  • the pigment to binder ratio is at least about 2:1 by weight. More preferably the pigment to binder ratio of the coating composition of the present invention is at least about 5:1 by weight, still more preferably at least about 7:1 by weight, and most preferably at least about 8:1 by weight.
  • the pigment to binder ration of the coating composition of the present invention is at least about 9:1 by weight (e.g., at least about 10:1 by weight).
  • the coating composition of the present invention typically includes a suitable carrier.
  • the carrier can be any suitable fluid or combination of fluids (e.g., solvents) in which the first and second groups of particles, and any other additives (e.g., one or more binders), can be mixed and applied to a substrate.
  • Preferred carriers have a relatively high vapor pressure to accelerate drying of the coating after application, and preferred examples include, but are not limited to, organic solvents (e.g., methanol) and water, with water being most preferred.
  • coating composition of the present invention comprises one or more pigments in addition to alumina particles, including those described herein with respect to the coating of the recording medium of the present invention.
  • the coating composition of the present invention also can comprise one or more other additives, for example, surfactants, silane coupling agents, hardeners, pigment dispersants, thickeners, flowability improvers, antifoamers, foam inhibitors, releasing agents, foaming agents, pentetrants, coloring dyes, coloring pigments, whiteners, antifungal agents, yellowing inhibitors, ultraviolet absorbers, antioxidants, water-resisting agents, wet strengthening agents, and dry strengthening agents, including those described herein with respect to the coating of the recording medium of the present invention.
  • additives for example, surfactants, silane coupling agents, hardeners, pigment dispersants, thickeners, flowability improvers, antifoamers, foam inhibitors, releasing agents, foaming agents, pentetrants, coloring dyes, coloring pigments, whiteners,
  • the present invention further provides a method of preparing a coating composition.
  • the method comprises:
  • Suitable alumina particles include the alumina particles described herein with respect to the coating of the recording medium of the present invention.
  • the alumina particles used in the inventive method of preparing a coating composition can be of any suitable diameter and surface area. Suitable particle diameters and surface areas of the particles include the particle diameters and surface areas described herein with respect to the coating of the recording medium of the present invention.
  • any suitable binder can be used in the inventive method of preparing a coating composition, including those described herein with respect to the coating of the recording medium of the present invention.
  • any suitable pigment to binder ratio can be used in preparing the coating composition in accordance with the method of the present invention.
  • Preferred pigment to binder ratios include those described herein with respect to the coating of the recording medium of the present invention.
  • a suitable carrier can be employed in the method of preparing a coating composition of the present invention.
  • the carrier can be present in the dispersion or can be added to the dispersion to produce the final coating composition.
  • Suitable carriers include those described herein with respect to the coating of the recording medium of the present invention, with water being most preferred.
  • one or more pigments can be added to the dispersion in addition to the alumina particles, including those described herein with respect to the coating of the recording medium of the present invention.
  • One or more other additives also can be added, including those described herein with respect to the coating of the recording medium of the present invention.
  • the colloidally stable dispersion (i.e., the initial dispersion) used to prepare the coating composition in accordance with the present invention has a high solids content (i.e., greater than about 20 wt.% alumina solids) and also is colloidally stable.
  • the high alumina solids content of the initial dispersion is highly advantageous in that a higher solids content of the coating composition can be achieved (e.g., at least about 20 wt.% total solids taking the binder and other additives into account). As a result, drying time in coating operations is significantly diminished, making the overall process less costly and more efficient.
  • the initial dispersion can be prepared by any suitable method, but is preferably prepared according to the method described in U.S. Patent 5,527,423 .
  • the alumina solids content of the initial dispersion is at least about 25 wt.%, more preferably at least about 30 wt.%, still more preferably at least about 35 wt.%, even more preferably at least about 40 wt.%, and most preferably al least about 50 wt.%.
  • the alumina solids content of the colloidally stable dispersion is about 25-50 wt.% or 30-50 wt.%, but is more preferably about 30-50 wt.%, most preferably about 40-50 wt.%.
  • the alumina particles in the initial dispersion used in the method of the present invention can have any suitable positive zeta potential.
  • the positive zeta potential is sufficiently high to promote colloidal stability in the initial dispersion.
  • the zeta potential of the alumina particles in the initial dispersion is at least about +20 mV. More preferably, the zeta potential of the alumina particles in the initial dispersion dispersion is at least about +30 mV. Most preferably, the zeta potential of the alumina particles in the initial dispersion dispersion is at least about +40 mV.
  • the initial dispersion can be of any suitable pH.
  • the pH of the initial dispersion is about 3-5, and more preferably is about 3.5-4.5, but most preferably is about 4-4.5.
  • the initial dispersion can have a range of specific gravity values, the specific gravity of the initial dispersion preferably is in the range of about 1-2 kg/l.
  • the initial dispersion used to prepare the coating composition of the present invention has excellent rheological properties, making the dispersion and coating compositions derived therefrom highly amenable to large scale coating operations.
  • the initial dispersion exhibits low viscosity at a high shear rate, e.g., as measured in a Hercules® High-Shear Viscometer at 4400 RPM, FF Bob measuring geometry.
  • the initial dispersion, at an alumina solids content of about 40 wt.% has an apparent viscosity of less than about 20 cp at high shear rate (e.g., as measured in a Hercules@ High-Shear Viscometer at 4400 RPM, FF Bob measuring geometry).
  • the initial dispersion (at about 40 wt.% alumina solids) has an apparent viscosity of less than about 15 cp, as measured in a Hercules@ High-Shear Viscometer at 4400 RPM, FF Bob measuring geometry.
  • the initial dispersion (at about 40 wt.% alumina solids) has an apparent viscosity of less than about 10 cp, as measured in a Hercules@ High-Shear Viscometer at 4400 RPM, FF Bob measuring geometry.
  • the initial dispersion used to prepare the coating composition of the present invention also exhibits low viscosity at a low shear rate, e.g., as measured in a Brookfield Model RV viscometer, spindle #1, after about 30 seconds at 60 RPM.
  • a low shear rate e.g., as measured in a Brookfield Model RV viscometer, spindle #1
  • the initial dispersion (at about 40 wt.% alumina solids) has an apparent viscosity of less than about 100 cp at low shear rate (e.g., as measured in a Brookfield Model RV viscometer, spindle #1, after about 30 seconds at 60 RPM).
  • the initial dispersion (at about 40 wt.% alumina solids) has an apparent viscosity of less than about 80 cp, as measured in a Brookfield Model RV viscometer, spindle #1, after about 30 seconds at 60 RPM. Most preferably, the initial dispersion (at about 40 wt.% alumina solids) has an apparent viscosity of less than about 50 cp, as measured in a Brookfield Model RV viscometer, spindle #1, after about 30 seconds at 60 RPM.
  • the initial dispersion used to prepare the coating composition of the present invention can be very high in alumina solids content (e.g., 30-50 wt.% alumina solids), yet maintain long-term colloidal stability (e.g., 1 year).
  • Coating compositions prepared from the initial dispersion in accordance with the method of the present invention have a significantly lower binder demand and have greater runnability than conventional alumina coating compositions.
  • the coating composition prepared from the initial dispersion in accordance with the present invention require significantly less drying time than conventional coatings.
  • the coatings on the recording media thus produced have high porosity, excellent gloss, dye-immobilizing ability, and waterfastness, and provide superior image quality.
  • the present invention further provides a method of preparing a recording medium.
  • the inventive method of preparing a recording medium comprises:
  • the coating composition of the present invention provides fast drying times, drying quickly to form a non-tacky glossy coating.
  • the coating composition can be applied using any suitable method or combination of methods. Suitable methods include, but are not limited to, roll coating, blade coating, air knife coating, rod coating, bar coating, cast coating, gate roll coating, wire bar coating, short-dowel coating, slide hopper coating, curtain coating, flexographic coating, gravure coating, Karla coating, size press coating in the manner of on- or off-machine, and die coating, with rapid, inexpensive methods such as rod coating and air knife coating being preferred.
  • the coated substrate can be dried using any suitable method. Suitable drying methods include, but are not limited to, air or convection drying (e.g., linear tunnel drying, arch drying, air-loop drying, sine curve air float drying, etc.), contact or conduction drying, and radiant-energy drying (e.g., infrared drying and microwave drying).
  • air or convection drying e.g., linear tunnel drying, arch drying, air-loop drying, sine curve air float drying, etc.
  • contact or conduction drying e.g., contact or conduction drying
  • radiant-energy drying e.g., infrared drying and microwave drying.
  • a glossy coating prepared with the coating composition of the present invention can be rationally optimized by varying the relative quantity of particles from each group contained therein. It will be appreciated that materials other than the alumina particles (e.g., binders, thickeners, and the like) can be varied to alter or optimize the physical properties of the coating composition of the present invention.
  • the primary features of the inventive method of preparing a recording medium are as previously described with respect to the recording medium and coating composition of the present invention.
  • the preferred substrates, coating methods, coating composition e.g., solids content, binder content, apparent density, additives, etc.
  • properties of the alumina particles i.e., materials, diameters, surface area, etc.
  • coating properties i.e., thickness, number and constitution of coating layers, glossiness, rate and capacity of liquid absorption, packing density, adhesiveness, etc.
  • This example illustrates the preparation of a coating composition of the present invention.
  • An initial dispersion of fumed alumina was prepared in accordance with U.S. Patent 5,527,423 .
  • the fumed alumina had a surface area of about 55 m 2 /g.
  • the fumed alumina was greater than 95% crystalline, of which about 70% was theta phase, about 20% was delta phase, and about 10% was gamma phase, the fraction of alpha phase having been below the detection limit.
  • the dispersion had an alumina solids content of 40.0 wt.%, a pH of 4-4.4, and a specific gravity of 1.4 kg/l.
  • the viscosity of the final dispersion was less than 50 cp when measured using a Brookfield Model LV viscometer, spindle #1, after 60 seconds at 60 RPM.
  • the mean diameter of the alumina particles in the final dispersion was 154 nm as measured in a Brookhaven 90Plus Particle Scanner (Brookhaven Instruments Corporation, Holtsville, New York). An electron micrograph of the alumina particles in the initial dispersion is illustrated in Fig. 1.
  • the initial dispersion had excellent rheological properties.
  • the apparent viscosity of the initial dispersion was 8.8 cp (centipoise).
  • the zeta potential of the particles in the dispersion was +40 mV.
  • the dispersion was colloidally stable in that there was no appreciable increase in viscosity or gellation after one year at a storage temperature ranging from 40-110 °F (4-43 °C).
  • a coating composition was prepared by adding sufficient polyvinyl alcohol binder (PVOH) to the initial dispersion to give a pigment to binder ratio of 7:1, HEC (1.55 wt.%), and diluting to an overall solids content (including binder) of 24.28 wt.%.
  • the final pH was 4.20.
  • the coating composition had excellent rheological properties.
  • the viscosity of the composition was 888 cp when measured using a Brookfield Model RV viscometer, spindle #5, after 30 seconds at 100 RPM.
  • the apparent viscosity of the composition was 24.1 cp as measured in a Hercules@ High-Shear Viscometer at 4400 RPM, FF Bob measuring geometry.
  • the rheogram of the coating composition as generated in a Hercules® High-Shear Viscometer from 0-4400 RPM, FF Bob measuring geometry, is illustrated in Fig. 3 (curve B).
  • the coating composition produced excellent coatings with an unusually low pigment to binder ratio of 7:1.
  • the coating composition prepared in this example had significantly lower binder demand than conventional alumina coating compositions, which typically use a 3:1 pigment to binder ratio.
  • This example illustrates a coating composition prepared from the initial dispersion prepared in Example 1.
  • a coating composition was prepared by adding sufficient polyvinyl alcohol binder (PVOH) to the dispersion prepared in Example 1 to give a pigment to binder ratio of 7:1, and diluting to an overall solids content (including binder) of 22.27 wt.%.
  • the pH was adjusted to about 7.97 with ammonium hydroxide.
  • the coating composition had excellent rheological properties.
  • the viscosity of the composition was 2076 cp when measured using a Brookfield Model RV viscometer, spindle #5, after 30 seconds at 100 RPM.
  • the apparent viscosity of the composition was 14.0 cp as measured in a Hercules@ High-Shear Viscometer at 4400 RPM, FF Bob measuring geometry.
  • the rheogram of the coating composition, as generated in a Hercules@ High-Shear Viscometer from 0-4400 RPM, FF Bob measuring geometry, is illustrated in Fig. 3 (curve A).
  • the coating composition produced excellent coatings with low pigment to binder ratio of 7:1.
  • the coating composition prepared in this example had a low binder demand.
  • This example illustrates the preparation of a recording medium of the present invention.
  • An uncoated paper substrate base was coated with the coating composition of Example 1, except that the coating composition had a total solids content of 26.3 wt.%, no HEC added was added, the pH of the coating composition was 4.45, and the pigment to binder ratio was 4:1.
  • Coating was performed on a CLC (Cylindrical Laboratory Coater) blade coating apparatus at high speed.
  • the CLC simulates conditions that are characteristic of commercial manufacture.
  • the performance of a particular coating composition in the CLC at high speed is indicative of how the coating composition is expected to perform under high speed commercial manufacturing conditions.
  • the coating was preformed at a rate of 2000 feet per minute (610 meters per minute) using a flexible blade, and the coating was dried (infrared). The coating dried quickly.
  • Samples were calendered on one side with 3 nips at 6 pli (pounds per linear inch) (1.25 kg/linear cm) and 60 °C.
  • the optical, surface and printing properties were measured for the calendered samples, and the results were compared to the uncalendered samples.
  • the uncoated paper substrate had the following properties: basis weight: 77.5 g/m 2 ; pH: 6.6; ash: 8.31%; caliper 3.62/1000" (91.9 ⁇ m); brightness: 82.7%; gloss: 6.4%; smoothness: 3.93 ⁇ m; Hercules ® sizing test: 109 sec; and PPS porosity: 2.77 ml/min.
  • the recording media obtained by coating the substrate in accordance with this example had excellent gloss, brightness, and porosity. The coating had an excellent appearance and superior feel, and did not crack or exhibit brittleness. Moreover, the recording media produced an excellent printed image.
  • Brightness was measured using a Technidyne ® Brightness Meter Tappi Procedure T 452 OM-92. Gloss was measured using a Hunter 75° degree gloss meter according to TAPPI standard procedure T 480OM-92. The surface smoothness and porosity of the sheets were measured using a Parker Print Surf (PPS) tester (TAPPI T555 PM-94). The rate of liquid absorption of the papers was measured using a First 10 Angstrom Dynamic Contact Angle measuring device.
  • PPS Parker Print Surf
  • the samples were printed on Epson Stylus ® Pro Photorealistic and Hewlett Packard ® 820C ink jet printers using a test pattern created with ADOBE ® software. The print gloss and print density of the samples was then measured. Print gloss was measured using a Gardener 60 degree Micro-Gloss meter. Print density was measured using a BYK Gardner ® densitometer. The properties of the image as printed using the Epson ® Stylus Pro Photorealistic and the Hewlett Packard ® 820C are shown in Tables 2A and 2B, respectively.
  • Table 2A Epson Stylus ® Pro ES Wide Format Medium Black Cyan Magenta Yellow Ink Gloss Coating Gloss Coated Substrate (8 g/m 2 ) 1.44 0.69 0.91 0.79 1.82 13.0 Calendered (8 g/m 2 ) 1.64 0.73 1.02 0.98 14.8 66.3
  • Table 2B Hewlett Packard ® 820C Medium Black Cyan Magenta Yellow Ink Gloss Coating Gloss Coated Substrate (8 g/m 2 ) 1.57 1.18 1.23 0.86 9.40 13.0 Calendered (8 g/m 2 ) 1.64 0.73 1.02 0.98 11.7 66.3
  • Example 3 Using the CLC apparatus described in Example 3, one side of a cellulose paper substrate was coated with the composition prepared according to Example 1, except that the total solids content of the coating composition was 26.4 wt.%, the pH was 4.5, the amount of HEC added was 3.0 wt.%, and the pigment to binder ratio was 5:1. Coating was performed at a rate of 3000 feet per minute (914 meters per minute) and the samples dried (infrared). The coatings were applied at three different coating weights, and the coatings dried quickly after they were applied to the substrate.
  • the dry coat weight in grams per square meter (g/m 2 ) for each recording medium was determined, and the dry recording media (uncalendered) were analyzed. Optical and surface properties were measured for each recording medium and also for the uncoated substrate. PPS (Parker Print Surf) roughness and brightness were measured. Brightness was measured in accordance with TAPPI brightness standard. Glossiness was measured in terms of the 75° specular gloss according to JIS P 8142 using a gloss photometer.
  • composition of the present invention exhibits excellent performance at high speed and produces a glossy recording medium with excellent optical and surface properties under such conditions.
  • composition of the present invention possesses rheological properties desirable for producing high quality coatings under high speed manufacturing operations.
  • Example 3 Using the CLC apparatus described in Example 3, one side of a cellulose paper substrate was coated with the composition prepared according to Example 1, except that the total solids content of the coating composition was 33.3 wt.%, the pH was 4.5, the amount of HEC added was 3.0 wt.%, and the pigment to binder ratio was 5:1. Coating was performed at a rate of 3000 feet per minute (914 meters per minute) and the samples dried (infrared). The coatings were applied at three different coating weights, and the coatings dried quickly after they were applied to the substrate.
  • the dry coat weight in grams per square meter (g/m 2 ) for each recording medium was determined, and the dry recording media (uncalendered) were analyzed. Optical and surface properties were measured for each recording medium and also for the uncoated substrate. PPS (Parker Print Surf) roughness and brightness were measured. Brightness was measured in accordance with TAPPI brightness standard. Glossiness was measured in terms of the 75° specular gloss according to JIS P 8142 using a gloss photometer.
  • composition of the present invention exhibits excellent performance at high speed and produces a glossy recording medium with excellent optical and surface properties under such conditions.
  • composition of the present invention possesses rheological properties desirable for producing high quality coatings under high speed manufacturing operations.
  • a coating composition was prepared in accordance with Example 1 (pigment to binder ratio 7:1), except that the coating composition had a total solids content of 29 wt.%, the pH of the composition was 4.5, and the amount of HEC added was 3.0 wt.%.
  • Recording media were prepared by coating a cellulose paper substrate using the CLC coating apparatus as described in Example 4, except that the applied coating weights were 5.3 g/m 2 , 8.0 g/m 2 , and 13.6 g/m 2 , respectively.
  • each sample exhibited a sharp initial decrease over the first few minutes, indicating a good rate liquid absorption for a range of coating weights.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Ink Jet Recording Methods And Recording Media Thereof (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)
  • Holo Graphy (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Paper (AREA)
  • Ink Jet (AREA)
EP08008392A 1999-10-01 2000-09-26 support d'enregistrement Expired - Lifetime EP2096208B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15746299P 1999-10-01 1999-10-01
EP00966911A EP1238157B1 (fr) 1999-10-01 2000-09-26 Support d'enregistrement

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP00966911.0 Division 2000-09-26
EP00966911A Division EP1238157B1 (fr) 1999-10-01 2000-09-26 Support d'enregistrement

Publications (2)

Publication Number Publication Date
EP2096208A1 true EP2096208A1 (fr) 2009-09-02
EP2096208B1 EP2096208B1 (fr) 2011-11-30

Family

ID=22563834

Family Applications (2)

Application Number Title Priority Date Filing Date
EP08008392A Expired - Lifetime EP2096208B1 (fr) 1999-10-01 2000-09-26 support d'enregistrement
EP00966911A Expired - Lifetime EP1238157B1 (fr) 1999-10-01 2000-09-26 Support d'enregistrement

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP00966911A Expired - Lifetime EP1238157B1 (fr) 1999-10-01 2000-09-26 Support d'enregistrement

Country Status (8)

Country Link
EP (2) EP2096208B1 (fr)
JP (1) JP4805504B2 (fr)
AT (2) ATE398208T1 (fr)
AU (1) AU7718900A (fr)
BR (1) BR0014304A (fr)
CA (1) CA2385878C (fr)
DE (1) DE60039189D1 (fr)
WO (1) WO2001025534A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3733283B2 (ja) * 2000-09-07 2006-01-11 キヤノン株式会社 インクジェット用記録媒体とその製造方法およびそれを用いたインクジェット記録方式による画像形成方法
JP3857926B2 (ja) 2002-01-29 2006-12-13 株式会社巴川製紙所 インクジェット用記録シート
KR20120031242A (ko) 2004-05-04 2012-03-30 캐보트 코포레이션 원하는 응집체 입자 직경을 갖는 응집체 금속 산화물 입자 분산액의 제조 방법
JP4936527B2 (ja) * 2007-03-28 2012-05-23 日本製紙株式会社 インクジェット記録媒体
JP2014208780A (ja) * 2013-03-27 2014-11-06 三菱樹脂株式会社 塗工液の製造方法、積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
CN115519919B (zh) * 2022-10-11 2024-09-20 乐凯胶片股份有限公司 喷墨材料、制备方法及打印装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5171626A (en) * 1990-04-02 1992-12-15 Canon Kabushiki Kaisha Ink-jet recording medium and ink-jet recording method making use of it
US5472773A (en) * 1993-06-25 1995-12-05 Asahi Glass Company Ltd. Coated paper and processes for its production
US5527423A (en) 1994-10-06 1996-06-18 Cabot Corporation Chemical mechanical polishing slurry for metal layers
US5679451A (en) * 1994-10-27 1997-10-21 Canon Kabushiki Kaisha Recording medium
EP0878322A2 (fr) * 1997-05-15 1998-11-18 Oji Paper Company Limited Matériau d'enregistrement par jet d'encre et procédé pour sa fabrication
JPH11246218A (ja) * 1998-03-04 1999-09-14 Asahi Glass Co Ltd アルミナゾル、アルミナゾルの製造方法および記録シート
EP1048479A2 (fr) * 1999-04-26 2000-11-02 Oji Paper Co., Ltd. Matériau d'enregistrement par jet d'encre et procédé pour sa fabrication

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000211243A (ja) * 1999-01-21 2000-08-02 Jsr Corp インクジェット記録用コ―テイング材およびインクジェット記録用シ―ト
JP3470879B2 (ja) * 1999-01-22 2003-11-25 タイホー工業株式会社 インクジェット用被記録材用塗工剤及びインクジェット用被記録材
JP2001001630A (ja) * 1999-06-18 2001-01-09 Mitsubishi Paper Mills Ltd インクジェット記録用シート
DE19943291A1 (de) * 1999-09-10 2001-03-15 Degussa Pyrogen hergestelltes Aluminiumoxid
JP2001088435A (ja) * 1999-09-22 2001-04-03 Mitsubishi Paper Mills Ltd インクジェット記録媒体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5171626A (en) * 1990-04-02 1992-12-15 Canon Kabushiki Kaisha Ink-jet recording medium and ink-jet recording method making use of it
US5472773A (en) * 1993-06-25 1995-12-05 Asahi Glass Company Ltd. Coated paper and processes for its production
US5527423A (en) 1994-10-06 1996-06-18 Cabot Corporation Chemical mechanical polishing slurry for metal layers
US5679451A (en) * 1994-10-27 1997-10-21 Canon Kabushiki Kaisha Recording medium
EP0878322A2 (fr) * 1997-05-15 1998-11-18 Oji Paper Company Limited Matériau d'enregistrement par jet d'encre et procédé pour sa fabrication
JPH11246218A (ja) * 1998-03-04 1999-09-14 Asahi Glass Co Ltd アルミナゾル、アルミナゾルの製造方法および記録シート
EP1048479A2 (fr) * 1999-04-26 2000-11-02 Oji Paper Co., Ltd. Matériau d'enregistrement par jet d'encre et procédé pour sa fabrication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 14 22 December 1999 (1999-12-22) *

Also Published As

Publication number Publication date
JP2003511266A (ja) 2003-03-25
JP4805504B2 (ja) 2011-11-02
ATE535646T1 (de) 2011-12-15
EP1238157B1 (fr) 2008-06-11
BR0014304A (pt) 2003-06-10
CA2385878C (fr) 2010-11-09
EP1238157A1 (fr) 2002-09-11
WO2001025534A1 (fr) 2001-04-12
AU7718900A (en) 2001-05-10
ATE398208T1 (de) 2008-07-15
EP2096208B1 (fr) 2011-11-30
CA2385878A1 (fr) 2001-04-12
DE60039189D1 (de) 2008-07-24

Similar Documents

Publication Publication Date Title
US7431993B2 (en) Recording medium with glossy coating containing alumina
US6420039B1 (en) Recording medium
US6365264B2 (en) Recording medium
US6861115B2 (en) Ink jet recording medium comprising amine-treated silica
US6861112B2 (en) Dispersion, coating composition, and recording medium containing silica mixture
EP2096208B1 (fr) support d'enregistrement
JP2001270240A (ja) インクジェット印刷方法
JPS6157380A (ja) インクジエツト記録媒体
US20040126572A1 (en) Zirconium-containing metal oxide dispersions for recording media with improved ozone resistance
KR20050016312A (ko) 콜로이드성 실리카를 포함하는 코팅 조성물 및 이로부터제조된 광택성 잉크 제트 기록 시이트
JPH0427952B2 (fr)
JPH0465792B2 (fr)
JPH02117880A (ja) 被記録材及び記録方法
EP2431189B1 (fr) Support d'enregistrement
JPH0427951B2 (fr)
JP2004114599A (ja) インクジェット記録媒体
EP2450194B1 (fr) Support d'enregistrement
JPS60222281A (ja) インクジエツト用記録媒体
JP2011126018A (ja) 記録媒体

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080503

AC Divisional application: reference to earlier application

Ref document number: 1238157

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20101011

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 1238157

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 60046716

Country of ref document: DE

Effective date: 20120301

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120301

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120330

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 535646

Country of ref document: AT

Kind code of ref document: T

Effective date: 20111130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60046716

Country of ref document: DE

Effective date: 20120831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120311

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120926

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120926

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190819

Year of fee payment: 20

Ref country code: DE

Payment date: 20190813

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190827

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60046716

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20200925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200925